



# CULUS METHOL

# REVIEW OF BASIC CALCULUS FOR BUSINESS, BIOLOGY & PSYCHOLOGY MAJORS

# **LIMITS & CONTINUITY**

- $\lim_{x \to \infty} f(x) = L$  if f(x) is close to L for all x sufficiently close (but not equal) to a.
- f(x) is continuous at x = a if:
- 1. f(a) is defined,
- 2.  $\lim f(x)=L$  exists, and
- 3.L=f(a)

# **INTEGRALS**

### THE DEFINITE INTEGRAL

- LET f(x) BE CONTINUOUS ON [a, b]
- 1. Riemann Sum Definition of Definite Integral
  - a. Divide [a, b] into n equal subintervals of length  $h = \frac{b-a}{n}$ .
  - b. Let  $x_0 = a, x_1, x_2, ...., x_n = b$  denote the endpoints of the subintervals. They are found by:  $x_0 = a$ ,  $x_1 = a + h$ ,  $x_2 = a + h$  $2h, x_3 = a + 3h, ..., x_n = a + nh = b.$
  - c. Let  $m_1, m_2, ...m_n$  denote the midpoints of the subintervals. They are found by:  $m_1 = 0.5(x_0 + x_1), m_2 = 0.5(x_1 + x_2), m_3$  $= 0.5(x_2 + x_3), ..., m_n = 0.5(x_n - 1 + x_n).$  $\int f(x)dx \approx h[f(m_1)+f(m_2)+...+f(m_n)].$
- 2. Midpoint Rule:  $\int_{a}^{b} f(x) dx =$  $\lim h[f(x_1) + f(x_2) + ... + f(x_n)]$
- 3. Trapezoid Rule:  $\int_a^b f(x) dx \approx \frac{h}{2} [f(x_0) +$  $2f(x_1) + 2f(x_2) + ... + 2f(x_{n-1}) + f(x_n)$
- 4. Simpson's Rule:  $\int_a^b f(x) dx \approx \frac{h}{3} [f(x_0) +$  $4f(m_1) + 2f(x_1) + 4f(m_2) + 2f(x_2) + ... +$  $2f(x_{n-1}) + 4f(m_n) + f(x_n)$

# THE INDEFINITE INTEGRAL

- F(x) IS CALLED AN ANTIDERIVATIVE OF f(x), IF F'(x) = f(x)
  - 1. The most general antiderivative is denoted  $\int f(x)dx$ .
  - 2.  $\int f(x)dx$  is also called the Indefinite Integral of f(x).
- Fundamental Theorem of Calculus
- 1. If F'(x) = f(x) and f(x) is continuous on [a, b], then  $\int_a^b f(x)dx = F(b) - F(a)$ .

# **INTEGRATION FORMULAS**

- $1. \int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$
- 2.  $\int kf(x)dx = k \int f(x)dx$  if k is a constant
- $3. \int u^n du = \frac{u^{n+1}}{n+1} + C$
- $4. \int_{-u}^{1} du = \ln|u| + C$
- $5. \int e^{u} du = e^{u} + C$
- 6. If  $y = f(x) \ge 0$  on [a, b],  $\int_{a}^{b} f(x) dx$  gives
- the area under the curve. b7. If  $f(x) \ge g(x)$  on [a, b],  $\int_a^b [f(x) g(x)] dx$ gives the area between the two curves y = f(x) and y = g(x).
- 8. Average value of f(x) on [a, b] is
- $\frac{1}{b-a} \int_{a}^{b} f(x) dx.$ 9. Volume of the solid of revolution obtained by revolving about the x-axis the region under the curve y = f(x) from x = a to x = b is  $\int_a^b \pi [f(x)]^2 dx$ .

# INTEGRATION BY PARTS

- 1. Factor the integrand into two Parts: u and dv.
- 2. Find du and  $v = \int dv$ . 3. Find Jvdu.
- 4. Set  $\int u dv = uv \int v du$ .

### **INTEGRATION BY SUBSTITUTION**

- TO SOLVE  $\int f(g(x))g'(x)dx$
- 1. Set u = g(x), where g(x) is chosen so as to simplify the integrand.
- 2. Substitute u = g(x) and du = g'(x)dx into the integrand.
  - a. This step usually requires multiplying or dividing by a constant.
- 3. Solve  $\int f(u)du = F(u) + C$ .
- 4. Substitute u = g(x) to get the answer: F(g(x))+C.

### **IMPROPER INTEGRALS**

- INFINITE LIMITS OF INTEGRATION
- $1. \int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$
- $2. \int_{a}^{b} f(x) dx = \lim_{h \to 0} \int_{a}^{b} f(x) dx$
- · IMPROPER AT THE LEFT OR RIGHT ENDPOINTS
- 1. If f(x) is discontinuous at x = b,  $\int_a^b f(x) \, dx = \lim_{h \to -\infty} \int_a^h f(x) \, dx.$
- 2. If f(x) is discontinuous at x = a,

# $\int_a^b f(x) dx = \lim_{h \to \infty} \int_a^h f(x) dx.$

# **DERIVATIVES & THEIR** APPLICATIONS

# **DERIVATIVE BASICS**

# • DEFINITION OF DERIVATIVE

- 1.  $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$
- 2. If y = f(x), the derivative f'(x) is also denoted  $\frac{dy}{dx}$ .
- FORMULAS: 1. Power Rule:  $\frac{d}{dx}(x^n) = nx^{n-1}$
- $2. \frac{d}{dx}(e^{kx}) = ke^{kx}$
- 3.  $\frac{d}{dx}(lnx) = \frac{1}{x}$
- 4. General Power Rule:
  - $\frac{d}{dx}([f(x)]^n) = n[f(x)]^{n-1}f'(x)$
- $5. \frac{d}{dx} [e^{f(x)}] = e^{f(x)} f'(x)$
- 6.  $\frac{d}{dx}[lnf(x)] = \frac{f'(x)}{f(x)}$
- 7. Sum or Difference Rule:
  - $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$
- 8. Constant Multiple Rule:

$$\frac{d}{dx}[kf(x)] = kf'(x)$$

9. Product Rule:

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

10. Quotient Rule:

$$\frac{d}{dx} \left[ \frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{\left[ g(x) \right]^2}$$

11. Chain Rule:

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$
, or  $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ 

12. Derivative of an inverse function:

$$\frac{dx}{dy} = \frac{\frac{1}{dy}}{dx}$$

# IMPLICIT DIFFERENTIATION

GIVEN AN EQUATION INVOLVING

FUNCTION OF x AND y, TO FIND:  $\frac{dy}{dx}$ 

- 1. Differentiate both sides of the equation with respect to x, treating y as a function of x and applying the chain rule to each term involving y (i.e.  $\frac{d}{dx}[f(y)] = f'(y)\frac{dy}{dx}$ ).
- 2. Move all terms with  $\frac{dy}{dx}$  to left side and all other terms to the right.
- 3. Solve for  $\frac{dy}{dx}$ .

# **CURVE SKETCHING**

# • STEPS TO FOLLOW IN SKETCHING THE CURVE y = f(x):

- 1. Determine the domain of f(x).
- 2. Analyze all points where f(x) is discontinuous. Sketch the graph near all such points.
- 3. Test for vertical, horizontal and oblique asymptotes.
  - a. f(x) has a vertical asymptote at x = a if:  $\lim_{x \to a^{-}} f(x) = \pm \infty \text{ or } \lim_{x \to a^{+}} f(x) = \pm \infty.$
  - b. f = (x) has a horizontal asymptote y = b if:  $\lim_{x \to \infty} f(x) = b \text{ or } \lim_{x \to -\infty} f(x) = b.$
  - c. Sketch any asymptotes.
- 4. Find f'(x) and f''(x).
- 5. Find all critical points. These are points x=a where f'(a) does not exist or f'(a)=0. Repeat steps 5.a. & 5.b. for each critical point x=a:
  - a. If f(x) is continuous at x = a,
    - i. f(x) has a relative maximum at x = a if:
    - (a). f'(a) = 0 and f''(a) < 0, or
    - (b). f'(x) > 0 to the left of a and f'(x) < 0 to the right of a.
  - ii. f(x) has a relative minimum at x=a if:
    - (a). f'(a) = 0 and f''(a) > 0, or
    - (b). f'(x) < 0 to the left of a and f'(x) > 0 to the right of a.
  - b. Sketch f(x) near (a, f(a)).
- 6. Find all possible inflection points. These are points x = a where f''(x) does not exist or f''(x) = 0. Repeat steps **6a.** & **6b.** for each such x = a:
  - a. f(x) has an inflection point at x = a if f(x) is continuous at x = a and
    - i. f''(x) < 0 to the left of a and f''(x) > 0 to the right of a, or
  - ii. f''(x) > 0 to the left of a and f''(x) < 0 to the right of a.
  - b. Sketch f(x) near (a, f(a)).
- 7. If possible, plot the x- and y- intercepts.
- 8. Finish the sketch.

### **OPTIMIZATION PROBLEMS**

# • TO OPTIMIZE SOME QUANTITY SUBJECT TO SOME CONSTRAINT:

- 1. Identify and label quantity to be maximized or minimized.
- 2. Identify and label all other quantities.
- 3. Write quantity to be optimized as a function of the other variables. This is called the objective function (or objective equation).
- 4. If the objective function is a function of more than one variable, find a constraint equation relating the other variables.
- 5. Use the constraint equation to write the objective function as a function of only one variable.
- 6. Using the curve sketching techniques, locate the maximum or minimum of the objective function.

# QuickStudy. APPROXIMATIONS & DIFFERENTIALS

# • LET y = f(x) AND ASSUME f'(a) EXISTS

- 1. The Equation of the Tangent Line to y = f(x) at the point (a, f(a)) is y f(a) = f'(a)(x-a).
- 2. The differential of y is dy = f'(x)dx.
- 3. Linear Approximation, or Approximation by Differentials. Set  $dx = \Delta x = x a$ ,  $\Delta y = f(x) f(a)$ .

The equation of the tangent line becomes:

 $\Delta y = f'(a)\Delta x = f'(a)dx$ . If  $\Delta x$  is small, then  $\Delta y \approx dy$ .

That is,  $f(x) \approx f(a) + f'(a)(x - a)$ .

4. The *n*th Taylor polynomial of f(x) centered

at 
$$x = a$$
 is  $p_n(x) = f(a) + \frac{f'(a)(x-a)}{1!} + \frac{f'(a)(x-a)}{1!}$ 

$$\frac{f''(a)(x-a)^2}{2!} + \dots + \frac{f^{(n)}(a)(x-a)^n}{n!}$$

### MOTION

#### FORMULA

If s = s(t) represents the position of an object at time t relative to some fixed point, then v(t)=s'(t) = velocity at time t and u(t)=v'(t)=s''(t) = acceleration at time t.

# APPLICATIONS TO BUSINESS & ECONOMICS

# **COST, REVENUE & PROFIT**

- 1.  $C(x) = \cos t$  of producing x units of a product
- 2. p = p(x) = price per unit; (p = p(x) is also called the demand equation)
- 3. R(x) = xp = revenue made by producing x units
- 4. P(x) = R(x) C(x) = profit made by producing x units
- 5. C'(x) = marginal cost
- 6. R'(x) = marginal revenue
- 7. P'(x) = marginal profit

### **COMPOUNDING INTEREST**

# • STARTING WITH A PRINCIPAL P<sub>0</sub>

- 1. If the interest is compounded for t years with m periods per year at the interest rate of r per annum, the compounded amount is:  $P = P_0(1 + \frac{r}{m})^{mt}$ .
- 2. If interest is continuously compounded, *m*→∞ and the formula becomes:

$$P = \lim_{m \to \infty} P_0 (1 + \frac{r}{m})^{mt} = P = P_0 e^{rt}.$$

3. The formula  $P = P_0 e^{rt}$  gives the value at the end of **t** years, assuming continuously compounded interest.  $P_0$  is called the present value of P to be received in t years and is given by the formula  $P_0 = Pe^{-rt}$ .

### **ELASTICITY OF DEMAND**

# • SOLVING FOR X IN THE DEMAND EQUATION p = p(x) GIVES x = f(p)

- 1. Demand function which gives the quantity demanded x as a function of the price p.
- 2. The elasticity of demand is:

$$E(p) = \frac{-pf'(p)}{f(p)}.$$

• DEMAND IS ELASTIC AT p = p0 IF E(p0) > 1

In this case, an increase in price corresponds to a decrease in revenue.

• DEMAND IS INELASTIC AT p = p0 IF E(p0) < 1

In this case, an increase in price corresponds to an increase in revenue.

### **CONSUMERS' SURPLUS**

# • IF A COMMODITY HAS DEMAND EQUATION p = p(x)

Consumers' Surplus is given by

 $\int_0^a [p(x) - p(a)]dx$  where a is the quantity demanded and p(a) is the corresponding price.

# EXPONENTIAL MODELS

# **EXPONENTIAL GROWTH**& DECAY

# • EXPONENTIAL GROWTH: $y = P_0 e^{kt}$

- 1. Satisfies the differential equation y' = ky
- 2.  $P_0$  is the initial size, k > 0 is called the growth constant.
- 3. The time it takes for the size to double is given by:  $\frac{\ln 2}{k}$ .

# • EXPONENTIAL DECAY: $y = P_0 e^{-\lambda t}$

- 1. Satisfies the differential equation  $y' = -\lambda y$ .
- 2.  $P_0$  is the initial size,  $\lambda > 0$  is called the decay constant.
- 3. The half life  $t_{1/2}$  is the time it takes for y to become  $P_0/2$ . It is found by  $t_{1/2} = \frac{\ln .5}{\ln .5} = \frac{\ln 2}{\ln .5}$

## **OTHER GROWTH CURVES**

- THE LEARNING CURVE:  $y = M(1-e^{-kt})$ Satisfies the differential equation y' = k(M-y), y(0) = 0 where M and k are positive constants.
- THE LOGISTIC GROWTH CURVE:

$$y = \frac{M}{1 + Be^{-Mkt}}$$
 satisfies the differential equation  $y' = ky(M-y)$  where B, M and k are positive constants.

# **PROBABILITY**

# **DEFINITIONS**

### • PROBABILITY DENSITY FUNCTION

- For the continuous random variable X is a function p(x) satisfying: And  $p(x) \ge 0$  if  $A \le x \le b$  and  $\int_A^B p(x) dx = 1$ , where we assume the values of x lie in [A, B].
- THE PROBABILITY THAT
- $a \le X \le b$  is  $P[a \le X \le b] = \int_a^b p(x) dx$
- EXPECTED VALUE, OR MEAN OF X Given by  $m = E(X) = \int_{-\infty}^{B} xp(x) dx$
- VARIANCE OF X: Given by  $\sigma^2 = var(X) =$   $\int_A^B (x \mu)^2 p(x) dx = \int_A^B x^2 p(x) dx \mu^2$

# COMMON PROBABILITY DENSITY FUNCTIONS

• UNIFORM DISTRIBUTION FUNCTION:

$$p(x) = \frac{1}{B-A}, \mu = E(X) = \frac{B+A}{2}, var(X) = \frac{(B-A)^2}{12}$$

- EXPONENTIAL DENSITY FUNCTION:  $p(x) = \lambda e^{-\lambda x}$  In this case A = 0  $B = \infty$
- $p(x) = \lambda e^{-\lambda x}$ . In this case, A = 0,  $B = \infty$ ,  $\mu = E(X) = 1/\lambda$ ,  $var(X) = 1/\lambda^2$ .
- NORMAL DENSITY FUNCTION: with  $E(X) = \mu$  and  $var(X) = \sigma^2$  is:

$$p(x) \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi} \sigma} exp \left[ \frac{(x-\mu)^2}{2s^2} \right]$$

# CALCULUS OF FUNCTIONS OF TWO VARIABLES

#### **PARTIAL DERIVATIVES**

- WHERE f(x, y) IS A FUNCTION OF TWO VARIABLES x AND y
- 1.  $\frac{\partial f}{\partial x}$  is the derivative of f(x, y) with respect to x, treating y as a constant.
- 2.  $\frac{\partial f}{\partial y}$  is the derivative of f(x, y) with respect to y, treating x as a constant.
- 3.  $\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial y} \frac{\partial f}{\partial x}$  is the second partial derivative of f(x, y) with respect to x twice, keeping y constant each time.
  - 4.  $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \frac{\partial f}{\partial x}$  is the second partial derivative of f(x, y), first with respect to x keeping y constant, then with respect to y keeping x constant.
- 5. Other notation for partial derivatives:

$$f_{x}(x,y) = \frac{\partial f}{\partial x}, f_{xx}(x,y) = \frac{\partial^{2} f}{\partial x^{2}}, f_{xy}(x,y) = \frac{\partial^{2} f}{\partial y \partial x}.$$

# QuickStudy. DIFFERENTIALS

- If f = f(x, y)
- 1.  $df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = f_x(x, y)dx + f_y(x, y)dy$
- 2. Setting  $dx = \Delta x = x a$ ,  $dy = \Delta y = y b$  and  $\Delta f = f(x, y) f(a, b)$ , if  $\Delta x$  and  $\Delta y$  are both small, then  $\Delta f \approx df$ . That is:  $f(x, y) \approx f(a, b) + f_x(a, b) \Delta x + f_y(a, b) \Delta y$ .

# **RELATIVE EXTREMA TEST**

- TO LOCATE RELATIVE MAXIMA, RELATIVE MINIMA AND SADDLE POINTS ON THE GRAPH OF z = f(x, y).
- 1. Solve simultaneously:  $\frac{\partial f}{\partial x} = \mathbf{0}$  and  $\frac{\partial f}{\partial y} = \mathbf{0}$ 
  - **0.** For each ordered pair (a, b) such that  $\frac{\partial f}{\partial x}(a,b) = 0$  and  $\frac{\partial f}{\partial y}(a,b) = 0$ , apply the
- 2. Set  $A = \frac{\partial^2 f}{\partial x^2}(a,b)$ ,  $B = \frac{\partial^2 f}{\partial y^2}(a,b)$ ,  $C = \frac{\partial^2 f}{\partial x \partial y}(a,b)$  and  $D = AB C^2$ .
  - a. If D > 0 and A > 0, then f(x, y) has a relative minimum at (a, b).
  - b. If D > 0 and A < 0, then f(x, y) has a relative maximum at (a, b).
  - c. If D < 0, then f(x, y) has a saddle point at (a, b).
  - d. If D = 0, then the test fails. f(x, y) may or may not have an extremum or saddle point at (a, b).

# THE METHOD OF LAGRANGE MULTIPLIERS

- SOLVES CONSTRAINED OPTIMIZATION PROBLEMS. TO MAXIMIZE OR MINIMIZE f(x,y) SUBJECT TO THE CONSTRAINT g(x,y)=0
- 1. Define the new function  $F(x, y, \lambda) = f(x, y) + \lambda g(x, y).$
- 2. Solve the system of three equations:

$$a.\frac{\partial F}{\partial x} = 0$$
,

**b.** 
$$\frac{\partial F}{\partial y} = 0$$
, and

c.  $\frac{\partial F}{\partial \lambda} = 0$  simultaneously.

This is usually accomplished in four steps:

Step 1: Solve a. and b. for  $\lambda$  and equate the solutions.

- **Step 2:** Solve the resulting equation for one of the variables, *x* or *y*.
- Step 3: Substitute this expression for x or y into equation c, and solve the resulting equation of one variable for the other variable.
- Step 4: Substitute the value found in Step 3 into the equation found in Step 2. Use one of the equations from Step 1 to find  $\lambda$ . This gives the value of x and y.

### **DOUBLE INTEGRALS**

- 1. If R is the region in the plane bounded by the two curves y = g(x), y = h(x) and the two vertical lines x = a, x = b, then the double integral  $\iint_R f(x, y) dxdy$  is equal to the iterated integral  $\int_a^b \left( \int_{g(x)}^{h(x)} f(x, y) dy \right) dx$ .
- 2. To evaluate the iterated integral

$$I = \int_a^b \left( \int_{g(x)}^{h(x)} f(x, y) \, dy \right) dx$$

- a. find an antiderivative F(x, y) for f(x, y) with respect to y keeping x constant. That is:  $\frac{\partial F}{\partial y} = f(x, y)$ .
- b. Set:  $I = \int_{a}^{b} [F(x, h(x)) F(x, g(x))] dx$ .
- c. Solve this integral. The integrand is a function of one variable.

# DIFFERENTIAL EQUATIONS

- A DIFFERENTIAL EQUATION IS: Any equation involving a derivative. For example, it could be an equation involving  $\frac{dy}{dx}$  (or y', or y'(x)), y and x.
- A SOLUTION IS: A function y = y(x), such that  $\frac{dy}{dx}$ , y and x satisfy the original equation.
- AN INITIAL VALUE PROBLEM also specifies the value of the solution y(a) at some point x = a
- SIMPLE DIFFERENTIAL EQUATIONS can be solved by separation of variables and integration. For example, the equation

 $f(x) = g(y)\frac{dy}{dx}$  can be written as f(x)dx = g(y)dy and can be solved by integrating both sides:  $\int f(x) = \int g(y)\frac{dy}{dx}$ .

# FORMULAS FROM PRE-CALCULUS

# LOGARITHMS & EXPONENTIALS

- 1.y = lnx if and only if  $x = e^y = exp(y)$
- $2. \ln ex = x$
- $3.e^{\ln x} = x$
- $4. e^x e^y = e^{x+y}$
- $5. \frac{e^x}{e^y} = e^{x-y}$
- $6. (e^x)^y = e^{xy}$
- $7.e^0 = 1$
- $8. \ln(xy) = \ln x + \ln y$
- $9. \ln(x/y) = \ln x \ln y$
- $10.\ln(x^y) = y \ln x$
- $11.ln\ 1 = 0$
- $12.ln\ e = 1$

# ALGEBRAIC FORMULAS

- 1. If  $a \neq 0$ , the solutions to  $ax^2 + bx + c = 0$ are given by  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ .
- 2. Point-slope equation of a line:  $y - y_0 = m(x - x_0).$

# **DEVELOP A PROBLEM SOLVING STRATEGY**

# · Three key issues

- 1. Understand the business or scientific principle required to solve the problem.
- 2. Develop a correct mathematical strategy.
- 3. Logically approach solving the problem.
- Eight useful steps in problem solving:
- 1. Prepare a rough sketch or diagram based on the subject of the problem. For business applications, set this up using business terms; for science, use physical variables.
- 2. Identify all relevant variables, concepts and constants.
- Note: Do not simply search for the "right" equation in your notes or text. You may have to select your own variables to solve the problem.
- 3. Describe the problem using appropriate mathematical relationships or graphs.
- 4. Obtain any constants from the stated problem or textbook. Make sure you have all the essential data.
  - information.
- Hint: You may have extra 5. The hard part: Derive a mathematical
- expression for the problem. Make sure that the equation, constants and data give the right unit for the final answer. 6. Carry out the appropriate mathematical
- manipulation, differentiate, integrate, find limits, etc.
- 7. The easy part: Plug numbers into the equation. Obtain a quick approximate answer, then use a calculator to obtain an exact numerical answer.
- 8. Check the final answer using the original statement of the problem, your sketch and common sense; are the units correct? Sign? Magnitude?



free downloads & nundreds of titles at quickstudy.com

U.S. \$4.95 CAN. \$7.50 Customer Hotline # 1.800.230.9522

ISBN-13: 978-157222841-2 ISBN-10: 157222841-5





# **GEOMETRIC FORMULAS**

**Perimeter:** The perimeter, **P**, of a two-dimensional shape is the sum of all side lengths.

**Area:** The area, A, of a two dimensional shape is the number of square units that can be put in the region enclosed by the sides. Note: Area is obtained through some combination of multiplying heights and bases, which always form 90° angles with each other, except in circles.

**Volume**: The volume, V, of a three-dimensional shape is the number of cubic units that can be put in the region enclosed by all the sides.

### Square Area:

 $A = b^2$ ; If b = 8, then: A = 64 square units.

QuickStudy.

### Rectangle Area:

A = hb, or A = lw; If h = 4 and b = 12, then:

A = (4)(12), A = 48 square units.

# Triangle Area:

 $A = \frac{1}{2}bh$ ; If h = 8 and b = 12, then:

 $A = \frac{1}{2}$  (8)(12), A = 48 square units.

### Parallelogram Area:

A = hb; If h = 6 and b = 9, then:

A = (6)(9), A = 54 square units.

# Trapezoid Area:

 $A = \frac{1}{2}h(b1 + b2)$ ; If h = 9, b1 = 8 and b2 = 12, then:

 $A = \frac{1}{2}(9)(8 + 12), A = \frac{1}{2}(9)(20), A = 90$  square units.

#### Circle Area:

 $A = \pi r^2$ ; If r = 5, then:

 $A = \pi(5)^2 = (3.14)25 = 78.5$  square units.

Circumference:  $C = 2\pi r$ ; If r = 5, then:  $C = (2)(\pi)(5) = 10(3.14) = 31.4$  units.

# Pythagorean Theorem:

If a right triangle has hypotenuse c and sides a and b, then:  $c^2 = a^2 + b^2$ .



V = lwh; If l = 12, w = 3 and h = 4, then:

V = (12)(3)(4), V = 144 cubic units.

#### **Cube Volume:**

 $V = e^3$ ; each edge length, e, is equal to the other edge in a cube.

If e = 8, then: V = (8)(8)(8), V = 512 cubic units.

#### **Cylinder Volume:**

 $V = \pi r^2 h$ ; If radius r = 9 and h = 8, then:

 $V = \pi(9)^2(8)$ , V = (3.14)(81)(8), V = 2034.72 cubic units.

#### **Cone Volume:**

 $V = \frac{1}{3}\pi r^2 h$ ; If r = 6 and h = 8, then:

 $V = \frac{1}{3} \pi(6)^2(8)$ ,  $V = \frac{1}{3} (3.14)(36)(8)$ , V = 301.44 cubic units.

# **Triangular Prism Volume:**

V = (area of triangle)h; If  $\frac{1}{12}$  has an area equal to  $\frac{1}{2}(5)(12)$ , then:

V = 30h and if h = 8, then: V = (30)(8), V = 240 cubic units.

#### **Rectangular Pyramid Volume:**

 $V = \frac{1}{2}$  (area of rectangle)h; If l = 5 and w = 4 the rectangle

has an area of 20, then:  $V = \frac{1}{3}(20)h$  and if h = 9, then:

 $V = \frac{1}{3}(20)(9)$ , V = 60 cubic units.

# Sphere Volume:

 $V = \frac{4}{3}\pi r^3$ ; If radius r = 5, then:  $V = \frac{4}{3}(3.14)(5)^3$ , V = 523.3 cubic units.































