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Preface

Viewpoints is an undergraduate text in mathematics and art suitable
for math-for-liberal-arts courses, mathematics courses for fine art ma-
jors, and introductory art classes. Instructors in such courses at more
than 25 institutions have already used an earlier online version of the
text, called Lessons in Mathematics and Art. The material in these
texts evolved from courses in mathematics and art which we devel-
oped in collaboration and taught at our respective institutions. In
addition, this material has been tested at, and influenced by, a series
of weeklong Viewpoints faculty development workshops.

Pedagogical Approach

The approach of Viewpoints is highly activity based, much like
the approach of teaching in art school. As many of our workshop
graduates will attest, the true value of the material can only be fully
appreciated by engaging in these activities, and not by merely read-
ing the book. We have endeavored to include problems and activities
of genuine interest and value to art students—problems that go sig-
nificantly beyond what students normally learn in art school. In our
experience the authenticity of the problems makes them genuinely in-
teresting, not only to art majors but to students from a broad range
of disciplines. We have included a detailed appendix for instructors
which includes advice on the window-taping activity of Chapter 1, a
sample timetable for a first-year seminar course based on Viewpoints,
and a list of additional writing assignments.

We have endeavored to make sure that the problems are real math
problems. Happily, there is a wealth of problems at the boundary of
mathematics and art having a number of excellent pedagogical prop-
erties: (1) the problems are natural and easily understood; (2) the
problems have multiple solutions of varying difficulty and applica-
bility; (3) the problems admit multiple proofs, both geometric and
algebraic; (4) once arrived at, the solutions are easy to remember
and rewarding to use; and (5) the search for solutions captures the
essence of mathematical research and discovery. (We demonstrate in
depth how this fivefold approach comes to bear on a single problem



viii Preface

in the solution to Exercise 8 of Chapter 4.) We have sought to make
the problems in this book embody each of these characteristics, at a
level that is accessible to every undergraduate student.

Artist Vignettes

A special feature of the text is a series of personal essays which
we call Artist Vignettes. During the course of our project we have
been fortunate to meet a number of professional artists who have
generously contributed to the book. Each Vignette contains a short
biography, an artist’s statement, and some images of the artist’s work.
Color images of the artists’ work will also appear in the color plate
section. We feel that the input of practicing artists informed about
mathematics will be an exciting and attractive addition to the text.

Origin of the Text

The initial course development and the first Viewpoints workshops
were supported by the Indiana University Mathematics Throughout
the Curriculum project, the Indiana University Strategic Directions
Initiative, Franklin & Marshall College, and the National Science
Foundation (NSF-DUE 9555408). The 2001 workshop was also sup-
ported by the Professional Enhancement Program of the Mathemat-
ical Association of America. We revised and expanded the text as
part of a collaboration between our two institutions, supported by an
NSF Educational Materials Development grant (NSF-DUE 0439891
and 0439713).

Marc Frantz
Indiana University

Annalisa Crannell
Franklin & Marshall College
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CHAPTER 1

Introduction to Perspective

and Space Coordinates

O
ur first perspective activity involves using masking or
drafting tape1 to make a perspective picture of a building

1Actually, half-inch drafting tape from
an office supply store is better. It’s
less sticky and easier to find in a nar-
row width. Nevertheless, we’ll use the
more common term “masking tape.”

on a window (Figure 1.1). It’s tricky! One person (the Art
Director) must stand rooted to the spot, with one eye closed. Using
the one open eye, the Art Director directs one or more people (the
Artists), telling them where to place masking tape in order to outline
architectural features as seen from the Director’s unique viewpoint.
In Figure 1.1, this process resulted in a simple but fairly respectable
perspective drawing of the University Library at Indiana University–
Purdue University Indianapolis.

Figure 1.1. Making a masking tape
drawing on a window.

If no windows with views of architecture are available, then a
portable “window” made of Plexiglas will do just as well. In Fig-
ure 1.2, workshop participants at the Indianapolis Museum of Art
are making masking tape pictures of interior architectural details in
a hallway.
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Figure 1.2. Plexiglas will do the job indoors.

Finally, if a sheet of Plexiglas is not available, the window of a
display case will also work. In this case, the Art Director directs the
Artists in making a picture of the interior of the case (Figure 1.3).

Figure 1.3. Using a display case.

If the masking tape picture from Figure 1.1 is put in digital form
(either by photographing and scanning, or by photographing with a
digital camera) it can be drawn on in a computer program, and some
interesting patterns emerge. (Figure 1.4).

Lines in the real world that are parallel

to each other, but not parallel to the 

picture plane have images

that are not parallel.

The images of these lines

converge to a vanishing point.

Lines in the real world that 

are parallel to each

other, and also

parallel to the

picture plane have

parallel images.

V
2V

1

Figure 1.4. Two observations of the library drawing.

Observation 1. Lines in the real world that are parallel to each
other, and also parallel2 to the picture plane (the window) have par-
allel (masking tape) images.

2A line (extended infinitely in both di-
rections) is parallel to a plane if the
line does not intersect the plane. Observation 2. Lines in the real world that are parallel to each

other, but not parallel to the picture plane, have images that converge
to a common point called a vanishing point.

Two such vanishing points, V1 and V2, are indicated in Figure 1.4.
The correct use of vanishing points and other geometric devices can
greatly enhance not only one’s ability to draw realistically, but also
one’s ability to appreciate and enjoy art. To properly understand
such things, we need a geometric interpretation of our perspective
experiment (Figure 1.5). As you can see from Figure 1.5, we’re going
to be using some mathematical objects called points, planes, and
lines. To begin describing these objects, let’s start with points.
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window
(picture plane)

eye of viewer
(a point)

path of light ray
(a line)

object

image
Figure 1.5. Mathematical description
of the window-taping experiment.

It’s assumed that you’re familiar with the idea of locating points
in a plane using the standard xy-coordinate system. To locate points
in 3-dimensional space (3-space), we need to introduce a third co-
ordinate called a z-coordinate. The standard arrangement of the
xyz-coordinate axes looks like Figure 1.6; the positive x-axis points
toward you.

For a point P (x, y, z) in 3-space, we can think of the x, y, and z-
coordinates as “out,” “over,” and “up,” respectively. For instance, in
Figure 1.6, the point P (4, 5, 6) can be located by starting at the origin
(0, 0, 0) and going out toward you 4 units along the x-axis (you’d go
back if the x-coordinate were negative), then over 5 units to the right
(you’d go to the left if the y-coordinate were negative), and finally 6
units up (you’d go down if the z-coordinate were negative).

x

y

z

4

5

6
P(4,5,6)

4 units out

5 units over

6 units up

x  y  z

the origin
(0,0,0)

Figure 1.6. The standard
xyz-coordinate system.

We took a look at the standard xyz-system in Figure 1.6 simply
because it is the standard system, and you may see it again in another
course. However, it will be convenient for our purposes to use the
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slightly different xyz-coordinate system in Figure 1.7—it’s the one
we’ll be using from now on. In Figure 1.7 we have included sketches
of three special planes called the coordinate planes. In this case, we
have to think of the x, y, and z-coordinates as “out,” “up,” and
“over,” respectively, as indicated in the figure.

x

y

z

(1,3,7)

(4,2,3)

Margin Exercise 1.1. What are

the missing vertex coordinates of this

block whose faces are parallel to the

coordinate planes?
x

y

z

4

5

6
4 units out

6 units over
P(4,5,6)

x  y  z

The xy-plane
(contains the x- and y-axes).
Also called "the plane z=0"
because all z-coordinates

on this plane are 0.

The yz-plane
(contains the y- and z-axes).
Also called "the plane x=0"
because all x-coordinates

on this plane are 0.

The xz-plane
(contains the x- and z-axes).
Also called "the plane y=0"
because all y-coordinates

on this plane are 0. 5 units up

Figure 1.7. The coordinate system we will use.

A first look at how this coordinate system will be used to study
perspective is presented in Figure 1.8. A light ray from a point
P (x, y, z) on an object travels in a straight line to the viewer’s eye
located at E(0, 0,−d), piercing the picture plane z = 0 at the point
P ′(x′, y′, 0) and (in our imagination) leaves behind an appropriately
colored dot. The set of all such colored dots forms the perspective
image of the object and hopefully fools the eye into seeing the real
thing.

Margin Exercise 1.2. Suppose we
are given two points A(3, 3, 2) and
B(4, 2, 7) in the coordinate system of
Figure 1.8.

Which is higher?

Which is closer to the viewer?

Which is further to the viewer’s left?

x

y

z

P(x,y,z)

P'(x',y',0)

picture plane z=0

viewer's eye:
located on

negative  z-axis
at E(0,0,–d)

Figure 1.8. Perspective as a problem in coordinates.

In the next chapter we will see how to use this coordinate method
to make pictures in perspective, much like special effects artists do
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in the movies. We close this chapter by taking a look at how even
the most basic mathematics can help us make better drawings.

A Brief Look at Human Proportions

Most untrained artists will draw the human figure with the head
too large and the hands and feet too small (Figure 1.9). To prevent
these common mistakes, artists have made measurements and obser-
vations, and come up with some approximate rules, some of which
may surprise you:

1

2

3

4

Figure 1.9. Detail of a family portrait

by Lauren Auster-Gussman at 8 years

old. Note the height of the father in

heads marked on the right, and the

small hands and feet of the mother.

• The adult human body, including the head, is approximately 7
to 7 1

2 heads tall.

• Your open hand is as big as your whole face.

• Your foot is as long as your forearm (from elbow to wrist).

That last one really is pretty surprising—we have big feet! To see
that these principles result in good proportions, take a look at the
two versions of the painting by Diego Velazquez in Figure 1.10.

Figure 1.10. Diego Velazquez,
Pablo de Vallodolid, c. 1635
oil on canvas 82.5 × 48.5 in.

In the digitally altered version on the right, we see that the figure is
about 7 heads tall, the left hand (superimposed) is as big as the face,
and the man’s right foot, when superimposed on his right forearm,
just about covers it from elbow to wrist.

Artists who understand human proportions also know how to
bend the rules to achieve the effects they want. Comic artists are
a good example of this (Figure 1.11).
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1

2

3

4

5

6

7

8

Figure 1.11. In this sketch by popular
comic artist Alex Ross, the DC Comics
superhero Atom-Smasher is more than
eight heads tall. Superimposed cir-
cles of the same diameter show that
Starwoman’s foot is roughly as long
as her forearms. (From Rough Justice:
The DC Comics Sketches of Alex Ross,
Pantheon, New York, 2010. ATOM-
SMASHER and STARWOMAN are
TM and c© DC Comics. All Rights Re-
served.)

In their book How to Draw Comics the Marvel Way (Simon &
Schuster, New York, 1978) Marvel Comics editor Stan Lee and artist
John Buscema reveal that Marvel artists generally draw superheroes
eight and three-quarters heads tall, for heroic proportions. Popular
comic artist Alex Ross, who has drawn for both Marvel and DC
Comics, uses these proportions for the DC Comics superhero Atom-
Smasher in Figure 1.11, taken from Ross’s book Rough Justice: The
DC Comics Sketches of Alex Ross (Pantheon, New York, 2010).

Having rules like this helps comic artists to visually distinguish
superheroes from ordinary characters. It also helps the artists to draw
the same character again and again in a consistent way. Thus we see
that although artists are not bound by any one set of mathematical
rules, understanding the rules can be very helpful. That’s a theme
we will see repeatedly throughout this book.
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Exercises for Chapter 1

1. Divide your height in inches by the height of your head in inches
(you’ll have to measure). According to the artists’ rule, the
answer should be about 7 to 7.5.

(a) What is your actual answer?

(b) For a child, should the answer be greater or smaller than
7–7.5?

2. In each of Parts (a), (b), and (c), we consider a rectangular box
with its faces parallel to the coordinate planes in Figure 1.7.
Some of the coordinates of the eight corners (A, B, C, D, E,
F , G, H) of the box are given; your job is to fill in the rest.

(a) A = (1, 1, 1),
B = (1, 1, 5),
C = (4, 1, 1),
D = (4, 1, 5),
E = (4, 7, 1),
F = (4, 7, 5),
G = (1, 7, 1),
H = ( , , ).

(b) A = (1, 2, 3),
B = (2, 3, 4),
C = ( , , ),
D = ( , , ),
E = ( , , ),
F = ( , , ),
G = ( , , ),
H = ( , , ).

(c) A = (1, 1, 1),
B = (3, 4, 5),
C = ( , , ),
D = ( , , ),
E = ( , , ),
F = ( , , ),
G = ( , , ),
H = ( , , ).

(d) Which of the boxes in Parts (a), (b), and (c) is a cube?
How big is it?
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3. This exercise involves drawing sequences of straight line seg-
ments without lifting your pencil.

(a) Without lifting your pencil, connect the dots in Figure 1.12
in the following order: QPRSRTU . That is, go from Q to
P , from P to R, from R to S, from S back to R, etc. Notice
that some vertices (dots) get visited more than once, and
some edges (such as RS) get drawn more than once. What
letter did you draw?

P

R

T

Q

S

U

Figure 1.12. (b) Referring to Figure 1.12, write down a sequence of vertices
that draws the letter H. If your straight line path takes you
through a vertex, then list it. For example, don’t write
PT , write PRT instead.

(c) On the left of Figure 1.13 is a simple drawing of a house,
and on the right are the vertices of the drawing. List the
vertices in an order that duplicates the drawing. Can you
do it so that only one edge is drawn twice?

(d) Refer to the box in Problem 2(a). List the vertices of the
box (with occasional repetitions) in an order so that if we
connect the dots in the same order, we trace every edge of
the box at least once. Your path should stay on the edges
and not cut diagonally from one corner to another.

T U

P Q

R S

V

W

Figure 1.13.



Artist Vignette: Sherry Stone

SHERRY STONE is a lecturer in Foundation Studies at Herron School of Art
and Design, IUPUI, with a special interest in teaching first-year art students.
Degreed in printmaking, she has become a painter and printmaker who has
exhibited in the Midwest and on both coasts. She writes on the topic of the
education of artists—and anything else that strikes a whim—and if she hadn’t
decided to study art, she says she would have become either a writer or a very
bad ballet dancer.

I
f you were to ask my freshman art students what they liked
to draw when they were younger, many of them would answer
Manga comics. They aren’t very different from many other gen-

erations of young artists who started off by copying comics. The first
comic I tried to copy was “Nancy.” The drawings were simple and I
was really fascinated with her hair; it looked like a helmet with spikes
sticking out of it! When I was older, I liked to copy Wonder Woman,
who was a much better role model—if a comic book character can be
a role model—and I enjoyed her connection to mythology.

My father was a draftsman: the old-fashioned kind, one of those “My father was a draftsman: the old-
fashioned kind, one of those guys who
learned to draw with rulers and me-
chanical instruments like compasses
and protractors, not CADs and com-
puters.”

guys who learned to draw with rulers and mechanical instruments
like compasses and protractors, not CADs and computers. My first
drawing utensils were his turquoise 2H pencils. That’s “h” for “hard,”
which means they could make the sharp, light, accurate lines that
draftsmen needed for architectural drawings. I learned not to like
them very well. The marks they made were too light no matter how
hard you pressed and they had no erasers on the ends.

When I was growing up, he worked for a company that constructed
water towers like the ones you see from the interstate that announce



10 Artist Vignette

the presence of small towns like “Sellersburg” or “Speed” to everyone
passing by. Sometimes his company built water towers shaped as
unusual objects like ketchup bottles or Dixie cups. They acted as
signposts for companies that were so big that they needed their own
water tower. I thought those towers were very cool. That was before
Claus Oldenberg began making his monumental Pop Art sculptures
of everyday objects like baseball bats. Years later, after my dad left,
the company built the giant baseball bat that leans against the front
wall of the Louisville Slugger company. It’s interesting to consider
how an object is regarded as art in one context and not in another.

When I was in sixth grade, my dad started moonlighting as a
draftsman for the developer who was building houses in our subdi-
vision. That was the year I almost decided to become an architect
rather than an artist. I learned linear perspective and I used it to
design dozens of dream homes. My interest in being an architect
eventually waned: my heart was set on being an artist, and my in-
terests were too broad to be limited to houses. I have a long history
of writing poetry and stories and making drawings and paintings. I
love to read. Art is a great profession for someone who has a lot of“Art is a great profession for someone

who has a lot of interests. It’s an
area where the entire realm of your
experiences can come together. That
is why artists really need to be well
educated. It’s hard to make art when
you have nothing to say.”

interests. It’s an area where the entire realm of your experiences can
come together. That is why artists really need to be well educated.
It’s hard to make art when you have nothing to say.

My interest in architecture was, however, a valuable detour. I
learned linear perspective at a time when many kids decide they
can’t draw. Upper elementary school children want their drawings
to look realistic. They are embarrassed by drawings that look childish
because they are growing up and they want their drawings to look as
mature as they feel. Linear perspective was one tool I could use to
make my drawings look like reality.

Consequently, linear perspective has never been much of a mystery
to me. Today, I teach linear perspective to wary students in first-year
drawing courses. Some really enjoy it and take to it very quickly,
while others treat it like a bad math test. That saddens me because it
is so useful in understanding the three-dimensional nature of objects
you are drawing, even when you are not specifically using it. Art
students are an interesting lot, though. Some are little Da Vincis,
very analytical and seem more like scientists and philosophers. Many,
though, are intuitive souls and are content to feel their way through
problems and don’t take well to the structure and rules of perspective.

I find that very puzzling. I once taught a drawing workshop for
8- to 10-year-olds in which the coordinator had written perspective
into the course description. I had great reservations about it. I
decided to teach it by playing a game of “Follow the Leader”: they
were to draw what I drew, line for line, and guess what we were
drawing. They were very excited and followed me perfectly as we
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drew a house in two-point perspective with inclined planes, auxiliary
vanishing points, and doors and windows centered on the walls. And
they happily duplicated it with very little help from me! I think about
that every time I am faced with an impossibly confused college art
student.

My artwork now has very little to do with linear perspective, but “My artwork now has very little to do
with linear perspective, but I am al-
ways aware of it, even if I am drawing
from the human form.”

I am always aware of it, even if I am drawing from the human form.
Any form that can be simplified into a configuration of geometric
shapes can be drawn in linear perspective. By considering the body
as a series of boxes and cylinders situated on a plane, it is easier to
draw the human form as though it is part of a space.

In my recent work, I have utilized photography and computer
programs like Photoshop to do preparatory work for my paintings. I
have found the distortions of planes and lines caused by viewing the
subject through a lens to be very interesting and sometimes quite
a departure from the invented environments one would create with
linear perspective—although I have been known to purposely distort
the rules of perspective for expressive reasons.

Like perspective environments, photography captures environments
that appear very real, yet they both walk a line between illusion of
reality and abstraction. They both are two-dimensional, striving to
create an illusion of three dimensions, but if artists aren’t aware of
the inherent limitations of the individual processes, they can create
very strange illusions. Some artists find this aspect intriguing and
freely manipulate these conventions for their own purposes.

For example, the Photorealist painters of the sixties were very
interested in the effect of photography on painting. Richard Estes
painted many images of store windows. If you were actually standing
in front of one of the stores he painted, you would be able to see the
merchandise inside because of our eyes’ ability to focus on various
planes of space and to ignore some visual information in favor of other
information. Estes, however, painted the store window as the camera
saw it, with many reflections dancing across the glass and very little
of the merchandise visible. Even though painters had been using
photographs as resource material since the advent of photography,
most artists painted from them as though they were working from
life, and often would not admit they had used a photograph. Painting
an image as the camera saw it—and not only admitting it but also
making the work about it—was new.

Sherry Stone
Vampires, 2001

acrylic on canvas 11× 17 in.

One question I face is how far removed from the original sub-
ject I can progress while still maintaining the essence of the original.
Through how many material, developmental, and aesthetic filters
can an image pass and still be considered a documentary work? The
truth is that there is no truly objective work, no matter whether it’s
art or journalism or law or management or anything else, because
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everything we do is colored by our experiences and our own points
of view. Influences such as education, upbringing, societal attitudes,
for example, go into effect even as a person anticipates beginning the
project.

I suppose decision making is really at the core of most aspects
of my work. The subjects of my work are young women and girls“The subjects of my work are young

women and girls at a time in their
lives when they are making decisions
that will affect their destinies.”

at a time in their lives when they are making decisions that will
affect their destinies. The work, in essence, is about portraiture,
but I would rather consider it to be about capturing a moment in
time in these young people’s lives. Art is a process-oriented activity
at its best, but I am constantly questioning how far I should go in
processing the image, given the immediacy of the content of my work.

Sherry Stone
Western Rider, 2002

ink-jet print 8× 12 in.

I do not consider myself a photographer, yet maybe the photograph
is the most appropriate final form? Once I photograph, process the
image in the computer, make rough sketches, and paint the image,
I have to ask myself whether I am taking the image too far from its
source.

In answer to that, I often leave the image as an ink-jet print, but
still, unable to resist tinkering, I can be found painting on them occa-
sionally. My answer, for now, is that my objective in photographing
is to capture information, not create a finished piece of photography.
The process of creating something beyond the photograph is more
important for now.

For more of the artist’s work, see the Plates section.



CHAPTER 2

Perspective by the Numbers

I
n this chapter we’ll do our first perspective drawings, using
nothing but mathematics! In Figure 2.1 is our basic perspective
setup. A viewer’s eye is located at the point E(0, 0,−d). Out

in the real world is an object, represented by a vase. As light rays
from points on the object (such as the point P (x, y, z)) travel in
straight lines to the viewer’s eye, they pierce the picture plane, and
we imagine them leaving behind appropriately colored dots, such as
the point P ′(x′, y′, 0). (How do we know the z-coordinate must be
0?) The collection of the points P ′ comprise the perspective image
(the perspective drawing) of the object.

x

y

z

P(x,y,z)

P'(x',y',0)

picture plane z=0

eye of viewer
at  E(0,0,–d)

object
image

Figure 2.1. The basic perspective
setup.

Our job is to figure out the coordinates of P ′, given a point P on
a real object. Since we already know that the z-coordinate of any
such point P ′ is 0, this boils down to finding x′ and y′. To do this,
we use Figure 2.2.
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x

picture plane

x'

zd
z-axis

x-axis

P(x,y,z)P'(x',y',0)
E(0,0,–d)

y

y'

zd
z-axis

y-axis

P(x,y,z)P'(x',y',0)
E(0,0,–d)

picture plane

Figure 2.2. Computing x′ and y′.

In Figure 2.2 the viewer is represented by a person, rather than
just an eye, so that we can tell the difference between the top view
and the side view. (Technically, perspective drawing is intended for
viewing by just one eye, but for the purpose of symmetry, the top
view shows the viewer’s head centered on the z-axis.) In both views,
P (x, y, z) is a point on some object, and P ′(x′, y′, 0) is the perspective
image of P . In the top view we see a large right triangle. Even though
P and P ′ may not lie in the xz-plane, we think of the triangle as
lying in the xz-plane. One side of the big triangle is x units long,
and another side is z + d units long. Inside this triangle is a smaller
right triangle, similar to the larger one. In the smaller triangle, the
corresponding sides are x′ units long and d units long, respectively.
Since the triangles are similar, the ratios of these corresponding sides
must be equal:

x′

d
=

x

z + d
.

Multiplying both sides of this equation by d gives us the formula for
computing x′, namely,

x′ =
dx

z + d
.

In the side view we have a similar setup. We think of the large
right triangle as being in the yz-plane, even though P and P ′ may
not be. You should convince yourself that an argument analogous to
the one just given leads to the following formula for computing y′:

y′ =
dy

z + d
.

As we noted, the z-coordinate of P ′ is always 0, so we only need
the coordinates x′ and y′ to locate a point in the picture plane. Thus,
from the equations for x′ and y′ we have the following useful theorem.
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Theorem 2.1: The Perspective Theorem. Given a point
P (x, y, z) on an object, with z > 0, the coordinates x′ and y′ of
its perspective image P ′(x′, y′, 0) are given by

x′ =
dx

z + d
and y′ =

dy

z + d
,

where d is the distance from the viewer’s eye at E(0, 0,−d) to the
picture plane z = 0.

The formulas in Theorem 2.1 may be simple, but much can be
done with them! For instance, movies that employ computer anima-
tion or computerized special effects make use of formulas similar to
those in Theorem 2.1. One spectacular example is the movie Jurassic
Park (see Figure 2.4 in the exercises). In many scenes, the dinosaurs
were essentially made of mathematical points in 3-space! People who
enjoyed the movie were delighted, thrilled, and terrified by the cor-
responding computer-generated image points rampaging across the
picture plane (the movie screen)!
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Exercises for Chapter 2

1. The rectangle ABCD in Figure 2.3 is parallel to the yz-plane,
so that all of its x-coordinates are the same positive number.
Draw the top view to visualize this. Also, the y-coordinates
of A and B are the same. With the viewer located as shown,
what can we say about the x-, y-, and z-coordinates of the
image points A′, B′, C′, and D′?

A

edge of picture plane

B

C D

Figure 2.3.

2. Think of the Jurassic Park image in Figure 2.4 as being painted
on the picture plane, with the people and the Velociraptor ex-
isting in the same space. Let P (x, y, z) be the lower left corner
of the actual doorway, and let Q(x, y, z) be the actual tip of one
of the raptor’s claws. The points P ′ and Q′ are the respective
images of these points. Which is bigger:

(a) the x-coordinate of P , or the x-coordinate of Q?

(b) the y-coordinate of P , or the y-coordinate of Q?

(c) the z-coordinate of P , or the z-coordinate of Q?

(d) the x′-coordinate of P ′, or the x′-coordinate of Q′?

(e) the y′-coordinate of P ′, or the y′-coordinate of Q′?

P′

Q′

Figure 2.4. Scene from the movie
Jurassic Park (copyright Universal
Studios). Two paleontologists, played
by Laura Dern and Sam Neill, attempt
to protect a child from a fierce Ve-
lociraptor. For the most part, the
dinosaurs in the film were computer-
generated mathematical perspective
images. For the image to appear con-
sistent, it must come from a virtual
3-D creature existing in the same space
as the human characters.
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3. This exercise deals with a point P whose x- and y-coordinates
do not change (they are equal to 2 and 3, respectively), but
whose z-coordinate gets bigger and bigger. That is, the point
moves farther and farther away from the picture plane and the
viewer. Assume that the viewing distance d is 5 units.

(a) Referring to Theorem 2.1, suppose P = (2, 3, 5). What
are the values of x′ and y′?

(b) Now suppose P = (2, 3, 95). What are x′ and y′?

(c) Suppose P = (2, 3, 995). What are x′ and y′?

(d) Draw one TOP VIEW and one SIDE VIEW like those
in Figure 2.2, and include all the points P and P ′ from
Parts (a)–(c), along with light rays to the viewer’s eye
(the drawings need not be to scale). Can you see what’s
happening?

(e) Consider a point P (x, y, z). If x and y do not change,
but z gets bigger and bigger, what happens to the picture
plane image P ′ of P?

(f) Our everyday experience tells us that objects appear smaller
as they get farther away. Explain how this is consistent
with your answers to Parts (a)–(e).

4. Our first perspective drawing will be of a box with its faces
parallel to the coordinate planes, and a viewing distance of
d = 15 units.

(a) If two corners of the box have coordinates (−10,−6, 12)
and (−4,−2, 24), then: How wide is the box in the x-
direction? How high is the box in the y-direction? How
deep is the box in the z-direction? List the coordinates of
the other 6 corners.

(b) Using Theorem 2.1, find the x′ and y′ coordinates of the
images of all 8 corner points. Plot them in the xy-plane
and connect the dots with straight lines to obtain the
perspective image. Used dashed lines to indicate hid-
den edges. Your drawing should look something like Fig-
ure 2.5. (Note that all of the image points have negative
coordinates.)
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x

y

Figure 2.5. Your box should look
something like this.

5. In this more involved problem of drawing a house, we’ll use a
computer to make the work easier. In Figure 2.6 is the perspec-
tive setup of a viewer, a house, and the picture plane. Since
the house is small in relation to the viewer, you can think of it
as a large dollhouse. You might also want to look at Figure 2.9
to help visualize the shape of the house.

z

E(0,0,–15)

x

G

18

picture plane

TOP VIEW

A(–12,–18,81)

B(–12,–6,93)

C(–12,3,99)

D(–12,–18,117)

y

picture plane

F
z

E(0,0,–15)

SIDE VIEW

Figure 2.6.

(a) What are the coordinates of the point F? What are the
coordinates of the point G? If the measurements are in
inches, how high is the dollhouse?

(b) The rest of this problem assumes some familiarity with
Microsoft Excel, or some other spreadsheet program. In
the first 3 columns of the spreadsheets in Figure 2.7(a)
and (b) are the xyz-coordinates of all 17 vertices of the
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house. In the 4th column is the viewing distance (d = 15
units). The 5th and 6th columns are for the x′-and y′-
coordinates of the images of the points. To compute the
first value of x′ (Figure 2.7(a)), select cell E2. The relevant
formula from Theorem 2.1 is x′ = dx/(z + d), but you
should type =D2*A2/(C2+D2) as indicated, because d is
in cell D2, x is in cell A2, etc. Then hit the return key.
Similarly, to compute y′ (Figure 2.7(b)) you should type
=D2*B2/(C2+D2). Note in Figure 2.7(b) that the first
value of x′ should be −1.875. The other values of x′ can
be computed by selecting and copying cell E2 and pasting
into the other cells in column E. Similarly, the other values
of y′ can be computed by selecting and copying cell F2 and
pasting into the other cells in column F.

(a)

(b)

Figure 2.7. Applying Theorem 2.1 in
a spreadsheet.

After this is done, the entries in columns E and F can be
selected as a group, and a scatterplot can be made to dis-
play the images of the vertices. Alternatively, the points
can be plotted by hand on graph paper. The result should
look something like Figure 2.8. Finally, you can print out
your result and use a pencil to connect the vertices cor-
rectly. This will take some thought! Then you can color
and shade your drawing if you like. The result should look
something like Figure 2.9.
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Figure 2.8. Scatterplot (vertices of
the house).

Figure 2.9. Connect the dots and
color to your taste!

6. The house in Figure 2.9 is a bit featureless, so your job in this
problem is to add to the x, y, and z columns of your Excel
spreadsheet the correct 3-space coordinates for the vertices of
the following items:

(a) two or more windows on the near wall;

(b) a door on the right-hand wall, centered under the dormer;

(c) a small, rectangular yard for the house;

(d) a chimney somewhere on the roof, at least partially visible
to the viewer. The bottom vertices of the chimney should
lie on the roof, not above or below it.

To complete the exercise, compute the new x′ and y′ values,
and draw and “paint” the picture of the house as you did in
Problem 5, with the new details included.
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Practice Quiz for Chapter 2

This quiz refers to a rectangular box in space with its faces parallel
to the coordinate planes of the xyz-coordinate system we use for
perspective.

1. The box has eight corner points, three of which are listed below.
If the viewer is located at E(0, 0,−6) (viewing distance of 6),
write down the space coordinates of the other corners of the
box, and the corresponding picture plane coordinates of the
perspective images of those points.

Space coordinates of corners Picture plane coordinates

(−4,−2, 6) x′ = , y′ = , z = 0

(−4,−2, 3) x′ = , y′ = , z = 0

(−6,−4, 3) x′ = , y′ = , z = 0

( , , ) x′ = , y′ = , z = 0

( , , ) x′ = , y′ = , z = 0

( , , ) x′ = , y′ = , z = 0

( , , ) x′ = , y′ = , z = 0

( , , ) x′ = , y′ = , z = 0
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Practice Quiz for Chapter 2 (continued)

2. The box casts a shadow onto the horizontal plane y = −5 (all
y-coordinates are −5 in this plane). Assume that the shadow
is cast by parallel vertical light rays, like the sun overhead at
noon. Write down the space coordinates of the 4 corners of the
shadow, and then write down the picture plane coordinates of
their perspective images (same viewer location as in Problem 1).

Space coordinates of shadow corners Picture plane coordinates

( , , ) x′ = , y′ = , z = 0

( , , ) x′ = , y′ = , z = 0

( , , ) x′ = , y′ = , z = 0

( , , ) x′ = , y′ = , z = 0
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Practice Quiz for Chapter 2 (continued)

3. Draw the perspective image of the box and its shadow in pencil
on the grid below, and shade in the shadow. The shadow should
be partially hidden by the box—make sure you draw it that
way! (You can also shade or color the box if you like.)

x

y
-1-2-3-4-5-6

-1

-2

-3

-4

-5

-6
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Artist Vignette: Peter Galante

PETER GALANTE is an Associate Professor of Art and University
Creative Director at Cardinal Stritch University in Milwaukee,
Wisconsin. Primarily responsible for the Graphic Design program, he
also teaches undergraduate and graduate Digital Imaging. In his role
as Creative Director, Peter supervises the Advanced Design Group, an
in-house design practicum where students, as part of their academic
course work, design and produce most of the university’s marketing
and communication materials. Balancing the responsibility of two
full-time roles makes the time he spends on his current passion of
filmmaking all the more precious. (Photograph by Peter Galante)

I
n my mind I am a printmaker first and a photographer second—
even though the majority of my work is photographic. This is
because I approach image making, in the camera or on a zinc “. . . I approach image making, in the

camera or on a zinc etching plate,
with the same interest in geometry
and formal composition that began
in Renaissance printmaking.”

etching plate, with the same interest in geometry and formal compo-
sition that began in Renaissance printmaking.

My earliest memories are of television, of a large mahogany veneer
set with its horizontally ovoid picture. The images I recall are not of
the children’s programs of the fifties, but the film noir genre movies of
the forties that dominated WPIX’s weekend schedule. Dark, empty
streets with a hardened, solitary detective struggling to correct some
injustice. The image is very clear to me, but by the time the filmed
original was reproduced by our television, it was reduced to a fuzzy,
high-contrast abstraction. The highlights became a green-white glow,
and the shadows became murky and indiscriminate. This effect—
a consequence of early television’s technical limitations—heightened
the sense of drama as it allowed a willful suspension of reality.

Throughout this decade when, as a child, I was forming my im-
pression of the world, camera images began to dominate the world’s
access to visual media. Thereafter, the camera’s inherent abstrac-
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tion was understood to be faithful duplication of “reality” and was
therefore perceived as “the” truth. Therein, mechanical rather than
interpretive means gave us the look of things and, more important,
our outlook on them.

It must be some law of nature that existentialists are to be reared
in urban environments. Existentialism is a philosophical theory that
emphasizes the existence of the individual person as a free and re-
sponsible agent determining his or her own development through
acts of the will. It seems somewhat ironic that this approach—an
approach that tends to be atheistic, disparages scientific knowledge,
and denies the existence of objective values—would provide the foun-
dation of my work, as I am a deeply spiritual person trained in both
the arts and natural sciences. I suppose it is the obvious disconnec-
tion from the earth in the cities’ concrete canyons that emphasizes
existential alienation. In places like New York, where I grew up, dis-
tinctions of nature are blurred: it is always night in the subway, and
it is always day in the streets, under the glare of unnatural light, even
if the sun is shining.

Peter Galante
Waterfront Wall, Brooklyn, NY, 1986

Transmedia, 35 mm film original,
1994

To reduce the city to a fundamental unit, I would say that the
city is made entirely of walls. I’m sure this contradicts the majority
opinion that the city is made of people, but I just don’t “see” them.
I only see the walls and how the city’s unique light plays on them.“Emerson, an unlikely existentialist,

said correctly, ‘Every wall is a door.’
Walls define our existence, and so I
look for the door and the way out in
my personal walls.”

Emerson, an unlikely existentialist, said correctly, “Every wall is a
door.” Walls define our existence, and so I look for the door and the
way out in my personal walls.

For me, the walls reference a time before the camera’s influence,
and it is for these reasons that I use the camera itself to search for
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fundamental meanings and human equivalents. I do this even though
the camera is the very instrument that induced an altered perception
of society. It is necessary for me to work with our culture’s primary
visual medium in order to understand its power over the traditions
it consumed.

Peter Galante
Warehouse, Brooklyn, NY, 1986
Transmedia, 35 mm film original,
1994

Traditionally, art has used material means (canvas, oil, stone)
to gain spiritual ends. The traditions of Renaissance printmaking
provide a conceptual foundation, without which my use of the cam-
era image would be as empty as the pervasive media images. So-
ciety nostalgically accepts the mechanical photographic likeness in
the family picture album, but I do not accept the camera’s view,
de facto, as truth. Nor do I attempt to manipulate the image in a “For me, neither the camera nor

the processes of printmaking are re-
productive techniques, but, rather,
are investigative tools with almost
mythic significance.”

surrealist or Dada fashion simply to create shocking juxtapositions
or anti-art sentiments. My work began simply and directly with
traditional printmaking techniques to heighten visual and emotional
impact, and today has become entirely digital: I am moving into the
emerging genre of high-definition video. Throughout this transition I
have attempted to strike a balance between the unsettling impact of
technology and the stability inherent in the spiritual dimensions of
tradition. For me, neither the camera nor the processes of printmak-
ing are reproductive techniques, but, rather, are investigative tools
with almost mythic significance. For all the technology in the world,
there is nothing quite like the printmaker’s experience—the odors
and effort of mixing bone, vine, and burnt oil in handmade ink—to
awaken the mythic sense of tradition.
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I have been rephotographing photographs as part of still lifes for
as long as I can remember; some of my first published examples ap-
peared in Vogue in 1979. In my current film projects, the concept
of using animated stills is as much practical as aesthetic. The tech-
niques that I have been utilizing in both my still and motion picture
work frequently elicit comparison with the work of Ken Burns. He
is a contemporary of mine (we were both born the same year); since
I am a teacher and probably also out of professional pride, I would
suggest that we likely had the same or similar influences. The “Ken
Burns” effect—as it has become widely known in the United States
since his 1990 Civil War documentary—may well have its conceptual
roots in the work of French filmmaker Chris Marker and his legendary
apocalyptic 1962–4 film La Jetée. I have never heard Mr. Burns speak

Peter Galante
Cabin, Belleayre, NY, 1983

Transmedia, 35 mm film original,
1994

of his influences, but for me living and working in New York in the
late ’70s, the Museum of Modern Art brought me into contact with
László Moholy-Nagy and avant-garde filmmaking. These influences
(along with others like Harry Callahan, Aaron Siskind, and Richard
Avedon) have become such a part of my subconscious that I am un-
aware of their constant presence. This is also true of my fascination
with the geometry underlying the formal composition of the picture
plane. It is not possible for me to compose an image without intu-
itively imposing some structural framework or grid. I do not suppose
that the casual viewer will become aware of my somewhat rigid or-
ganizational structure, but I cannot even imagine working without
one. For me, geometry has become the glue that keeps an existential
universe from flying apart.

For nearly the past ten years the focus of my creative work has
been on meeting the needs of the university. The nature of a private

Peter Galante
Cabin, Belleayre, NY, 1983

Transmedia, 35 mm film original,
1994

Catholic university keeps recruiting and advancement requirements
in the forefront. Hence, my work centers on telling the story of the
Franciscan Intellectual Tradition. As a consequence little of my work
has been exhibited in gallery settings, though all of it has been pub-
lished and distributed widely. I have never felt limited or encumbered
by these circumstances; conversely, I have felt quite empowered, as
if I were following in the footsteps of Cimabue and Giotto, whose
renowned fresco paintings document the life of St. Francis of Assisi.
It has been an honor and a privilege to immerse myself in such a
rich tradition and to translate my understanding of the tradition for
today’s postmodern, if not existential, world.

For more of the artist’s work, see the Plates section.



CHAPTER 3

Vanishing Points and

Viewpoints

Y
ou’ve probably heard the term “vanishing point” before,
and we mentioned it in Chapter 1 when we discussed the
masking tape drawing of a library (see Figure 3.1).

V1
V2

Figure 3.1. Masking tape drawing of
a library (above) and the vanishing
points of the drawing (below).

In the drawing on the bottom of Figure 3.1 are two vanishing
points V1 and V2. The three lines which converge to V1, for example,
represent lines in the real world (architectural lines of the building)
that are actually parallel to one another. Clearly, however, the images
of these lines are not parallel, because they intersect. The reason
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we say “vanishing point” instead of “intersection point” is that a
single line, all by itself, can have a vanishing point; the explanation
is illustrated in Figure 3.2.

line visible

line still visible

line still visible

line vanishes

infinite straight line L

edge of picture plane

vanishing point

parallel

line visible

line still visible

line still visible

line vanishes

infinite straight line L

edge of picture plane

vanishing point

parallel

Figure 3.2. The vanishing point is where the line appears to vanish.

In Figure 3.2 a viewer looks along various lines of sight (dashed
lines) at a line L in the real world. The viewer looks at farther
and farther points on the line, and keeps seeing the line as long as
his line of sight intersects it (imagine looking through a thin soda
straw). At a certain moment, however, the line of sight becomes
exactly parallel to L and no longer intersects it. That’s the precise
moment at which the line L seems to vanish (when looking through
a soda straw), simply because the viewer isn’t looking at it anymore.
For this reason, the intersection of this special line of sight with the
picture plane is called the vanishing point of the line L. A vanishing
point always lies in the picture plane: its height is determined by the
side view in Figure 3.2, and its right-left location is determined by
the top view. Notice that the special line of sight parallel to L would
also be parallel to any other line M that was also parallel to L; that
is, if any line is parallel to L, then it has the same vanishing point as
L.

To state these results in a theorem, recall that a line is parallel
to a plane if it does not intersect the plane. Clearly the line L in
Figure 3.2 is not parallel to the picture plane. Thus we have

Theorem 3.1: The Vanishing Point Theorem. If two or
more lines in the real world are parallel to one another, but not
parallel to the picture plane, then they have the same vanishing
point. The perspective images of these lines will not be parallel.
If fully extended in a drawing, the image lines will intersect at the
vanishing point.

Notice that the photograph in Figure 3.3 has one obvious vanish-
ing point. It would seem reasonable to call this “one-point perspec-
tive,” but there is usually one more requirement before this term is
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used. We often use the term when rendering rectangular box shapes
such as buildings, and we will assume one face of this box is parallel
to the picture plane. (In Figure 3.3, notice that the images of the
vertical beams and the horizontal crossbars on the roof are likewise
vertical and horizontal.) If one face of the box is parallel to the
picture plane, then the line L is orthogonal (perpendicular) to the
picture plane as in Figure 3.4. Thus the special line of sight parallel
to L (the sight line which goes through the vanishing point) is also
orthogonal to the picture plane. This means that the correct location
for the viewer’s eye is directly in front of the vanishing point, and this
is the situation which is usually referred to as one-point perspective.

Figure 3.3. Notice in this picture how
the long beams of the ceiling, which
are parallel in the real world, have
images that almost touch at the
vanishing point. This is a World
War II photograph of Henry Ford’s
Willow Run bomber plant near
Ypsilanti, Michigan. Over half a mile
long, the plant was the largest factory
in the world under a single roof when
it was completed in 1941.

line visible

line still visible

line still visible

line vanishes

infinite straight line L

edge of picture plane

vanishing point V

parallel line visible

line still visible

line still visible

line vanishes

infinite straight line L

edge of picture plane

vanishing point V

parallel

Figure 3.4. In one-point perspective, the only lines with vanishing points are those orthogonal to the picture plane.

We will say that a perspective drawing is in one-point perspec-
tive if (a) there is only one vanishing point V to which lines that
are part of the drawing converge, and (b) those image lines that
converge to V represent lines in the real world that are orthogonal
to the picture plane.

It’s often possible to tell by looking that a drawing is in true one-
point perspective. In this case it may be easy to find the exact viewing



32 Chapter 3

position for the viewer’s eye. One such example is the drawing of a
rectangular box in Figure 3.5.

V

Figure 3.5. A box in one-point
perspective.

First, let’s see how we can tell that Figure 3.5 exhibits true one-
point perspective. Clearly there is one vanishing point V (conve-
niently located at the base of a tree), but we must also verify that
the image lines (dashed) which converge to V represent lines in the
real world (the edges of the real box) which are orthogonal to the
picture plane (the plane of the page). This will be true if the front
face of the box is parallel to the picture plane. But this must be the
case, because the image lines of the edges of the front face appear to
be parallel; if the front face of the actual box were not parallel to the
picture plane, then at least one opposing pair of its edges would not
be parallel to the picture plane, and by Theorem 3.1, their images
in the drawing would converge to a vanishing point. In other words,
since the front face of the box appears undistorted, the drawing is in
true one-point perspective.

It therefore follows that the correct viewing position is somewhere

VV'

parallel

parallel

picture
plane

d

a

D

A

Figure 3.6. The shaded triangles are
similar.

directly opposite the vanishing point V —but how far from the page?
To determine that, we need the top view of the perspective setup for
the box (see Figure 3.6).

In Figure 3.6 we see the vanishing point V for the edges of the
box that are orthogonal to the picture plane, and we also see the
vanishing point V ′ for the diagonal of the top face of the box. Since
the indicated pairs of lines are parallel, the two shaded triangles are
similar. Thus the ratios of corresponding sides are equal:

d

a
=

D

A
.

We can easily solve for the viewing distance d to get

d = a

(

D

A

)

. (3.1)
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Obviously we need more information to find d, but often this can
be gleaned from the context of the artwork. Suppose, for instance, we
know that the box in Figure 3.5 is a cube. This may seem strange, be-
cause the box doesn’t look like a cube—it looks too elongated (more
like a dumpster), but the picture will look better when we determine
d. If the box is a cube, then the top is a square (even though it wasn’t
drawn as a square in Figure 3.6), and A and D in Figure 3.6 must be
equal. In this case, (D/A) = 1, so by Equation (3.1) we have d = a.

But a is the distance between V and V ′, so the viewing distance
for a cube is the same as the distance between the main vanishing
point V and the vanishing point V ′ of the diagonal of the top face (see
Figure 3.7). This distance can be measured directly on the drawing!

In the drawing (Figure 3.7) we locate V ′ (base of the other tree)
by drawing the dashed diagonal line of the top face of the box. How
do we know that V ′ is on the same horizontal line as V ? Because the
dashed lines are images of real lines which are level with the ground,
so the sight lines of the viewer to their vanishing points must be level
also.

To test out our determination of d, use the large drawing in Fig-
VV'

viewing distance d

Figure 3.7. The viewing distance for a
cube.

ure 3.8 as follows:

• Close your right eye.

• Hold the page vertically and place your left eye directly in front
of the point V (not in the center of the page!).

• Move the page until your left eye is d units away from V . (You
may want to use a thumb and forefinger to measure the distance
between the trees.)

• Without changing your position, let your eye roll down and to
the left to look at the box. Although it may be a bit close for
comfortable viewing, it should look much more like a cube!
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V
viewing distance d

Figure 3.8. To see a cube, look with one eye, directly opposite V , at the indicated distance d.
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We have only used a little mathematics, but we have accomplished
a lot. For one thing, we see the importance of the unique, correct
perspective viewpoint (sometimes called the “station point”). If we
view art from the wrong viewpoint, it can appear distorted—a cube
can look like a dumpster. For another thing, the majority of perspec-
tive works in museums are done in one-point perspective, with clues
that can help determine the viewing distance. Thus our simple trick
can actually be used in viewing and enjoying many paintings in mu-
seums and galleries. In Figure 3.9 we see the trick applied to finding
the viewpoint for the painting, Interior of Antwerp Cathedral. Since
the floor tiles are squares, they serve the same purpose as the square
top of the cube in the previous discussion. The viewing distance is
as indicated, with the correct viewpoint directly in front of the main
vanishing point V .

V' Vviewing distance

tile diagonal
Figure 3.9. Peter Neeffs the Elder,
Interior of Antwerp Cathedral, 1651.
(Courtesy of the Indianapolis
Museum of Art.)

Although it’s not possible to tell by viewing this small reproduc-
tion of Antwerp Cathedral, the effect of viewing the actual painting in
the Indianapolis Museum of Art gives a surprising sensation of depth,
of being “in” the cathedral. The viewing distance is only about 24
inches, so most viewers never view the painting from the best spot
for the sensation of depth!

Of course you can’t draw lines on the paintings and walls of an art
museum, so some other method is needed to find the main vanishing
point and the viewing distance. A good solution is to hold up a pair
of wooden shish kebab skewers, aligning them with lines in the paint-
ing to find the location of their intersection points. First, the main
vanishing point V is located. Then one skewer is held horizontally
so that it appears to go through V , and the other is held aligned
with one of the diagonals of the square tiles; the intersection point of
the skewers is then V ′. Figure 3.10 shows workshop participants at
the Indianapolis Museum of Art using their skewers to determine the
viewpoint of a perspective painting. Then, one by one, the viewers
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assume the correct viewpoint, looking with one eye to enjoy the full
perspective effect. If shish kebab skewers aren’t practical, any pair
of straight edges, such as the edges of credit cards, will work almost
as well for discovering viewpoints of perspective works.

Figure 3.10. Viewing art with shish
kebab skewers at the Indianapolis

Museum of Art.

Certainly there are other important ways to view a painting. It’s
good to get very close to examine brushwork, glazes, and fine details.
It’s also good to get far away to see how the artist arranged colors,
balanced lights and darks, etc. Our viewpoint-finding techniques add
one more way to appreciate, understand, and enjoy many wonderful
works of art.
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Exercises for Chapter 3

1. (Drawing your own cube.) In Figure 3.11 a start has been made
on the drawing of a cube in one-point perspective. The front
face is a square, V is the vanishing point, and the dashed lines
are guide lines for drawing receding edges of the cube. Suppose
you want to choose the viewing distance first. Let’s say the
viewing distance should be 7 inches. Finish the drawing of the
cube. (HINT: For help in thinking about it, look at Figure 3.7.
The idea is to draw the same lines, but in a different order!)

V

Figure 3.11. How do you finish the
cube if the viewing distance is 7
inches?

2. Suppose the box in Figure 3.12 is not a cube. Let’s say its front
face is a square, but its top face is in reality twice as long as it
is wide from left to right. In this case, the viewing distance is
not equal to the distance between the two trees. What is the
viewing distance? (Figure 3.6 can help you think about this
problem.) What if the top is three times as long as it is wide
from left to right?
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VV'

Figure 3.12. What if the box is not a
cube?

3. Now do the real thing: go to a gallery or museum and practice
your viewing techniques!

4. Top views, side views, and similar triangles are very useful for
finding viewpoints, setting up drawings, and generally under-
standing what we see in pictures. For example, we often see
photographs of the moon shot with telephoto lenses to make
the moon seem dramatically large. However, when we see the
moon in ordinary photographs, it appears quite small. To see
why, suppose you want to make a drawing of the full moon ris-
ing over the ocean, with a viewing distance of two feet. What
should the diameter of your moon image be? (You’ll need to
do a little astronomical research.)

5. Take a drawing pad and go outside to sketch a street, alleyway,
or walkway, using one or more vanishing points to help make
your drawing look realistic.



Artist Vignette: Jim Rose

JIM ROSE is a professional illustrator, graphic designer, and videographer using
both digital and hands-on techniques; he also teaches at Clarion University of Penn-
sylvania and is a student of the creative process.

He holds a Master of Fine Arts in Illustration from Syracuse University. In
Philadelphia he graduated from the Pennsylvania Academy of the Fine Arts and
studied with Evangelos Frudakis for anatomy. At the Cape Art School in Province-
town, Massachusetts, he studied color with Henry Hensche. His biggest influence
was his mentor, Porter Groff. (Photograph by Jim Rose)

I
grew up in inner-city Philadelphia, you know the place; it’s
where they filmed Rocky. As a matter of fact, my grandmother
lived three blocks from the pet store that Adrian worked in.

My father was a welder, paratrooper, and a kind and gentle man.
My mother was a homemaker and gave me a wonderful childhood.
Mom always told me that I could do anything I set my mind to do;
I actually believed her. We didn’t know any artists and there wasn’t “We didn’t know any artists and

there wasn’t much talk about fine
arts in our home, which was on a
small street nestled among giant, red-
brick factories.”

much talk about fine arts in our home, which was on a small street
nestled among giant, red-brick factories. There were a number of
trees in the library park, which most people used while walking their
dogs. It was years before I realized that air didn’t smell like mints
(there was a mint factory on the next block).

I loved to draw pictures, so Mom suggested that I go to Sears and
Roebuck, which was a bus ride away, to apply for an artist’s job. I
did this with great expectations.

The advertising director said, “We have one artist that does all
the illustration for Sears on the East Coast. Go to the second floor
and ask for Porter Groff.”
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I entered a small cubicle where a quiet man, dressed formally with
a starched white shirt and tie, sat working on ink wash drawings of
washing machines, fashions, and toys. He did fine renderings of just
about everything that Sears sold except guns. He refused to draw
anything to do with the military.

I introduced myself, telling him why I was there. He looked over
his glasses and welcomed me in with a smile. He looked at each
sample of my work intently. I was sure I had the job. He looked at
me and said, “This is what I do,” handing me a beautiful rendering“[Porter Groff] was my Mentor in Art

and many other things. He was quiet,
elegant, kind, artistic, and humble.
He taught me some of these traits,
but not all.”

of a living room suite done in pen and ink. I stood there disappointed
and feeling a bit foolish, knowing that my work was not up to par. I
said, “I’ll be back.” He sensed my embarrassment and offered to give
me lessons. He was the first artist I ever met. He was also the first
conscientious objector, farmer, woodworker, Quaker, and intellectual
I ever met.

After many years of visiting Porter once a week in his studio in
Cheltenham, Pennsylvania, where there were many trees, I became
a layout man for the Philadelphia Bulletin and Sears. He was my
Mentor in Art and many other things. He was quiet, elegant, kind,
artistic, and humble. He taught me some of these traits, but not all.
One evening I asked Porter, “How do I know if I’m a conscientious
objector?”

He said, “You’re a conscientious objector if you have a gun and
the man across from you has a gun and you let him shoot you.”

From the time that I met Porter Groff, drawing, painting, and
design have always been part of my life. As a matter of fact, drawing
has saved my life more than once. One instance was when I was in
Vietnam as an illustrator for the army, trying to find out if I was a
conscientious objector. I found that I was not, but that’s another
story.

I entered one of the many cul-de-sacs found in Saigon, Vietnam,
where I lived. The afternoon was warm and humid, and the dust
powdered around my boots. At the community fountain/bathtub
that sat in the middle of the fortlike houses glazed with barbed wire,
I turned right toward my door.

I drew pictures for the residents, whose families lacked men of
military service age. I drew the young children’s dreams: horses,
cowboys, circus animals, anything that they wished. On occasion I
was invited to dinner and enjoyed watching The Wild Wild West with

Jim Rose
Agent Orange, 2005

Digital

the children, who thought all Americans knew karate from watching
the show dubbed in Vietnamese. It was easy to convince them that
I knew karate because they weighed about 25 pounds and I weighed
180. We played, we ate fish and rice, and drawing was my link to
them.

One evening I retired to my enclave, listening to the soup man
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banging his sticks and firefights off in the distance—far enough to
make them a fantasy to me. I dozed off slowly, counting the small
lizards scampering on the ceiling eating the bugs. I woke up abruptly.

Barrrrrrrrrrrup! Someone had climbed the barbed wire enclosure,
riddling the entire room next to mine with bullets. An American
soldier and his girlfriend died instantly. He did not draw pictures
and he was not kind and gentle. I moved the next day.

My job in the army was illustrating numbers. I worked directly
under General Creighton Abrams, commander in chief of all U.S.
forces in Vietnam. Officers would supply me with numbers of MIA
and DOA and I would do the charts and graphs to be presented to
various allies. These numbers rose constantly, so unfortunately I had
job security. Each number represented a human.

When I was discharged I returned to Philadelphia with no job.
I freelanced and decided to move out to the country. It was time
for me to live with the trees and not breathe air that smelled like
mints. I stayed in the suburbs for a few years doing photography
and freelancing in graphic design. While I enjoyed doing advertising
layout, I needed more. I wanted to learn what the “Fine” meant in

Jim Rose
Is It Really Over, 2000

Digital

(Photographs of Rose’s children, father,

and son)

Fine Arts, so I returned to school.

The Pennsylvania Academy of the Fine Arts is where I learned
how to paint, draw, and think like an artist. I was still doing adver-
tising design and illustration. Porter warned me of my presumption
that I was an artist. He said, “You should not call yourself an artist;
other people should.” I spent three summers studying color at the
Cape Art School under Henry Hensche because my mentor studied
there.

After graduating from the academy I moved north, settling in
Starrucca, Pennsylvania, where I freelanced in illustration and graphic
design. I also made many new friends from all over the country. I
did community theatre, got divorced, played Santa Claus for the “I did community theatre, got di-

vorced, played Santa Claus for the
Baptist church, earned a Master of
Fine Arts degree from Syracuse Uni-
versity, walked through the woods,
got remarried, had a son, and became
the mayor.”

Baptist church, earned a Master of Fine Arts degree from Syracuse
University, walked through the woods, got remarried, had a son, and
became the mayor. I loved Starrucca, where I lived among the trees
as a trout stream lullabied me to sleep every night. It was a magical
place.

It was there that I met my wife Linda. We were married behind
our house at the base of a small mountain with all of our favorite
people. A year later our son James was born. Needing more security,
I found a job at Western Illinois University (where I taught graphic
design and illustration, and helped create their new computer lab),
requiring me to move to Macomb, Illinois. While in the Midwest I
was very productive and we had our second son, John. I also created
a series of paintings called Genetic Signatures having to do with
meditation, family, and calligraphy. I had two one-man shows and
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then moved on to more digital projects.
After six years I left Illinois kicking and screaming because of dis-

agreements with the dean and the faculty. A creative person must
be a politician in the academic environment. I had not yet devel-
oped that skill. The following year I started at Clarion University
of Pennsylvania, closer to our families and making more money, so I
thank my colleagues at Western Illinois for pushing me forward.

At Clarion I met a man who lives on my avenue and grew up fif-
teen minutes away from where I was raised in Philadelphia. Dr. Steve
Gendler is a mathematician, professor, day trader, and somewhat ec-
centric Jewish philosopher. Steve introduced me to the connection
between art and mathematics. He coerced me to attend the work-
shops given by Annalisa Crannell and Marc Frantz, where I realized
that I was doing math all along.

Dr. Gendler and I taught a cluster course called Art in Perspec-
tive, combining the mysteries of art and mathematics to create a
clear understanding of how things work in the world. Steve and I
presented reports on the course we taught at the Viewpoints con-
ference at Franklin & Marshall College and the 2002 International
Bridges Conference at Towson University. I recently presented and
exhibited my work called NAMAN Dream Altars, Vietnam: A Search
for use of the Golden Mean and its Effect on Design and Content at
the 2005 International Bridges Conference in Banff, Alberta, Canada.

Recently, I have had a one-man show of watercolors at Michelle’s
Café in Clarion and exhibited my Vietnam Memory work in Clar-
ion’s faculty show and at the Bridges Conference in Banff, Canada.
I have just received a grant to work on the design and production of
an illustrated book of poems regarding my NAMAN Vietnam Mem-
ory Project. I am designing Web pages and working on a series of
watercolors that hopefully will come from my inner self, inspired by
my readings of Zen Buddhist philosophies.

I work in many different media: paint, Photoshop, pen and ink,“I work in many different media:
paint, Photoshop, pen and ink, math-
ematics. Oops—I would have never
thought I would ever consider math-
ematics as a medium, but I do.”

mathematics. Oops—I would have never thought I would ever con-
sider mathematics as a medium, but I do. The use of the golden
section, fractals, perspective, and tessellations has expanded my vi-
sion. I feel closer to the great artists such as da Vinci, M.C. Escher,
Raphael, and many more. In today’s art world many artists have
combined digital and hands-on media to create their art.

The realization that my paradigm was changing happened when
I was in the woods painting a landscape—a break from the computer
screen. I found myself thinking, “That color is 53% cyan, 10% ma-
genta, 25% yellow and 12% black.” A new day has begun and I’m
going to give it 110%.

For more of the artist’s work, see the Plates section.
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Rectangles in One-Point

Perspective

I
n our perspective work with the house in Chapter 2, we saw
how the perspective transformation equations of Theorem 2.1
could be used to create a perspective drawing, by mathemati-

cally imitating what we did physically when we used masking tape
to draw buildings on the windows in Chapter 1. However, neither
of these techniques is useful to artists using traditional painting or
drawing media, so we need to come up with some more practical
techniques for perspective drawing. In this chapter we’ll concentrate
on techniques for correctly subdividing and duplicating rectangles
in one-point perspective. This will enable you to draw a variety of
things in one-point perspective, and many of the techniques also work
for perspective with more than one vanishing point.

Although the techniques are based on mathematics, most people
find them easy and fun to use in practice, and sensible from a “com-
mon sense” point of view. (Nevertheless, even a small alteration can
change an easy problem into a more challenging one.)

Before presenting the techniques, we list the rules they are based
on.

Rule 1. The perspective image P ′Q′ of a line segment PQ is also
a line segment (unless PQ is seen end-on by the viewer,
in which case the image is a point).

Rule 2. A line segment PQ that is parallel to the picture plane
(i.e., lies in a plane parallel to the picture plane) has a
perspective image P ′Q′ that is parallel to PQ.
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Figure 4.1. A line segment PQ and
its image P ′Q′.

The reasons for Rules 1 and 2 can be seen in Figure 4.1. First,
observe that the triangle △EPQ lies in a plane, and the intersection
of that plane with the picture plane is the line containing the segment
P ′Q′. Second, if PQ lies in a plane z = k parallel to the picture
plane, then the lines containing PQ and P ′Q′ cannot intersect, and
furthermore, these two lines are coplanar, since they lie in the plane
containing △EPQ. Since nonintersecting coplanar lines are parallel,
this shows that PQ and P ′Q′ are parallel.

Rule 3. If two line segments PQ and RS in the real world are
parallel to each other and also parallel to the picture plane,
then their perspective images P ′Q′ and R′S′ are parallel
to each other.

By Rule 2, PQ is parallel to its image P ′Q′. Since PQ is also
parallel to RS, it follows that P ′Q′ is parallel to RS. But Rule 2 also
says that RS is parallel to its image R′S′, so it follows that the two
images P ′Q′ and R′S′ are parallel to each other.

An illustration of Rule 3 can be seen in Figure 3.1 of Chapter 3.
The vertical edges of the library building are parallel to one another,
and also parallel to the picture plane (the window). Thus their images
(the masking tape lines on the window) are all vertical, and parallel
to one another.

Rule 4. If two or more lines in the real world are parallel to each
other, but not parallel to the picture plane, then they have
the same vanishing point. The perspective images of these
lines will not be parallel. If fully extended in a drawing,
the image lines will intersect at the vanishing point.

Rule 4 is just a restatement of Theorem 3.1 in Chapter 3. Rule 4
is also illustrated by Figure 3.1 of Chapter 3. Edges of the library
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building that are parallel to one another in the real world, but not
parallel to the picture plane, have images that converge to a common
vanishing point.

Rule 5. A shape that lies entirely in a plane parallel to the pic-
ture plane has a perspective image that is an undistorted
miniature of the original.

CAT
FOOD

CAT
FOOD

y'

x'

surface parallel to picture plane

picture plane

perspective
image

(undistorted)

viewer

CAT
FOOD

CAT
FOOD

y'

x'

picture plane

viewer

can't happen
(diagonals not parallel)

?

(a) (b)

Figure 4.2. An illustration of Rule 5.

Rule 5 is illustrated in Figure 4.2(a). The image is a “miniature”
in the sense that the distance between any two points on the cat food
box is always greater than the distance between their images. This
is apparent from the “squeezing” process of projecting everything to
a point, and you can prove it using the transformation equations and
the distance formula. The fact that the image must be “undistorted”
is illustrated in Figure 4.2(b). At first, everything seems OK, because
the top and sides of the box are parallel to their images, which is
consistent with Rule 2. However, the too-skinny image of the cat
food box results in a situation in which the diagonal of the box is
not parallel to its image! Since this contradicts Rule 2, the distortion
cannot take place.

Tricks with Rectangles

Knowing how to subdivide or duplicate rectangles in perspective
is very useful, not only because rectangular shapes occur frequently
in architecture, but also because other shapes can be drawn with the
help of (properly drawn) rectangles. For instance, a circle inscribed
in a square will be tangent to the square at the midpoints of the sides.
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Thus if you can draw the square and the midpoints in perspective,
you have a guide for sketching the circle in perspective.

Center of a rectangle. The perspective image of the center of
a rectangle is the intersection of the images of the diagonals (because
the actual center is the intersection of the actual diagonals).

(a) (b)

(c) (d)

Figure 4.3. Putting string around a
package by finding centers of

rectangles.

In Figure 4.3 we use this fact to draw string around a box-shaped
package that has been drawn in one-point perspective in Figure 4.3(a).
In Figure 4.3(b) we locate the perspective centers of the three visible
faces as the intersections of the corresponding diagonals. In Fig-
ure 4.3(c) we use Rule 3 to draw the images of the sections of string
that are parallel to the picture plane. By Rule 3, we simply draw
the horizontal sections as horizontal lines, and the vertical sections
as vertical lines. However, there are two horizontal sections of string
that are not parallel to the picture plane, so we have to draw them
by another method. This is done in Figure 4.3(d), where we use the
fact that these two sections of string must go through the centers of
the corresponding faces of the box.

You’ll soon discover that there is more than one way to solve most
perspective drawing problems. For instance, by Rule 5, the near face
of the box, which is parallel to the picture plane, has an undistorted
image. Thus the center of that face could have been located by
measuring, rather than drawing the diagonals. (However, measuring
doesn’t work for the other two visible faces.) As another example,
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the last two sections of string we drew could have been drawn by
locating and using the vanishing point of the box. Both methods
lead to the same solution, as illustated by Figure 4.4, where we have
extended the lines of the two strings to show that they converge to
the vanishing point.

If we know that the actual top face of
the package in Figure 4.4 is twice as
long (into the distance) as it is wide,
can you locate the correct viewpoint?

Figure 4.4. The strings are automatically consistent with the vanishing

point.

Duplicating a rectangle. The next technique involves duplicat-
ing a rectangle in perspective, a trick that’s often used to draw fences,
bricks, sidewalks, tiles, etc. To see how to do it, let’s first imagine the
steps while looking at the rectangle straight on, as in Figure 4.5(a),
where we have sketched a duplicate of the original rectangle in black
dashed lines. In Figure 4.5(b) we locate the center of the first rect-
angle. In Figure 4.5(c) we draw the horizontal center line. Since the
midpoint (black dot in Figures 4.5(c) and (d)) of the right side of the
original rectangle is the center of the larger rectangle formed by the
pair, we can locate the upper right corner of the duplicate rectangle
by drawing a line from the lower left corner of the original rectangle,
through the midpoint, and continuing it until it intersects the top
line of the two rectangles, as in Figure 4.5(d). Now we can draw the
right side of the duplicate rectangle as a solid line in Figure 4.5(d).
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(a) (b)

(c) (d)

Figure 4.5. Duplicating a rectangle.

The analogous steps in perspective are carried out in Figure 4.6.
Can you explain how they work?

(a) (b)

(c) (d)

Figure 4.6. Drawing fenceposts by
duplicating rectangles.

It’s fun to keep going and make a really long fence, as in Figure 4.7.
Making the fenceposts thinner and paler as they go into the distance
helps, too; this is called atmospheric perspective.
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Figure 4.7. Extending the fence.

We see examples of the principles of perspective every day. For
example, Figure 4.8 shows the walkway in front of the Franklin Dining
Hall at Franklin & Marshall College.

Notice in Figure 4.8 how certain lines
converge to a vanishing point, and
how the vertical column edges con-
form nicely to the construction in Fig-
ure 4.6. In a sense, a photograph is
a very accurate perspective drawing
made by a machine (a camera). That’s
why, using the rules of perspective,
an artist or architect can start with a
blank piece of paper and make a con-
vincing drawing of a building before it
even exists!

Figure 4.8. Photographs automatically conform to the rules of perspective.
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Exercises for Chapter 4

1. Draw an 8× 8 chessboard in perspective.

2. Draw the string around the package in Figure 4.9. Observe that
the package has two vanishing points, like the library building
in Figure 1.4.

Figure 4.9.

3. Draw the rest of the sidewalk tiles in Figure 4.10.

Figure 4.10.
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4. Make a copy of Figure 4.11 and finish drawing the perspective
letters “TJC.” Assume that the actual letters all have the same
depth. (Compare this exercise to Exercise 5 in Chapter 5.)

Make copies of the picture of a fence panel in Figure 4.12, and
use them to solve the following drawing problems.

5. Draw 7 more fenceposts inside the fence panel to divide the
panel (solid outline) into 8 equal sections.

6. Draw a duplicate of the fence panel (in the same plane as the
original) with the top of its near fencepost at point P .

7. Draw a duplicate of the fence panel (in the same plane as the
original) with the top of its far fencepost at point P .

8. Draw 2 more fenceposts inside the fence panel to divide the
panel into 3 equal sections. (This is harder, but you would do
the same thing to draw, say, the Italian flag in perspective, or
the flags of many other nations.)

9. Draw 4 more fenceposts inside the fence panel to divide the
panel into 5 equal sections, without any measuring. (Really
hard!)
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What’s My Line?

A Perspective Game∗

T
he purpose of this game is to draw, in excellent 1-point ∗The authors invented the game, but

not the title. What’s My Line? was
a popular game show on CBS televi-
sion in the 1950s and ’60s. The show
would bring on a guest contestant, and
celebrity panelists would attempt to
guess the contestant’s line of work. In
our game you have to guess your own
line—literally!

perspective, the house that we first constructed in Excel in
Chapter 2. The idea is to do it one line at a time, with-

out coordinates, the way artists do! The class takes turns at the
blackboard (or whiteboard), working on the same drawing. The only
tools needed are a piece of chalk and a couple of yardsticks (two are
occasionally needed to draw long construction lines).

Rules of the game:

• The drawing must be of a house with the same proportions
as the house in Chapter 2. Students will therefore need their
books open to the appropriate page to recall these proportions.

• Students may work individually or in teams.

• When it is their turn, students may make one measurement,
one line, or occasionally two construction lines (e.g., an “X” to
find a midpoint), subject to the approval of the instructor.

• When direct measuring is valid (and only when it is valid),
students may use the yardstick to make a measurement.

• When students come to the board, they must first tell their
instructor what they intend to draw and get permission. If the
instructor denies them permission, students lose their turn and
must wait one full round to have another chance.

• Instructors may disallow students from drawing a line if the
construction is not valid, or if a different construction for the
same part of the house has already been started, or if the in-
structor judges the construction to be insufficient or inelegant
in any way.
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• The instructor will help to hold the yardsticks; students should
draw lightly unless told otherwise.

• The instructor is allowed to darken up important or visible lines
and to erase lines that have become extraneous.

While playing the game, a student (or a team) may wish to tackle
a particularly difficult part of the drawing to show off their skills.
This is of course good. On the other hand, they often have the
option of choosing an easy line, thereby passing the hard problems
along to someone else (the sneaky approach). In any case, students
should continue to think about the hard problems, because the game
can reach a point where no easy options are available until someone
“breaks through” one of the hard parts.

Suggestions for instructors. Since the drawing is fairly large,
a few guidelines must be drawn using two yardsticks placed end-to-
end, so it’s important to have a couple handy. The instructor starts
by drawing the front, right vertical edge of the house—the first line of
the game—along with a (lightly drawn) horizon line and a vanishing
point (see Figures A and B). Putting these in good locations will help
the construction greatly.

6"

12"

20">27"

>20"

first line of
the game

Note: viewing distance is 72"

horizon
lineFigure A. Setup of the game.

Here are some suggested measurements:

• Draw the horizon line more than 20′′ below the top edge of the
board.

• Draw the vertical line more than 27′′ from the left edge of the
board.
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• Make the vertical line 18′′ tall, with 6′′ of it above the horizon
and 12′′ below.

• Draw the vanishing point on the horizon, 20′′ to the right of
the vertical line.

Instructors may find it necessary to remind students that the
house they are drawing must have the same proportions as the house
in Chapter 2. It’s of course much easier to draw a house with, say, a
cubical lower section. But the whole point is to show students that
they can accurately draw the house in Chapter 2 without a computer,
using only a yardstick and a piece of chalk.

It helps to see the house better if you think of it as “open” in the
front: that is, the front pentagon is glass, and the rest is translucent.
As students add lines to the house, darken the visible lines and leave
the hidden lines fainter. If you no longer need construction lines,
erase them so they don’t make the picture even more confusing.

In a class period of less than eighty or ninety minutes, students
may not completely finish the drawing. It’s different every time.
However, students should get enough done so that the structure of
the house becomes apparent. When the house is done, each of the
students should get a chance to view the picture (with one eye only,
of course!) from the proper viewing location.

first line of
the game

Figure B. The finished house with a
“glass wall” on the near end, and the
hidden lines completely erased.

As an alternative, this could be a “turn it in” project in The Ge-
ometer’s Sketchpad or GeoGebra. Students could be given a work-
sheet with the diagram of Figure A and an indicated viewing dis-
tance, with the assignment to draw construction lines in light gray
and house lines in black.
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CHAPTER 5

Two-Point Perspective

I
n addition to one-point perspective, another common perspec-
tive drawing technique is two-point perspective, illustrated in
Figure 5.1. Unless otherwise stated, we will use the term “two-

point perspective” to refer to a picture that is set up in such a way
that the picture plane is perpendicular to the plane of the ground
(outdoors) or the floor (indoors), and as a consequence of this, only
two vanishing points on the horizon line are needed to render build-
ings or other objects whose adjacent vertical walls or sides are per-
pendicular to each other. This is a typical situation when dealing
with architectural subjects, both indoors and outdoors.

V1 V2 Figure 5.1. A simple example of
two-point perspective.

Suppose the rectangular box in Figure 5.1 represents some kind of
building, but we don’t know anything about its size or proportions.
Can we say anything about the correct location of the viewer? It
turns out that we can.

First, we can tell by looking that the picture plane must be per-
pendicular to the plane of the ground—that is, vertical—because the
images of the vertical lines of the building are parallel to one another
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in the picture, and hence do not converge to a vanishing point. This
can only happen if the picture plane is parallel to the vertical lines
of the building, and hence perpendicular to the plane of the ground.

Since our line of sight to any point on the horizon must be level,
the viewer’s eye is the same height as the horizon line in the picture.
Thus the viewer’s eye lies in a horizontal plane (the eye-level plane)
H containing the horizon line (see Figure 5.2). Since the picture
plane is vertical, H is perpendicular to it. It is convenient to think
of H as a half-plane existing in the room where the viewer is to view
the painting, as in Figure 5.2. The question is, exactly where in the
plane H should the viewer’s eye be located?

V
1

V
2

picture plane

the eye-level
plane H

?

?

?

Figure 5.2. The eye-level plane H .
The correct viewpoint for the painting
is somewhere in this plane, but where?

If the picture were the result of a window-taping experiment, then
the building would still be located beyond the window, and we could
find out all sorts of things about it. Even though it’s not a window,
we can think of the painting as the projection of a building that was
once behind the canvas. At this stage we don’t yet know how the
building would be situated to make such a projection. Figure 5.3
shows two possible cases.

We can narrow down our choices for the viewpoint E by recalling
an important fact about perspective on windows. When the viewer’s
eye is at the correct viewpoint E, the line (of sight) from E to any
vanishing point V on the window must be parallel to the actual line
in the real world whose image has V as its vanishing point. Thus,
regardless of how the building was oriented, the lines EV1 and EV2

in Figure 5.3 must be parallel to the corresponding building edges;
since adjoining building edges are perpendicular, EV1 and EV2 are
also perpendicular to each other. Figure 5.3 shows two examples of
all possible cases.
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E

V1 V2

top ofbuilding
parallelparallel

E

V1 V2

top of

building

parallelparallel

the eye-level
plane H

top edge of
picture plane Figure 5.3. Two of many possible lo-

cations for the viewpoint E. Because
the edges of the building form a right
angle, the lines of sight to the vanish-
ing points must form a right angle at
the point E.

This brings up a question:

What is the set of all points E in the eye-level half-
plane H such that EV1 and EV2 are perpendicular?

It turns out that this set is a semicircle whose endpoints are V1

and V2 (see Figure 5.4).

V
1

V
2E

V1 V2

H

top view

Figure 5.4. The viewpoint E must lie
on a horizontal semicircle in the half-
plane H .

Theorem 5.1. The viewpoint E for a standard two-point per-
spective painting (drawing, photograph) with vanishing points V1

and V2 lies on a semicircle with endpoints V1 and V2. The plane
of the semicircle is perpendicular to the picture plane.

Proof. Consider a possible viewpoint E in the half-plane H , as on
the left of Figure 5.5. Since E is a possible viewpoint, the lines EV1

and EV2 are perpendicular. Let M be the midpoint of V1 and V2, so
that the two segments MV1 and MV2 have the same length r. Let
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s denote the length of EM . We are done if we show that s = r, for
that will mean that all possible viewpoints E are r units away from
M , and therefore lie on a semicircle.

Now EV1 and EV2 are adjacent sides of a rectangle, so draw the
entire rectangle EV1FV2, as indicated on the right of Figure 5.5. It’s
a well-known fact from geometry that the diagonals of a rectangle
have equal lengths and meet at their common midpoint. Referring
to the figure, this implies that s = t = r. �

E

V1 V2M

r r

s

E

V1 V2M

r r

s

F

t

H H

Figure 5.5. Looking down on the plane
H and the top edge of the picture
plane.

Theorem 5.1 explains a common trick used in art classes. Notice in
Figure 5.4 that the farther apart the vanishing points V1 and V2 are,
the bigger the “viewing circle”; that is, the farther away the potential
viewpoints will be from the picture. We know from Chapter 3 that
when viewpoints are unusually close to pictures, viewers perceive
distortions, because they won’t suspect that the correct viewpoint is
so close. To prevent this from happening in two-point perspective
drawings, art teachers often have their students tape strips of paper
to their drawing paper (as in Figure 5.6) so that one or both of
the vanishing points can be located beyond the edges of the paper.

Figure 5.6. When working in two-
point perspective, art students often
tape strips of paper to their draw-
ings so they can spread the vanish-
ing points far apart. This makes for a
larger viewing circle, one that is more
likely to be occupied by the casual
viewer’s eye.

An art teacher would say, “We spread the vanishing points to avoid
distortion.” In view of Theorem 5.1, we could also say that “We
spread the vanishing points to enlarge the viewing circle.”

Is a small viewing circle really so bad? To convince yourself that
it is, look at Figure 5.7. It’s a drawing of some boxes in two-point
perspective, with both vanishing points V1 and V2 in the drawing,
making them very close together. The drawing has been set up so
that the viewpoint is directly in front of the midpoint C of V1 and
V2. Imagine a semicircle coming out of the page with V1 and V2 as its
endpoints. It should be clear that the viewing distance in this case
is just the radius of the semicircle, which is the distance between C
and V1 (or V2). Close one eye and hold the page so that your open
eye is very close to C and directly in front of it. Gaze at C for a
second, then let your eye roll down and look at the boxes. You’ll see
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that they are just ordinary boxes with square tops! Now move the
page away from your eye and see how distorted they get.

Figure 5.7. Vanishing points close together. Close one eye, put the other one very close
to C (at a distance CV2), and gaze down at the boxes. From there you will see they are
perfectly normal boxes with square tops!
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Example 1 (uncropped photograph). At this stage we know
that the viewpoint E must be on a semicircle, but where on the
semicircle? The answer requires more information about the picture.
A simple case is when we know that a picture such as Figure 5.1 is
a standard, uncropped photograph. When a standard photograph
is not cropped, the viewpoint must lie on a line orthogonal to, and
through the center of, the photograph.

Let’s assume this is the case in Figure 5.8. Explain why the
construction in Figure 5.8 correctly determines the viewing distance
TU and the “viewing target” T (the point in the photo that should
be directly in front of the viewer’s eye).

V1 V2T

U

Figure 5.8. Solution for an uncropped
photograph. The viewing target is T
and the viewing distance is TU . Why
does the construction work?

Notice that in order to solve the problem, we don’t need to know
the proportions of the building; that is, whether it’s a cube or an
elongated box of some kind. In fact, it’s possible to use the solution
to figure out the proportions—look for this same “photograph” in
the exercises!

WARNING: This example and the ones that follow are actually
partially worked exercises. It is essential that you answer the ques-
tions, fill in the gaps, and complete the explanations. You may find
that doing so constitutes the hardest set of problems that you have
worked so far! Your work will of course require you to draw lots of
top and side views of each situation, so have a ruler, compass, and
lots of paper handy.
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Example 2 (horizontal square). When we’re not sure that a two- When you’ve finished this example,
try looking at Figure 5.9 (with one
eye) from the correct viewpoint. You
may find that you need to use your
right eye, so that your nose doesn’t
block the view!

point perspective picture is an uncropped photograph, other infor-
mation about the picture or the subject can be helpful. In Figure 5.9
someone has started a perspective drawing of train tracks. Assume
that the rectangles between railroad ties are actually squares. Find
the viewing target and the viewing distance. (Or if you like, look at
Figure 5.10 and explain why the construction works.)

assume this is actually a square

Figure 5.9.
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The solution. The viewing target is T and the viewing distance is TU. Why?

assume this is actually a square
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Example 3 (horizontal rectangle). What if the rectangles be-
tween railroad ties are not square? We just used the fact that if two
vanishing points are for horizontal lines that are at right angles to
each other in the real world, then the “viewing circle” is a horizontal
semicircle whose endpoints are the vanishing points. This is a special
case of a theorem from plane geometry, illustrated in Figure 5.11 and
stated as follows:

Let circle W1EW2 have center C. If ∠W1EW2 has measure θ,
then ∠W1CW2 has measure 2θ.

W1

2θ

E

C

θ

W2

Figure 5.11. A theorem from plane
geometry.

The theorem implies that if W1 and W2 are fixed on the circle
(so that ∠W1CW2 is fixed), then a viewer’s eye at any point E on
the circle below W1 and W2 will see W1 and W2 as subtending an
angle that is half of ∠W1CW2.1 In the case when W1 and W2 are 1“Alright,” someone says, “But how

do we know that there is not some
other point E′ that is not on the circle,
but still below W1 and W2, such that
∠W1E

′W2 = θ?” Can you answer the
question?

endpoints of a diameter (2θ = 180◦), we have ∠W1EW2 = 90◦. Thus
Theorem 5.1 is just the special case when θ = 90◦.

If the angle θ between the dashed diagonals in Figure 5.10 is not
90◦, we need the full generality of the above theorem, as indicated in
Figure 5.12. Can you explain why Figure 5.12 solves the problem?
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The solution. The viewing target is T and the viewing distance is TU.

T V2W1 W2
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Example 4 (vertical rectangle). Suppose our building picture is
not necessarily an uncropped photograph, but we do know the true
shape of one end of the building, so that we can measure the angle
α in Figure 5.13.

α

true
shape

α

Figure 5.13. True shape of a vertical
face of the building.

Explain why the following construction works. (Hint: V3 is a
vanishing point, and also the apex of a very important cone.)

V2

V3

T

U

S
V1

α

circle
centered at V2

Figure 5.14. Solution of Example 4.
The viewing target is T and the view-
ing distance is TU .
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Example 5 (drawing a cube). Drawing a box in two-point per-
spective is a cinch, if there is no requirement on its proportions. But
how about a cube? For the base, we can draw an arbitrary rectangle
in two-point perspective, as in Figure 5.15 (only one vanishing point
is shown). Now assume that the base is a square; this determines the
viewing target T and the viewing distance, indicated by TU in the
figure. (We assume you know how to determine T and TU by now,
so we left out the messy construction.) Can you draw the left front
face of the cube? The vertical line through V1 is a hint. Can you
finish the picture by drawing the entire cube?

T

U

V1

Figure 5.15. Base of a cube. The viewing target is T and the viewing distance is TU .
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Exercises for Chapter 5

1. If Figure 5.10 is drawn perfectly, what should be the exact
measurements of the following angles?

(a) ∠V1UV2 (b) ∠V1UW2

(c) ∠W2UV2 (d) ∠W1UW2

(e) ∠W1UV1 (f) ∠W1UV2

2. Figure 5.16 is the start of a drawing of a square tile S lying
on the ground. If the viewing target is T and the viewing
distance is TU , finish drawing the tile. If you like, you may use
a protractor to construct angles.

T V2

U

V1

S

Figure 5.16.
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3. Figure 5.17 shows an uncropped photograph of a building. TheWhen you finish this exercise, it
should be clear that we really don’t
need to know the height of the build-
ing to figure out its proportions—that
is, the ratio of the width of the white
face to the height of the white face,
etc. Uncropped photographs can re-
veal the true shape of every face of a
building even when we don’t know the
size!

viewing target T and the viewing distance TU have been lo-
cated by the method of Example 1. Suppose we know that the
actual building is 50 feet high. Answer the following questions.
You will find it helpful to use a compass and a ruler with mil-
limeters on it. There will of course be some errors in measuring,
so show all your work.

(a) How wide is the white face of the actual building?

(b) How wide is the gray face of the actual building?

V1 V2T

U

Figure 5.17.
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4. Figure 5.18 shows the start of a drawing of a child’s backyard
playhouse. Add another window to the right-hand wall. The
new window should represent one in the real world that is (a)
the same size and shape as the existing window, (b) located at
the same height as the existing window, and (c) separated from
the back wall by the same distance that the existing window is
separated from the front wall.

Figure 5.18.
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5. Using two-point perspective, draw a word in all capitals that

depthwidth

height

Figure 5.19. The (apparently dis-
torted) width, depth, and height
of a letter in two-point perspective.
Although the widths, depths, and
heights of letters will appear to vary
in your drawing, your drawing should
correctly represent letters with a com-
mon width, a common depth, and a
common height.

is at least 4 letters long, with the letters in the word receding
toward one of the vanishing points. (Compare this exercise to
Exercise 4 in Chapter 4.) Referring to Figures 5.19 and 5.20,
make sure that

• your drawing represents letters whose actual widths are
equal (except for the letter “I”), whose actual heights are
equal, and whose actual depths are equal;

• your drawing represents letters with constant spacing be-
tween them, the space being narrower than the letters;

• lines that should be parallel in the picture are indeed par-
allel;

• lines that should go to a vanishing point do indeed go to
that vanishing point.

Here are some things that will help to make your picture beau-
tiful:

• planning out the stroke widths of the letters (making sure
that the bar of an “H” has the same stroke width as the
arms of a “T”—see Figure 5.20);

• giving the word a surrounding context (is it disappearing
into a starry sky? Sitting on a table? In a vast plane with
trees on the horizon?);

vertical
stroke

diagonal
stroke

letter
width

arms
(a kind of
horizontal

stroke)

bar
(a kind of
horizontal

stroke)

spaces

stroke
width

Figure 5.20. Some typography terms.

• making sure that your lines are drawn neatly with a straight-
edge;

• using lots of lines in the picture (e.g., your letters could
be made of boards, bricks, quilts, etc.);

• making sure that the depth of the letters is constant.

6. Imagine that your word drawing in the previous exercise uses
the shapes of an actual font that you have on your computer (or
a font you see in a magazine or newspaper). Print out a letter
from that font—a letter that appears in your drawing—at a
fairly large size. Use the proportions of the letter to estimate
the viewing target and viewing distance for your drawing.

7. Finish the cube in Example 5, and then make it a Rubik’s cube.
(Each face of a Rubik’s cube is a checkerboard with 9 squares.)

8. Are the boxes in Figure 5.7 cubes? Explain how you know.
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9. This problem describes a drawing project that can be done over
a few class periods, or during several hours at home. At this
point you have enough skills and techniques to make a com-
plex, attractive drawing! Try using several of the constructions
you’ve learned in this chapter and the previous one. Take your
time, making sure every line is neat, straight, and conforms to
the rules of perspective.

Make a pencil drawing in two-point perspective, following
these guidelines:

Figure 5.21. Two impressive drawings

by a pair of biology (not art!) majors:

Tia Milanese (top) and Julie Torkelson

(bottom). Patience and following the

rules can lead to satisfying results.

(a) Keep the vanishing points far apart, even off the paper if
feasible. More than two vanishing points is of course OK.

(b) Objects with equal-size parts (fences, brick walls, etc.)
must be divided correctly into parts (halves, thirds, fourths,
etc.).

(c) Separate objects that are duplicates of each other, such as
windows in a building (and the gaps between them), must
be duplicated correctly.

(d) All straight lines must be drawn neatly with a straight-
edge. Any straight line not drawn with a straightedge will
make the drawing unacceptable.

(e) A grading scheme should depend partly on counting the
number of line segments in your drawing. For example,

(i) Less than 600 line segments will result in a grade lower
than an A.

(ii) Less than 450 line segments will result in a grade lower
than a B.

(iii) Less than 350 line segments will result in a grade lower
than a C.

An unbroken line segment will be counted as one line seg-
ment, even if several lines cross it. (Figure 5.22 shows that
you get more line segments with bricks than you do with
tiles.)

Figure 5.22. Going by the rules, the
brick wall on the left counts as 21 line
segments, while the tiled wall on the
right counts as only 13 line segments.
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10. Figure 5.23 shows two views of a flag, one straight on and the

Figure 5.23. Two views of a flag.

other in two-point perspective. The straight-on view shows
that the flag is a rectangle divided into three smaller, equal-
sized rectangles. Many national flags use this pattern.2

2Some examples are Belgium, Chad,
Guinea, Ireland, France, Italy, Mali,
Peru, and Romania. Many other na-
tions, such as Canada and Mexico, use
this pattern with the addition of an
emblem in the center.

In this exercise your job is to draw on the two-point per-
spective flag shown in Figure 5.24 (or rather a photocopy of
it) and correctly divide it into thirds to make a flag that looks
like the one on the right of Figure 5.23. To get you started,
we have also included an undistorted flag (the rectangle R) in
Figure 5.24. Begin by correctly dividing the rectangle R into
thirds to establish a method that can be used in two-point per-
spective. Then use your method on the two-point perspective
flag. Ignore the wavy left edge of the flag and treat the flag as
a rectangle whose corners are the four black dots.

R

Figure 5.24.



Artist Vignette: Robert Bosch

ROBERT BOSCH is Professor of Mathematics and the Robert and Eleanor
Biggs Professor of Natural Science at Oberlin College. He specializes in op-
timization, the branch of mathematics concerned with optimal performance.
Since 2001, Bosch has devoted increasing amounts of his time and effort into
devising and refining methods for using optimization to create pictures, por-
traits, and sculpture. He has had pieces commissioned by Colorado College,
Western Washington University, Occidental College, Spelman College, and the
organizing committees of several academic conferences. He operates a website,
www.dominoartwork.com, from which it is possible to download free plans for
several of his domino mosaics.

E
veryone is an optimizer. Everyone, from time to time, at-
tempts to perform a task at the highest level possible. Ev-
eryone benefits from being an optimizer and from keeping the

company of optimizers.

When you take a new job and seek out the shortest route for
your daily commute, you are being an optimizer, and you benefit by
spending less time in the car and less money on fuel. When you create
an itinerary prior to running errands (determining that it would be
best to go to the bank first, and then the post office, the grocery store,
and finally the library), you are again being an optimizer, reaping the
same benefits.

Whenever you fly on an airplane, make a telephone call, or shop
on the internet, you are keeping the company of optimizers. Airlines
use optimization to construct their schedules. Telecommunications
companies use it to design their networks. E-commerce giants like
Amazon use it to set up their supply chains. You benefit by being
able to travel, communicate, and shop from the comfort of your home.
Without optimization, some companies wouldn’t be able to stay in
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business, and others wouldn’t be able to provide their services at the
level of quality we expect.

I am a mathematician who specializes in optimization. Each fall,“Each fall, I tell my students that op-
timization is the most useful branch
of mathematics, as it can be applied
to every field imaginable.”

I tell my students that optimization is the most useful branch of
mathematics, as it can be applied to every field imaginable. These
conjoined claims are bold ones, and I try to construct a support-
ing argument built on a variety of examples from diverse disciplines.
Many of the examples come from my own research.

I have used optimization to compare fast-food restaurants. I have
used it to investigate how the optimal length of a Phase III clinical
trial for a new AIDS drug depends on the Phase II estimate of its
efficacy. I have used it to find fingerings for piano pieces, to tackle
disputed authorship problems, and to solve Sudoko-like puzzles (I
wrote a puzzle column for six years). And since 2001, I have used
optimization to create pictures, portraits, and sculpture.

My efforts to use optimization to produce art can be traced back
to a 2001 installment of my puzzle column, in which I asked my
readers to use integer programming (one of the most widely used
tools in mathematical optimization) to arrange three complete sets
of double-nine dominoes so that they’d form the best possible likeness
of Leonardo da Vinci’s Mona Lisa. By doing this, I was challenging

Robert Bosch
Domino Mona Lisa (First Attempt),

2001
3 complete sets of
(virtual) dominoes

my readers (and myself) to see if integer programming could be used
to do what the artist Ken Knowlton had done (using other tech-
niques) in the early 1980s. Knowlton is a former Bell Labs computer
scientist who has made wonderful “computer assisted” mosaics, in-
cluding lovely 4-set domino portraits of Marilyn Monroe and Albert
Einstein.

My 3-set Mona Lisa was just barely recognizable. Still, I decided
to carry on. I performed extensive surgery on the heart of my integer
programming model and then embarked upon a phase of rigorous
testing, varying the parameters of the model (to determine the role
each one played) and creating more and more domino portraits, some
from a small number of sets (like Knowlton’s) and some from as many
as 100 !

The computer I owned at the time was able to solve a 2-set prob-
lem in seconds, but usually required more than eight hours to tackle a
100-set one. (The integer programming model for a 100-set portrait
has just over 10, 000 equations and well over 1, 000, 000 variables!
The size of this model is of the same order of magnitude as those
used in the airlines and telecommunications industries.)

So I ended up adopting a rather strange routine: Every night be-
fore I went to bed I’d instruct my computer to make another domino
portrait. The next morning I’d print it out and show it to my wife
Kathy (an antiques dealer) and son Dima (who was seven at the
time).
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Robert Bosch, Domino da Vinci, 2003,

96 complete sets of (virtual) dominoes
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I did this for several months. Over time, I became better and bet-
ter at determining which digital images would have a good chance of
being turned into high quality domino mosaics. I became better and
better at giving the computer detailed instructions on how to process
these digital images (thereby increasing the chance that the domino
mosaics would be of high quality). I gradually gained confidence that
the best of my pieces would be appreciated by a general audience.
Over time, I transformed myself from a mathematician who made“Over time, I transformed myself

from a mathematician who made pic-
tures into an artist who uses mathe-
matics.”

pictures into an artist who uses mathematics.

Years ago, just after I began my teaching career at Oberlin, I saw
Georges-Pierre Seurat’s A Sunday on La Grande Jatte—1884 while
taking a break from a conference in Chicago. If you ever have the
good fortune to view this masterpiece from up close, you’ll see a
mass of colorful dots. And if you can manage to keep looking at the

Above: Georges-Pierre Seurat
A Sunday on La Grande Jatte—1884,

1884–86
oil on canvas 81.75 × 121.25 in.
The Art Institute of Chicago

Helen Birch Bartlett
Memorial Collection

Below: detail from the painting

painting while backing away from it, your eyes will do an amazing
thing: they’ll somehow merge all of the dots into a group of Parisians
relaxing on an island on the Seine.

Seurat’s masterpiece is the most widely reproduced example of
what critics call pointillism. Seurat set himself the task of producing
the best possible depiction of what he saw on the riverbank, subject
to a set of interesting, self-imposed constraints—he had to keep his
colors separate, and he could only apply paint to the canvas with
tiny, precise, dotlike brush strokes. Seurat was an optimizer. He was
trying to perform a task (a very difficult one, due to the constraints!)
at the highest level possible. All artists are optimizers in this sense.
Seurat is just a particularly clear example.

The main difference between me and other artists is that I use
optimization explicitly. I don’t use a pencil, paintbrush, or any other
traditional tool. I do use a computer, but not in the same way that
other digital artists do. Instead, I use mathematical optimization.
Here’s how I work: After I get an idea for a piece, I translate the idea
into a mathematical optimization problem. I then solve the problem,
render the solution, and see if I’m pleased with the result. If I am,
I stop. If not, I revise the mathematical optimization problem, solve
the revised problem, render its solution, and examine it. Often, I
need many iterations to end up with a piece that pleases me.

Usually, I emulate Seurat. Like Seurat, I want the piece to appear
abstract when looked at closely, but recognizable when viewed from
a distance. Like Seurat, I want to challenge myself, and again, like
Seurat, I do this by imposing constraints. (When making domino
portraits, for example, I force myself to use complete sets of domi-
noes.) Often, this means that I end up having to solve a very difficult
mathematical optimization problem. But that’s part of the fun!

Of all the difficult problems in mathematical optimization, the
most well-known (and well-studied) is the Traveling Salesman Prob-
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lem (TSP). The TSP concerns a salesman, based in one city, who
must visit all of the cities in his territory and then return home. The
goal is to visit the cities in an order that minimizes the total distance
traveled.

In 2003 I realized that the TSP could be used to produce contin-

Robert Bosch
What’s Inside?, 2006

(after Warhol)
TSP Art continuous line drawing

342 ft. curve on 34× 44 in. canvas

uous line drawings of target images. The basic idea is quite simple:
You convert the target image into a collection of dots (cities), solve
the resulting instance of the TSP, and connect the dots in the order
specified by the optimal tour! The end result is a continuous line
drawing that does not cross itself and ends where it starts. In other
words, the drawing is what mathematicians refer to as a simple closed
curve.

Mathematicians have constructed rigorous proofs that every sim-
ple closed curve is “topologically equivalent” to a circle; that is, every
simple closed curve divides the plane into two regions: the part that
lies inside the curve, and the part that lies outside. As a result, every
piece in my “TSP Art” series could, in principle, be put into physical
form via the careful placement of a loop of one color on top of a
background of a contrasting color.

From a distance, the viewer will see my piece Knot? as a black
Celtic knot drawn on a white (or light gray) background. But moving
closer, he or she will notice that the piece is a single white loop (117
feet long) drawn on a 34′′ by 34′′ black square. The question arises:
Where did the knot go?

From a distance, the viewer will see my piece Hands (after
Michelangelo) as a rendering of a close-up of the creation scene. From
a distance, the viewer will see that the hand of Adam and the hand
of God have just separated. But moving closer, the viewer will note
that the entire image is formed of a single black loop (188 feet long)
that rests on a 44′′ by 19.5′′ white background. Again, a question
might arise: Are Adam and God really separate?



Robert Bosch, Knot?, 2006

TSP Art continuous line drawing

117 ft. curve on 34× 34 in. canvas



Robert Bosch, Hands (after Michelangelo)

TSP Art continuous line drawing, 188 ft. curve on 44× 19 in. canvas
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CHAPTER 6

Three-Point Perspective

and Beyond

A
s the above title implies, this chapter contains several topics.
We begin by discussing three-point perspective and the role
of the viewpoint, and then show how to draw a specified box

in three-point perspective. In doing so, we find that we actually need
more than three vanishing points. We follow this with a discussion
of other types of multiple vanishing point drawings, exemplified by a
drawing of the house from Chapter 2. We then describe an apparent
paradox in perspective drawing, which we call the skyscraper para-
dox. In this situation we actually need fewer vanishing points (in fact
none!) than one might at first suspect. We close the chapter with a
discussion of six-point spherical perspective.

A word about the techniques for drawing and viewing in three-
point perspective. These techniques are just a bit more involved than
those for one- and two-point perspective. Hence these techniques are
unlikely to be used “in the field”—in the museum, or even in the
artist’s studio, except for special situations. Still, it’s natural to ask,
“How do I do this correctly?” and so it’s intellectually satisfying to
be able to know the correct solutions, even if in the future we mostly
fudge and approximate.

Three-Point Perspective and the Viewpoint. Three-point per-
spective is the third common perspective technique in addition to
one- and two-point perspective. Again we think of rendering rectan-
gular box shapes such as buildings, but this time the picture plane
is oriented so that it is not parallel to any of the edges of the boxes.
This is illustrated in Figure 6.1, where we see that in no case do
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parallel edges of buildings have parallel images in the picture. The
figure shows the three vanishing points needed to draw the lines of
the buildings that Spider-Man swings past. If you lay a ruler along
any such line, you’ll see that the line goes through either V1, V2, or
V3.

V
2V

1

V
3

Figure 6.1. The Marvel Comics character Spider-Man leaps into the night in this still from a GameSpot video game.
Since no two parallel lines have parallel images, the picture plane is not parallel to any of the edges of the buildings.
Consequently, three vanishing points are needed to draw the buildings.

You may have sketched pictures in three-point perspective be-
fore, but there are a couple of facts that may surprise you. First, it’s
not correct to start with just any three vanishing points; the three
points must be the vertices of an acute triangle—a triangle whose an-
gles are all less than 90◦ (Figure 6.2). Second, when you sketch the
three vanishing points, the viewpoint of your drawing is completely
determined—before you even draw anything! We will discuss these
and other properties of three-point perspective in terms of two famil-
iar tasks: finding the viewpoint of an existing drawing, and drawing
a rectangular box in three-point perspective.
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largest angle

acute triangle right triangle obtuse triangle

< 90!

90!
> 90!

Figure 6.2. A triangle is called acute,
right, or obtuse according to whether
its largest angle is, respectively, acute
(less than 90◦), right (90◦), or obtuse
(greater than 90◦). The viewpoints
for a correct three-point perspective
drawing must form an acute triangle.
Try checking this in Figure 6.1.

To begin, recall that in two-point perspective we have two van-
ishing points V1 and V2 (Figure 6.3(a)) and a horizontal semicircle
connecting them; the viewpoint must lie somewhere on this semicir-
cle. In three-point perspective, any pair of vanishing points such as
V1 and V2 are for the images of lines that are perpendicular to each
other (such as the edges of the roof of a building), but the viewpoint
does not lie in a horizontal plane containing those vanishing points.
However, the viewpoint does lie in some plane containing V1 and
V2, and hence it lies on some semicircle with endpoints V1 and V2.
The set of all such semicircles (Figure 6.3(b)) forms a hemisphere
on one side of the picture plane. From any viewpoint E on any of
those semicircles (from any point on the hemisphere except V1 and
V2) a viewer’s lines of sight to V1 and V2 will be at right angles. We
can prove this by applying the proof of Theorem 5.1 to the semicir-
cle containing E, V1, and V2. We call this hemisphere the viewing
hemisphere for the two vanishing points.

V
2

V
1

V
2

(a)

V
1

(b)

Figure 6.3. A semicircle (a) with
endpoints V1 and V2, and a family of
semicircles (b) with the same
endpoints. The entire family of
semicircles forms a hemisphere on one
side of the picture plane.

Now consider three noncollinear vanishing points V1, V2, and V3

for a three-point perspective drawing (Figure 6.4). For any pair of
vanishing points, say V2 and V3, there is a viewing hemisphere H1
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(Figure 6.4(a)). The viewpoint for the drawing must be somewhere
on this hemisphere. The same thing is true for the other two pairs of
vanishing points, so there are actually three viewing hemispheres H1,
H2, and H3 (Figure 6.4(b)). Since the viewpoint E must lie on all
of these hemispheres, E is the unique intersection point of H1, H2,
and H3 in a properly set up three-point perspective drawing. The
intersection point is unique because any pair of hemispheres meets in
a semicircle that lies in a plane perpendicular to the picture plane;
this semicircle meets the third hemisphere in a single point.

V
1
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(b)

H
3
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H
1

E

V
1
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3

(a)

H
1

Figure 6.4. Like the intersection point
of three bubbles, the viewpoint E of a
three-point perspective drawing is the

intersection of the three viewing
hemispheres H1, H2, and H3.

There is a special relationship between the viewing hemispheres
and the “viewpoint triangle” △V1V2V3. To explain this, we show in
Figure 6.5 the equator C1 of the viewing hemisphere H1, along with
the viewpoint triangle (compare with Figure 6.4(a)). The dashed line
segments V2F2 and V3F3 are altitudes of △V1V2V3; that is, each is
a line segment through a vertex perpendicular to the opposite side.
Each point Fi, which lies on a side of the triangle, is called the foot
of the altitude ViFi. In Figure 6.5 it looks like F2 and F3 lie on C1,
and this is in fact true. For example, because V2V3 is a diameter of
C1, and because ∠V2F3V3 is a right angle, the proof of Theorem 5.1

V
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V
1

F
2

F
3

C
1

Figure 6.5. The equator C1 of the

viewing hemisphere H1, and the view-

point triangle. The circle C1 passes

through the feet F2 and F3 of the

dashed altitudes V2F2 and V3F3.

shows that F3 lies on C1. A similar argument proves that F2 lies on
C1. Generally, given any viewpoint triangle △V1V2V3, the equator Ci
of a viewing hemisphere Hi contains two vertices of the viewpoint
triangle and the feet of two altitudes.

This relationship is illustrated in each part of Figure 6.6. Each
part consists of (1) a vanishing point triangle △V1V2V3; (2) the re-
spective equators C1, C2, C3 of the viewing hemispheres H1, H2, H3;
and (3) the three altitudes of △V1V2V3. (As we will discuss, V3 co-
incides with F1 and F2 in part (b).)

Figure 6.6(a) corresponds exactly to Figure 6.7(a); the vanishing
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points V1, V2, V3 are the same, and the circles C1, C2, C3 are the
equators of the respective viewing hemispheres H1, H2, H3 in Fig-
ure 6.7(a). Similarly, Figure 6.6(b) corresponds to Figure 6.7(b), and
Figure 6.6(c) corresponds to Figure 6.7(c).

Getting back to Figure 6.6(a), we observe that the common chord
V3F3 of circles C1 and C2 is the orthogonal projection onto the picture
plane of the semicircular intersection of the two hemispheres H1 and
H2. That is, lines from the points of the semicircle that are perpen-
dicular (orthogonal) to the picture plane will collectively meet the
picture plane in the line segment V3F3. The same is true for the
other pairs of circles, and the point T is the orthogonal projection of
the point E in Figure 6.4(b); that is, T is the viewing target for the
drawing. The point T is also the common intersection point of the
three altitudes, called the orthocenter of the triangle.1

1We have in effect given a
“perspective proof” of an important
theorem from geometry, which says
that the three altitudes of a triangle
meet in a common point. The
theorem is also true for right and
obtuse triangles.

The important thing to notice is that in the acute triangle case of
Figure 6.6(a), the orthocenter lies in the interior (between the end-
points of) each altitude, and hence it lies in the interior of each circle
Ci. Thus, there is a unique viewpoint, and it is not on the equator
Ci of any hemisphere, so it does not lie in the picture plane. The
viewpoint is therefore practical and the drawing is set up properly
when the viewpoint triangle is acute.
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Figure 6.6. Diagrams for viewpoint triangles that are (a) acute, (b) right, and (c) obtuse. In (a), the three hemispheres
meet at a point E outside the picture plane, directly above T (compare with Figure 6.7(a)). If you extend the three
dashed altitudes in (c), you will see that they again meet at the orthocenter, which is above C3 .



90 Chapter 6

(a) (b) (c)
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Figure 6.7. The viewing hemispheres corresponding to the respective parts of Figure 6.6. In part (a) the mutual
intersection point E of the hemispheres is the viewpoint. In part (b) the mutual intersection point is V3 and hence
lies in the picture plane. In part (c) the three hemispheres do not have a mutual intersection point (in this case V3

is hidden by H3).

This is not the case in the right and obtuse triangle cases of Fig-
ures 6.7(b) and (c). In the right triangle case of Figure 6.6(b), all
three circles C1, C2, and C3 meet at V3, and hence the viewing hemi-
spheres intersect in the picture plane at V3. This is not a practical
viewpoint, and hence the drawing is not set up properly. In the ob-
tuse triangle case of Figure 6.6(c), the three altitudes do not meet
inside any of the circles, and hence the viewing hemispheres do not
have a common intersection point—there is no viewpoint. We sum-
marize these results in a theorem:

Theorem 6.1. Three points in the picture plane form a pos-
sible viewpoint triangle for a three-point perspective drawing if
and only if the viewpoint triangle is acute. The viewpoint is com-
pletely determined once the three vanishing points are drawn.
The viewing target is the orthocenter of the viewpoint triangle.

To anyone who has ever drawn or doodled in three-point per-
spective, this theorem may seem surprising. Why can’t we just use
any three noncollinear points for vanishing points? Certainly we can
make some kind of drawing this way. Figure 6.8 shows an attempt at
drawing a box in three-point perspective using an obtuse viewpoint
triangle. Although the box does not look horribly wrong, the pre-
ceding discussion shows that there is no viewpoint from which the
image has the same appearance as a rectangular box.
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Figure 6.8. An attempt at
three-point perspective drawing using
an obtuse viewpoint triangle.
Because the viewpoint triangle is not
acute (the correct method), there is
no viewpoint from which the image
has the same appearance as a
rectangular box.

As we have seen, given a drawing or a photograph in three-point
perspective, the viewing target is easy to find—it’s the orthocenter
of the viewpoint triangle. Just draw any two altitudes, and the place
where they cross is the viewing target. But how can we find the
viewing distance?

To do this, we start with Figure 6.9(a), which shows the two
viewing hemispheres H1 and H2 from Figure 6.4(b). The two hemi-
spheres intersect in a semicircle, seen edge-on and represented by a
dashed line in Figure 6.9(a). In Figure 6.9(b) we see a side view of
the semicircle. The line segment TE, where T is the viewing target,
is perpendicular to V3F3. This splits △EV3F3 into two similar right
triangles △ETV3 and △ETF3; the marked angles are equal (why?).
The viewing distance is d = |TE|, the length of TE.
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Figure 6.9. Computing the viewing
distance. The viewing hemispheres
H1 and H2 (a) intersect in a
semicircle, shown in a side view in
part (b).

By the laws of similar triangles, we have

d

|TV3|
=
|TF3|

d
,
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or equivalently, d2 = |TV3||TF3|. We can therefore compute the
viewing distance d as

d =

√

|TV3||TF3|.

If we had picked another pair of viewing hemispheres we would have
obtained the same result, except that the index 3 would have been a
1 or a 2. But there can only be one viewing distance, so we have the
following theorem.2

2We have also given a perspective
proof of another fact from geometry,

namely, that the products |TV1||TF1|,
|TV2||TF2|, and |TV3||TF3| are all

equal.

Theorem 6.2. In a three-point perspective drawing, the viewing
distance d satisfies

d2 = |TV1||TF1| = |TV2||TF2| = |TV3||TF3|.

There is also a way to find d based on the idea of Figure 6.9.
Figures 6.11 and 6.12 show how to do it for the Spider-Man picture.
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Figure 6.10. Finding the viewing target T .

In Figure 6.10 we draw any two sides of the viewpoint triangle
and the altitudes to them. The point where the altitudes intersect
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is the viewing target T (and also the orthocenter of the viewpoint
triangle). In Figure 6.11 we choose an altitude, in this case V3F3, and
draw a semicircle with that altitude as a diameter. Then we draw a
perpendicular TU to the altitude, where U is on the semicircle. The
viewing distance d is the distance between T and U . This method
will work for any three-point perspective drawing or photograph.

At first glance, the Spider-Man computer game picture has a feel
that is common to many pictures of computer games and computer
graphics: it looks “computery.” That is, the lines that converge to
vanishing points seem to converge too rapidly, giving the picture an
artificial feel. But if we consider the viewing distance in Figure 6.11,
the reason becomes clear. The picture as reproduced here, and conse-
quently the viewing distance, are so small that we can’t comfortably
get close enough to view the picture properly. This is a phenomenon
we have seen again and again. Whenever lines in a perspective pic-
ture seem to converge too rapidly to vanishing points, you should
suspect that you are looking at the picture from too far away.

V
3

F
3

T
d

U

Figure 6.11. Finding the viewing
distance d.

Drawing a Box in Three-Point Perspective. We now know how
to find the viewpoint for a three-point perspective drawing. The other
task we set for ourselves was to draw a box in three-point perspective.
By this we mean not some vague box whose shape we don’t know,
but a box of specified proportions. Figure 6.12(a) shows a folded-out
schematic of a box we want to draw, and Figure 6.12(b) is an inverted
version of the acute triangle diagram of Figure 6.6(a). Interestingly,
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the diagram enables us to draw the box. For the purpose of drawing
the box, we can use any acute triangle. We call any such diagram an
altitude diagram, because it can be used to prove the concurrency of
the altitudes at the orthocenter. We call the circles C1, C2, and C3 the
altitude circles, because each contains the endpoints of two altitudes.
Note that we have labeled three more points W1, W2, and W3. For
i = 1, 2, 3, Wi is the intersection of the altitude circle Ci with the
altitude ViFi. These points will be helpful in drawing the box.
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Figure 6.12. Folded-out schematic of
a box we want to draw (a), and a
fully labeled altitude diagram (b).

The points Vi are the vanishing
points, the circles Ci are the altitude
circles, and the points Fi are the feet
of the altitudes. The points Wi will

be helpful later.

To do this, we refer to Figure 6.13(a), where we have drawn a
diagonal of the top face of the box. The edges of this face vanish at
V1 and V2, and hence the line

←−→
V1V2 is the vanishing line for the top

face; that is, any line in the top face—such as the diagonal—must
vanish on

←−→
V1V2.3 To locate the desired vanishing point D3, observe

3This is an important point. If your
eye is at the correct viewpoint E, then
your line of sight to any point on

←−→
V1V2

lies in the plane containing V1, V2, and
E. This plane is parallel to the top
face of the box, so any line in the top
face will have an image whose vanish-
ing point is on

←−→
V1V2.

that the viewpoint must lie on a semicircle with endpoints V1 and
V2. This semicircle stands out from the picture plane, but we can
imagine rotating it about its diameter until it lies in the picture plane
and coincides with C3, as in Figure 6.13(b).

Now observe also that the viewpoint lies in a plane through the
altitude line

←−→
V3F3 orthogonal to the page. Consequently, when the

semicircle containing the viewpoint is rotated into C3, the viewpoint
rotates into W3. From the actual viewpoint, the vanishing points
V2 and D3 must subtend the same angle as the diagonal and the
near right edge of the top face, indicated in Figure 6.13(a). Thus in
Figure 6.13(b), ∠V2W3D3 must be equal to this angle. The easiest
way to arrange this is to place a replica of the top face of the box with
the corresponding corner at W3 and the corresponding edge through
V2.
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Figure 6.13. The points V1, V2, V3, F3, W3, and the (semi)circle C3 are all from Figure 6.12(b); the other lines and
circles have been deleted for clarity. When drawing the box in a position like (a), locate the diagonal vanishing point
D3 as in (b). That is, draw the altitude V3F3 and the semicircle C3, and either measure the angle ∠V2W3D3 as
measured on the box, or place the top of the box as shown.

Figure 6.14 shows this procedure applied to the three faces of the
box from Figure 6.12. In Figure 6.14(a) the marked corner (white
dot) of the top face is placed at the intersection of the upper alti-
tude circle and the vertical altitude (a point Wi). The two marked
edges go through the vanishing points that are endpoints of a di-
ameter of that circle. A white square marks the intersection of the
diameter and the dashed face diagonal. For later use, a black square
marks the orthocenter of the viewpoint triangle. In Figure 6.14(b)
the marked corner of side 1 (as labeled in Figure 6.12) is placed at the
intersection of the left altitude circle and the corresponding altitude.
The marked edge of side 1 goes through the same vanishing point as
the corresponding marked edge of the top face did in Figure 6.14(a).
Figure 6.14(c) shows an analogous procedure for side 2.

Now that we have the three main vanishing points for the edges
of the box, and the three vanishing points for the face diagonals, it is
easy to make a drawing of the actual box (Figure 6.15). We can begin
by drawing any edge of a visible face in the interior of the viewpoint
triangle; the edge, of course, must lie on a line through one of the
three main vanishing points. After that, the reader will find upon
experimentation that the remaining edges are completely determined.
In Figure 6.15 the corner marked by a white dot represents the same
marked corner as in Figures 6.13 and 6.15. Again the black square
marks the orthocenter of the viewpoint triangle. This is the viewing
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target; the viewer’s one open eye must be placed directly in front of
this target (i.e., on a line through the target orthogonal to the page).
All that remains is to calculate the viewing distance. We leave that
to you as an exercise.

(a) (b) (c)

Figure 6.14. Placement of the faces of the box to mark the diagonal vanishing points.

Figure 6.15. Using the six vanishing points to draw the box.

The viewing distance in Figure 6.15 is rather close, so we have
enlarged the image and the viewing distance in Figure 6.16 for the
reader’s convenience. If one views the image with one eye closed
and the other sufficiently close to the viewing target (black square),
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the apparent distortion of the box will disappear and the image will
closely resemble the appearance of the actual box.

d

Figure 6.16. Enlargement of the box with the viewing target (black square) and viewing distance d.

While the general case of drawing a box in three-point perspective
is a good exercise in geometry, it’s also a pretty complicated drawing
procedure. However, we can apply what we’ve learned to simplify
things a bit, and summarize a few drawing tips:

1. Use an equilateral, or nearly equilateral vanishing
point triangle. We know that if a vanishing point triangle is a
right triangle, it has a viewing distance of zero. Thus we want to
avoid vanishing point triangles with angles that are almost 90◦, to
avoid small viewing distances. A good way to do this is to use an
equilateral vanishing point triangle, in which all the angles are 60◦.
In this case the largest angle (60◦) is as far away from 90◦ as possi-
ble. (No triangle can have a largest angle of less than 60◦ or else the
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angles would not add up to 180◦.) In fact, it can be shown that the
ratio of the viewing distance to the longest side of the vanishing point
triangle is a maximum if and only if the vanishing point triangle is
equilateral.

2. Keep your drawing clustered near the viewing tar-
get. From the correct viewpoint we look “straight at” the viewing
target—that is, our line of sight to the viewing target is perpendicu-
lar to the picture plane. On the other hand, to look at a part of the
drawing that is far from the viewing target, we must look at a glanc-
ing angle to the picture plane, and hence that part of the drawing
will appear more distorted to someone looking from the wrong view-
point. Clustering your drawing near the viewing target will prevent
this. Moreover, clustering the drawing near the viewing target will
make it more likely that viewers will view the drawing from some-
where near the correct viewpoint. It’s easy to locate the viewing
target before you begin drawing (see Figure 6.10).

3. It’s easy to draw a cube using an equilateral vanishing
point triangle. With an equilateral vanishing point triangle, locat-
ing the vanishing points for the face diagonals is easy—they are the
midpoints of the sides of the vanishing point triangle. You’ll find this
is true if you follow the procedure of Figure 6.14 using an equilateral
vanishing point triangle and a cube. Thus you can actually skip the
procedure and just locate the midpoints.

Beyond Three-Point Perspective. It’s not hard to see that the
classifications we call one-, two-, and three-point perspective are
rather narrow. For example, even when drawing a simple box in
three-point perspective (Figure 6.15), it’s helpful to have six vanish-
ing points. A similar example is illustrated in Figures 6.18 and 6.19,
where we show how to draw the house from Chapter 2 in “two-point
perspective”; we actually use five vanishing points. In Figure 6.17 we
start two main vanishing points V1 and V2 and a semicircle connect-
ing them. This is the horizontal “viewing semicircle,” folded down
into the picture plane. On the semicircle we choose a point U that
would coincide with the viewpoint E if the semicircle were horizontal.
For simplicity we choose U at the midpoint of the semicircle.

Now consider the circular arc through U centered at V2. If the
semicircle were horizontal, this arc would be the base of a cone with
apex V5. If the viewer’s eye were anywhere on the dashed arc, its
line of sight to V5 would have slope 1/3. Why 1/3? Take a look at
how V5 is used in Figure 6.18 and recall the proportions of the house
from Chapter 2.
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Figure 6.17. Establishing the vanishing points for the drawing in Figure 6.18.

We’ll leave the rest of the explaining as a project for you. In
addition, try tracing the vanishing points V1–V5 and the near vertical
edge of the house on a piece of paper and see if you can reproduce
the rest of the drawing.
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Figure 6.18. The house from Chapter 2 drawn with five vanishing points.

It’s clear that a perspective drawing may require more vanishing
points than we might at first guess. Another side of the coin is that a
perspective drawing can have fewer vanishing points than we might
suspect—in fact, none at all. That’s the idea of a phenomenon we
call the skyscraper paradox.

The Skyscraper Paradox. A question that often arises in perspec-
tive drawing is whether ordinary perspective is capable of capturing
our visual experience of tall buildings. To see why the question comes
up, let us consider a fictitious skyscraper, the Viewpoints Mutual In-
surance building, depicted in Figure 6.19. To simplify the discussion
we assume that the building is a rectangular box with smooth faces—
that is, with no indentations or protrusions. If the picture plane is
parallel to the front face of the building, the rules of perspective say
that the building must be drawn as an undistorted rectangle, with
the borders of the windows either vertical or horizontal (see Rule 5 of
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Chapter 4). In this case we don’t need any vanishing points to draw
the building. In Figure 6.19 the result looks reasonable because the
setting shows that the building is seen from a distance, as say, from
across a river.

VIEWPOINTS MUTUAL

Figure 6.19. A tall building as seen
from a distance, with the picture
plane parallel to the face of the
building.

The apparent paradox arises when we consider the building to be
very close to us. Let’s suppose we are suspended in midair, halfway
up the building and close to the front face. Thinking about this
situation, we see in our mind’s eye two different views (Figure 6.20)
that seem incompatible with the perspective approach. Looking up
toward the top of the building, we would see the vertical lines of
the building appearing to converge to a vanishing point. To make
things worse, as we look down toward the bottom of the building
we see the vertical lines of the building appearing to converge to
yet another vanishing point. Thus, instead of no vanishing points, it
almost seems as if our perspective drawing of the building should have
two vanishing points! Sometimes people conclude from this apparent
paradox that perspective is just plain wrong. Perhaps there is some
fundamental flaw in perspective that the artists/mathematicians of
the Renaissance missed, but before we hang up a sign saying

THE RENAISSANCE HAS BEEN CANCELED
DUE TO TECHNICAL DIFFICULTIES

we should try to understand the problem mathematically.

looking up at the

top of the building

looking down at the

bottom of the building

Figure 6.20. In our mind’s eye, it
seems that a painting of the building
must have two vanishing points.

To repeat, the laws of perspective say that if the picture plane
is parallel to the face of the building, then a perspective painting of
the building must be a simple rectangle, as in Figure 6.21. Looking
at the figure, it seems impossible to reconcile with our perception of
the actual building as illustrated in Figure 6.20. But remember, we
have not yet applied our usual analysis with a side view that includes
the building, the picture plane, and the viewer. A side view of the
situation appears in Figure 6.22.

By counting windows in Figure 6.21, we see that the building is
about 40 stories high. Allowing about 10 feet per floor, we estimate
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the height of the building at 400 feet, as indicated in Figure 6.22. By
assumption, the viewpoint E is halfway up the building, and close

VIEWPOINTS MUTUAL

Figure 6.21. Painting of the building
on a narrow canvas, assuming a
picture plane parallel to the face of
the building.

to the front face, so let’s say the distance from the viewpoint to the
building is 40 feet, as indicated in Figure 6.22 (not to scale). Let h
denote the height of the canvas we need to paint the picture, and as
usual let d be the viewing distance.

Now we can apply some basic geometry. Figure 6.22 contains a
large triangle whose base is the front of the building (400 feet long)
and whose altitude from that base to the vertex E is 40 feet long.
This triangle is similar to the smaller triangle with base h and altitude
d. In similar triangles the ratios of corresponding bases to altitudes
is always the same, and hence h/d = 400/40 = 10. Solving for h
gives

h = 10 d,

so the height of the canvas is 10 times the viewing distance.

40 ft

4
0
0
 f
t
E h

d

Figure 6.22. A viewer’s eye E looks at a 400-foot building from 40 feet

away (not to scale). The letter h denotes the height of the canvas needed

to paint the building when the viewing distance is d.

It’s worth noting that if h = 6 inches, as is approximately true in
Figure 6.21, then the viewing distance d is a mere 0.6 inches. The
reader ought to try this. It’s a miserable distance for looking (because
you can’t focus), but nonetheless, you can roughly get the skyscraper
effect by rolling your eye up or down.
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Now let’s think about a more comfortable viewing distance for
our painting. Even for ordinary reading we normally use a distance
of at least a foot, so let us conservatively put the viewing distance d
equal to 2 feet. But that means the canvas must be 20 feet high—
the height of a two-story building! If we made the viewing distance

Figure 6.23. A viewer looks at a
20-foot painting from a viewing
distance of 2 feet.

greater than 2 feet, the canvas would be even taller.
To see what this situation looks like, look at the scale drawing in

Figure 6.23 of a viewer looking at a 20-foot-high painting from 2 feet
away. That’s a very close look at a very big painting! Assuming that
the painting is the picture of the Viewpoints building in Figure 6.21,
we imagine what the viewer sees using the sketches in Figure 6.24.
As the viewer looks upward at the big canvas, the sides of the canvas
appear to converge to a vanishing point. (You can convince yourself
of this by lying down in a doorway and looking up with your viewing
eye not quite under the doorframe. You will see the sides of the
doorframe appear to converge, just as the sides of the canvas would.)
But the sides of the building are painted parallel to the sides of
the canvas, so they appear to converge as well. Similarly, when the
viewer looks downward, the sides of the building appear to converge
to a second vanishing point. Thus the big painting has no vanishing
points, but when it’s viewed from the correct viewpoint it appears to
have two vanishing points, just like the real skyscraper!

looking up at the top

of the painting from

the correct viewpoint

looking down at the bottom

of the painting from

the correct viewpoint

edge of canvas

Figure 6.24. What the viewer in
Figure 6.23 sees.

“Now wait a minute,” you might say, “that’s cheating. Of course
this works when you have a painting that’s as big as a small building.”
But this is no trick. The mathematics shows that the tall canvas is a
natural consequence of the viewer being relatively close to a very tall
building. The height of the canvas must therefore be much greater
than the viewing distance.

In answer to our original question, the perspective is not wrong,
nor is it incapable of capturing our visual experience of tall build-
ings. In fact, the necessity for the viewer in Figure 6.23 to look both
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upwards and downwards in order to take in the whole painting ex-
actly mirrors the necessity to do the same thing when looking at a
skyscraper from close up.

On the other hand, it could be argued that while the perspective

Figure 6.25. Light rays from the
skyscraper heading toward the
viewer’s eye pass through both the
large canvas and the smaller sphere.

approach just described is not wrong, it is very inconvenient in this
case, because of the requirement of a large canvas. How could we
give the viewer the same “skyscraper experience” by painting on a
smaller surface?

Figure 6.25 illustrates one possible answer. We imagine the viewer’s
eye to be at the center of a sphere. Since the sphere is capable of
“catching” all the light rays that come from the skyscraper to the
viewer’s eye, a type of perspective painting could be painted on the
inside of the sphere that would send the eye the same image it sees
on the big canvas. This idea is the starting point for the spherical
paintings of artist Dick Termes, discussed later in this chapter.

Apparent paradoxes provide a great way of enhancing our un-
derstanding of a subject. They force us to practice important basic
techniques in order to resolve what seem to be contradictions. In
doing so, we better understand these techniques and we gain confi-
dence in them. For this reason, mathematicians compile whole books
of apparent paradoxes, which they refer to as “counterexamples.”4

In art, the contemplation of such examples sometimes leads to new

4Just as the skyscraper paradox isn’t
a true contradiction, these “counterex-
amples” don’t contradict the theo-
rems and definitions of mathematics.
Rather, they are counterintuitive ex-
amples meant to enhance understand-
ing of the theorems and definitions.

techniques such as spherical perspective.

The Six-Point Perspective of Dick Termes. South Dakota artist
Dick Termes has made a career of studying and painting in spherical
perspective. In this kind of perspective, the viewer’s eye is at the
center of a sphere that replaces the picture plane. As light rays from
objects outside the sphere pass through the sphere on the way to the
viewer’s eye, we imagine them leaving appropriately colored dots on
the sphere. The sum total of the colored dots makes an image on
the sphere that, to the viewer at the center, is indistinguishable from
the real world. In spherical perspective the viewer has the freedom
to look in any direction and see a continuous image.

An interesting aspect of Termes’s paintings, called Termespheres,
is that the viewer is forced to look at the paintings from the outside—
that is, from the “wrong” viewpoint. This leads to some interesting
visual paradoxes. For example, Figure 6.26(a) shows a viewer in a
restaurant looking through a sphere at a table. Since the viewer looks
down at the table, the image of the table appears near the bottom of
the sphere. This is illustrated in Figures 6.26(b) and (c), which are
photographs of the Termesphere called Food for Thought, a painting
of a restaurant in the La Fonda Hotel in Santa Fe, New Mexico. If
we look at Figure 6.26(c) by itself we are tempted to think we are
looking through the top of the sphere down onto the table. But, as
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the other figures show, the top of the table actually appears on the
bottom of the sphere. When we’re outside the sphere, we must gaze
up at the bottom of the sphere to look down at the floor!

(a) (b) (c)

Figure 6.26. A tabletop (a) projects onto the bottom of a Termesphere (b) and (c).

These kinds of paradoxes seem to disappear, however, when the

Figure 6.27. Projection of the face of
a tall building onto a sphere.

spheres are seen while rotating. Even seen from the outside, the illu-
sion of looking at an actual scene is very convincing; the scene seems
to be contained in the sphere itself. At the time of this writing, a
video of rotating Termespheres is available at www.termespheres.com.

Just as in ordinary perspective, vanishing points appear in spher-
ical perspective. As a first example, let’s go back to the idea of
painting a skyscraper in spherical perspective. Figure 6.27 shows the
front of a tall building projected onto a sphere. The vertical edges of
the building project onto great circles of the sphere, like the lines of
longitude on the globe. A great circle on a sphere is any circle whose
center is the center of the sphere. These particular great circles meet
at the north and south poles, which are in fact vanishing points for
the vertical edges of the building. To see why, observe that if you
were a viewer at the center of the sphere you would look straight up
at the “north pole,” hence your line of sight would be parallel to the
vertical edges of the building. The same is true of the “south pole.”
This is analogous to vanishing points in ordinary perspective, except
that for each vanishing point there is another one associated with the
opposite direction.

More generally, if we want to draw a box—say a cube—in spherical
perspective, we can have as many as six (not three) vanishing points.
Figure 6.28 illustrates this idea when the sphere is located at the
center of the cube. In this case the lines connecting the centers of
opposite faces of the cube meet the sphere in the six vanishing points,
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three of which are visible as black dots. For this reason, Dick Termes
refers to his art as “six-point perspective.”

Figure 6.28. Locating the six vanishing points for the edges of the cube.
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Exercises for Chapter 6

1. Altitude diagrams are good for more than just drawing in three-
point perspective; we can also use them to analyze three-point
perspective drawings and photographs. Figure 6.29 shows Spider-
Man and parts of the altitude diagram associated with the three
vanishing points V1, V2, and V3. The top of the building just
below Spidey is outlined in white, and we have marked a van-
ishing point D3 of one of its diagonals. Make a copy of the
diagram, and on the diagram construct a rectangle that repre-
sents the true shape of the top of the building.
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Figure 6.29.
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2. Figure 6.30 shows an acute triangle and one of its altitude cir-
cles. Using only a straightedge, and without drawing any circles
or measuring any angles or distances, draw the three altitudes.
Explain how you did it so easily.

Figure 6.30.

3. Figure 6.31 is a setup for a three-point perspective drawing of
a bird’s eye view of a tall building. It includes the viewpoint
triangle, two vanishing points for face diagonals, and the near
vertical edge of the building (in black). Finish the drawing.

Figure 6.31.
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4. Figure 6.32 shows a rectangular block floating in the air. Find
the viewing target and viewing distance. (You’ll need a com-
pass.)

Figure 6.32.
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5. Figure 6.33 shows three vanishing points (black) and the asso-
ciated altitude diagram. Locate the three diagonal vanishing
points for a cube. You may use a protractor, or you may cut
out squares of paper and trace them, if you like.

Figure 6.33.



Three-Point Perspective and Beyond 111

6. Figure 6.34 shows the viewpoint triangle from Figure 6.33 and
the near vertical edge of a cube. By measuring along the sides of
the viewpoint triangle, transfer your diagonal vanishing points
from Exercise 5, and then finish drawing the cube.

Figure 6.34.

7. In three-point perspective, draw a box whose proportions are
1× 2× 3, with a viewing distance of approximately 8 inches.
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Artist Vignette: Dick Termes

DICK TERMES is an artist from the Black Hills of South Dakota where he lives
with his wife Markie Scholz in five geodesic domes. Three of the domes are their
home, one is a double-story studio, and the other is a gallery where the spherical
paintings are shown. Termes has a Master’s degree in Painting from the Uni-
versity of Wyoming and a Master of Fine Arts degree in Design from Otis Art
Institute in Los Angeles, California. He has worked for the past 37 years develop-
ing and refining six-point perspective on spherical canvases that hang and rotate
from ceiling motors. His concepts are a wonderful bridge between art and math.

I
was brought up in the small town of Spearfish, South Dakota,
in the northern Black Hills. I went through most of my first
sixteen years of school there and concluded with a Bachelor of

Science degree in Art from Black Hills University in 1964. My father
was a very fine house builder in Spearfish where he built over 35
houses by himself. I was brought up with that trade. My mother
helped with the interior design and furnishing of these houses and
also kept the books. We lived in 18 different houses by the time I
graduated from high school. My dad would build the houses, Mom
would make them look wonderful, and soon they were sold and we
were living in a new home. I was brought up knowing you can do
what it is you like to do and somehow make a living.

My interest in art started early. I saw I could draw a house a “When I was a junior, a painting class
I was in made me aware, all of a
sudden, that worlds could be created
within that flat canvas like a window
to another world—a world that was
within my mind.”

lot faster than my dad could build one. I have memories of art in
the third grade where we did murals in our classroom. I did my first
perspective drawing in junior high. When I was a junior, a painting
class I was in made me aware, all of a sudden, that worlds could be
created within that flat canvas like a window to another world—a
world that was within my mind. My first painting was a copy of a
Charlie Russell painting, but soon I was looking at the world around
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me and inside my mind for ideas. I began to realize that the many
questions I had could be used for my subject matter.

My connection with math and geometry started with wanting my
paintings to have harmony within them. I had a couple of wonderful
instructors at the University of Wyoming who helped me with this. I
realized that if each line drawn or painted had some relationship with
every other line, or if every color had some mental relationship with
every other color, there would be a good reason why the compositions
looked good or “worked.” Little did I know I was using geometry in
my work. When we say an art piece “works” in art, we mean it“When we say an art piece ‘works’

in art, we mean it all looks good,
nothing bothers the eye. In math it
means there is an underlying system
connecting it together.”

all looks good, nothing bothers the eye. In math it means there is
an underlying system connecting it together. There is, therefore, a
strong relationship between design in the art world and geometry in
the math world. Later I realized that if you started with the geom-
etry and created the drawing out of it, or if you conformed to the
geometry with the drawing, some wonderful things could happen.
M.C. Escher’s art taught me some of these ideas of mixing geometry
with the drawing. Having the realistic drawing grow from the geom-
etry forces greater creativity. With geometry involved, every line is
related to every other one. The challenge with this kind of thinking
is to not let it become boring by having it be a repeated pattern.
Creativity is forced into overtime to find a variety of interesting im-
ages to help make the composition exciting and also say something
important.

The six-point perspective I use when painting on spherical surfaces
came out of this same kind of thinking. How to organize the whole
visual world around you into one picture was my problem. I didn’t
just want to do a 360-degree picture. I wanted to find a system
that would help organize this. This is what led me to the math and
geometry side.

When I do my spherical paintings, which are called Termespheres“. . . I imagine I am on the inside of a
transparent sphere looking out. With
one eye turning in the center of the
sphere, I copy onto the sphere every-
thing I see in the environment outside
the sphere.”

(Termes and spheres), I imagine I am on the inside of a transparent
sphere looking out. With one eye turning in the center of the sphere,
I copy onto the sphere everything I see in the environment outside
the sphere. I not only turn in a circle but look up and down too. It
is like a panoramic photo except it goes all the way above and below
you. It is a simple idea, one that we experience every day when we
are in those environments that are great in every direction. These
are the environments you take pictures of and when you get home
and look at the results you are disappointed because you didn’t get
enough of the picture. Some scenes just need the total picture.

The spherical paintings are usually not large enough to paint the
scene from inside the ball, so I do the painting on the outside. Most
of the subjects I paint are the interiors of famous architecture, sur-
realistic worlds from my imagination, or geometric patterns that fit
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on the sphere.
When I paint the famous interiors I use six-point perspective to

help keep me organized. This system is very mathematical. If I didn’t
use some organized system, I might come around to the opposite side
of the spherical painting and be three inches off. This would not be
good. As I still am imagining I am inside the sphere when I paint
on the outside, I am dealing with a total up, down, and all-around
environment.

Most of the famous architecture in the world is based on the cube.
The cube has six different square sides to it. Buildings like Notre
Dame of Paris, even though they look very complicated, are still just
an expansion of the cube. They still only have six planes within them
and three sets of parallel lines. One set of these lines, you could say,
runs north and south, another runs east and west, and the third runs
up and down. Each of these sets of lines run to opposite points on
the sphere. Because there are three different sets of parallel lines
to the cubical architecture, we need six points around the sphere.
These points need to be equally spaced around the sphere like the
six vertices of the octahedron.

I have produced over 300 one-of-a-kind spherical paintings, which
show many different kinds of concepts. As the sphere has many prop-
erties that the flat surface does not have, new ideas can be expressed Different views of Gargoyles in

St. Denis (below) show the use of
six-point perspective on the sphere.
This shows it is one continuous pic-
ture that comes back upon itself
no matter which way you turn the
spherical painting.

that have never existed before. Some of these new ideas deal with
unique geometries. Others take advantage of the motion I use and
that the sphere has one side always hidden from the viewer. Subjects
that transform from one thing on one side to a totally different thing
on the other side can take place. The transparent sphere also inspires
many new ideas. Some of these ways of using the sphere can be seen
below.

Dick Termes, Gargoyles in St. Denis, 2005, acrylic on polyethylene sphere, 16-in. diam.
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Brain Strain plays with a six-point
perspective system five different
times on this sphere. The five sets
of points of the six-point perspec-
tive come from the geometry of the
center of the edges of the dodecahe-
dron. The dodecahedron has thirty
edges on it, so this sphere ends up
with thirty-point perspective.

Dick Termes, Brain Strain, 2004
acrylic on polyethylene sphere, 24-in. diam.

Food for Thought portrays a beau-
tiful restaurant in the La Fonda Ho-
tel in Santa Fe, New Mexico. It is
said to be the oldest hotel in Amer-
ica. Its structure has wonderful
lines that show off the six-point per-
spective very well. The round ta-
bles added an extra structural prob-
lem to this painting.

Dick Termes, Food for Thought, 2004
acrylic on polyethylene sphere, 24-in. diam.

The Old Ball Game (see the Plates section) shows what it would
be like if you had a transparent sphere on your head and copied the
up, down, and all-around view you would see if you were standing on
the stadium stairs at Wrigley Field in Chicago.

Hagia Sophia (Plates section) in Istanbul gives you a view of
the inside of this great building about 60 feet above the floor. The
six-point perspective system works perfectly from any vantage point
within the building. The six vanishing points are at the top, bottom,
north, south, east, and west points of the sphere.

For more of the artist’s work, see the Plates section.
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Anamorphic Art

T
here are times when the correct viewpoint for a painting is in
a surprising location, and there are even paintings for which
there is more than one intended viewpoint. Such paintings

are included in the category called anamorphic art, which became
popular in the sixteenth century. An example of anamorphic art
with more than one intended viewpoint is the painting in Figure 7.1:
The French Ambassadors by Hans Holbein the Younger (1497–1547).

When viewed from directly in front as in Figure 7.1(a), the paint-
ing seems perfectly normal, except for a strange, elongated object
which seems to float above the floor. If we change our viewpoint to
one at an oblique angle at the extreme right of the painting as in
Figure 7.1(b), the object is seen to be a human skull! The skull is
sometimes interpreted as representing the transience of life. For us
the main point is that there is no single correct viewpoint for this
painting.

Another example of a painting which requires an unusual view-
point is the anamorphic portrait of Edward VI in Figure 7.2. In order
to see the portrait correctly, we must view the painting from so far
to the right of the canvas that the picture frame had to be cut away
to keep from blocking our view! Not surprisingly, this picture looks
distorted when viewed from the front, as can be seen in Figure 7.3.
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(a) (b)

Figure 7.1. In (a), Hans Holbein the Younger, Jean de Dinteville and Georges de Selve (“The French Ambassadors”),
oil on oak, 81× 82 in. National Gallery, London. In (b), the side view from the viewpoint for the skull.

How did the artist manage to do it? For something as “un-

Figure 7.2. King Edward VI by
William Scrots. Oil on panel, 1546,
16.75 × 63 in. National Portrait
Gallery, London.

geometrical” as a human head, mathematical computation alone would
be too difficult. What is needed is the artist’s skill in painting, com-
bined with some sound mathematical reasoning to achieve the correct
“distortion.”

Figure 7.3. Frontal view of the painting in Figure 7.2.
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Let’s try the trick ourselves, using a smiley face as the subject.
We begin by visualizing the situation in the top view of Figure 7.4. A
circular smiley face on a wall is projected through a picture plane to
the viewpoint E in such a way that the line from E to the center of
the face is perpendicular to the wall. Thus the viewer at the correct
viewpoint E sees the smiley face image as being undistorted, just
as we see the face in Figure 7.2 as being undistorted.1 On the other 1Meaning that the viewer sees the out-

line of the smiley face and the smile
as concentric circular arcs. In this
sense the setup minimizes the distor-
tion of the anamorphic drawing when
seen from E. Other subjects may not
suggest any particular choice of setup.
It’s up to you to make those creative
decisions!

hand, the viewer at the point F directly in front of the picture plane
image sees the image as being distorted, since F is not the correct
viewpoint. The viewer at F sees a face that is stretched horizontally,
with the mouth and eyes skewed to the right side of the face. This is
like the view of King Edward VI in Figure 7.3, where we see the face
skewed to the right side of a horizontally stretched ellipse. Therefore,
the picture plane image in Figure 7.4 is exactly what we want: it is
“anamorphic” in the sense that we must view it from an unexpected
viewpoint E in order to remove the distortion.

As a guide to creating such an image, we imagine in Figure 7.4
a square grid superimposed over the face on the wall. Both the wall
and the picture plane are vertical with respect to the floor, but the
picture plane makes a nonzero angle θ with the wall. The picture
plane image of the grid therefore has a vanishing point V , and as
always, the line of sight from E to V is parallel to the lines whose
images converge to V . Thus V is directly to the right of the viewer
at E, and the line of sight from E to V is perpendicular to the line
of sight from E to the center of the face.

We begin with an undistorted smiley face in Figure 7.5 and draw

Figure 7.5. An undistorted smiley face

with a square grid superimposed on

it. This corresponds to the face and

the grid on the wall at the top of Fig-

ure 7.4.

an 8 × 8 grid of squares over it; this corresponds to the face on the
wall at the top of Figure 7.4, although we have used more squares
for greater accuracy in our end result.

Next, we must draw a perspective image of our 8× 8 grid, corre-
sponding to the dotted grid on the picture plane in Figure 7.4.

We do this in Figure 7.6, using our fence-dividing techniques from
Chapter 4. Because we want the viewer’s eye to be level with the
center of the grid (as in Figure 7.4), we make the grid in Figure
7.6 symmetrical about the horizontal line through V . Thus the left
edge of the grid extends equally above and below the horizon line
through V , as indicated. There is another requirement which we will
explain later. Namely, the grid should be sufficiently elongated in
the horizontal direction so that a diagonal line that goes through
the image C′ of the center of the grid and through the corners of
neighboring grid squares makes an angle α that is less than 45◦.
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V

E

90°

θ

θ

parallel

picture plane

how viewer sees face

(Compare with Figure 7.5.)

how viewer sees face

(Compare with Figure 7.7.)

90°

wall

F

Figure 7.4. Two viewers look at the perspective image of a smiley face.
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V

equal
C'

α < 45°

Figure 7.6. A perspective drawing of the square grid from Figure 7.5.

Figure 7.7 shows the final step of transferring the face from Fig-
ure 7.5 onto the perspective grid copied from Figure 7.6. We first
transfer each white dot from Figure 7.5 to its corresponding location
on the grid of Figure 7.7; we locate each point visually, trying to
be as accurate as possible. We then sketch in the rest of the face.
Notice that in doing so, we made the eyes elliptical, with the left one
larger than the right one. (This could be done more accurately by
using a finer grid with more squares.) An enlarged version of the face
appears in Figure 7.8.

V

Figure 7.7. Transferring the face to the perspective grid.
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Figure 7.8. Enlarged version of the anamorphic face.
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If you view the enlarged anamorphic drawing in Figure 7.8 from
the extreme right side of the face with one eye, you can see it as
being undistorted. (You have to get very close to the page to make
the eyes seem the same size.) A similar technique could be used by
a portrait painter to achieve effects like that in Figures 7.2 and 7.3.

The drawing in Figure 7.8 does indeed have a very close viewpoint.
Technically, this should be fixed by making the face much larger.
Similarly, our examples of anamorphic paintings are quite large: the
painting in Figure 7.3 is actually more than five feet wide, and the
Holbein in Figure 7.1 is almost seven feet high—the figures in it are
essentially life-sized.

In order to know how large to make an anamorphic drawing, so
that it has a comfortable viewing distance, we must know how to
compute the viewpoint. We will specifically tackle the problem of
finding the viewpoint of Figure 7.7; in doing so we will also show
why the angle α in Figure 7.6 must be less than 45◦.

In Figure 7.9 we have redrawn the setup of Figure 7.4. Circum-
scribed around the face on the wall at the top of the figure is an
undistorted square—the outline of the grid we used before. We use
C to denote the center of the square (the intersection of the diago-
nals), and we use C′ to denote the perspective image of C′ in the
picture plane. Because ∠V EC′ is a right angle, the viewpoint E lies
on the horizontal semicircle Γ (Greek letter Gamma) whose endpoints
are V and C′.

To determine exactly where on Γ the point E lies, we construct
a second horizontal semicircle ∆ (Delta) in Figure 7.10 as follows.
We extend a diagonal Λ (Lambda) of the undistorted square; the

perspective image of Λ is the line
←−→
C′V1, whose vanishing point is V1

(V1 lies in the picture plane). Now the line of sight from E to V1

must be parallel to Λ as indicated, hence V1 lies directly above V
and the angle ∠V EV1 is a 45◦ angle. Since the viewer must therefore
look up to V1 from E at a 45◦ angle of elevation, the viewpoint E
lies on a right circular cone (shaded in cutaway form) with axis

←→
V V1,

vertex V1, and an opening angle of 2× 45◦ = 90◦. The cross section
of this cone in the horizontal plane containing E is a circle, half of
which is the semicircle ∆; E must lie somewhere on this semicircle.
Since E also lies on Γ, it follows that E is precisely the intersection
of the semicircles Γ and ∆.

One thing we must make sure of is that the semicircles Γ and ∆
actually do intersect; if ∆ were too big, Γ would lie entirely inside
of it and the two semicircles would not meet. Thus in order for
the semicircles to meet at a meaningful viewpoint E, the angle α =
∠V C′V1 must be less than 45◦; this is exactly the same angle α as
in Figure 7.6.
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V

E

picture plane

C′

C

T

90°

undistorted square

Γ

Figure 7.9. The viewpoint E lies on the horizontal semicircle Γ.
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C′

C

undistorted square

E

V

45°

45°

Γ
V1

Δ

parallel

picture plane

Λ

α

Figure 7.10. The viewpoint E also lies on the horizontal semicircle ∆.
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We can now determine the viewpoint of the perspective grid in
Figure 7.6. This is useful, because before we transfer a drawing to
the grid, it’s important to know whether the viewpoint will be com-
fortable for viewers. In Figure 7.11 we started with the perspective
grid from Figure 7.6 and added two circular arcs Γ̃ and ∆̃ (“Gamma
tilde” and “Delta tilde”), along with some extra points and lines. We
claim that the viewpoint E for the grid lies directly in front of T at
a distance equal to |TU |. Can you explain why?

U

V
1

45°

V

C'

α

Γ
~

Δ
~

T

Figure 7.11. Finding the viewpoint for the perspective grid.

Finally, we emphasize what we said at the beginning of this chap-
ter: the type of art described above is just one kind of anamorphic
art. Exercise 5 below lists several other examples you can explore.
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Exercises for Chapter 7

1. Figure 7.12 shows a perspective grid ready for an anamorphic
drawing of the kind just described. Make a copy of Figure 7.12
or draw your own version of it. Then, using a straightedge
and compass, duplicate the steps in Figure 7.11 to find the
viewpoint. The idea is to see for yourself what order the lines,
points, and circles must be drawn in.

V

Figure 7.12.

2. Take a cartoon image from the newspaper or a comic book and
trace it onto a square grid, or draw a square grid on the comic.
Use it to create your own anamorphic art.

3. When we draw a perspective grid for an anamorphic drawing
as we did in Figure 7.6, we automatically determine a distance
from the viewpoint to the paper equal to |TU | in Figure 7.11.
However, we might want to do things in the reverse order by
choosing the distance from the viewpoint to the paper first.
Suppose you want to make a piece of anamorphic art for which
the distance between the viewer’s eye and the paper is 1 inch.
How would you construct a grid that helps you accomplish this
drawing?
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4. Is it possible to find the viewpoint of King Edward VI ? (See
Figures 7.2 and 7.3.) It seems pretty hard, since we don’t have
the original perspective grid the artist used—assuming that’s
how it was done. However, if we make an additional simplifying
assumption, we can not only estimate the viewpoint, we can
essentially recover the original perspective grid!

Specifically, we assume that the camera was not quite at the
correct viewpoint in Figure 7.2 because the seal behind the king
still looks elliptical, rather than circular as most official seals
do. That is, we assume that the distorted seal, reproduced on
the left of Figure 7.13(a), is meant to be seen as an annulus
(the washer-shaped region between two concentric circles), as
indicated on the right of Figures 7.13(a), (b), and (c).

Using the diagrams of Figure 7.13 as hints, explain how to
determine the viewpoint for the gallery viewer in Figure 7.13(e).
What order are the lines, points, and circles drawn in? You may
need to add more labeling to aid your discussion. (The woman
viewing the painting is shown approximately to scale—notice
how large the painting is.)
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U

V

V

V

U

(a)

(b)

(c)

(e)

(d)

Figure 7.13.
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5. Anamorphic Assignment
Perspective techniques can make a 2-dimensional painting or draw-

ing seem 3-dimensional: part of the real world. But as we have seen
in this chapter some people use perspective to create unrealistic or
unnatural effects. In this project, you will investigate a piece of art
that uses (or perhaps deliberately misuses) perspective to create an
illusion. The goal of this project is to describe the effect that the
artist intends, and also describe carefully and accurately the role
that perspective geometry plays in creating this effect.

You will follow three steps.

Step 1. Choose the piece of art from the list below, or use this list as a
guide for choosing another piece of art.

Step 2. Describe your piece and place it in an artistic and historical
context.

In this step, you should focus on describing the piece itself; do
not worry (yet) about the mathematical and perspective tech-
niques that your artist uses. You will probably want to address
basic factual details: the title of the piece, the name of the
artist, materials used, size, color, texture, when it was made,
where it is currently located, and other important physical de-
tails.

To be thorough, you will have to do some library research,
which may include the history of this particular piece, bio-
graphical information about the artist who created it, and/or
the artistic genre out of which this piece arose. In addition, you
will probably want to investigate reactions to the piece: from
the artist him- or herself, from other artists, or from critics.

It may help to compare and contrast this piece with other pieces
of art. This comparison might take the form of describing your
piece as existing within or growing out of a particular genre of
art; it might also take the form of describing how this piece
breaks with tradition.

Step 3. On your own, using the techniques in this book, investigate the
mathematical perspective in this piece.

In this step, you will examine the geometrical and perspective
techniques that your artist uses. The previous step described
a piece of art and how the artist attempted to distort reality.
Step 3 should focus rather on technical aspects of perspective
in your piece of art. (In other words, it is in this step that you
get to prove you’ve understood the techniques of this book.)
Your descriptions should be precise and specific. “The artist
uses 6 vanishing points” is not specific (why six? where are
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they?), but “The top of the sphere is the vanishing point for all
vertical lines, because . . . ” is specific.

List of possible art pieces. Choose a piece of art from one of
these categories below. Since artists often create several pieces using
the same technique, we list the artists rather than individual pieces.

Drawings on nonplanar canvases:

• Dick Termes paints perspective paintings on spheres; he was
strongly influenced by M.C. Escher and Buckminster Fuller.

• The Ames Room deceives the eye: this visual psychology tool
has been so intriguing that many science museums and chil-
dren’s museums feature one.

• Salvador Dali, who is famous for his surrealism, excelled in
part because he was so adept at perspective that he knew ex-
actly how to break the rules. He played with anamorphic art
that creates new images when reflected in mirrored cylinders
(see Matthew, Harlequin, and Man and Woman (1974)). Other
artists who create anamorphic art with reflective cylinders are
Istvan Orosz and Kelly Houle.

• Patrick Hughes is an artist who creates “reverse perspective”
pieces, where the front of a folded canvas seems to be the back,
and vice versa. Norman D. Cook is a professor of informatics
who studies Hughes’s work and creates his own reverse per-
spective pieces. These pieces have an eerie sense of motion to
them.

Looking with two eyes:

• Dali also did stereoscopic panels (see Gala’s Christ (1978)) and
projections of four dimensions onto three dimensions.

Impossible figures:

• There are many living artists who play with “impossible fig-
ures.” M.C. Escher is one of the most popular and well-known
of these. Others include Sandro del Prete, Jos De Mey, and Os-
car Reutersvärd. Sir Roger Penrose is a living mathematician
who discovered an impossible figure.

Sculptures with forced perspective tricks:

• Roy Lichtenstein created a perspective illusion in a sculpture
called House I (1996/1998).
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• Mathieu Hamaekers adds another dimension to the impossi-
ble figures by constructing 3-D sculptures of them. From most
angles, they are twisted objects, but from one viewpoint they
become the impossible cubes of Escher’s drawings. See Impos-
sible Possibility and Impossible Cube (1984).

• Among Shigeo Fukuda’s many amazing works are several “shadow
sculptures.” A collection of bottles, glasses, shakers, and open-
ers casts a shadow of a woman with a parasol in Bonjour Made-
moiselle (1982). A hanging mobile of welded forks, knives, and
spoons cast the shadow of a motorcycle on the ground in Lunch
with a Helmet On (1987).

• Shigeo Fukuda also has a series of sculptures which seem dis-
torted and bizarre, but when reflected in a mirror turn into fa-
miliar objects (Van Gogh’s Sunflowers and Fresh Guy, Archim-
boldo (1988), Underground Piano (1984), and Mixed Rice in
Chinese Style (1986)).

Trompe l’oeil:

• Trompe l’oeil (French for “fool the eye”) is one of the most
popular illusions using perspective. Artists too numerous to
count have used this “trick” to make rooms seem larger, to
pretend that plaster is peeling from walls, or to fool the viewer
into thinking the wall isn’t even there. A version of trompe l’oeil
that creates the illusion of arches or domes on a flat ceiling has
its own Italian name: di sotto en su. Modern street artists
alter the facades of exterior walls to create interesting, vibrant
spaces on otherwise monotonous walls. In 2008, the city of
Philadelphia announced it was experimenting with trompe l’oeil
speed bumps as an inexpensive way of calming traffic.

Postmodernism (deliberate rejection of perspective):

• David Hockney’s The Chair (1985) intentionally rejects tradi-
tional perspective (where the viewer stands still), and instead
attempts to draw the experience of walking around a chair.
Pearblossom Highway, 11–18th April 1986 #2 (1986) is a pho-
tographic collage that combines “correct” perspective in each
photograph with multiple viewpoints.

• Giorgio de Chirico painted moody streetscapes (such as Melan-
choly and Mystery of a Street (1914)) that intentionally misuse
perspective to create a mood.
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Special viewpoints:

• Julian Beever is a sidewalk artist who has gathered quite a pop
following. He creates pieces that seem to tunnel down into the
pavement or rise up above it, at least when seen from the right
place.

• William Cochran created a mural on the Community Bridge in
Frederick, Maryland. The entire bridge is worthy of study—lots
of interesting trompe l’oeil. But the most stunning piece is an
anamorphic painting on the bridge, whose “correct” viewpoint
is through a window of the museum shop.

• The artist John Pfahl created a series of photographs called
Altered Landscapes, in which he placed objects in certain special
arrangements using perspective. For example, for one scene he
laid out 6 orange spheres of differing size at certain points in a
scene, using perspective to make all of them look like they’re
exactly the same size.
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Viewpoints at the Movies:

Forced Perspective and the

Hitchcock Zoom

M
any people use words like “realistic” or “accurate” when
they describe perspective drawing; these words describe
what many people regard as the difference between pre-

Renaissance and Renaissance paintings. But perspective is a tool,
and good artists can use tools in creative ways that the originators
hardly intended, including making perspective art that is deliberately
misleading. We see that kind of misdirection in the anamorphic art
of Chapter 7, where the artist chooses an unusual viewpoint for the
drawing.

Photographers and filmmakers automatically create perspective
pictures: the camera ensures that. And the camera also dictates a
viewpoint. But a good photographer or filmmaker still has some good
perspective tricks up the sleeve that can create interesting illusions.
Here, we’ll describe two of these.

Forced Perspective. Figure A shows a typical “forced perspec-
tive” shot: it looks like Dorothy Uhland is holding a very tiny Sarah

Figure A. An illusion created by forced
perspective.

Berten in her upraised hand! Of course, in reality, Sarah was stand-
ing on a tall sculpture far behind Dorothy. You might have seen
“photographs” of fishermen holding giant fish (with the real, tiny
fish close to the camera and the fisherman far back at the end of the
pier). Those are forced perspective, too.

Such photographs don’t need special equipment, but getting them
just right often requires several attempts. The reason is hidden in
the title of this kind of photograph: the camera forces the viewer
into a particular spot that makes the illusion work. And getting
into the right spot is tricky, because small shifts in location can spoil
the illusion completely. For example, compare the two photographs
below. The photograph on the left is an amateur attempt at forced
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perspective. It is unconvincing, but it gives a vague impression of
Sarah standing next to a giant purse. In the photograph on the
right, the photographer moved up only 12 inches, but there is no
chance that anyone would think that the purse was larger than usual.
Location matters.

Figure B. Making a purse seem large
(or a person seem small) depends
strongly on camera placement.

The Hitchcock Zoom. This film technique goes by many dif-
ferent names, including “dolly zoom” (because the camera is pulled
on a dolly) or “Vertigo zoom” (because one of its earliest uses was
in the Alfred Hitchcock film Vertigo). The zoom is usually used in a
scene where the director wants to give the audience a sense of dread
or impending doom.

The mechanics of the zoom are easy to describe: the camera is on
a dolly on a track; the camera is simultaneously pulled back while
the lens is zoomed in. In this way, the character who is the focus of
the shot stays the same size, but (as we’ll describe), the background
changes.

Let’s see what effect this zoom has on what our audience sees.
Suppose our movie camera is looking at a young boy in front of a
house, as in Figure C. Because the camera starts close to the boy in
(a), at first his face is relatively large in the picture. For example, the
door and one shutter appear to be about the same width as the boy’s
head, even though these objects are much larger in reality. This
is shown schematically by viewpoint Ea in the diagram below. A
viewer at Ea would see the images of the gray disc and the black line
segment on picture plane A as about the same size. In photograph
(b), the camera has been moved back and the picture enlarged and
cropped to make the image of the boy’s head appear the same size as
before. Even though the boy has not moved relative to the building,
the door appears much larger; the entire background appears to have
expanded. This is illustrated by viewpoint Eb in the diagram below,
where the new picture plane B is located to keep the gray image
of the disk the same width as before. Notice, however, that more
black appears on picture plane B; more of the background object
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is now visible, so the background appears larger. The movement of
the viewpoint from Ea to Eb is analogous to the pulling back of a
movie camera from Ea to Eb, and the movement of the picture plane
is analogous to the zooming in of the lens to keep the image of the
boy’s head the same size.

same distance same distance

Ea

Eb

(a) (b)

Eb′

A

B

correct viewpoint

for image (a)

correct viewpoint

for image (b)

Figure C. The beginning and end of a Hitchcock zoom, and a diagram of how it works. Picture plane B is located to
keep the gray image the same size as in A, but more of the background is visible.
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The Hitchcock zoom is much more effective in movies than in
photographs for two reasons. First, the real Hitchcock zoom takes
place continuously—it’s not just a pair of photos.

The second reason is tied to an obvious but important fact: at
the movies you can’t leave your seat and run up and down the aisle
to keep up with a moving viewpoint. Assuming that your seat was at
the correct viewpoint Ea at the beginning of the zoom, you could only
stay at the correct viewpoint during the rest of the zoom by jumping
out of your seat and sprinting backwards up the aisle, ending up
at Eb. If you did that, you wouldn’t see anything unusual on the
screen—it would just look like things normally look if you’re backing
away from a boy and a building. But Hitchcock knew that kind of
behavior wasn’t allowed in theaters. Having viewers trapped in their
seats, he could rush the viewpoint away from them with breathtaking
speed, giving them no chance to catch up and make sense of what
they were seeing on the screen. In the bottom diagram of Figure C
we can think of the viewer’s seat as point Eb′ , the same distance from
the picture plane (the screen) as before, which is much closer than
the correct viewpoint Eb.

The zoom is usually very quick (sometimes it lasts only half a sec-
ond). Since the audience is focusing on the main character and not
on the scenery, it’s hard for the people who are watching the movie
to understand exactly what’s going on. Instead, they get a sudden
sense that the world seems to explode around the poor character.1

This zoom appears at key emotional points in movies: when the hero-
1The world can also appear to rush
in toward the character if the zoom
is reversed (dolly in and zoom out).
This happens in a humorous tribute
to the Hitchcock zoom in Shrek, just
before Monsieur Hood gets clobbered
by Princess Fiona.

ine sees her father die in Ever After, just before an evil Ringwraith
comes for Frodo in The Lord of the Rings, and as Police Chief Brody
witnesses a shark attack in Jaws. You can also see a slow, tense zoom
toward the end of Goodfellas as Henry talks with his buddy Timmy
and realizes that things are getting very, very bad.
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Jim Rose, Lurches Clouds, 2005, watercolor



Shower of Dreams

Washing and watching, naked children wait for their
chance in the shower, surrounded by palms and
unsecured shacks. Not a calm place to view, not a safe
place to be, standing erect and waiting for the cool water.

Immediate comfort drops gently on them in the heat of
Saigon. Perhaps no future, war years in the past.
How long will this comfort last?

A little one waits to be clean for today; washing the war
and childhood fears away.

Jim Rose
Clarion, PA 2005
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CHAPTER 8

Introduction to Fractal

Geometry

T
he techniques of perspective are particularly helpful for the re-
alistic drawing of “man-made” objects such as houses, roads,
fences, etc. With regard to drawing and understanding the

appearance of natural objects such as trees, clouds, mountains, and
much more, there is another useful branch of mathematics which we
introduce in this chapter.

Consider the pictures in Figure 8.1. Can you tell what they rep-
resent?

(a) (b)

Figure 8.1. Two pictures from nature.

In Figure 8.1(a), many people would recognize a gnu standing in
a field; in Figure 8.1(b), even more of us would be able to identify
the sport of rock climbing. But if we compare these two pictures to
Figure 8.2(a) and (b), we see something strange going on. What has
happened?
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(a) (b)

Figure 8.2. A small stuffed panda (a)
next to the “gnu” from Figure 8.1(a),
and the same toy panda (b) on the
rock where we superimposed the im-
age of a rock climber in Figure 8.1(b).

In fact, the “field” and the “mountain” were some dry grass and a

Figure 8.3. The toy panda bear on the
“mountain”—a large rock.

large rock (Figure 8.3), both near a baseball field at the south end of
Franklin & Marshall College; the gnu was a 10-inch plastic toy, and
we Photoshopped the mountain climber in. We used simple tricks to
create the effect of larger landscapes than we actually had available.

What made this switch so effective is that many objects look the
same at different scales. Dry grass looks somewhat like tall grass.
Small rocks look like big rocks, and both look like the side of a moun-
tain. Small pieces of clouds have the same shape and structure as
the whole cloud. A small piece of cauliflower (a floret) looks like the
whole cauliflower (Figure 8.4).

Figure 8.4. A small piece of
cauliflower looks like a miniature

version of the whole cauliflower. (In
fact, a piece like this is called a floret,

which means a small flower.)

In the 1970s mathematician Benoit Mandelbrot described self-
similar objects by coining the name “fractals,” from the Latin root
fractus meaning fractured or broken. That is, if you “fracture” (or
break off) a little piece of a fractal, it looks like the whole thing.
Many natural objects have this property of “self-similarity,” and this
property is of interest both artistically and scientifically.

To see how fractals approximate natural forms, and at the same
time suggest techniques which an artist might use to render such
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forms, consider the sequence of pictures in Figure 8.5. The first
picture shows a rudimentary tree branch with 5 branch tips. It is not
a fractal, because it lacks an important property of fractals called
self-similarity, which in a broad interpretation means that parts of
a shape are exact, or nearly exact, miniatures of the whole shape.
In the second picture, each of the 5 branch tips is replaced with
an exact miniature of the branch in the first picture. The second
branch is not a fractal either, because the 5 subbranches each have
5 tips, while the whole branch now has 52 = 25 branch tips. The
third branch in the sequence is an attempt to remedy this; each of
the 5 subbranches is a 25-tipped miniature of the second branch. Of
course, the problem is that the current branch now has 53 = 125
branch tips, so self-similarity has not yet been attained. Indeed, the
figure will not become self-similar—a fractal—until the process has
in effect been repeated an infinite number of times.

Figure 8.5. A fractal tree branch
made by algorithmic drawing.

Fortunately, we don’t need to wait forever to see the true fractal
branch. The fourth branch in the sequence is the result of repeating
the process 3 more times (56 = 15, 625 branch tips), and it is visually
indistinguishable from the true fractal limit. This is because the
subsequent branch tips which would be added would be so small as
to be virtually invisible. Most importantly, notice how the character
of the branch has changed in the fourth picture. It is “organic” as
opposed to “mechanical” or “geometrical,” even though we have used
a mathematical algorithm—a rigid step-by-step process—to create it.
In this computer rendering, the branch tips have even merged to form
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leaves, reminding us that not only do trees contain leaves, but leaves
also contain trees, in the form of their treelike vein structure. Results
like this not only give hope to the artist seeking hints on drawing from
nature, but they also suggest ideas about the structure and growth
of plants—a notion that plant biologists have taken seriously.1

1For a readable and fascinating in-
troduction to these ideas, see Lin-
denmayer, A., and Prusinkiewicz, P.,
The Algorithmic Beauty of Plants,
Springer-Verlag, New York, 1996.

Evidence suggests that artists have also taken fractal algorithms
seriously, and not just recently. Compare, for example, the Japanese
woodblocks in Figure 8.6, which we’ve paired with modern computer-
generated images. Figure 8.6 features three pairs of images. The
left member of each pair is a nineteenth-century Japanese woodblock
print, and the right member is a computer-generated fractal. Though

Figure 8.6. Traditional Japanese
woodblocks (left) and their modern
fractal counterparts (right).

startlingly similar to their companion images, the woodblocks predate
the fractals by more than 100 years! The first image is a detail from

2Paterson, L., Diffusion-limited aggre-
gation and two-fluid displacements in
porous media, Physical Review Let-
ters, 52, 1621–1624.

the woodblock Shono: Driving Rain, from the series The Fifty-Three
Stations of the Tokaido by Ando Hiroshige (1797–1858). The fractal
to its right was generated by a process called an “Iterated Function
System,” which we discuss later. The second woodblock is Boats in a
Tempest in the Trough of the Waves off the Coast of Choshi (detail),
from the series A Thousand Pictures of the Sea by Katsushika Hoku-
sai (1760–1849). The fractal to the right of it is called a “quadric
Koch island,” a name coined by Mandelbrot. The third woodblock
is a panel from the triptych Short History of Great Japan by Ikkasai
Yoshitoshi (1839–1892). The accompanying fractal is a mathematical
model of two-fluid displacement in a porous medium after Paterson.2

At this point we take a different approach to the usual presenta-
tion. One of the best ways to learn about fractals is to draw as you
read. Therefore, rather than present the usual exercises at the end
of the chapter, we intersperse with the narrative some practice ex-
ercises to help you become familiar with fractals. To emphasize the
difference between these and the usual exercises, we number them
with Roman numerals. Drawing fractals is much more meditative
than drawing in perspective. Patience, repetition, and time are all
good attributes to have. Give yourself a half hour to an hour to do
each practice exercise; playing good music helps as you work.
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Practice Exercises.

I. Draw a fractal tree. Start with a figure like the one at the left,
which consists of a trunk and three main branches (notice that
the left branch begins slightly below the right branch). Then
turn each of the three branches into a tree by adding two new
branches at approximately the same angle as on the original
tree; you’ll now have 9 branches. Repeat this process (on each
of the 9 branches, create a tree by adding two new branches;
then create trees on the resulting 27 branches, and so on). In
Figure 8.7 we show you several initial steps, plus a version that
appears after many iterations.

(a) (b) (c) (d) (e) (f)

Figure 8.7. Steps in drawing a fractal tree (a–e), and a computer rendering (f) after many iterations.

II. Use a ruler to draw a fractal “cauliflower.” Begin with a hori-
zontal line across the bottom of the paper. From now on, every
time you see a line segment, you will add on an inverted “V”
whose height is approximately 1/3 that of its length, as in Fig-
ure 8.8.
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(a)

L/3
L

(b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.8. Steps in drawing a “cauliflower” (a–g), and a computer rendering (h) after many iterations. Part (i)
shows the region above the cauliflower shaded in black.

Here’s an example of a slightly different version of the cauliflower-
drawing technique applied to lightning bolts. On the right of Fig-
ure 8.9 is a detail from a photo of a lightning storm over Boston.
We begin by marking four dots A, B, C, D on one of the lightning
bolts. In step (i) of the figure, we draw the polygon ABCD as a first
approximation to the lightning bolt. In each of the subsequent steps
(ii)–(iv), we connect the pairs A, B and B, C and C, D with a scaled
copy of the previous approximation. As indicated, the drawing in
step (iv) compares pretty well with the actual lightning bolt. This
approach isn’t completely scientific, but it shows that iterative draw-
ing techniques can lead to nice results. In the next chapter, we’ll see
how a more scientific study of coastlines helped spur the development
of fractal geometry.
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compare

(i) (ii) (iii) (iv)

A

D

A

D

B

C

B

C

A

D

B

C

A

D

B

C

A

D

B

C

Figure 8.9. Left: Recursive drawing of a lightning bolt. Right: Detail from photograph of a lightning storm over
Boston. Step (iv) is a fair approximation of the lightning bolt. Photo: U.S. National Oceanic and Atmospheric
Administration.

III. A “mathematical-looking” fractal that’s easy to sketch is the
Sierpiński triangle (or Sierpiński gasket), named after Polish
mathematician Wac law Sierpiński. In Figure 8.10 we start with
an equilateral triangle (a), then draw an upside-down triangle
inside it by connecting the midpoints of the larger triangle (b).
At first you might want to lightly mark a dot inside this “mid-
point triangle” to indicate that you won’t draw inside that tri-
angle anymore. In (c) we draw midpoint triangles inside the
remaining three (right-side up) triangles and mark dots to keep
the new midpoint triangles empty. In (d) we draw midpoint
triangles inside the nine remaining triangles. Try this out and
keep drawing until the triangles become so small you can’t draw
inside them anymore. The “limiting shape” you have approxi-
mated is the Sierpiński triangle.
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(b)(a) (d)(c)

Figure 8.10. Steps in drawing the Sierpiński triangle. The dots indicate triangles that remain empty.

IV. There’s a right-angled version of the Sierpiński triangle that you
can build up using squares instead of triangles. Figure 8.11(a)
shows a square on a grid, and Figure 8.11(b) shows the three
half-sized squares you draw in the next step. One half-sized
square goes on top of the big square, one goes in the lower
left corner of the big square, and one goes immediately to the
right of the big square as shown. (The grid is for precision.)
Figure 8.11(c) shows how to proceed next. The rule is this:
at the end of each completed stage, focus only on the smallest
squares you just drew. For each such square, draw a square
half as big on top of it as indicated, a square half as big in the
lower left corner, and a square half as big immediately to the
right of it. Use the grid lines to be precise, and keep going.
Now start over in Figure 8.12 (or a photocopy of it). Be sure
to count squares to keep your drawing accurate. You’ll see that
the fractal is in a sense a union of squares, but it doesn’t really
look like it when it’s fully developed!

(a) (b) (c)

Figure 8.11. Guide for drawing a right-angled Sierpiński triangle using squares.
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Figure 8.12. Template for drawing the right-angled Sierpiński triangle.
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Another classic fractal attributed to Sierpiński is the Sierpiński
carpet, whose construction appears in Figure 8.13. This time we make
the fractal white on a black background.

(c)

(a) (b)

(d)

Figure 8.13. The first three steps in
drawing the Sierpiński carpet (a–c),

and the appearance of the actual
fractal (d). The fractal is the

remaining white part after the
(infinitely many) holes have been

subtracted.

To draw the Sierpiński carpet we start with a white square in
Figure 8.13(a), use lines to divide it into nine equal-sized squares,
and then blacken in the “middle ninth” square. In (b) we apply the
same procedure to the remaining 8 white squares, and in (c) we apply
it to the remaining 64 white squares. Part (d) shows the fractal (the
white part) after the procedure has been carried out indefinitely.

While the Sierpiński triangle and the Sierpiński carpet may look
more “mathematical” and not as natural as the fractal tree and the
fractal cauliflower, they nevertheless contain essential features of pat-
terns in nature. As an example, we modify the construction of the
Sierpiński carpet in Figure 8.13 to model cratering patterns in Fig-
ure 8.14.
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In Figure 8.14(a) we punch a “giant” crater of width w into the
surface, much like punching the square hole in Figure 8.13(a). In
Figure 8.14(b) we add 8 randomly placed “large” craters of width
(1/3)w, much like we added the 8 square holes in Figure 8.13(b).
In Figure 8.14(c) we randomly place 82 = 64 “medium” craters of
width (1/3)2w = (1/9)w, like we added the 64 square holes in Fig-
ure 8.13(c). In Figure 8.14(d) we randomly place 83 = 512 “small”
craters of width (1/3)3w = (1/27)w, and in (e) we randomly place
84 = 4096 “tiny” craters of width (1/3)4w = (1/81)w. Compare (e)
with a map of the moon (f); the arrow indicates Sierpiński Crater!

(a) (b) (c)

(d) (e) (f)

w
w/3

Figure 8.14. Sierpendipity: Mimicking the construction of the Sierpiński carpet, we start with one “giant” crater (a)
of width w; add 8 “large” randomly placed craters, each 1/3 the size of the giant one (b); then 82 = 64 “medium”
craters, each 1/3 the size of the large ones (c); then 83 = 512 “small” craters, each 1/3 the size of the medium ones
(d); and 84 = 4096 “tiny” craters, each 1/3 the size of the small ones (e). At each step we use a computer program to
randomly place the craters in the gray square. Part (f) is a map of the moon; an arrow indicates Sierpiński Crater.
(Credit: Lunar and Planetary Institute/Defense Mapping Agency)
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Even with the simplistic “craters” we were drawing, the compar-
ison is not too bad. In fact, for many bodies in the solar system the
observed mathematical relationship between the number of craters in
a given region and their diameters bears a strong relationship to the
number and sizes of the holes in the Sierpiński carpet, the Sierpiński
triangle, and other fractals.3 In this case we have modeled the surface3Benoit Mandelbrot made this com-

parison in The Fractal Geometry of
Nature, W. H. Freeman, New York,
1983, pp. 302–303.

of the moon as a kind of random Sierpiński carpet with round holes.

We will make this comparison more precise in the next chapter.
For now, we simply wish to note that even highly regular, geometric
fractals like the Sierpiński carpet can embody important aspects of
the rugged and apparently irregular forms of nature. By comparing
fractals with nature, we can more fully understand nature’s patterns
and thus do a better job of drawing them. For example, the previous
comparison immediately shows that when drawing craters, we should
draw only a few large craters, many more medium-sized craters, and
many, many more small craters.

Iterated Function Systems.4 How do computers draw fractals?4 This section is optional.
They often uses a process called an “Iterated Function System,” or
IFS. For our purposes we will think of a function as a rule for trans-
forming shapes (sets) in the xy-plane into other shapes. For example,
Figure 8.15(a) shows the unit square P—the square with corners at
(0, 0), (1, 0), (1, 1), and (0, 1). We have labeled it with a big “P” to
keep track of the way it gets transformed. A function is usually de-
noted by a letter, so let us define a function f by the way it transforms
P into the shape labeled f(P ) (read “f of P”) in Figure 8.15(b). The
new shape f(P ) is called the image of P under the function f . The
image f(P ) is a square half the size of P in each direction; it has been
flipped (reflected) so that we see the “back side” of P ; it has been
rotated 90◦ so that it lies on its side; and it has been moved so that
its lowest side stretches from 1/2 to 1 on the x-axis. By showing the
flipped-over letter P as being undistorted in Figure 8.15(b), we mean
to suggest that f does not distort the interior of the unit square as
it shrinks it and moves it around.5

5 Such a function is often called a con-
tracting similitude because any shape
inside the unit square, say a little tri-
angle, gets transformed into a smaller
(contracted) triangle that is similar to
the original.

Having defined how f transforms the unit square and its interior,
we now have a function that takes its inputs as shapes inside the unit
square and transforms them to other shapes inside the unit square
in a well-defined way. For example, Figure 8.15(c) shows a catlike
shape C; to see how it is transformed by f into its image f(C), we
imagine it being painted onto the unit square and going along for the
ride, as in Figure 8.15(d). The transformed cat f(C) is half the size
of the original, it’s located in the same relative position inside the
transformed square, and of course it gets flipped around backwards
with the square, so its tail appears to point to the opposite side of
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its body.

PP

P P
0 1

1

0 1

1
the unit square P

the image f(P)

1/2

1/2

(a) (b)

0 1

1

0 1

1
C

f(C)

1/2

1/2

(c) (d)

Figure 8.15. How the function f trans-
forms the unit square P and the cat C.
Notice that because the unit square
gets flipped (reflected) the cat does
too, so its tail points in the opposite
direction.

We’ll deal with several functions at once (that’s why these are
called “Function Systems”), and we’ll repeatedly apply (iterate) the
functions over and over (that’s why this section is called “Iterated
Function Systems”). By this we mean that we will apply a function
to a shape, then apply the same or another function to the resulting
shape, and so on.

An example of the repeated application of functions appears in
Figure 8.16. Parts (a) and (b) illustrate a new function g that also
transforms shapes inside the unit square. The function g transforms
the unit square P by shrinking it toward the origin by a factor of
1/2. In Figure 8.16(c) we then transform g(P ) with the function f of
Figure 8.15 to obtain the set f(g(P )) (“f of g of P”), which is also
written as f ◦ g(P ). That’s because we can think of this application



152 Chapter 8

of two functions as a single function denoted by f ◦ g, called the
composition of two functions.

P

P P
0 1

1

0 1

1

g(P)

1/2

1/2

(a) (b)

0 1

1

0 1

1

1/2

1/2

(c) (d)

P

f◦g(P)

g◦f(P)

outline of  f(P) outline of  g(P)

Figure 8.16. Parts (a) and (b) illus-
trate the function g. Parts (c) and (d)
illustrate compositions involving f and
g, where f is the function illustrated
in Figure 8.15. Notice that the images
f ◦g(P ) and g◦f(P ) are not the same.
Can you sketch g ◦ g(P ) and f ◦ f(P )?

Notice that the notation f ◦g(P ) tells us to first apply g to P , then
apply f to the result. In Figure 8.16(d) we apply the functions in the
reverse order to obtain g ◦ f(P ); notice that g ◦ f(P ) and f ◦ g(P )
are different, hence g ◦ f and f ◦ g are different functions. Can you
sketch g ◦ g(P ) and f ◦ f(P )?

In our modern world we use function compositions all the time.
Let’s say you take a digital photo T of a tree and you turn the camera
sideways to get the whole thing in the photo. When you transfer
it to your computer, the photo T appears sideways, so you rotate
it with a function r provided by your computer’s image processing
software. Now you can enjoy looking at the corrected photo r(T ) on
your computer. Later you want to e-mail the photo to a friend, but
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it’s too big—it takes up too much memory—so you shrink it to a
smaller size with another function s. What you send your friend is
the image s ◦ r(T ). The function s is a contracting similitude. The
rotation function r is also a similitude, but it is not contracting since
it preserves the size of T .

Now let’s look at an Iterated Function System. Consider the three
functions f1, f2, f3 illustrated in Figure 8.17. The first iteration in
Figure 8.17(b) shows that all three functions shrink the unit square
P to half its size and then move it somewhere. The function f1 moves
the reduced version of P to the top center of the square, f2 moves it
to the lower left corner, and f3 moves it to the lower right corner.

In Figure 8.17(c)—the second iteration—we have labeled the sets
f1 ◦ f1(P ) and f1 ◦ f3(P ). Which square is the set f3 ◦ f1(P )? Which
is f2◦f3(P )? In the third iteration in Figure 8.17(d) are even smaller
squares, representing sets like f1 ◦ f3 ◦ f3(P )—which square is that?
The tiny squares in the fourth iteration in Figure 8.17(e) represent
images of P under fourfold function compositions, such as f2 ◦ f1 ◦
f1 ◦ f3(P ).

Now we can see the value of functions and function compositions
in fractal geometry. As we use more and more complex compositions
in Figures 8.17(a)—(e), the resulting collection of squares more and
more closely resembles an isosceles Sierpiński triangle whose altitude
and base are equal. Figure 8.17(f) depicts the 6th iteration. It con-
sists of 36 = 729 images of P , each (1/2)6 = 1/64 the width of P .
All the images were easily created in the computer drawing program
Lineform, as they could have been in, say, Adobe Illustrator. (There
is also another important way computers generate fractals with It-
erated Function Systems, called the Random Iteration Algorithm,
described in detail in Michael Barnsley’s book Fractals Everywhere.6

It makes use of the formulas that define functions like f1, f2, and f3.)

6Barnsley, M., Fractals Everywhere,
Academic Press, San Diego, 1988.

Notice how closely Figure 8.17(f) resembles the isosceles Sierpiński
triangle A in Figure 8.18. The set A just fits inside the unit square,
so its altitude and base both have length 1. Using more iterations
would have increased the resemblance further. The set A is called
the attractor of the IFS; you can see how the successive iterations are
“attracted” to it. In terms of functions, the true fractal A consists
of three smaller copies of itself; it is the union of the sets f1(A) (the
top part), f2(A) (the bottom left part), and f3(A) (the bottom right
part). In set notation, S = f1(A) ∪ f2(A) ∪ f3(A).
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f
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(P)

f
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(P)f

2
(P)

f
1
◦ f
1
(P) f

1
◦ f
3
(P)

Figure 8.17. Iterating functions to ap-
proximate an isosceles Sierpiński tri-
angle with successively smaller and
more numerous images of the unit
square P . After 1 iteration (b) there
are 31 = 3 images of P , each (1/2)1 =
1/2 the width of P . After 2 iterations
(c) there are 32 = 9 images of P , each
(1/2)2 = 1/4 the width of P . After
3 iterations (d) there are 33 = 27 im-
ages of P , each (1/2)3 = 1/8 the width
of P . After 4 iterations (e) there are
34 = 81 images of P , each (1/2)4 =
1/16 the width of P . Part (f) shows
the result after 6 iterations: 36 = 729
images of P , each (1/2)6 = 1/64 the
width of P . All the images were cre-
ated in a standard computer drawing
program.

A

f
1
(A)

f
2
(A) f

3
(A)

P

Figure 8.18. The isosceles Sierpiński
triangle A on the left just fits inside
the unit square P . As suggested on
the right, A satisfies

S = f1(A) ∪ f2(A) ∪ f3(A).

In the next example, we’re going to change one of the functions
a little and see what happens. In the previous example, we assumed
that the functions preserved orientation and direction: there were no
rotations and no flips. In Figure 8.19, we’ll forego that assumption,
but we’ll still have f1 move the reduced version of P up and center, f2

move it down and left, and f3 move it down and right. The difference
is that f1 flips the reduced version of P and rotates it 90◦.
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Figure 8.19. Part (a) shows the first it-
eration of an IFS. Your job is to draw
the rest of the second iteration in (c)
and all of the third iteration in (d).
Part (e) shows the fourth iteration,
and part (f) is the attractor of the IFS.

In Figure 8.19 we draw the first iteration (b) and part of the sec-
ond iteration (c) of the IFS. Your job is to finish the second iteration,
and draw the third iteration (d). Part (e) shows the fourth iteration,
and (f) shows the attractor of the IFS.

In Figure 8.20 below, we don’t tell you the steps we took to draw
the fractals; we ask you to figure that out yourself. Each of the
pictures in Figure 8.20 is the attractor of an Iterated Function System
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(each with three functions that send images to the top center, lower
left, and lower right). Each attractor is shown inscribed in the unit
square. Determine the direction of the Ps in the first iteration of the
process—for example, as in Figure 8.19(b). Assume that the initial
stage is a P in the usual position as in Figure 8.19(a). In cases where
there is a lot of symmetry, there can be more than one correct answer.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.20. Can you guess the IFS in each case?



Artist Vignette: Teri Wagner

TERI WAGNER is Associate Professor of Art and Chair of the
Art Department at Cardinal Stritch University in Milwaukee,
Wisconsin, where she teaches sculpture, ceramics, printmaking,
textiles, metals, and basic visual studies. Her work has been ex-
hibited around the United States and in Europe. She loves to
travel, particularly to Italy. She is trying very hard to learn Ital-
ian and hopes someday to be capable of telling stories in that most
beautiful language. (Photograph by Peter Galante)

T
he world is full of things that people have made: frescoes
and motorcycles and soap and cell phones and so forth. Every
detail of every object has occurred to somebody sometime to

meet a need, express a notion, satisfy a desire.
As an artist, I have spent most of my life thinking about things

I could make and then making them (or not). Drawings, paintings,
and sculptures all begin with ideas sparked by everything I have en-
countered as a person living in the world. Art works, like everything
designed by humans, are thoughts, “materialized.”

My students often struggle with the process of generating ideas
for art works. This is partly due to the widespread notion that “real
artists” get a packet of brilliant ideas delivered with the Talent gene,
right there on the DNA chain next to the Crazy gene. This may be
true in a few cases but generally it’s not. In fact, artists are just “Artists are just people who learn to

attend to the world in a particular set
of ways.”

people who learn to attend to the world in a particular set of ways.
The language that we use is a visual one, complete with grammar,
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syntax, and metaphor. And, as with all languages, art is useless
unless we have something to talk about. In art, the whole range of
human experience and history is our topic.

My work takes many forms, including drawing, painting, print-
making, photography, digital imaging, film, stone carving, metal
work, ceramic sculpture, textiles, and sometimes several of these in
one piece. I consider myself a collagist, mixing up the ideas and the“I consider myself a collagist, mixing

up the ideas and the materials to cre-
ate the kind of complexity that I think
reflects the world in which we live.”

materials to create the kind of complexity that I think reflects the
world in which we live.

Growing up as an only child, I had a huge appetite for reading.
Stories, both real and fictional, kept me company and soon I was
inventing my own versions. The next logical step was then to write
my stories down and to illustrate them in imitation of the books I
loved so much. My very first art work was just such a book. I took
some sheets of lined paper and wrote my story of a rabbit with wings
and her adventures in careful block letters. Each of the three pages
had an illustration drawn in crayon. I used my mother’s tape to hold
it together. Then I smuggled it into the library and tucked it on a
shelf. I was so excited—who might check out my book and read it?
Each time I looked for it after that, it was not on the shelf. Clearly
it had become a very popular book. I was seven years old.

Teri Wagner
As Above, So Below, 2004

wood, clay, oil paint,
organza, found objects

16× 30× 3 in.

Some time later, when I was in college, a group of my friends and
I decided that in order to become real artists, we had to live in Italy,
birthplace of the Renaissance. We organized our trip by locating the
cheapest hotel we could find, which happened to be in Assisi, the
historic home of St. Francis.
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Assisi is an ancient pilgrimage site that survives to this day on
the revenue from visitors of all faiths seeking spiritual connections.
It was there that I encountered a particular kind of story, the nar-
ratives of the lives of the saints, called hagiographies. These stories
are different from biographies in that they tell of symbolic events,
forming a parallel, simultaneous reality with ordinary experience. I
am fascinated by the multiple meanings that can be communicated
by this kind of tale.

In one, the story of St. Margaret of Antioch, I was struck by
the possibility of parallels between some details in the extraordinary
life of this first-century woman and my Norwegian immigrant grand-

Teri Wagner
Canis Latrans: Golden Section

2005
ink, pencil, acrylic on paper

41× 27 in.

mother’s life. I wrote a story, “St. Margaret of Antioch, Illinois,” and
made several art works including a painting, a series of collages, and
a sculpture inspired by this confluence of the spiritual and the ordi-
nary superimposed upon one another. In one episode of the original
story, St. Margaret was devoured by a dragon and then the dragon
was forced to spit her back up. I drew an analogy to my grand-
mother who was swallowed into the hold of the ship that brought
her to America and then spat out onto Ellis Island. In my version,
strange events reminiscent of the original stories occur in contempo-
rary settings. Since that first series of pieces, this kind of composite
idea has been an abiding theme in my work.

Like many visually oriented people, I always thought that I was
not good at math. Numbers, equations, theorems were all too im-
material for me. So, a few years ago when I was asked to attend a
conference on art and math, I went under protest. It turns out that
I was the only artist attending. The rest were mathematicians and a
really groovy group, to my delight. They all liked art and practiced
some form of it, from playing dulcimer to painting to making the
most complex and gorgeous origami that I have ever seen.

The topic one night after dinner was topology of the sphere and
the torus, something I had never heard of. I was amazed to discover
that even though I couldn’t follow the equations, I understood the
principle. It seems that despite visual evidence to the contrary, more
than one hundred years ago, mathematicians proved that every closed
surface in space is some version of a sphere, a bagel-like shape called
a torus, or a torus with extra holes. This means that every familiar
object, say a coffee cup or a desk drawer, has a secret identity as a “Inspired by this notion that an ob-

ject can be proven to have certain
qualities that only exist in the mind,
I began a series of drawings that de-
pict sculptures that I can never make
but that can exist in the imagination
of the viewer.”

torus or a sphere—a binary reality!

Inspired by this notion that an object can be proven to have cer-
tain qualities that only exist in the mind, I began a series of drawings
that depict sculptures that I can never make but that can exist in
the imagination of the viewer. In one of these drawings, I envisioned
a mathematical object known as the “horned sphere.”

The horned sphere is a really interesting item that has an ongo-
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ing chronicle of its own. It starts out as a sphere, then through a
mathematical transformation, it elongates into a sausage, the ends of
which curve magnetically toward each other, almost forming a donut.
Then, just as they are about to touch, each end forms a set of two
buds that grow toward each other, looping through the other set and
again almost forming a pair of interlocking donuts. But wait! Just
before each donut closes, the ends again sprout pairs of buds, grow
toward each other and then . . . well, you get the idea. This continues
as the mathematicians say, “up to but not beyond infinity,” a phrase
that makes them sound exactly like mystics.

In my drawing I depicted the horned sphere as the mythological
World Tree, Yggasdril (see the Plates section), sprouting interlaced
branches and growing up to but not beyond infinity.

In another series based on the same notion, I made an assortment
of peculiar objects in clay. Mathematically each one is a torus but
they actually look like strange, spiky magnifications of pollens or
amoebas.

You are reading a book about math and art. What does one
practice have in common with the other? Just this: both are based on
the designs that occur in our minds in response to the world around
us. And sometimes those designs can have a great conversation.

Teri Wagner
Baba Yaga, 2004

wood, clay, human hair, wax
28× 16× 18 in.

Teri Wagner
St. Sebastian/Narcissis

2005
porcelain, welded steel,
resin, wood, raw wool

18× 20× 20 in.

For more of the artist’s work, see the Plates section.



CHAPTER 9

Fractal Dimension

T
he subject of the ancient Chinese philosophy of Taoism is the
Tao, which can be interpreted as the “way” or the “course”
of nature. In a series of lectures around 1970, the popular

philosopher Alan Watts used the notion of the Tao to summarize
the apparent difficulty in finding a mathematical description of the
geometry of nature:

The Tao is a certain kind of order, and this kind of order is

not quite what we call order when we arrange everything ge-

ometrically in boxes or in rows. That is a very crude kind of

order, but when you look at a bamboo plant, it is perfectly

obvious that the plant has order. We recognize at once that it

is not a mess, but it is not symmetrical and it is not geomet-

rical. The plant looks like a Chinese drawing. The Chinese

appreciated this kind of nonsymmetrical order so much that

they put it into their painting. In the Chinese language this

is called li, and the character for li originally meant the mark-

ings in jade. It also means the grain in wood and the fiber

in muscle. We could say, too, that clouds have li, marble has

li, the human body has li. We all recognize it, and the artist

copies it whether he is a landscape painter, a portrait painter,

an abstract painter, or a non-objective painter. They all are

trying to express the essence of li. The interesting thing is that

although we all know what it is, there is no way of defining

it.1

1Alan W. Watts in Taoism: Way Beyond Seeking, The Edited Tran-
scripts, ed. Mark Watts, Charles E. Tuttle Co., Boston, 1997.
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At the time he spoke these words, Watts was quite correct, at least
in terms of any widespread knowledge of such things. However, Alan
Watts died in 1973, and that is significant, for only two years later

Figure 9.1. Preceding page: Wen
Zhengming, Old Tree and Cold Spring,
1594. Ink on silk. Gugong Museum,
Taipei, Taiwan. there appeared a book entitled Les objects fractals: forme, hazard et

dimension,2 which later evolved into an English version entitled The
2Mandelbrot, Benoit B., Les objects
fractals: forme, hasard et dimension,
Flammarion, Paris, 1975.

Fractal Geometry of Nature.3 The author of these books, a mathe-

3Mandelbrot, Benoit B., The Fractal
Geometry of Nature, W. H. Freeman,
New York, 1983.

matician named Benoit Mandelbrot, had discovered a new kind of
geometry, called fractal geometry, which would radically change the
way mathematicians and scientists—as well as many artists—viewed
the natural world. Mandelbrot coined the word “fractal” from the
Latin word fractus, meaning “fragmented” or “irregular,” because of
the forms fractal geometry describes. In his introduction to The Frac-
tal Geometry of Nature, Mandelbrot echoes the sentiments of Watts
concerning the discrepancies between traditional geometry and na-
ture, but goes on to announce that the scope of “geometry” has now
been widened dramatically:

Why is geometry often described as “cold” and “dry”?
One reason lies in its inability to describe the shape of a cloud,
a mountain, a coastline, or a tree. Clouds are not spheres,
mountains are not cones, coastlines are not circles, and bark
is not smooth, nor does lightning travel in a straight line.

More generally, I claim that many patterns of Nature are
so irregular and fragmented, that, compared with Euclid—a
term used in this work to denote all of standard geometry—
Nature exhibits not simply a higher degree but an altogether
different level of complexity. The number of distinct scales of
length of natural patterns is for all practical purposes infinite.

The existence of these patterns challenges us to study
those forms that Euclid leaves aside as being “formless,” to
investigate the morphology of the “amorphous.” Mathemati-
cians have disdained this challenge, however, and have increas-
ingly chosen to flee from Nature by devising theories unrelated
to anything we can see or feel.

Responding to this challenge, I conceived and developed a

new geometry of Nature and implemented its use in a number

of diverse fields. It describes many of the irregular and frag-

mented patterns around us, and leads to full-fledged theories,

by identifying a family of shapes I call fractals.

Parts (a) through (f) of Figure 9.2 illustrate the development of
a spiky, self-similar curve presented by Mandelbrot in The Fractal
Geometry of Nature. Part (f) shows the ultimate fractal; notice how
the white voids look like tree branches, and the black part is nearly
space filling. It’s a type of curve we’ll study later called a Koch curve,
named after the Swedish mathematician Helge von Koch. The lower
part of the figure is the photograph Canopy by Craig Harris.
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(a) (b) (c)

(d) (e) (f)

Figure 9.2. In parts (a–f), the evolution of a Koch curve after Mandelbrot. Below: Craig Harris, Canopy, digital
photograph, 2008.
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Notice the qualitative similarity between Canopy and the Koch
curve; the canopy is nearly space filling, and the light areas of sky
even look like branches. Notice also the similarity between Figure 9.2
and the Chinese painting in Figure 9.1. Even though the Koch curve
is obviously too simple and rectilinear to pass for a real tree canopy,
Mandelbrot saw in such curves, and in other fractals, the possibility of
doing what Alan Watts said could not be done: defining, measuring,
and meaningfully comparing the beautiful but seemingly irregular
forms we see in nature.

The mathematics that Mandelbrot uses is more computational
than the geometry we used in perspective drawing. For that reason,
this chapter will have more “advanced” mathematics than anywhere
else in this book. By “advanced,” we mean that this is the kind
of mathematics students usually learn after geometry, not that the
mathematics is inherently more difficult. To understand what Man-
delbrot saw in his fractals, we will use algebra, graphs, exponents,
and logarithms. We include a gentle review (or perhaps introduction)
of exponents and logarithms at the end of the chapter.

In this chapter we’ll look at a way of comparing fractals—in math-
ematics and in nature—by measuring their “crinkliness” or space-
filling tendency with a number called the fractal dimension. In math-
ematics there are many competing definitions of fractal dimension,
most of which are equivalent in the simplest cases. We’ll concentrate
on one of the easiest to implement. It applies to fractal curves and
it’s called the “divider dimension” (or “compass dimension”) because
all it requires is a pair of dividers (like a compass with two needles
and no lead).

How long is the coast of Britain?4 From the standpoint of draw-

4This is the question (and these are
the ideas) explored in Mandelbrot,
Benoit B., How long is the coast
of Britain? Statistical self-similarity
and fractal dimension, Science, 156

(1967), 636–638.

ing forms in nature, curves are a good place to start. It’s important
to be aware of the character of the edges and outlines of shapes. Later
we’ll take a look at how versatile fractal curves are in achieving dif-
ferent “qualities of line.” A type of natural curve we see all the time
on maps is the coastline of a country. It was a study of this type of
curve that gave some of the first hints that there might be a hidden
mathematical order in irregular natural forms.

Around 1921, the British mathematician Lewis Fry Richardson,

0.5 s

s

s

s

s

s

Duncansby Head

Land’s

End

Figure 9.3. Pacing off the west coast
of Britain.

who loved applying mathematics to unconventional subjects, started
thinking about the lengths of coastlines, a concept sometimes men-
tioned in encyclopedias and geography books. Richardson’s idea was
to measure a coastline, such as the west coast of Britain in Figure 9.3,
by choosing a “step size” s and then seeing how many steps it took
to “walk” along the coast. For example, in Figure 9.3, such a walk
goes from Land’s End to Duncansby Head, Richardson’s starting and
ending points. A particular value of s takes 5 steps plus an extra half
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a step to get to Duncansby Head, so Richardson would estimate the
resulting length L to be 5.5 s.

However, we see that such a large step size misses a lot of the
detail of the coast—a lot of the “ins and outs”—so Richardson used
successively smaller steps s and each time recorded the corresponding
total length L. Instead of plotting L versus s, Richardson had the
clever idea of plotting the logarithm of L versus the logarithm of s,
as in Figure 9.4. (If you feel a bit rusty on logarithms, you should
read through the review at the end of the chapter.) Although the
coastline seems highly irregular and random—apparently free of any
simple mathematical pattern—an amazing thing happened. The data
for the coast of Britain and for several other countries seemed to line
up in straight lines!

Each line has an equation of the form5

5If we make the substitutions y =

log L and x = log s, then (9.1) be-

comes the slope-intercept equation of a

line: y = mx+ b. What is the slope of

the corresponding line in (9.2)? Does

that seem to describe the line for the

coast of Britain in Figure 9.4?

log L = m log s + b. (9.1)

Using Richardson’s original data (see Exercise 1) we find that the line
associated with the length in kilometers of the west coast of Britain
roughly satisfies the equation

log L = −0.25 log s + 3.7. (9.2)

log s  (s = step size in km.)
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Richardson walked some of 

the boundaries in both 

directions using the same 

step size, and got a different 

step count in each direction.

Figure 9.4. Richardson’s coastline plots.

To see what equation (9.2) tells us about the coast of Britain,
we can rearrange the formula to one that uses exponents instead of
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logarithms (see Exercise 1). What Richardson discovered is that

L ≈ 5000 s−0.25 . (9.3)

That is, with lengths measured in kilometers,

the measured length of the coastline ≈ 5000/(step size)0.25 .

If this is really true, then a very strange thing happens, because
intuitively, as the step size s becomes smaller and smaller, we di-
vide 5000 by smaller and smaller numbers, so we get larger and
larger answers for the length L of the coastline. For instance, if s =
0.001 km (or 1 meter), then we get a length of L ≈ 5000/0.0010.25 ≈
28, 000 km. That’s about 70% of the earth’s circumference! As the
step size s approaches 0, the length L gets larger without limit. Ac-
cording to Richardson’s formulas, the actual length of the coastline
of Britain (or any other coastline) is infinite!

What is the size of a fractal? But perhaps there’s a mistake.
Let’s ask the question, “Is it possible to measure a geometric object,
and—by some odd mistake—get an infinite measurement?” The an-
swer is yes, and an example is measuring the length of a square. By
“measuring the length of a square” we don’t mean just measuring
the perimeter, we mean measuring the whole thing, including the in-
terior. Let’s take a 1-by-1 square and measure it by trying to cover
it with line segments of unit length, as in Figure 9.5.

length = 3·1 = 3 length = 8·1 = 8 length = 25·1 = 25

1Figure 9.5. The “length” of a square
is infinite.

On our first try, we use 3 line segments, each 1 unit long, and
get an approximate length of 3 · 1 = 3. The three segments make
a pretty sparse covering, so on the second try we straighten them
up a bit and manage to get 8 segments on the square, for a better
approximation of 8 · 1 = 8. On our third try, we straighten them
up even more and get a length of 25. Definitely the length of the
square is at least 25, because a small bug could crawl back and forth
on the square, following the line segments, and travel a distance of
25 units without crawling over the same point twice. However, as
you probably realize, this covering process could go on forever. Since
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line segments have zero width, we could easily fit a million of them
on the square, side by side without overlapping, so the length of the
square is at least one million. In fact, by this line of reasoning, the
square has infinite length, but there’s no big mystery here, because—
as you’re probably ready to shout at this point—we’re not supposed
to measure the length of a square—we’re supposed to measure its
area ! That is, a square is a two-dimensional object, so we should
take a two-dimensional measurement (area), not a one-dimensional
measurement (length). Here is what happened:

Our measurement came out infinite because our dimen-
sion of measurement was too small.

As long as we’re talking about inappropriate measurements, think
what would happen if we measured the volume of the square (a three-
dimensional measurement). The square has width and height, but no
thickness, so it occupies no volume; the measurement would be zero.

If our dimension of measurement is too large, the mea-
surement will be zero.

This suggests that perhaps the coastline measurement came out
infinite because we should not have used the one-dimensional mea-
surement of length, but some higher-dimensional measurement in-
stead. However, we are idealizing the coastline as a crinkly curve,
so it seems that a two-dimensional measurement (area) would give
us an area of zero, implying that a dimension of 2 is too large. If
dimension 1 is too small, and dimension 2 is too large, is it possible
that the true dimension of our coastline-curve is some number be-
tween 1 and 2? The very strange answer is yes, and to understand
it, let’s remeasure the square by a different method that will give us
a mathematical way to express dimension.

In Figure 9.6 there is a 1× 1 square, covered with cubes of side s.
If we use the cubes to measure the area of the square, a reasonable
way to do it would be to add the areas of the tops of the cubes; of
course, the top of each cube has area s2. Notice that the cubes are
in rows and columns, and we have

(number of rows) · s = 1 and (number of columns) · s = 1,

so

number of rows = 1/s and number of columns = 1/s.
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1
1

area of top = s2
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sFigure 9.6. Cubes as measuring tools.

Thus the number of cubes is (1/s)(1/s) = 1/s2. We then get

area of square = (number of cubes)(area of top of a cube)
= (1/s2)(s2) = 1,

which is not only correct, but true for any positive value of s, no
matter how small.

Since we got the measurement right, let’s now try to get it wrong.
Instead of adding the areas of the tops of the cubes (raising s to the
power 2), let’s add the lengths s of the cube edges (raise s to the
power 1). We get the strange result

“length” of square = (number of cubes)(length of cube edge)
= (1/s2)(s1) = 1/s,

and thus the measurement becomes infinite as s approaches 0; this is
the same result we got when we measured the “length” of the square
using line segments.

Now let’s deliberately do it wrong again, by adding the volumes
of the cubes (raising s to the power 3). We get

“volume” of square = (number of cubes)(volume of cube)
= (1/s2)(s3) = s,

which obviously approaches 0 as s approaches 0; this implies that the
volume of the square is zero, as we said before.

The purpose of these deliberate mistakes is to show that, intu-
itively, we can think of the “dimension of the measurement” as the
exponent D in the formula

“size” = (number of cubes) · sD. (9.4)

When “size” means length, use D = 1; when “size” means area,
use D = 2; when “size” means volume, use D = 3. Moreover, the
square is a two-dimensional object, and when we use a measurement
dimension of 2, we get a result (an area) of 1, which is a finite, positive
number. This suggests the following.
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The true dimension D of an object is the measurement
dimension that causes the measurement to converge to a
finite, positive value as the edge length of the measuring
cubes approaches zero (provided such a dimension exists
and is unique).

We can apply this rule to coastlines by thinking of measuring the
s

s
s

s

s

s
s

s

s

N cubes

Figure 9.7. Measuring steps with the
edges of cubes.

steps along the coast with the edges of cubes, as in Figure 9.7, where
there are N = N(s) cubes of edge length s. With respect to the coast
of Britain, we have by equation (9.3) the approximate relation

5000 s−0.25 = length L of coastline = Ns

for each chosen step size s. Getting all our variables on the same side
of the equation (multiplying both sides by s0.25), we have approxi-
mately

5000 = Ns1.25 (9.5)

for each chosen step size s. In view of (9.4) this suggests that we
think of 5000 as the true “size” of the coastline, and D = 1.25 as the
true dimension of the coastline.6

6In view of the subtle issues we address
here about measuring things, you may
not find it surprising that there is a
whole branch of mathematics called
measure theory, which is devoted to
a more sophisticated analysis of such
problems. In measure theory, the gen-
eralized notion of the “size” of a coast-
line (our word) would be called its
“measure.” The length of something
is called its one-dimensional measure,
the area is its two-dimensional mea-
sure, etc. However, we’re already us-
ing the words “measure” and “mea-
surement” so much that we decided on
“size” for our informal approach.

The “size” of 5000 is not a length, since we’re actually measuring
in the dimension of D = 1.25. In fact, the number 5000 is not so
important—it’s the noninteger dimension D that characterizes the
fractal nature of the coastline. This dimension is called the divider
dimension (or compass dimension) of the coastline. The coastline is
in some sense a 1.25-dimensional object!

Finding the divider dimension. The advantage of hindsight
gives us a bit of a shortcut to Richardson’s estimate of the divider
dimension D of a coastline. The Richardson model of the west
coast of Britain led to equation (9.5), which can be rewritten as
N = 5000s−1.25. More generally, the Richardson model of a coast-
line obeys the equation

N = Cs−D, (9.6)

where C is a constant, N = N(s) is the number of steps with size s,
and D is the dimension of the coastline. For that reason we do not
need to plot a graph of the logarithm of the total length L versus
the logarithm of the step size s, as Richardson did. It’s easier to plot
a graph of the logarithm of N versus the logarithm of s and fit a
straight line to the graph; the slope will be −D. We can see why
by taking logarithms of both sides of equation (9.6) and rearranging
to get (log N) = −D(log s) + (log C), which is linear in the variables
log N and log s. Here are the steps, with illustrations:

1. Mark two points A and B at opposite ends of the coast-
line. Figure 9.8 shows two such points marked on the southwest
coast of the island of Borneo.
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2. For each chosen step size s, use dividers or a compass
to walk off N steps along the coast from A to B. There
are a couple of fine points to address here.7 First, notice that

7We follow Richardson’s procedure as
described in Richardson, L. F., The
problem of contiguity: an appendix
of deadly quarrels, General Systems
Yearbook, 6 (1963), 139–187.

the circular arc in Figure 9.8(a), which has center A and radius
s, actually meets the coastline in more than one place. In this
case, we choose the point a person would arrive at first if walk-
ing along the coast starting from A. Second, notice that when
3 steps of length s reach the point F in Figure 9.8(b), one more
step would take us beyond B. We therefore consider the last
step from F to B to be a partial step of length |FB|. In this
case, the number N of steps is not a whole number; rather, we
count it as N = 3 + |FB|/s.

3. For each chosen step size s, plot the point (log s, log N)
on graph paper or in a spreadsheet. We did this in Fig-
ure 9.9 for six different step sizes on an enlarged version of the
Borneo map in Figure 9.8.

4. Fit a straight line to the finished collection of points.
The slope of the line is −D. Again, we did this in Fig-
ure 9.9, letting a spreadsheet fit the line for us. The slope came
out to be about −1.12, so the divider dimension is approxi-
mately given by D = 1.12.

A

B

A

B

s

s

s

N = 3 + |FB|/s

choose here

not here

s

Borneo Borneo

(b)(a)

F

partial

step

Figure 9.8. Walking off the southwest coast of the island of Borneo with a divider or compass. In (a), choosing where
to step. In (b), the walk ends with a partial step of length |FB|. If, say |FB| = 0.22 s, then N = 3 + 0.22 = 3.22.
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More precisely, the equation of the line in Figure 9.9 (in xy-
coordinates) is

y = −1.1187 x + 0.933,

and we interpret the equation as follows:
y = -1.1187x + 0.933

R
2
 = 0.9996

–1 10

1

2

log s

(s in inches on a map)

lo
g
 N

slope = –D

Figure 9.9. Fitting a line to the divider
data for the southwest coast of Borneo.
The divider dimension is the absolute
value of the slope.

log N = –1.1187 log s  +  0.933

number of steps step size

divider dimension

is  1.1187

y   = –1.1187  x       +  0.933

That is, y stands for log N , x stands for log s, and the slope of−1.1187
is the negative of the divider dimension D. Hence D = 1.1187 ≈ 1.12.

Intuitively, the divider dimension of 1.12 for the southwest coast
of Borneo suggests that the coast is not as crinkly as the west coast
of Britain, which had a divider dimension of 1.25. The fact that both
dimensions were greater than 1 suggests that mathematical models of
coastlines should be curves that in some sense have infinite lengths,
with divider dimensions close to those of the coastlines they model.

Computing dimensions of fractals. A classic fractal of this type
is the symmetrical Koch curve in Figure 9.10 (we saw a nonsymmet-
rical version of it in Figure 9.2). We can find its divider dimension
exactly, and it’s not a whole number.

It’s helpful to think of the Koch curve as being constructed in
stages, as in Figure 9.10. The first stage, Stage 0, is just a line
segment of length s = 1. In Stage 1, the middle third of the line
segment is removed and replaced by two slanted segments of length
s = 1/3; since the other two remaining segments also have length 1/3,
the number of segments of length s = 1/3 is N(s) = N(1/3) = 4. In
Stage 2, the middle third (having length 1/9) is removed from each
of the four previous segments, and replaced by two more segments
of length s = 1/9. The number of segments of length s = 1/9 is
N(s) = N(1/9) = 16. As indicated in the figure, the process just
keeps going. At Stage m, the length of the segments is s = 1/3m

and the number of segments is N(1/3m) = 4m. Actually the “real”
Koch curve is never achieved, because the process goes on forever.
However, the bottom picture in Figure 9.10 is a good approximation
to the real curve, and in practice we only use approximations, because
it is not really possible to draw the actual curve.
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Stage 0    s = 1 = 1/30         N(s) = 1 = 40

Stage 1    s = 1/3 = 1/31      N(s) = 4 = 41

Stage 2    s = 1/9 = 1/32      N(s) = 16 = 42

Stage 3    s = 1/27 = 1/33    N(s) = 64 = 43

Stage m       s = 1/3m          N(s) = 4m

.      .      .

.      .      .

.      .      .

.   .   .

1

1/3 1/3

1/
3

1/3

1/9 1/9 1/9 1/9

1/9 1/9 1/9 1/9 1/91/9

1/9 1/9

1/9 1/9
1/9 1/9

Figure 9.10. Development of the
Koch curve.

Now here is one way in which the Koch curve is a good model for a
coastline: it has infinite length! To see why, consider the Koch curve
in Figure 9.11, and think about measuring its length by Richardson’s

Figure 9.11. Measuring the length
of the Koch curve with step sizes of
1/3m. Here m = 2, so the step size is
s = 1/32 = 1/9. The number of steps
is N = 42 = 16, and the estimated
length at this stage is N · s = 16/9. method, using step sizes of 1, 1/3, 1/9, 1/27, etc. The steps are just

the corresponding line segments in Figure 9.10. At Stage m, we would
compute the length as

length = (number of steps)(step size) = N(s) · s1

= 4m(1/3m)1 = (4/3)m.

But 4/3 > 1, so the length becomes infinite as m → ∞; that is, the
length becomes infinite as s becomes smaller and smaller, just like
the length of the west coast of Britain.

It’s easy to compute the divider dimension of the Koch curve if
we restrict attention to step sizes s = 1/3m as above. If we can
write N = N(s) in the form N = Cs−D as in equation (9.6), we
can identify D as the divider dimension. Now we saw that N = 1
when s = 1, so we must have C = 1, hence N = s−D. Since we have
N = 4m for s = 1/3m, we want D to satisfy

4m = s−D = (1/3m)−D = (3−m)−D = 3mD = (3D)m.

Thus 4 = 3D. Taking logarithms of both sides gives log 4 = log(3D) =
D log 3, hence

D =
log 4

log 3
≈ 1.26.

So, just as the west coast of Britain was a 1.25-dimensional object,
the Koch curve is a 1.26-dimensional object!
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It’s easy to make variations of the Koch curve that have any
dimension between 1 and 2. As in the upper left of Figure 9.12, start
with the unit interval [0, 1] and place two line segments of length s,
where 1/4 < s < 1/2 at either end, connected by two more segments
of the same length forming the sides of an isosceles triangle in the
middle. This corresponds to Stage 1 in Figure 9.11. At stage m,
replace each line segment with a copy of the preceding figure, scaled
by a factor of sm. Thus at Stage m the figure will consist of 4m line
segments of length sm. By reasoning as we did above, the divider
dimension D of the ultimate fractal will be given by

D =
log 4

log(1/s)
.

Figure 9.12 shows the variety of shapes that result. The sequence
begins with a lightning bolt or river-like curve (D = 1.006) and ends
with a symmetric version (D = 1.785) of the foliage-like texture
we saw in Figure 9.2. As the dimension increases, the space-filling
appearance of the curves increases also.

D = 1.006

D = 1.023

D = 1.099

D = 1.262

D = 1.623

D = 1.785

s s

s s 

0 1

0 1

0 1

0 1

0 1

0 1

0 1

Figure 9.12. Initiator for a general type of Koch curve (upper left) and some examples with various divider dimensions.
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An example of a Koch-like curve from Japanese art appears in

Figure 9.13. This ghostly skull by
Hokusai has fractal sutures.

Figure 9.13. It’s a detail from a Hokusai woodblock print with a
most sensational subject: Kohada Koheiji’s skull appears as a ghost
at the burning mosquito net before his wife’s lover who murdered him,
from a book called One Hundred Stories by Hyaku Monogatari (c.
1830). The sutures, or cracks, in the ghost’s skull are a good match
for a Koch curve.

Of course the various versions of the Koch curve are too regular
and symmetrical to convincingly imitate most fractal curves in na-
ture. Each Koch curve is exactly self-similar: it is the union of four
smaller but undistorted copies of itself. (Can you identify them in
each picture?) We can create a greater variety of curves by expanding
the meaning of “self-similar” to include curves that are approximately
self-similar—curves that are the union of smaller, approximate copies
of themselves.

For example, consider the crinkly black curve in the top part of
Figure 9.14. The curve reaches from one side of the unit square P to
the other. The bottom part of Figure 9.14 shows four images of P un-
der four affine transformations—transformations that map squares to
parallelograms, not just other squares. (Similarity transformations
are a special case of affine transformations.) In this case the four
images of P and hence the four images of the curve are a little dis-
torted. Nevertheless, as you can see from the figure, the four images
of the curve connect at their endpoints and their union is precisely
the original curve. Such a curve is only approximately self-similar;
this curve would instead be called self-affine. Adobe Illustrator Affine
transformations are extremely useful in computer illustration. Any
good computer drawing program will have a “transform” palette that
allows the artist to subject shapes to affine transformations like those
in Figure 9.14.

The five points indicated by open circles in both parts of Fig-

P

PP
P P

Figure 9.14. A self-affine fractal curve.

ure 9.14 were selected because they lie on the mountain skyline in
the photograph in Figure 9.15. The mountains are displayed above an
enlarged version of the self-affine curve of Figure 9.14. The artificial
curve coincides with the actual skyline at the five selected points, but
it differs elsewhere. Nevertheless, the imitation does a pretty good
job of capturing the rugged character of the original. This partic-
ular type of fractal portrait of a curve, which we have used rather
intuitively, is called a fractal interpolation function.

The mountains are the Grand Tetons in Wyoming, often pho-
tographed because of their rugged fractal texture. Notice how the
fractal skyline curve dominates the composition. It’s not uncommon
to see landscape photographs featuring natural objects backlit by the
sun or sky, so that they are essentially reduced to their fractal out-
lines. How beautiful would a sunset or a sunrise be without fractals,
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and fractal curves in particular?

Figure 9.15. Above, a photograph of
Jenny Lake in Grand Teton National
Park, Wyoming. Notice how the beau-
tiful fractal skyline of the mountains
dominates the composition. Below, a
fractal curve created with four affine
maps.

Quality of Line. In art there is an important concept called quality
of line. It’s a notion in drawing that has to do with whether a drawn
line is rough or smooth, awkward or graceful, bold or fine, natural or
forced, angry or tranquil, etc. Self-affine fractal curves offer a wide
range of quality of line.

Figure 9.16 shows that a symmetric arc of a parabola is self-affine,
and is thus a kind of fractal even though it is very smooth. The
left side of the figure shows that given a positive constant a, the
graph of y = ax(1 − x) goes through (0, 0) and (1, 0), and has its
vertex at (1/2, a/4). The right side of the figure shows two affine
images of the gray rectangle (now parallelograms) and corresponding
images of the parabola, one solid and one dashed. The two images
of the parabolic arc combine to form the original arc. Self-affine
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curves range from smooth arcs to rugged mountain skylines to many
other curves. Figure 9.17 displays an assortment of self-affine curves
exhibiting various qualities of line.

0 1 0 1

(1/2,  a /4)

y =  a x (1–x)

Figure 9.16. The parabolic arc y = ax(1− x) is self-affine via two affine transformations.

It’s irresistible to play with fractal images, since they can con-
vincingly imitate so many things. Perhaps that’s why we see faces,
dragons, castles, and so forth in puffy fractal cumulus clouds. A frac-
tal geometer can sit under a tree or gaze out a window at the sky,
and claim to be doing research! One way to play with the fractals
you already know is to assemble several of them into a picture, the
way we have done in Figure 9.18. Using the photo of Figure 9.15 as
inspiration, we put in mountains, clouds (the cauliflower from Fig-
ure 8.8), lightning from Figure 8.9, trees from Figure 8.7, and craters
from Figure 8.14. We assembled them using the drawing program
Lineform, which has an affine transformation tool. We used the tool
to vertically squeeze the craters into ellipses, to make them appear
to be lying on the ground. To make the shadow of the tree, we made
a transparent copy of the tree and then reflected and skewed it with
an affine transformation.

Mathematical perspective and fractal geometry in art.
The concept of the divider dimension has an important place in the
development of fractal geometry. Mandelbrot’s seminal Science ar-
ticle on the length of Britain’s coastline drew the interest of mathe-
maticians, scientists, engineers, economists, and others. Mandelbrot
knew very well that the divider dimension and the simulation of coast-
lines by fractal curves was only a crude beginning. In particular, a
coastline is more properly the intersection of a plane (the ocean’s
surface) with a rugged fractal surface (the land). In the pursuit of
more authentic coastlines, Mandelbrot and his colleagues generated
startlingly believable fractal landforms, which in turn drew the in-
terest of many artists.
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0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

Figure 9.17. An assortment of self-affine curves illustrating the concept of quality of line.
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Figure 9.18. A playful fractal portrait
of a thunderstorm over a mountain
lake, made with the fractals of Chap-
ters 8 and 9.

The mountains in Figure 9.18 are just flat silhouettes. How can
we make them appear to have real volume? The images in Figure 9.19
(d–f) illustrate a simplified algorithm for generating a fractal surface,
as compared with the algorithm in Figure 9.19 (a–c) for drawing the
cauliflower curve of Figure 8.8. Recall that to draw the cauliflower
curve, we begin with a line segment (a), then select a point in its
interior and raise it to determine two new, but shorter segments.
At each subsequent step we repeat the procedure on the new line
segments, a process that ultimately leads to the cauliflower curve of
Figure 8.8. To obtain a crumpled fractal surface instead of a crinkly
fractal curve, we start with a triangle in (d), then select a point in its
interior and raise it to determine three new triangles that form the
upper faces of a tetrahedron (e). At each subsequent step we repeat
the procedure on the new triangular surfaces, as in (f). Of course
we must specify a method for selecting interior points and displacing
them. Variations of this method have led to continual improvements
in the simulation of actual land surfaces. Fractal-based methods can
also be used to create clouds, trees, fog, water, and other natural
objects and textures.

Figure 9.20 shows an example of landscape artwork created with
a commercially available, fractal-based, software package called Ter-
ragen. The result is an obvious improvement on our humble attempt
in Figure 9.18. At first glance the image is hard to tell from a pho-
tograph!
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(a) (b) (c)

(d) (e) (f)

Figure 9.19. In (a–c), the first steps in generating the crinkly cauliflower curve of Figure 8.8. In (d–f), the analogous
steps in generating a crumpled fractal surface.

Figure 9.20. Landscape image ren-
dered with the fractal software Ter-
ragen. The rugged mountain surfaces
were made using a mathematical tech-
nique called Perlin noise, named af-
ter computer scientist Ken Perlin. (In
1997 Perlin won an Academy Award
for Technical Achievement for his com-
puter texturing techniques, which are
widely used in movies and television.)

Mathematical perspective is a key component of the image in Fig-
ure 9.20. The objects in the picture are modeled as shapes in three-
dimensional space; what we see are the correctly rendered perspective
images of these shapes, and that’s one reason why the finished result
looks so real. Because the picture is based on a collection of shapes
in three-dimensional space, it’s possible to virtually fly through the
landscape along any desired path, seeing what a camera would see as
it moves along the path. The software allows the artist to choose such
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a path as a sequence of viewpoints and picture planes, and also to gen-
erate an associated sequence of perspective images as seen from these
viewpoints. These sequential pictures of fractals (and other shapes)
become the frames of a movie. Thus viewpoints, mathematical per-
spective, and fractal geometry team up to create the experience of
flying through a world of the artist’s own creation!

Not surprisingly, this method of creating images and animations
has found applications outside the field of traditional art. In addition
to Terragen, there are other fractal-based software packages, includ-
ing MojoWorld, VUE, and Bryce. Terragen environments appear
in feature films including Stealth, Star Trek Nemesis, The Golden
Compass, and The Wicker Man, as well as in many games and TV
commercials. Professional illustrators have used Terragen to create
realistic still images for books and magazine articles. Users of VUE
include special effects artists working for Industrial Light and Magic
(Pirates of the Caribbean 2 ), Sony Pictures Imageworks, Weta Digi-
tal, BBC, and Walt Disney Pictures. Artists have used VUE to create
animated architectural renderings, as well as simulations for NASA,
Boeing, and the U.S. Air Force. Dr. F. K. “Ken” Musgrave, a for-
mer student of Mandelbrot, is CEO of Pandromeda, Inc. (the maker
of MojoWorld), and designer of the initial fractal-based programs on
which Bryce was based. MojoWorld is in one sense the most ambi-
tious software package of its kind. Rather than model a small patch
of the earth as most other programs do, the goal of MojoWorld is to
model entire planets along with their moons and even solar systems.

We have already seen how mathematical perspective and frac-
tal geometry have appeared separately in art. The advent of the
computer has now brought them together in new forms of art and
entertainment, as well as in the study and simulation of nature. In
both art and science, mathematical perspective and fractal geometry
serve the expression of the human imagination, and they help remind
us of the marvelous combination of order and complexity in the world
around us.

Artists and Fractals. We close this chapter with the work of three
famous artists—a photographer, a painter, and an architect—who
included fractal curves and surfaces in their palettes of lines and
textures.

ANSEL ADAMS (1902–1984) was an American photographer who
was best known for his photographs of the American West. Adams’s
work is typically filled with beautiful fractal textures: gnarled juniper
trees, rugged rocks and mountains, and dramatic clouds. Figure 9.21
features one of his most famous photographs, The Tetons and the
Snake River, taken while he worked for the National Park Service.
We’ve already seen how the skyline of the Tetons can be modeled by
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a fractal curve. This photograph features repeated fractal curves in
the clouds and mountains, contrasting beautifully with the smooth
curve of the Snake River.

Figure 9.21. Ansel Adams, The Tetons and the Snake River, 1942. Grand Teton National National Archives and
Records Administration, Records of the National Park Service.

LI CHENG was a Chinese painter who lived in the tenth century.
In his day, Li Cheng was considered to be the finest landscape painter
of all time. His painting on the left of Figure 9.22, A Solitary Tem-
ple amid Clearing Peaks, features fantastic-looking mountains drawn
with vertically oriented fractal curves. The photograph of mountains
in Zhangjiajie, Hunan Province, which appears on the right of the
figure, shows that Li Cheng’s style is actually quite realistic.
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Figure 9.22. Left: Li Cheng, A Solitary Temple amid
Clearing Peaks, ink on silk hanging scroll, 111.4×56 cm.,
circa 960. Above: a recent photograph of mountains
in Zhangjiajie, Hunan Province, China, shows that Li
Cheng’s style is actually quite realistic.

FRANK LLOYD WRIGHT (1867–1959) was one of America’s
most famous architects. In 1991, the American Institute of Architects
recognized Wright as “the greatest American architect of all time.”
Wright designed many private residences, the most famous of which
may be Fallingwater, the Edgar J. Kaufmann Sr. residence, pictured
in Figure 9.23. Completed in 1937 in southwestern Pennsylvania,
the home was built partly over a waterfall, and is a National Historic
Landmark.

Dramatic perspective drawings, including ones from the house’s
most famous viewpoint in Figure 9.23, were an early part of the
planning process. The idea was for the house to blend harmoniously
with the stream (Bear Run) and the surrounding forest. In our terms,
the resulting work is a masterpiece of mathematical perspective and
fractal geometry in art. Wright told his client, “I want you to live with
the waterfall, not just to look at it, but for it to become an integral
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part of your lives.”8 The house is built of concrete and stone quarried
8Donald Hoffmann, Frank Lloyd
Wright’s Fallingwater: The House
and Its History, second revised
edition, Dover, New York, 1993.

from the site to blend with the rough, fractal stone of the stream bed.
In fact, one end of the living room was built around a large boulder,
which protrudes through the stone floor at the hearth of the fireplace!
In 1991 the American Institute of Architects named Fallingwater the
“Best All-Time Work of American Architecture.” Fallingwater is now
a property of the Western Pennsylvania Conservancy, and may be
seen by guided tour from April through November.

Figure 9.23. What a viewpoint: mathematical perspective and fractal geometry in art—and life. This is Falling-
water, the Edgar J. Kaufmann Sr. residence, designed by Frank Lloyd Wright. Completed in 1937 in southwestern
Pennsylvania, the home was built partly over a waterfall, and is a National Historic Landmark. In 1991 Fallingwater
was named the “Best All-Time Work of American Architecture” by the American Institute of Architects. Both the
exterior and interior of the home extensively feature rough, fractal stone cut from Bear Run, the creek that runs under
the house. Perspective plays a deliberate, dramatic role when the home is seen from its most popular viewpoint.
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Frank Lloyd Wright loved traditional Asian art, and his designs
were heavily influenced by it. Figure 9.24 compares a view of Falling-
water with a detail of Li Cheng’s Solitary Temple. The similarity
between the two compositions is striking, despite the almost ten cen-
turies separating the lives of their creators. Notice the strong, hor-
izontal lines of the buildings and the harmonious way they blend
with their fractal-filled environments. Wright, in fact, adhered to
a philosophy called organic architecture, which held that a building
should be designed so as to form a single, unified composition with
its surroundings.

Figure 9.24. View of Frank Lloyd Wright’s Fallingwater (left) compared with a detail
of Li Cheng’s Solitary Temple (right). Notice the striking similarity between the two
compositions, despite the almost ten centuries separating the lives of their creators.

Review of exponents and logarithms. We give here a brief,
informal review of exponents and logarithms, with a refresher on the
meaning of logarithmic expressions. We’ve already seen plenty of
examples of exponential expressions arising in the study of fractals.
For instance, at the nth stage of drawing the fractal tree branch in
Figure 8.5, there are 5n branch tips; for the tree in Figure 8.7 it’s
3n branch tips. The widths of craters in Figure 8.14 have the form
w · (1/3)n, and so on.

We assume that you’ve already studied exponents and logarithms,
and that you’re familiar with the fact that if b is any positive number
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(b > 0) and if x is any real number, then the expression bx is defined.
The number b is called the base and x is the exponent. Of course
we may need a calculator to compute the value of an exponential
expression accurately. For example, using a calculator we find that

3.7−
√

2 ≈ 0.157196.
We also assume that you recall exponent rules (E1)–(E9) in the

Rules of Exponents

If a and b are positive real numbers,
and x and y are any real numbers,
then

(E1) bxby = bx+y

(E2) (bx)y = bxy

(E3) (ab)x = axbx

(E4)
(a

b

)x

=
ax

bx

(E5)
bx

by
= bx−y

(E6) b−x =
1

bx

(E7) b1 = b

(E8) b0 = 1

(E9) bx = by

if and only if x = y.

margin. Some of the rules in the list apply to negative or zero bases a
and b, but we won’t need those cases. The last two rules are probably
the strangest looking, but they make sense if we want the other ones
to work for all exponents x and y. For example, we can write b for
b 6= 0 as

b =
b · b · b
b · b =

b3

b2
= b3−2 = b1,

so we choose to define b1 = b. Similarly, we can write the number 1
as

1 =
b2

b2
= b2−2 = b0,

so we choose to define b0 = 1 for b 6= 0. Recall also that if b ≥ 0 and
n is a positive integer, then b1/n = n

√
b.

Sometimes it’s easy to learn the rules of a subject and still not be
able to say what it really means. People often have this experience
with logarithms. Before reviewing some of the rules of logarithms,
let’s review the meaning of the concept. Logarithm comes from logos
(word) and arithmos (number), so it stands for “a word that means
a number”—but what number? If b and x are positive real numbers,
and b 6= 1, the expression logb x (pronounced “log base b of x”) is
defined, and here is what it means:

The expression “logb x” means
“the power we raise b to in order to equal x.”

For example, log3 9 means “the power we raise 3 to in order to
equal 9.” Therefore, our thoughts should look something like this:

log3 9 =
The power we raise 3
to in order to equal 9.

ւ log
3
9

3? = 9

That is, we have 3 and we want to raise it to some power (the question
mark) in order to equal 9. As the thought balloon indicates, that
power is called “log3 9.” In this case we know that the question mark
should be a 2, because 32 = 9. Thus log3 9 = 2.
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We practice this kind of thinking in the “See, Say, Think” chart
below, which reads from left to right. For example, when we get to
the end of the third row we realize that log25 5 stands for the power
we raise 25 to in order to equal 5. This seems impossible at first,
until we realize that 251/2 =

√
25 = 5, so log25 5 = 1/2. Carefully

read the chart to be sure you understand the reasoning of each row.

This kind of reasoning is extremely important when we come
to complicated-looking expressions involving logarithms. Stop for
a minute and think about the following statement, which hopefully
seems obvious—it’s not a trick question!

b(the power we raise b to in order to equal x) = x.

If necessary, read this over and over until you agree that it’s painfully
obvious. It’s like asking, “Who’s buried in Grant’s Tomb?” Grant, of
course! (And his wife.) And if we take b, and we raise it to the power
we’re supposed to raise it to in order to equal x, what else can we
get, but x? If you’re wondering why we’re even bothering with this,
then here’s the answer: when many students are confronted with an
expression like

blog
b

x

they freeze up! But if you know what logarithms actually are, you
realize it’s the same thing:

blog
b

x = b(the power we raise b to in order to equal x) = x.

Thus blog
b

x = x. Similarly, if you see logb bx, you think to yourself

logb bx = the power we raise b to in order to equal bx.

So, just as in the chart, you come to this mental picture:

b? = bx.

And what goes where the question mark is? It’s x, of course! We
therefore conclude that

logb bx = x.

The important thing is, we did it not by memorization or symbol
pushing, but by actually understanding what logarithms are.
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SEE SAY THINK

logb x “Log base b of x.”
The power we raise b to

in order to equal x.

ւ log
b

x

b? = x

log3 9 “Log base 3 of 9.”
The power we raise 3 to

in order to equal 9.

ւ log
3
9=2

3? = 9

log25 5 “Log base 25 of 5.”
The power we raise 25
to in order to equal 5.

ւ log
25

5=1/2

25? = 5

log2 1/8 “Log base 2 of 1/8.”
The power we raise 2 to
in order to equal 1/8.

ւ log
2
1/8=−3

2? = 1/8

log7 7 “Log base 7 of 7.”
The power we raise 7 to

in order to equal 7.

ւ log
7
7=1

7? = 7

log5 1 “Log base 5 of 1.”
The power we raise 5 to

in order to equal 1.

ւ log
5
1=0

5? = 1

We list some basic rules (L1–L7) of logarithms in the margin.
Rules of Logarithms

Assume that x and y are positive
real numbers, a and b are positive
and not equal to 1, and p is any real
number. Then

(L1) logb bx = x

(L2) blog
b

x = x

(L3) logb xy = logb x + logb y

(L4) logb

x

y
= logb x− logb y

(L5) logb xp = p logb x

(L6) logb x =
loga x

loga b

(L7) logb x = logb y
if and only if x = y.

Rule (L6) allows us to compute any kind of logarithm on a scientific
calculator, using the log x button, which means log10 x. For example,
if we come across an expression like log3 8 (which we do in studying
fractal dimension), we can compute

log3 8 =
log10 8

log10 3
=

log 8

log 3
≈ 0.903089987

0.477121255
≈ 1.893.

Because we can always push a wrong button, it’s good to partially
check our rounded answer by recalling that “log3 8” means “the power
we raise 3 to in order to equal 8.” Does your calculator agree that
31.893 ≈ 8? How would you guess ahead of time that log3 8 is between
1 and 2 and probably closer to 2?
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Exercises for Chapter 9

1. The table to the right contains L. F. Richardson’s original
s N

971 1.0
490 2.0
200 5.9
100 15.4
30 69.1
10 293.1

Data from Richardson, L. F., The
problem of contiguity: an appendix
of deadly quarrels, General Systems
Yearbook, 6 (1963), 139–187. Com-
pare this data with Figure 9.4, which
graphs log L as a function of log s.

divider data for the west coast of Britain. Here s is the step
size in kilometers and N = N(s) is the corresponding number
of steps, with a fractional step estimated at the end of each
walk.

(a) Plot the points (log s, log N) and fit a straight line to
them, either visually or using a spreadsheet. The slope
of your line should be about −1.25 and the y-intercept
should be about 3.7. Thus the equation of the line is
y = −1.25x + 3.7, or since x = log s and y = log N ,

log N = −1.25 log s + 3.7.

(b) For a chosen step size s and the corresponding number N
of steps, the estimated length L of the coastline is given
by L = Ns. By which of the logarithm rules (L1–L7) does
this imply

log L = log N + log s ?

(c) Use the results of (a) and (b) to derive Equation (9.2) on
page 165.

(d) By what logarithm rule is it true that

3.7 = log 103.7 ≈ log 5000 ?

(e) By what logarithm rules do part (d) and Equation (9.2)
imply

log L = log(5000s−0.25) ?

Equation (9.3) is therefore true by what rule of logarithms?

2. Figure 9.25 shows the data points from Figure 9.9, in which
we computed the divider dimension of the southwest coast of
Borneo. Notice that the x-coordinates xn of the data points are
equally spaced. Whenever we have the freedom to choose the
step size s, it’s possible to create equal horizontal spacing be-
tween the data points, rather than have some of them bunched
up in one place. This is a fairly common procedure in many
scientific applications. Part (d) below shows how to do this,
and why it works.
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(a) Apply the review of exponents and logarithms to fill in the
blanks:

log 10 = log10 10 = log 1 = log10 1 =

(b) There is a point on the graph in Figure 9.25 that represents

y = -1.1187x + 0.933

R
2
 = 0.9996

–1 1

1

2

log s

(s in inches on a map)

lo
g
 N

x
2

x
1

x
0

x
3

x
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x
5

Figure 9.25 The divider data points

from Figure 9.9. The x-coordinates xn

came out equally spaced by choosing

step sizes of the form ℓ, ℓ/2, ℓ/4, ℓ/8,

ℓ/16, ℓ/32.

a single step (N = 1) from one endpoint of the southwest
coast of Borneo (on an enlarged map) to the other. In
view of (a), which point is it? (Name the x-coordinate
and circle the point.) By measuring along the horizontal
axis in Figure 9.25 and using a calculator, estimate how
many inches long this step was.

(c) There is a point on the graph in Figure 9.25 that represents
just a tiny bit more than ten steps along the coastline. In
view of (a), which point is it?

(d) Let ℓ denote the straight-line distance from one end of the
coastline to the other. The step sizes (the values of s) we
used were ℓ, ℓ/2, ℓ/4, ℓ/8, ℓ/16, ℓ/32. This is what caused
the points on the graph in Figure 9.25 to have equal hori-
zontal spacing. The proof goes as follows. Using the laws
of exponents, we can write these step sizes as

ℓ/20, ℓ/21, ℓ/22, ℓ/23, ℓ/24, ℓ/25.

Thus the x-coordinates of the six points in Figure 9.25
are

x0 = log(ℓ/20), x1 = log(ℓ/21), x2 = log(ℓ/22),

x3 = log(ℓ/23), x4 = log(ℓ/24), x5 = log(ℓ/25).

Two adjacent neighboring points then have x-coordinates
of the form xn and xn+1 for 0 ≤ n ≤ 4, and their horizon-
tal separation is

xn − xn+1 = log(ℓ/xn)− log(ℓ/xn+1).

Use the laws of logarithms and some algebra to simplify
this expression and show that xn − xn+1 does not depend
on n. What is this separation to three decimal places?
Does that look about right on the graph? This shows
that the horizontal separations between neighboring data
points are the same.
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(e) What would happen if the step sizes were ℓ, ℓ/3, ℓ/9, ℓ/27,
and so on?

3. Using the ideas from Exercise 1 and the steps 1–4 we used in

Figure 9.26. Top: NASA Landsat
perspective image of Chesapeake Bay
(NASA/Goddard Space Flight Center
Scientific Visualization Studio).
Bottom: Landsat image of Cape Cod.

finding the divider dimension of the coast of Borneo, compute
the divider dimensions of one rough section of coastline and
one smooth section of coastline from somewhere around the
world. A couple of examples in Figure 9.26 are the eastern
shore of Chesapeake Bay (rough) and the outside coast of Cape
Cod (smooth). Use the largest map(s) you can find for greater
accuracy. You may also be able to find high-resolution satellite
images on the internet.

4. Even though the Sierpiński triangle may not look like a fractal
curve, it’s possible to “take a walk” on it with dividers and
compute its divider dimension. Figure 9.27 shows how to do it.

Stage 0 Stage 1 Stage 2

0 1 0 1 0 1

Stage 3 Stage 4 Stage 5

0 1 0 1 0 1

Figure 9.27.

This Sierpiński triangle is equilateral with sides of length 1. Its
base extends from 0 to 1 on the x-axis, as shown. Starting at
0, it is not at all obvious which direction we should step in, but
the following procedure leads to a sequence of nonintersecting
“walks” along the fractal, each of which starts at 0 and ends
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at 1. In Stage 0 we begin with a step of length s = 1 and take
N = 1 step from 0 to 1. Notice that the black line segment
representing this step is one side of the big triangle. In each
subsequent step, we bend the black side of any Sierpiński trian-
gle into that triangle, to form 3 new segments whose length is
half of the previous base, with each new segment being a side
of a smaller subtriangle. Thus in Stage 1, we bend the base
upward into 3 segments (N = 3) of step length s = 1/2, so that
each segment is a side of a smaller subtriangle. In Stage 2, each
of these 3 three segments gets bent into its subtriangle, and so
on.

What is the step length s and the number of steps N . . .

(a) at stage 1?

(b) at stage 2?

(c) at stage 3?

(d) at stage m?

(e) In a manner analogous to the way we computed the di-
mension of the Koch curve using equation 9.5, compute
the divider dimension of the Sierpiński triangle.

5. Recall that each of the Koch curves in Figure 9.12 had divider
dimension D = log 4/ log(1/s), where the corresponding fractal
was the union of 4 smaller, similar copies of itself, and each
copy was scaled by the same factor s. There is another defini-
tion of fractal dimension, called the similarity dimension, which
is based on this idea and does not require dividers. If a self-
similar set is the union of N smaller, similar copies of itself,9

each scaled by the same factor r, then the similarity dimension
9The smaller copies should not over-
lap too much, but in a sense that’s too
technical for us to worry about here.

D of the set is given by

D =
log N

log(1/r)
.

In particular, the similarity dimension and the divider dimen-
sion are the same for each of the Koch curves in Figure 9.12.

The Sierpiński carpet of Figure 8.13 on page 148 is the union
of N = 8 smaller, similar copies of itself, each scaled by the
same factor r = 1/3; its similarity dimension is therefore log 8/ log 3 ≈
1.89. What is the similarity dimension of the Sierpiński triangle
in the previous exercise? Is it the same as the divider dimen-
sion you calculated? What are the similarity dimensions of the
fractals in Figure 8.20 on page 156?
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6. “But wait!” a student says, “I see the Sierpiński carpet of Fig-
ure 8.13 on page 148 as the union of N = 64 smaller, similar
copies of itself, each scaled by the same factor r = 1/9. Its
similarity dimension is therefore log 64/ log 9, not log 8/ log 3.”
How would you reply to the student?

7. Create a fractal with similarity dimension (a) log 3/ log 2; (b)
log 5/ log 3; (c) log 7/ log 4. It is enough to show the first two
or three iterations that generate the fractal.

8. What is the similarity dimension of the unit square in Fig-

0 1/2 1

1/2

1

x

y

Figure 9.28

ure 9.28? Use the laws of logarithms to simplify your answer.
Does this dimension seem reasonable? What is the similarity
dimension of a line segment? What is the similarity dimension
of a cube? Draw a sketch to help justify your answer.



Artist Vignette: Kerry Mitchell

KERRY MITCHELL’S academic training is in Aerospace Engineering. He
received his bachelor’s degree from Purdue University, his master’s from Stan-
ford, and did his doctoral work at Purdue.

He performed aerospace research at NASA, served as Staff Scientist at the
Arizona Science Center, and was a professor of Mathematics and Science at
the University of Advancing Technology. He is currently a manager at the
Maricopa Skill Center in Phoenix, Arizona.

In his spare time, Kerry is an algorithmic artist, having shown works in
many galleries and museums. His images have been published on several book
covers, album covers, and calendars.

I
grew up in Iowa with an artist/art teacher father, but I didn’t
begin to pursue art for myself until later in life. Instead, I con-
centrated on the analytical side of my brain, which I got from

my mother. I was always good in school, so I concentrated on aca-
demics (especially math), and dabbled a bit in art. Even then, I was “Even [growing up], I was fasci-

nated by abstract geometric images;
I would fill pages of graph paper
with various square- and triangle-
based doodles and lose afternoons
with a Spirograph.”

fascinated by abstract geometric images; I would fill pages of graph
paper with various square- and triangle-based doodles and lose af-
ternoons with a Spirograph. One of my favorite types of images was
the curves-from-straight-lines effect that would become the basis of
many string-art sailboats in the seventies.

After I graduated from high school, I studied Aerospace Engineer-
ing at Purdue and Stanford universities. Then it was off to several
years of aerospace research at NASA, investigating the aerodynam-
ics of high-performance aircraft and the mechanisms through which
jet engines produce noise. This engineering path is what gave me
the technical chops needed for the art that I produce today: a good
background in mathematics, some programming skill, and a working
knowledge of computer graphics.

The analytical and artistic sides finally started coming together
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in 1985, when Scientific American published an article on the Man-
delbrot set. Like many others, I was amazed at the beauty that
arose from iterating such a simple formula. Unlike most, I had the
means and inclination to investigate the process further, which fed
both sides of me.

I’ve always thought of myself as more of a technical person than“I’ve always thought of myself as
more of a technical person than an
artistic person. Consequently, my art
is about creating interesting images
from technical ideas.”

an artistic person. Consequently, my art is about creating interest-
ing images from technical ideas. Other artists, perhaps most no-
tably M.C. Escher, created art incorporating mathematical notions
or themes. Now, some artists essentially paint with math—fractals
and other shapes are their paintbrushes. In contrast, I see myself
as a painter of math. If I may be so bold to compare myself with
Ansel Adams, where he photographed trees and mountains, I capture
images of fractals and other geometric shapes. As he did, I create
the image which celebrates the underlying object. Fortunately, the
objects in my images don’t live in bear-infested areas and don’t weigh
millions of tons.

Initially, “typical” fractals (like the Mandelbrot set) comprised the

Kerry Mitchell
The In Crowd, 2001

digital

bulk of my work. I was, and still am, drawn to their simultaneous
simplicity and complexity. The prospect of a blank canvas is one
that I find daunting, so I love the idea of a fractal formula giving me
a structure from which to build, yet the structure is one that I can
manipulate at will. Nowadays, my fractal efforts roll down two paths:
(1) What else interesting is out there that I can find? How can new
formulas be iterated and what shapes will they uncover? What other
ideas can I implement and throw at a fractal to release a heretofore
unseen facet? (2) How can I discover new ways to create images of
familiar fractals? Artists have been creating landscapes and still lifes
and portraits as long as there have been the means to create them.
We’ll never tire of seeing images of flowers or mountains, so long as
there is a Georgia O’Keefe or Ansel Adams to provide us with new
ways of looking at them. Likewise, even though “everyone” has seen
the Mandelbrot set, how can I paint it or photograph it in a way that
is new and different?

While I love fractals and hope to always return to them, I also
feel a need to explore other areas of what is now being called “al-
gorithmic art.” The idea is that an overarching algorithm drives the
creation of the work, but the resulting piece need not be a true frac-
tal. This is a quite expansive and relatively untapped artistic field,
as an algorithm can be algebraic, geometric, or even mechanical. The
algorithms that I use often arise from number theory, plane geom-
etry, and chaos and dynamical systems. For example, take a circle
and draw several equal-spaced points around its edge. Connect ev-
ery point with every other point by drawing lines between them. On
top of this, overlay another image, with a different number of points.
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Repeat many times. The type of final image depends on the relation-
ships between the numbers of points. For example, prime numbers
(2, 3, 5, 7, etc.; whole numbers larger than 1 that are only divisible
by themselves and 1) give a much different image than using mul-
tiples of four (4, 8, 12, 16, etc.). Or, think about the minute hand
of a clock. On its tip, place another hand that is half as long and
rotates twice as fast. On its tip, place a smaller hand, half as long
and rotating twice as fast. Add several more hands in the same way.
Now, what is the path of the tip of the smallest hand? And, more
importantly, how can that path be turned into a compelling piece of
art? This is one way I think about my art.

While the math behind the art is a critical component, I often “While the math behind the art is a
critical component, I often imbue my
work with decidedly nonmathemati-
cal themes, which are equally as im-
portant.”

imbue my work with decidedly nonmathematical themes, which are
equally as important. One such theme is jazz. I’m not a musician,
but I am very enamored with the music. Many of my abstract images
convey (to me, anyway) a sense of rhythm, harmony, and a mix of
improvisation and tight structure that I associate with instrumental
jazz. In fact, I created two series of images inspired by the music of
Miles Davis (Kind of Blue)1 and John Coltrane (A Love Supreme). 1See Kind of Blue: All Blues in the

Plates section.

Kerry Mitchell
Jazz ala Oscar, 2000
digital

In other cases, I combined fractal and jazz elements with a black-
on-white coloring. The reasons were threefold: (1) Most fractals that
make it to the public’s eye are very colorful, and I found that a stark
coloring focuses attention on the fractal shape; (2) It was reminiscent
of the time of the heyday of jazz, when most of the photographs taken
were in black and white; and (3) It spoke to me of the social order of
the day, when the schism between Black people and White people was
much larger and better defined than it is today. The Black experience
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has been another theme of my work, from the brutality of lynching
to the symbolism of Kwanzaa.

Another theme that shows up regularly in my work is spirituality.“Another theme that shows up reg-
ularly in my work is spirituality. It
would be (and has been) all too easy
to spend my life ‘in my head,’ think-
ing about math and analyzing things
logically.”

It would be (and has been) all too easy to spend my life “in my
head,” thinking about math and analyzing things logically. While
I don’t intend to espouse any particular religion in my work, I do
believe in a transcendent power and I feel that art is a great way to
explore and express that. In particular, I like the interplay between
God and the relative lack of cultural bias in mathematics—math is
available to everyone, as I feel God is. The study of fractals, like
much of algorithmic art, has an aspect of infinity about it, which
also connects it to the notion of the spirit.

Sometimes, I draw inspiration from other visual artists. My biggest
source of inspiration was my father, and I probably get my interest
in abstract geometric shapes from him. I enjoy seeing how I can
interpret other works in my own way, such as Gustav Klimt’s The
Kiss, or Wassily Kandinsky’s Squares with Concentric Rings.

Overall, I draw from the areas of mathematics, physics, computer
science, music, and visual art, combining them with the mind of
an engineer, the heart of a teacher, and the soul of an artist. My
hope is that the resulting images powerfully reflect the beauty of
mathematics that is often obscured by dry formulae and analyses. An
overriding theme that encompasses all of my work is the wondrous
beauty and complexity that flows from a few relatively simple rules.
Inherent in this process are feedback and connectivity; these are the
elements that generate the patterns. They also demonstrate to me
that mathematics is, in many cases, a metaphor for the beauty and

For more of the artist’s work,
see the Plates section.

complexity in life. This is what I try to capture.

Kerry Mitchell
Funky Genes, 2003

digital



Answers to Selected Exercises

Chapter 1

The first two exercises appear in the margins.

Margin Exercise 1.1. (1, 2, 7), (1, 2, 3), (1, 3, 3), (4, 2, 7), (4, 3, 7), (4, 3, 3).

Margin Exercise 1.2. Higher: A (the y-coordinate is larger). Closer: A (the
z-coordinate is smaller). More to the left: A (the x-coordinate is smaller).

1. (a) Answers will vary. Our own experience is that the ratio is often closer to 8.

(b) Smaller. (Compared with adults, children have larger heads relative to
their bodies or smaller bodies relative to their heads.)

2. (a) H = (1, 7, 5).

(b) C = (1, 2, 4), D = (2, 3, 3), E = (1, 3, 3), F = (2, 2, 3), G = (1, 3, 4),
H = (2, 2, 4).

(c) C = (1, 1, 5), D = (3, 4, 1), E = (1, 4, 1), F = (3, 1, 1), G = (1, 4, 5),
H = (3, 1, 5).

(d) The object in part (b) is a 1× 1× 1 cube.

3. (a) The letter E.

(b) There are many correct answers. One of these is PRTRSQSU .

(c) There are many correct answers. One of these is
QTPRSQV UTQSWV . You might verify that it is impossible to draw this
figure without covering at least one edge twice.

(d) There are many correct answers. Each answer requires covering many edges
more than once.

Chapter 2

2. (a) This is close. It appears the dinosaur is running across the door to the
people, so it is probably to the right of the door; the x-coordinate of Q is
probably larger.
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(b) Q (the dinosaur’s claw is above the floor).

(c) P (the door is further away).

(d) Q and (e) P (by comparing directly on the photograph).

3. (a) x′ = 2 · 5/(5 + 5) = 1, y′ = 3 · 5/(5 + 5) = 1.5.

(b) x′ = 2 · 5/(95 + 5) = 0.1, y′ = 3 · 5/(95 + 5) = 0.15.

(c) x′ = 2 · 5/(995 + 5) = 0.01, y′ = 3 · 5/(995 + 5) = 0.015.

4. (a) width: 6, height: 4, depth: 12.

(b) (−10,−6, 12) (x′, y′) = (−5.555555556,−3.333333333)
(−10,−6, 24) (x′, y′) = (−3.846153846,−2.307692308)
(−10,−2, 12) (x′, y′) = (−5.555555556,−1.111111111)
(−10,−2, 24) (x′, y′) = (−3.846153846,−0.769230769)
(−4,−6, 12) (x′, y′) = (−2.222222222,−3.333333333)
(−4,−6, 24) (x′, y′) = (−1.538461538,−2.307692308)
(−4,−2, 12) (x′, y′) = (−2.222222222,−1.111111111)
(−4,−2, 24) (x′, y′) = (−1.538461538,−0.769230769)

5. (a) F = (−12,−6, 105).

Chapter 2 Practice Quiz

1. (−4,−2, 6) (x′, y′) = (2,−1)
(−4,−2, 3) (x′, y′) = (8/3,−4/3)
(−6,−4, 3) (x′, y′) = (−4,−8/3)
(−6,−4, 6) (x′, y′) = (−3,−2)
(−6,−2, 3) (x′, y′) = (−4,−4/3)
(−6,−2, 6) (x′, y′) = (−3,−1)
(−4,−4, 6) (x′, y′) = (−2,−2)
(−4,−4, 3) (x′, y′) = (−8/3,−8/3)

2. (−4,−5, 6) (x′, y′) = (−2,−5/2)
(−4,−5, 3) (x′, y′) = (−8/3,−4/3)
(−6,−5, 3) (x′, y′) = (−4,−8/3)
(−6,−5, 6) (x′, y′) = (−3,−5/2)

Chapter 3

2. If the box is twice (or three times) as long as it is wide, the viewing distance is
twice (or three times) the distance between the two trees.
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Chapter 4

The first three exercises can be solved in straightforward ways by following the
techniques introduced in this chapter. The remaining exercises require much more
thought. We do not present solutions for most of these exercises for two reasons. The
first reason is this: struggling to find a solution is difficult . . . until you have seen the
solution, at which point it becomes “obvious.” Hence, we want to avoid tempting
you to merely look at the answer and forego the pleasure of thinking hard. The
second reason is that there are multiple correct solutions to each of these problems,
and presenting a comprehensive catalog of correct solutions would take up too much
space. We try to illustrate the variety of interesting and correct possibilities that exist
by exploring one of these exercises (Exercise 8) in depth, but we leave the remainder
to the reader.

Exercise 8, Solution 1. We begin with the first of two detailed solutions of Exer-
cise 8. We close with an equally important concluding discussion to highlight what’s
in it for you. The answer section may seem like a strange place to put an essay on
the value of perspective problems, but we stashed it here in the hope that you have
first worked hard on the problem—successfully or not—before coming here. You’ll
get much more out of it that way. There are many possible correct solutions to this
exercise. After reading the solutions here, we challenge you to find one of your own.
It might be better in its own way than anything yet discovered!

Our first solution takes advantage of a convenient feature of the problem. Namely,
if we look at the copy of the fence panel on the right side of Figure A-1, we see that
images of the two fenceposts are parallel, and thus the actual fenceposts are parallel
to the picture plane.

Now recall that Rule 5 of this chapter says that a shape (such as a single fencepost)
that lies entirely in a plane parallel to the picture plane has a perspective image that
is an undistorted miniature of the original. Thus if the actual fencepost had paint
marks on it that divided it into thirds, the images of those marks would divide the
image exactly into thirds, with no distortion. Consequently, we can correctly divide
the image of the near fencepost into thirds by simply measuring on the image with a
ruler and marking two points. For comparison, we have done this in Figure A-1 for
both the straight-on view of the panel on the left and the perspective view on the
right.

h

h

h

h

h

h

equal equal

Figure A-1. Straight-on view of the fence panel (left) and perspective view (right).
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The next step (Figure A-2) is to draw dashed horizontal lines through the two
points in the straight-on view on the left, and then draw the images of these lines
in the perspective view on the right by extending them to the vanishing point of the
fence.

Figure A-2. Dashed horizontal lines (left) and their perspective images (right).

The final step (Figure A-3) is to draw a dashed diagonal of the panel on the left,
and its image on the right. Through the intersection points of this diagonal with
the horizontal lines we draw two vertical fenceposts that (as we will see) correctly
divide the panel into thirds. Notice on the right of Figure A-3 that the images of the
fence panels do not have equal widths, so we could not have located them by simply
measuring along the top or bottom of the image of the fence. For later purposes we
have labeled some lengths on the diagram.

long (closest)

medium (middle distance)
short (farthest away)

h

h

h
a

b

c

We can show that a=b=c.

Figure A-3. Two additional posts divide the fence into thirds.

In order to be sure this method really works, we must verify that the three panels
on the left side of Figure A-3 have equal widths. One way to check this approximately
is to measure them with a ruler. To be sure it works precisely we need a proof.

On the left side of Figure A-3 we have labeled the sides of three similar right
triangles. (How do we know they are similar?) Each has a vertical side h units in
length, and the horizontal sides have lengths a, b, and c, which we hope are all equal.
From the two similar triangles on the left we have a/h = b/h, and multiplying both
sides of this equation by h gives a = b, which is exactly what we want. The fact that
b = c can be proved in the same way.
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This drawing technique can be generalized to other problems. For instance, in the
same situation it is just as easy to divide the fence into, say, five equal sections, as in
Figure A-4. This method is often used by professional artists and illustrators.2

five
equal sections
by measuring

Figure A-4. Dividing the fence panel into fifths.

Nevertheless, this technique can’t be generalized to all the cases in which we might
like to use it. The reason is that if no side of a rectangle is parallel to the picture
plane, then we can’t measure along the image of a side to get started. For example,
in the perspective view of the Italian flag on the right side of Figure A-5, the picture
plane is tilted upward looking at the sky, and none of the edges of the actual flag is
parallel to it. We can tell this because neither of the pairs of opposite edges have
parallel images. To overcome this obstacle, we look at another solution. Although we
use the flag as an example, this solution can also be applied to the fence. One piece
of advice remains the same, however:

Work on the undistorted rectangle first, then try to transfer your solution
to the rectangle in perspective.

Figure A-5. The Italian flag straight on (left) and flying high in perspective (right).

2Including comic artists: see Stan Lee and John Buscema, How to Draw Comics the Marvel Way,
Simon & Schuster, 1984, p. 37.
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Exercise 8, Solution 2. Again let’s work with a straight-on view and a perspective
view. We have drawn these in Figure A-6; in the perspective view we have extended
the nonparallel images of parallel lines to their vanishing points.

?

?

Figure A-6. Looking for a solution without measuring.

The Italian flag consists of three identical vertical rectangles of different colors
(green, white, and red). Many national flags have this same three-rectangle design.
This time we want to divide the larger rectangle (the flag) into thirds without mea-
suring.

When mathematicians approach a tough problem, they will sometimes back up
to an easier problem they know how to solve, and see if they can extend the easier
solution to fit the new problem. Remember that we successfully subdivided a rectangle
without measuring when we divided it in half by making an “X” with the diagonals
and drawing a midline through the intersection point. Following the mathematicians’
example, we do that on both sides of Figure A-7, and hope for inspiration!

Figure A-7. Trying what we already know: dividing the flags in half.



Answers 203

Any ideas? If so, try them out before reading further!

It turns out that by simply drawing two more lines we can locate the “1/3” and
“2/3” points we need to solve the problem. On each side of Figure A-8 we draw lines
from the midpoint of the bottom edge of the flag to the upper corners. The “1/3” and
“2/3” points are the intersections of these lines with the diagonals. Through these
points we draw vertical lines that correctly divide the flags into thirds.

equal

Figure A-8. A solution without measuring.

Of course we must prove that we are correct. To simplify the proof, let us assume
that the rectangle is 1 unit long and h units high, and let it be the rectangle in
the Cartesian plane with corners (0, 0), (1, 0), (1, h), and (0, h) (see Figure A-9).
The rectangle has been divided in half using the diagonals, and the diagonal of the
rectangle from (0, 0) to (1, h) has the equation y = hx.

(0,0)

(1,h)h

1

P(x,y)

y

x

the line
y = – 2hx + h

the line
y = hx

1/2

Figure A-9. Proof that the method works.

Following our drawing technique, we draw a dashed line from (0, h) to the midpoint
(1/2, 0) of the bottom edge of the rectangle. This line has slope −h/(1/2) = −2h and



204 Answers

y-intercept h, so its equation is y = −2hx + h. Let P (x, y) be the intersection of this
line with the diagonal; if our drawing method works, then we should have x = 1/3.
Since P lies on the two lines y = hx and y = −2hx + h all we need to do is solve the
system of equations

{

y = hx
y = −2hx + h.

The solution is x = 1/3, y = h/3.

This proves what we wanted to prove, and gives us something extra: the point
P = (1/3, h/3) not only locates the left-hand third of the rectangle, whose boundary
is the vertical line x = 1/3, it also locates the bottom third of the rectangle, whose
boundary is the horizontal line y = h/3. Thus, without any extra effort, we have
already made progress toward dividing the rectangle into thirds both horizontally
and vertically. That’s one reason we chose coordinates to do the proof—sometimes
mathematics gives you more useful information than you asked for!

Finally, let’s see if we can generalize this drawing technique the same way we did
Solution 1. Can we extend the method to divide a rectangle into fourths, fifths, etc.?
First let us observe that if we want to divide a rectangle into fifths, say, and we already
know how to divide a rectangle into fourths, then all we need to do is locate the first
fifth. We can finish by dividing the remaining part into fourths. Thus our problem
simplifies to one of locating the first fourth, the first fifth, etc., of a rectangle.

Here’s what we know so far. On the left of Figure A-10 we have divided a rectangle
in half without measuring. In the center of Figure A-10, we locate the first third by
drawing a line from the upper left of the rectangle to the “foot” of our previous
solution (1/2). So what happens if we draw a line from the upper left corner of the
rectangle to the foot of our latest solution (1/3)?

0 11/2 0 11/21/3 0 11/21/3?

h h h

Figure A-10. Trying to extend the technique.

What if we keep going? That is, suppose (Figure A-11) that we have found the
first nth (third, fourth, etc.) of the rectangle, and we draw a line from the upper
left corner of the rectangle to the foot of the previous solution (1/n) to get a new
“solution” (the question mark). If you had your wish, what would you want it to be?
Is it?
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0 1/n

h

y = hx

?

Figure A-11. What is the next “solution”?

We have presented two solutions to Exercise 8 in some detail in order to illustrate
characteristics of it common to other perspective problems:

I. The problem is natural and easily understood. The goal of the problem and
its value are immediately clear. Without its solution we can’t even do a competent
job of drawing a flag!

II. The problem has multiple solutions of varying difficulty and applicabil-
ity. We deliberately present the problem in one-point perspective to admit a wide
range of solutions. There are many more solutions than the two shown here. For
instance, several solutions require drawing constructions outside the fence panel, such
as the so-called “measuring line” technique sketched in Figure A-12.3

w w w

VV'

A B

Figure A-12. Solution by a measuring line AB.

The existence of many solutions allows a maximum number of students to tackle
the problem with a good chance of at least partial success. Comparing the many
solutions is an important follow-up exercise, involving several interesting and practical
questions. For example, which solutions

3Briefly, we locate an arbitrary second vanishing point V ′ on the horizon as the apex of a triangle
ABV ′, with a horizontal base AB and sides passing through the feet of the original fenceposts. We
then trisect the “measuring line” AB by direct measuring, and the lines from the trisection points
to V ′ locate the feet of the inner fenceposts. Why does this work?
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• use the least number of construction lines?

• are easiest to remember?

• generalize to divisions other than thirds?

• do not require drawing outside the rectangle (allowing for aligning a ruler with
vanishing points)?

• generalize to two-point perspective?

Note that Solution 2 solves what is perhaps the most difficult form of the problem:
How can we take a rectangle in two-point perspective and correctly divide it into
thirds without drawing outside the rectangle? Even art majors and professors are
not generally aware of this form of the solution, even though it is easy to use and
remember.

III. The problem admits multiple proofs, both geometric and algebraic.
Most people would not suspect that the ability to set up and solve systems of linear
equations would help us to draw better, but that is exactly what we have shown.
Moreover, as implied at the end of Solution 2, the ability to do proofs by mathematical
induction can help us to draw better still! Strictly geometric proofs are of course
possible, too.

IV. Once arrived at, the solutions are easy to remember and rewarding to
use. Using the solutions in drawing is an important part of the payoff. A toolbox
of solutions to various problems allows anyone to show off their newfound skills and
create drawings that hold their own even with the work of art majors on the same
assignment. The drawing on the left of Figure A-13 by Tim Nelson, a math education
major, solves several interesting problems and pays homage to a clever solution by
two other students.

The geometric design that appears on two faces of the building is a correctly
rotated version of the embellished square on the right of Figure A-13. This design
was created by Jenna, an art major, to correctly divide a square into fifths in both
directions. She developed the design in the process of seeking beauty and symmetry as
well as accuracy in her solution. When Jenna needed help proving her solution at the
blackboard, Tia, a biology major, leapt to her aid, having independently discovered
the same solution. Tim’s homage to Jenna and Tia is a visual acknowledgment that
real mathematics is an art form requiring both sides of the brain!

V. The solutions capture the essence of mathematical research. It is not
surprising that Jenna found a superior solution by seeking beauty and symmetry for
their own sake—rather, it is a common success story in mathematics. It’s the job of
mathematicians to seek beautiful patterns, secure them with logic, and exploit them
for further investigations. This work also includes: groping; fumbling; experimenting;
seeking alternate solutions, generalizations, and applications; collaborating with col-
leagues whose skills complement one’s own; and in the end, savoring and sharing the
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results for the sheer joy of creation and discovery. In an authentic and uncontrived
way, problems in perspective embody each of these characteristics, and do so at a
level that is accessible to every student.

1/5 2/5 3/5 4/50 1

4/5

3/5

2/5

1/5

1

Figure A-13. Homage to a solution (left), and the solution of Jenna and Tia (right).

Chapter 5

Example 1. The hint for this example applies to the other Chapter 5 examples as
well. The dashed semicircle V1EV2 in Figure A-14 is the same as the horizon-
tal “viewing circle” (actually a semicircle) in Figure 5.4. The viewpoint E in
Figure A-14 lies on the viewing circle, and it must also be directly opposite the
viewing target T , which lies at the center of the uncropped photograph. That
is, the line

←→
ET must be perpendicular to the picture plane.

Unfortunately, photographs and drawings do not come with attached, trans-
parent, horizontal shelves on which we can draw horizontal viewing circles and
locate viewpoints. Instead, we imagine rotating the dashed viewing circle about
the horizon line

←−→
V1V2 until it becomes the solid semicircle V1UV2 in the picture

plane. The point E rotates into the point U , which we can locate. To do this,
we draw the semicircle V1UV2, locate T as the intersection of the diagonals of
the photograph, and then draw

←→
TU perpendicular to

←−→
V1V2. Finally, we imagine

rotating the entire construction about
←−→
V1V2, back up into a horizontal position

so that U becomes E. That’s why TU is the viewing distance.

NOW HEAR THIS: It is absolutely essential that you use this kind of reasoning
in the rest of the examples. In particular, think of every circle in the examples
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as having two incarnations: a version in the picture plane (which is practical to

draw), and a version rotated 90◦ about
←−→
V1V2, so that it lies in the horizon plane

and sticks out horizontally from the picture plane. This second version can’t
be drawn, but your eye must lie on it in order to view the picture correctly.
Obviously you will need to draw lots of top and side views of the viewer, the
picture plane, the object being drawn or photographed, the vanishing points,
the circles, etc. Draw, draw, draw!

V
1

V
2

V
2

V
1

viewing circle in

horizon plane

viewing circle rotated

into picture plane

T

U

E

Figure A-14. A circle with two incarnations: the dashed, horizontal viewing circle (actually
a semicircle) in the horizon plane, and a solid version of it that has been rotated 90◦ about
←−→
V1V2 to lie in the picture plane. The viewpoint E rotates into the point U .

Example 4. This hint is also helpful for Example 5. The point V3 in Figure 5.14
(also shown in Figure A-15) is directly above V2, and it is the vanishing point
of a diagonal of the dark face of the building. Now refer to Figure A-15. From
any point on the dashed horizontal circle centered at V2, the line of sight to
V3 has angle of elevation α. These lines of sight generate a cone whose apex is
V3. From the correct viewpoint, a viewer’s line of sight to V3 must be parallel
to the diagonal on the actual building, hence this line of sight must have angle
of elevation α. The viewpoint must therefore lie somewhere on the dashed
horizontal circle, because these are the points in the horizon plane from which
one looks up to V3 with angle of elevation α.

The solid circle in the picture plane centered at V2 is obtained by rotating the
dashed circle about

←−→
V1V2. Now assume we know the angle α for the actual
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building. In practice, we draw α as indicated to locate the point S on the
horizon line

←−→
V1V2, and then draw the solid circle in the picture plane with radius

SV2 centered at V2. Now see if you can explain the rest of the construction in
Figure 5.14.

α

V1

V2

V1

horizontal circle

centered at V2

V3

V2

S

circle in picture

plane centered at V2

Figure A-15. The point V3, which is directly above V2, is the vanishing point of the dashed
diagonal of the dark face of the building. From any point on the dashed horizontal circle
centered at V2, the line of sight to V3 has angle of elevation α. The solid circle in the picture
plane centered at V2 is obtained by rotating the dashed circle about

←−→
V1V2.

1. (a) 90 deg (b) 45 deg (c) 45 deg (d) 90 deg (e) 45 deg (f) 45 deg

3. Compare this to Exercise 2 in Chapter 3. The dimensions of the building fall
approximately into the triple ratio

height : white length : gray length = 1 : 1.3 : 0.82,

so the white face is about 65 feet wide and the gray face is about 41 feet wide.
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4. Compare this to Exercises 6 and 7 in Chapter 4.

5. Compare this to Exercise 4 in Chapter 4.

7. Compare this to Exercise 8 in Chapter 4.

10. Compare this to Exercise 8 in Chapter 4.

Chapter 6

7. Here is one possible solution. If the three main vanishing points form an equi-
lateral triangle whose sides are all 22 inches long, then standard (but careful)
geometry, together with the formula for viewing distance in Theorem 6.2, shows
that

d =
√

(22/
√

3) · (11/
√

3) ≈ 9.

So perform these steps in order. Draw the principal vanishing points Vi on this
large equilateral triangle. Create the feet of the altitudes Fi by measuring 11
inches on each side of the triangle, and then draw the altitudes themselves. Mark
off each of the Wi on an altitude exactly 11 inches from the corresponding Vi.
From each of these Wi, draw a small 1× 2, 1× 3, or 2× 3 rectangle and extend
the diagonals out to the edge of the equilateral. It is tricky at this stage to
keep track of which orientation each rectangle should have (should it be 1 × 2
or 2 × 1?). Choose an arbitrary line segment that (if it were to be extended)
would pass through some vanishing point Vi. From this point on, everything is
determined.

Another possibility arises after we have marked off each of the Wi points. Doing
this step creates a cube in the center of the picture; we could use the fence
dividing (or fence expanding) techniques of Chapter 4 to divide (or add onto)
this object to create a 1× 2× 3 rectangle.

Chapter 7

3. There are several ways to do this; here we describe one way. First locate the
viewing target T at (or even off) one edge of the paper, draw a horizontal line
L though T , and add the point U one inch below T . Now draw any semicircle
passing through U whose diameter lies along the horizontal line L. The diameter
should be large enough that C (one intersection point of the semicircle and the
line L) lies in the piece of paper where you will draw your grid. Label the other
intersection point V . Using V as the center, draw a second semicircle with
radius UV , and use this circle to identify the point V1 directly above or directly
below V . Now you can draw the grid using lines that pass through V (images
of horizontal lines), a diagonal construction line to V1, and vertical lines.
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Chapter 8

Caption of Figure 8.16.

0 1

1

1/2

1/2

P
g◦g(P)

outline of  g(P)

P

0 1

1

1/2

1/2

outline of  f(P)

f◦f(P)

Figure A-16. Answers to questions in the caption of Figure 8.16. Note that f ◦ f(P ) shrinks
and flips the picture of f(P ) through the diagonal and places that flipped picture in the
bottom right corner. Similarly, g ◦ g(P ) shrinks the picture of g(P ) and moves it without
flipping to the bottom left corner.

Caption of Figure 8.19.
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Figure A-17. Answers to questions in the caption of Figure 8.19.
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Exercise for Figure 8.20.

P

(a)

PP

P

(b)

P
P

P

(c)

PP
P

(d)

P
P

Figure A-18. Solutions to the first four exercises of Figure 8.20. For the fractals in (a) and
(c), the symmetry means there are 8 correct solutions because we are allowed to reflect each
“P” through its stem.

Remark. For problems galore of a similar type, see the website called Dave Ryan’s
Fractal World. An intro to “Regular Square Fractals” is at

www.angelpage.co.uk/fractalworld/week3.htm

and all 232 “Regular Square Fractals” are displayed at

www.angelpage.co.uk/fractalworld/square.htm

Chapter 9

1. (b) Rule (L3).

(d) Rule (L1).

(e) Rules (L3) and (L5). Rule (L7).

2. (a) log 10 = 1; log 1 = 0.

(b) log s = x0, because log N = log 1 = 0. By measuring we get x0 ≈ 0.85, so
s ≈ 100.85 = 7.2.

(c) log s = x3, because log N ≈ 1.

(e) The horizontal separation between the points is log 2 ≈ 0.301.

(f) The horizontal separation would change from log 2 to log 3 ≈ 0.477.

3. There are many possible correct answers.

4. (a) s = 1/2 and N = 3.

(b) s = 1/4 and N = 9.

(c) s = 1/8 and N = 27.

(d) s = (1/2)m and N = 3m.

(e) D = log2 3 = log(3)/ log(2).
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5. The similarity dimension of the Sierpiński triangle is again D = log2 3 =
log(3)/ log(2). Indeed, the similarity dimension of each of the fractals in Figure
8.20 is D = log2 3 = log(3)/ log(2).

6. Both fractions are the same number: log(64)/ log(9) = log(82)/ log(32). (We
can use logarithm rule (L5) to get the desired equality.)

7. There are many correct answers. For part (b), for example, you could draw a
fractal such that the first iteration has 5 nonoverlapping boxes, each one-third
the size of the original box.

8. The similarity dimensions of a square, line segment, and cube are 2, 1, and
3—as you would expect.
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Appendix: Information for

Instructors

This section contains three parts: advice on window taping, a sample timetable for a
first-year seminar course based on Viewpoints, and a list of additional writing assign-
ments. The timetable and writing assignments describe what Annalisa Crannell does
in her class, which fulfills a writing requirement at Franklin & Marshall College.

Tips for Window Taping

The best way to gain a true understanding of perspective is to do the real thing.
The window-taping exercise discussed in Chapter 1 is an enjoyable activity that forms
an important basis for understanding everything that comes later. In order for the ac-
tivity to be successful, instructors should follow a few simple tips, the most important
of which is:

1. Never have your students tape a window that you haven’t already
taped yourself. In fact, following this tip makes the other tips almost superfluous,
because most will become obvious in the process. You will need to find windows to
accommodate teams of 2–3 students for each tape drawing. You (with the aid of
a helper or two) should tape from each viewpoint beforehand to see where the best
viewpoints are, whether the views and resulting images are appropriate, and how long
it takes to get a reasonably nice and instructive image. Lacking good windows, you
can use large sheets of 1/4-inch Plexiglas propped on tables as shown in Chapter 1.
In this case each team should have 4 students: one to direct, one to tape, and two to
hold the Plexiglas.

2. Use half-inch drafting tape. Masking tape will do, but drafting tape from
an office supply store is easier to find in a skinny width, and it’s less sticky, which
makes for fast and easy cleanup when you’re done.

3. Encourage students to tape the most important and instructive fea-
tures first. You’ll know these for each drawing by following tip #1. In just a single
class period you won’t get masterpieces, but by gently encouraging students to tape
the most important and instructive features first, they will see enough to realize Ob-
servations 1 and 2 of Chapter 1. Indeed, that’s the point—for the students’ own
work to reveal these observations. A single wall with windows can be enough, but in
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this case the wall must not be parallel to the plane of the window. Also note that
it’s important to get at least three lines converging to a vanishing point, because it’s
trivial that two coplanar, nonparallel lines will intersect somewhere.

4. Continually remind art directors to keep one eye closed, and to check
the position of their viewing eye. The existing tape should always appear to align
with the real-world objects it represents, before instructing tape artists to lay down
new tape. Otherwise the students will wind up with an inconsistent drawing done
from several viewpoints.

5. Keep a pair of shish kebab skewers handy so you can surreptitiously
check the convergence to vanishing points. That way you can redirect students
if their drawing is out of kilter at an early stage. Simply have them assume the
viewpoint and see that not all the tape simultaneously aligns with the objects outside
the window.

6. Never have your students tape a window that you haven’t already
taped yourself. Redundant, yes, but it can’t be overemphasized!

Timetable

Because of the time Crannell spends on writing, her class spends most of its time
at the beginning and at the end of this book: she skims quickly through the chapters
on two-point and three-point perspective (largely omitting questions of viewing dis-
tance), and touches hardly at all on the chapter on anamorphic art (although, as we
noted above, the students have a semester-long research assignment which appears in
that chapter). If Crannell had less writing in the course, those chapters would get
significantly more time and attention during the semester.

Crannell supplements the Viewpoints book with several additional pieces:

Edwin A. Abbott, Flatland: A Romance of Many Dimensions, Dover Publications,
Inc., New York (1992).

Robert Devaney, The Chaos Game, from http:// math.bu.edu/DYSYS/applets/chaos-
game.html.

David Hockney, David Hockney’s secret knowledge (videorecording produced and
directed by Randall Wright), a BBC Production, Princteon, N.J. (2004).

Plato, “The Allegory of the Cave,” from The Republic, Book VII, available, for
example, at http://www.historyguide.org/intellect/allegory.html.

Henry M. Sayre, Writing About Art, Prentice Hall, New York (1995).

Before the semester begins:
Read: “The Allegory of the Cave,” from Plato’s Republic, Book VII.
Draw (or create): Diagram that explains what was happening in the cave.
Write: One-page paper. (See Socrates assignment.)
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Week 1: Window-taping exercise as an experiential introduction to perspective,
discuss summer assignments, share and discuss papers and artwork.

Math/Art Homework: Buy supplies.
Write: Rewrite Socrates assignment.

Week 2: Introduction to the Plan View for perspective; coordinate systems. Visit
the Writing Center. Read selected essays from previous week and discuss use of detail
to support a thesis. Interview professors for next week’s paper.

Read: Chapters 1 and 2 of the textbook.
Math/Art Homework: From Chapters 1 & 2 of book.
Write: Taping Exercise.

Week 3: Introduction to the library. Visit computer workroom and create Excel
spreadsheet for drawing a house. Three-dimensional coordinates. Algebraic formulas
for projecting these points on a picture plane. Misplaced modifiers.

Read: Finish Chapter 2.
Math/Art Exercises: Draft of Excel House.
Write: How to succeed in your classes.

Week 4: What is a vanishing point? How to draw a cube in one-point perspective.
First encounter with viewing distances. How to quote and paraphrase. Using other
sources to support your thesis.

Read: “Using Outside Sources” handout from the Writing Center; also an artist
vignette from the textbook.

Math/Art Exercises: Finish Excel House.
Write: Either first multipage paper, or else choice of one-page paper—“Blind

Copying Paper” or “Vignette Summary.”
Week 5: Read, mark up, and discuss 5 student papers. Visit art gallery; view-
ing distance exercises. Poster gallery; more viewing distance with 1- and 2-point
perspective. Start 1-point perspective sketch of hallway.

Read: Student essays.
Write: Same as last week.

Week 6: Read, mark up, and discuss 5 student papers. Computing viewing distances
when there is no image of a square, from 1× 2 and other rectangles. Begin to sketch
images of 3-D letters, with an emphasis on correct width and depth.

Read: Student essays.
Math/Art Assignment: Sketch your hallway in 1-point perspective.
Write: Same as last week.

Week 7: Read, mark up, and discuss 6 student papers. Begin “fence” problems
from Chapter 4. Active and passive voice.

Read: Textbook, Chapter 3.
Math/Art Assignment: Write a word that is at least 4 letters long in 1-point

perspective.
Write: Active/Passive paper.

Week 8: Fall Break. Revisit passive/active voice. More fence problems: can you
double the fence? divide it into 3 pieces?

Read: Chapter 4.
Write: Rewrite your least favorite paper.
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Week 9: Perspective with irregular objects. Art field trip to a coffee shop; add
a “poster” to the wall in your hallway sketch. Drawing square floor tiles in 1- and
2-point perspective (and how do you know they’re “squares” and not rectangles?).

Read: Anamorphic Art chapter.

Math/Art Assignment: Finish “poster on a wall” sketch.

Write: What kinds of math are in your piece of art?

Week 10: Drawing in 2-point and 3-point perspective. “What’s my line?” game.

Read: Chapter 5.

Math/Art Assignment: Draw a 4-letter word in 2-point perspective.

Write: “Viewing distance paper.”
Week 11: Introduction to Fractals. Fractal dimension. Iterations and the “Chaos
Game.”

Read: Chapter 8.

Math/Art Assignment: Hausdorff dimension of self-similar objects.

Write: Second multipage paper.

Week 12: Using fractal software; connection between an iterated function system
to the generated fractal. Sketching fractal “cauliflower.”

Math/Art Assignment: Finish fractal cauliflower.

Read: Student papers.

Write: “Course summary paper.”

Week 13: Thanksgiving Break. Iterations with rotation and reflection.

Math/Art Assignment: Draw a fractal tree.

Read: Chapter 9.

Week 14: Iterations with rotation and reflection. Recovering the original function
system from an existing fractal. Dimension of the Chesapeake Bay. Introduction to
the fourth dimension. The Hypercube.

Read: Flatland, pages 1–52.

Math/Art Assignment: Given several fractals, uncover original transformation,
check by plugging these into fractal software; print it out.

Week 15: Flatland and art. Hockney’s video on optical devices in Renaissance art.

Read: Flatland, pages 53–83.

Math/Art Assignment: Sketch person & cube passing through Flatland.

Write: Flatland/“Allegory” Paper.

Mathematics of Art Writing Assignments

These short (one page) writing assignments complement and intermingle with
longer papers that form the basis for a semester-long research project—see the last
exercise in Chapter 7.

Socrates Paper: Socrates, in “The Allegory of the Cave,” claims,

Some persons fancy that instruction is like giving eyes to the blind, but
we say that the faculty of sight was always there, and that the soul only
requires to be turned round towards the light.
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Do you agree? Give me an example of a time you learned something important to you.
Was it more like “getting eyes” where you had been blind, or more like discovering
something you already somehow knew? You will turn in this essay on the first day of
class, and your preceptor and I will both get a chance to read it over. We are hoping
to use this as a chance to get to know you and how you learn— so it’s better to be
honest than to say what you think some stuffy old college professor might like to read.
(Of course, we’re also trying to get a feel for your writing style.)

Taping Exercise: In a one-page paper, describe what we did in the taping exercise
on the first day of class. Include not only the details of what we did, but some of the
lessons that you learned from the exercise. If there are confusions or questions that
you have, feel free to include those, too.

I am interested in this paper partly for feedback reasons (that is, I want to see if
what you learned is what I thought you learned). I also want you to practice using
correct, descriptive terminology (distinguishing between objects and their images).

How to Succeed in Your Classes: Over the course of [the first week of class],
I want you to interview your professors; ask each of them what is the best way to
study for their class. You will write an essay based on what they tell you, so take
good notes as you interview them. For your paper, describe something worth noting
that you learned from talking to your professors. Perhaps you discovered that they
all emphasized the same idea; perhaps they were wildly different in their approach.
Perhaps you heard just what you expected to hear (and that surprised you), or perhaps
you learned something new by talking to them.

As I read this paper, I will pay attention to your ability to develop a thesis and to
support that thesis with specific details.

Blind Copying Paper: In class, we’ll do a “blind copying” exercise, in which you
will get to tell one of your classmates how to draw a picture that only you can see. In
this paper, you will try to describe a picture in much the same way. That is, you will
choose a picture (perhaps the one you used in class, perhaps the piece you’re using
for your long papers) and describe it in detail as though explaining it to somebody
who hasn’t seen it.

The point of this assignment is to turn a picture into words: to use clear, concise
language in a way that evokes an image (perhaps even the mood of that image).
Organization and coherence will be important parts of presenting your piece clearly.
You may find it helpful to read Writing About Art.

Vignette Summary: Choose one of the artist vignettes from this textbook. What
is the main point the artist is trying to make in his or her essay? Summarize the
parts of the essay that support this point (or if you think the artist did not support
that point well, say so).

The point of this paper is this: I want you to commit to a thesis, and then
use judicious and accurate evidence from a text to support your argument. Do you
understand what your author is actually saying? Can you paraphrase accurately? Do
you include relevant quotations correctly? Can you construct an argument in support
of your own thesis, even though other people could reasonable argue a different thesis?
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Active/Passive Paper: Write one page with two paragraphs about your art
project. (The two paragraphs can be two different topics, or the second paragraph
might continue the topic that the first paragraph starts.)

You should write one of these paragraphs entirely in the active voice.
The other paragraph should be written (by you) entirely in the passive voice.
There should be no neutral verbs anywhere on the page.

Math in Your Piece of Art: I have put you into groups based on mathematical
similarities in your artwork. You should meet with your groups and figure out what it
is about your pieces that are mathematically similar. Since each of your artworks are
different, your analyses will be different, too, and so I can’t tell you in general terms
what you ought to include. But I have strong opinions about each of your pieces
individually! To help you think about your paper, I want you to meet in these groups
and work together before your 1-page paper is due.

You should jointly think out loud about good approaches to take. In this paper,
you will tell me what kinds of mathematical aspects you intend to explore in your
next 4-page paper. Being specific about how this relates to your piece of art will help.
For example, saying “I will draw a plan view” isn’t specific. Saying, “I will probably
have to draw 3 different plan views, so that my readers can see the top of the building,
the side of the building that they think they see, and the side of the building that
they actually see,” is much better.

What am I looking for as I grade this?
• Content: I am looking to see that you’ve thought seriously about several things:

your piece, what we’ve learned in this class, and how those two things do (or even
cooler, don’t) fit together.
• Honesty. If you have questions about what you’re going to say in your 4-page

paper, bring those up! If you’re uncertain about which of two approaches you might
take, say so. I want to use this paper to guide you. I don’t want Serious Baloney
(BS).
• Good exposition. As always.

Viewing Distance Paper: In this one-page paper, you will choose a painting that
uses correct perspective, and you will describe, step-by-step, how to determine the
viewing position. This means that you will need to find a fairly decent image of the
painting and also to know its original size, so you will need to include the citation
for the book/website/museum where you found your figure you use as well as for
the information about its size. It also means that I expect you to give me an actual
number for the viewing distance (with units and everything)!

I expect you to use the mathematicians’ “we” together with vigorous, active voice,
as in,

To locate the primary vanishing point, we can extend the red lines along
the left and right sides of the desk. We see that these points meet at the
saint’s right eyebrow.

Some possible paintings you might use include these:
Jacques-Louis David, Oath of the Horatii (1784)
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Raphael, Marriage of the Virgin (1504)
Piero della Francesca, The Flagellation (probably 1455–1460)
Perugino, Giving of the Keys to St. Peter (1581–1582)
Beccafumi, Stigmatization of St. Catherine (1518)
Tintoretto, Transport of the Body of St. Mark (1562)
Fra Filippo Lippi, Feast of Herod (1452–1466)
Botticelli, Annunciation (1489–1490)
Leonardo da Vinci, The Last Supper (1495–1498)

Course Summary Paper: This paper has varied over the years. One version I
use runs along the lines of, “We have done very little with numbers or equations this
semester, and it would be easy to argue that this is not a math course. Have we
really been doing math? Decide for yourself and defend your answer with specific
examples.” Another version asks students to write a 150-word catalog description for
the course.

Flatland/“Allegory” Paper: Both Abbott (in Flatland) and Plato (in “The
Allegory of the Cave”) describe a character who sees only two dimensions for the
greater part of his life, then suddenly encounters a 3-dimensional world, and who
returns to his original 2-D world with a knowledge that none of his compatriots
can share. Each story ends with questions about the obligation of a person who has
knowledge and the effect that new knowledge can have for a society that is comfortable
in the lack of that knowledge.

In this essay, I want you to focus not on knowing the world in a new way, but in
seeing the world in a new way. Compare (or contrast) the kind of sight that Plato’s
returned cave dweller gains with the sight that Abbott’s Mr. Square gains.
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Annotated References

History of Linear Perspective

1. Andersen, K. 2006. The Geometry of an Art: The History of
the Mathematical Theory of Perspective from Alberti to Monge.
New York: Springer.

This is probably the most comprehensive history of the math-

ematics of artistic perspective.

2. Andersen, K. 1992. Brook Taylor’s Work on Linear Perspec-
tive: A Study of Taylor’s Role in the History of Perspective
Geometry. Including Facsimiles of Taylor’s Two Books on Per-
spective. New York: Springer-Verlag.

3. Dürer, Albrecht. 1977. The painter’s manual : A manual of
measurement of lines, areas, and solids by means of compass
and ruler assembled by Albrecht Dürer for the use of all lovers
of art with appropriate illustrations arranged to be printed in
the year MDXXV. New York: Abaris Books.

This work, like Euclid’s Elements, is a classic that is still

worth reading today.

4. Hockney, D. 2006. Secret Knowledge: Rediscovering the Lost
Techniques of the Old Masters. New York: Viking Studio.

In this book, the prominent artist David Hockney presents

his convincing and widely known—but controversial—theory

that many Renaissance artists used optical devices to create

their highly realistic portraits and still life paintings. The

paintings Hockney discusses are largely of people rather than

of linear objects, and therefore not directly related to the

material in this Viewpoints book, but it is a beautiful book

and well worth reading.
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5. Leonardo da Vinci [Trans. McMahon, A. P.]. 1956. Treatise on
Painting [Codex urbinas latinus 1270 ]. Princeton: Princeton
University Press.

Leonardo da Vinci wrote copious notes for a book on per-

spective – mathematical and optical – that he never pub-

lished. This work contains a reproduction of the Italian text

which is a compilation by Francesco Melzi of notes from

the original manuscripts of Leonardo, together with English

translations.

6. Taylor, B. 1715. Linear Perspective. London.

7. Taylor, B. 1719. New Principles of Linear Perspective. London.

Brook Taylor, a mathematician who gave his name to the

famous “Taylor’s Series,” wrote several influential books on

the mathematics of perspective.

Modern Articles on the Viewpoint

8. Adams, K. R. 1972. Perspective and the viewpoint, Leonardo,
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acute triangle, 86
Adams, Ansel, 180–181
Adobe Illustrator, 153
affine transformation, 174, 176
altitude diagram, 94
altitudes of a triangle, 88
Ames Room, 131
anamorphic art, 117–130
art director, 1, 216
attractor, see Iterated Function System

BBC, 180
Beever, Julian, 133
Boeing, 180
Borneo, see coast of Borneo
Bosch, Robert, 77
Britain, see coast of Britain
Bryce, 178–180
Buscema, John, see superheroes

cauliflower
curve, see curve
as a fractal, 140

center of a rectangle, 46, 119
Cheng, Li, 181–182, 184
Chesapeake Bay

exercise, 190
chessboard, 50
Chinese drawing and painting, 161
Chirico, Giorgio de, 132
coast of Borneo, 169–171

exercise, 188–190
coast of Britain, 164–166, 169

exercise, 188
Cochran, William, 133
compass dimension, see dimension

composition of functions, 152–153
contracting similitude, see similitude
Cook, Norman, 131
coordinate system, see xyz-coordinates
cratering patterns

practice exercise, 148–150
cube

in one-point perspective, 33
exercise, 37

similarity dimension
exercise, 192

in six-point perspective, 105, 115
in three-point perspective, 98

exercise, 110, 111
in two-point perspective, 70

exercise, 74
cubes, measuring with, 167–169
curve

cauliflower
compared to surface, 178–179
practice exercise, 143

Koch, see Koch curve
self-affine, 174–176
self-similar, 162–164, 174

d, see viewing distance
Dali, Salvador, 131
DC Comics, see superheroes
De Mey, Jos, 131
del Prete, Sandro, 131
dimension

divider (compass), 164, 169
exercise, 188–191
steps for finding, 169–171

similarity
exercise, 191–192
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distortion, 35, 45, 62, 74, 97, 117
divider dimension, see dimension
dominoes, 78
drafting tape, 1
duplicating a rectangle, 47

exercise, 51

Educational Materials Development, viii
Escher, M. C., 131, 194
Ever After, 138
exponents

review of, 184–187

Fallingwater, 182–184
fenceposts, 48–51, 75, 119
flag, 76
forced perspective, 135
Ford, Henry, 31
fractal, 140, 194

dimension, 161–192
geometry, 139–192
illustration software, 178–180
interpolation function, 174
size of, see size of a fractal
surface, 178–179

fractals in art
Japanese woodblocks, 142

Franklin & Marshall College, viii, 42, 49
Fukuda, Shigeo, 132
Fuller, Buckminster, 131
function, 150

iterated, see Iterated Function System

Galante, Peter, 25
GeoGebra, 57
Geometer’s Sketchpad, 57
geometry

fractal, see fractal
of nature, 161–164

The Golden Compass, 180
Goodfellas, 138
Grand Tetons, 174–175

Hamaekers, Mathieu, 132
head-to-height ratio, 5–7
Hiroshige, Ando, 142

Hitchcock zoom, 136
Hockney, David, 132
Hokusai, Katsushika, 142, 174
Holbein, Hans the Younger, 117
Holbein, Hans the younger, 123
horizon, 59, 119
horned sphere, 159–160
Houle, Kelly, 131
house

in Excel, 18, 20
by hand, 55, 73, 98

Hughes, Patrick, 131
human proportions, 5–6

IFS, see Iterated Function System
image

perspective, see perspective
of a set under a function, 150–156

Indiana University, viii
Industrial Light and Magic, 180
Iterated Function System, 142, 150–156

attractor, 153, 155–156
IUPUI, 1, 9

Japanese woodblocks, 142
Jaws, 138
Jurassic Park, 15

Koch curve, 162
in art, 174
divider dimension, 171–172

exercise, 191
similarity dimension

exercise, 191
variations, 172–173

Koch, Helge von, 162

Lee, Stan, see superheroes
Lessons in Mathematics and Art, vii
letters in perspective, 51, 74
li, 161
Lichtenstein, Roy, 131
lightning (as a fractal), 144–145
line segment

similarity dimension
exercise, 192
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Lineform, 153, 176
logarithm, 165

review of, 184–187
The Lord of the Rings, 138

Mandelbrot set, 194
Mandelbrot, Benoit, 140, 162, 164, 176, 180
Marvel Comics, see superheroes
masking tape, 1, 29, 43, 44

vs. drafting tape, 1
Mathematical Association of America, viii
Mathematics Throughout the Curriculum project, viii
measuring

dimension, see dimension
in perspective, 46, 51, 55, 72

Michelangelo, 81
Mitchell, Kerry, 193
MojoWorld, 178–180
Mona Lisa, 78
moon

fractal surface
practice exercise, 149–150

in perspective, 38
mountain skyline, 174
Musgrave, F. K., 180

NASA, 180
Goddard Space Flight Center

exercise, 190
National Science Foundation, viii
nature

geometry of, see geometry
Neefs, Peter the Elder, 35

one-point perspective, 31, 43
optimization, 77
Orosz, Istvan, 131
orthocenter, 89–95
orthogonal, 31, 64, 89, 96

Pandromeda, Inc., 180
parallel

line and plane, 2, 43, 44, 60
line of sight, 30

pedagogical approach, vii
Penrose, Roger, 131

perspective
forced, 135
game, 10, 55
grid, 121, 127
image, 43, 45
letters in, 51, 74
one-point, 31, 43
rules, 43, 55, 75
setup, 13
six-point, 106, 114
theorem, 15
three-point, 85
two-point, 59, 75

Pfahl, John, 133
photograph, viewpoint for, 64, 65, 91

exercise, 72
photography, 11, 25, 41, 49, 132, 135, 158
picture plane, 4, 13, 30, 59, 119
Pirates of the Caribbean 2, 180
pointillism, 80
Professional Enhancement Program (PREP), viii

quality of line, 175–177

Reutersvärd, Oscar, 131
Richardson, Lewis Fry, see coast of Britain
Rose, Jim, 39
Ross, Alex, see superheroes

self-affine
curve, see curve, self-affine

self-similar
curve, see curve, self-similar

self-similarity, 140, 141
Seurat, Georges-Pierre, 80
shish kebab skewers, 35, 216
sidewalk, 50, 133
Sierpiński, Wac law, 145
Sierpiński carpet

and cratering patterns
practice exercise, 148–150

practice exercise, 148
similarity dimension

exercise, 191–192
Sierpiński Crater, 149
Sierpiński triangle (gasket)
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divider dimension
exercise, 190–191

as IFS attractor, 153–154
practice exercise, 145–147
similarity dimension

exercise, 191
similarity dimension, see dimension
similitude, 153

contracting, 150, 153
six-point perspective, 106, 114
size of a fractal, 166–169
skyscraper paradox, 85, 100
smiley face, 119–120
Sony Pictures Imageworks, 180
spreadsheets

drawing a house with, 18
square

area of, 167–168
length of, 166–167
measured with cubes, 167–169
unit, see unit square
volume of, 167, 168

Star Trek Nemesis, 180
Stealth, 180
step size, 164–166, 169, 170, 172

exercise, 188–191
Stone, Sherry, 9
superheroes, 6, 9

talent gene, 157
Taoism, 161
tape, see masking tape
target, see viewing target
Termes, Dick, 104, 113, 131
Terragen, 178–180
three-point perspective, 85
train tracks, 65
Traveling Salesman Problem, 81
tree (as a fractal), 141–142

practice exercise, 143
practice exercise I, 117

trompe l’oeil, 132
two-point perspective, 59, 75

U.S. Air Force, 180

unit square, 150
similarity dimension

exercise, 192

vanishing point, 2, 29–30, 119
Vanishing Point Theorem, 30
vanishing points, many, 98
Velazquez, Diego, 5
viewing distance, 14, 17, 32, 47, 62, 64, 92, 102, 123

exercise, 37, 71, 109
and pointillism, 80

viewing hemisphere, 87
viewing semicircle, 61, 87, 98
viewing target, 64, 89, 90, 109
viewpoint, see viewing distance, viewing target
viewpoint triangle, 88
Viewpoints workshops, vii
VUE, 178–180

Wagner, Teri, 157
Walt Disney Pictures, 180
Warhol, Andy, 81
Watts, Alan, 161–162
Weta Digital, 180
What’s My Line?, 55
The Wicker Man, 180
windows

drawings of, 11, 20, 73, 100
as picture planes, 1, 43, 44, 60, 133
Plexiglas, 1
tips for taping, 215–216

Wright, Frank Lloyd, 182–184

xy-coordinates, 3
xyz-coordinates, 3–4, 13–22

Yoshitoshi, Ikkasai, 142
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