

http://www.Dummies.com
http://www.dummies.com/cheatsheet/html5gamedevelopment
http://www.Dummies.com
http://www.Dummies.com

by Andy Harris

HTML5
Game Development

HTML5 Game Development For Dummies®

Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at http://www.wiley.com/go/permissions.
Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!,
The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates
in the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with
any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.
For technical support, please visit www.wiley.com/techsupport.
Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all
content that is available in standard print versions of this book may appear or be packaged in all book
formats. If you have purchased a version of this book that did not include media that is referenced by or
accompanies a standard print version, you may request this media by visiting http://booksupport.
wiley.com. For more information about Wiley products, visit us www.wiley.com.
Library of Congress Control Number: 2013932120
ISBN: 978-1-118-07476-3 (pbk); ISBN: 978-1-118-26144-6 (ebk); ISBN: 978-1-118-22261-4 (ebk);
ISBN: 978-1-118-23652-9 (ebk)
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com/
http://booksupport.wiley.com/
http://www.wiley.com/

About the Author
Andy Harris is the author of numerous books on gaming and web develop-
ment. He taught himself computer programming by building games on the
TRS-80 model I, and hasn’t stopped playing yet.

Andy taught special education for several years while also working as a con-
tract programmer. Eventually he found himself at Indiana University/Purdue
University – Indianapolis teaching computer science full time. He currently
serves in the computer science department as a senior lecturer, where he is
responsible for the freshman computing program. He also teaches game and
web development.

Andy is also a regular columnist for a major homeschooling magazine, where
he writes about how to use and teach computing at home.

You can learn more about Andy or ask him a question at his website:
http://www.aharrisbooks.net. Visit this site to see every example in
this book, and to see what else Andy is doing these days.

http://www.aharrisbooks.net/

Dedication
I dedicate this book first to Jesus Christ my personal savior.

Acknowledgments
First acknowledgment always goes to my amazing wife Heather. I couldn’t
write books without you, but then I couldn’t do much of anything with-
out you. I love you dearly. A big thanks to Elizabeth, Matthew, Jacob, and
Benjamin. Now you know what I was doing in the office all that time.

Thank you also to my students, current and in the past. I’ve learned much
more from you than you ever have from me. A special shout goes to the
In-Grace high school group and CSCI N301 classes, for helping me test the
projects in this book.

A huge thank you goes to Tyler Mitchell, for his contributions to the simple-
Game Engine, especially the animation system. Thank you Tyler, for your
incredible contributions. I’m looking forward to incorporating your other
ideas into a future version of the program.

Thanks to Tom Dunlap for additional testing and support. Without Tom, the
game engine might not have some of its key features.

Thanks to Katie Feltman, for years of friendship and support. I appreciate
you understanding what I wanted to do with this book and helping to make it
happen. Blessings to you in your new endeavors.

Mark Enochs once again plied his magic on this book. Thank you, Mark, for
putting so much energy into this project. You’re a good friend and a great
partner in this process.

Thank you to my editors Linda Morris, Melba Hopper, and Mark Enochs, and
thank you to my tech editor Russ Mullen. Thanks also to the many people at
Wiley the author never meets, but who add to the book.

A huge thank you goes to the various open source and creative commons
authors that contributed to this project. Look for specific individual attribu-
tions in the various projects. A special thank you goes to the folks at open
game art, Kreiner’s tilesets, and Ari’s sprite lib. I made up for my own lack of
art skills by utilizing the talents of these incredible artists, and I truly appreci-
ate their generosity.

The biggest thanks goes to you for reading this book. If you’ve read any of
my other books, thank you so much for your support. If this is your first book
with me, welcome aboard! I can’t wait to share the fun of game development
in HTML5 with you.

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.
Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial
Project Editors: Mark Enochs, Linda Morris
Senior Acquisitions Editor: Katie Feltman
Copy Editor: Melba Hopper
Editorial Manager: Leah Michael
Editorial Assistant: Annie Sullivan
Sr. Editorial Assistant: Cherie Case
Cover Photo: © Anton Novikov / iStockphoto
Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services
Project Coordinator: Patrick Redmond
Layout and Graphics: Carrie A. Cesavice,

Joyce Haughey
Proofreader: Melissa D. Buddendeck
Indexer: BIM Indexing & Proofreading Services

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director

Publishing for Consumer Dummies
Kathy Nebenhaus, Vice President and Executive Publisher

Composition Services
Debbie Stailey, Director of Composition Services

http://dummies.custhelp.com/
http://www.the5thwave.com/

Table of Contents
Introduction.. 1

About This Book... 2
What You Will Need... 2
How to Read This Book.. 3
How This Book Is Organized... 4

Part I: Building the Foundation... 4
Part II: Basic Game Development.. 4
Part III: Diving Deeper.. 5
Part IV: The Part of Tens.. 5

We Even Use the Internet Thingy!.. 5
Icons Used in This Book.. 6
Where to Go from Here.. 6

Part I: Building the Foundation...................................... 7

Chapter 1: Playing on the Web . 9
Building the Framework... 10
Setting Up Your Workshop.. 11

Web browsers... 11
A programmer’s editor... 12
Graphics tools... 13
Audio tools.. 14

Building Your First Game.. 14
Building a Basic Page... 15

Dressing up the page.. 19
Providing a link... 21
Beautifying the page... 23
Making a style reusable.. 26
Building the next node... 28
Adding a sound effect... 30
Add another page for a victory... 33
Making it your own... 34

Chapter 2: Talking to the User . . 35
Making an Interactive Form... 36
Adding JavaScript to Your Page... 37

Creating the custom greeting.. 40
Making the magic happen.. 42

HTML5 Game Development For Dummies viii
A program where everyone knows your name................................. 44
Modifying the page itself.. 48
Adding style to your forms.. 49
Do it with style.. 51
Creating a style for the form... 52
Outsourcing your JavaScript code... 53

Building the Word Story Game... 55
Designing the game... 56
Building the HTML foundation.. 57
Adding the CSS style... 59
Writing the code... 60

Chapter 3: Coding Like a Pro . 63
Working with Variables.. 64

You’re just my type: Handling different data types......................... 64
Using a computer program to do bad math...................................... 65
Managing data types correctly... 66

Making Choices with if... 68
Changing the greeting with if.. 69
The different flavors of if... 71
Conditional operators.. 71

Managing Repetition with for loops... 72
Setting up the web page... 73
Initializing the output... 74
Creating the basic for loop.. 75
Introducing shortcut operators.. 76
Counting backward... 77
Counting by fives.. 78

Building While Loops... 79
Making a basic while loop.. 79
Getting your loops to behave.. 81
Managing more complex loops... 82
Managing bugs with a debugger... 83

Sending Data to and from Functions.. 86
Returning a value from a function.. 88
Sending arguments to a function.. 89

Using Arrays to Simplify Data... 90
Building the arrays... 91
Stepping through the books array.. 93
Using the for . . . in loop to access array elements........................... 94

Chapter 4: Random Thoughts: Building a Simple Game 95
Creating Random Numbers... 95

Seriously, math can be fun.. 98
Making the HTML form.. 99
Writing the roll() function... 100

ix Table of Contents

Building the Number Guesser... 100
Designing the program... 101
Building the HTML for the game... 102
Writing the CSS for the number guesser.. 104
Thinking through the game’s data.. 106
Setting up the initialization routine.. 107
Responding to the Button.. 108

Part II: Basic Game Development............................... 111

Chapter 5: Introducing simpleGame.js . 113
Using a Game Engine.. 113

Essential game engine features... 114
Gaming on the web... 114

Building an Animation with simpleGame.js.. 115
Building your page.. 117
Initializing your game... 118
Updating the animation... 119
Starting from a template.. 120

Considering Objects... 122
Making instance pudding... 122
Adding methods to the madness.. 123

Bringing Your Game... 124
Checking the keyboard.. 126
Moving the sprite.. 127
Baby, you can drive my car... 130

Chapter 6: Creating Game Elements . 133
Building Your Own Sprite Objects... 133

Making a stock sprite object... 134
Building your own sprite... 134
Using your new critter... 136
Adding a property to your critter... 137
Adding methods to classes.. 139

Sound Programming Principles.. 141
Game Programming’s Greatest Hits!.. 144

Setting up bounding rectangle collisions.. 144
Distance-based collisions.. 147

It’s All About Timing 150

Chapter 7: Getting to a Game . 153
Building a Real Game... 153
Planning Your Game... 154

HTML5 Game Development For Dummies x
Programming On the Fly.. 156

There seems to be a bug in this program.. 158
Fly, fly! fly!.. 159

Clearly, We Need an Amphibian... 159
Making a frog... 161
Adding a background... 162
Managing updates... 163

Combining the Frog and the Fly.. 164
Building a library of reusable objects.. 164

When Sprites Collide.. 167
Collisions apply to the frog and the fly.. 168
Resetting the fly — on the fly.. 169

Working with Multiple Flies... 170
Adding the Final Touches.. 174

Adding the timer... 177
Resetting the game... 178

Part III: Diving Deeper.. 179

Chapter 8: Motion and Animation . . 181
Physics — Even More Fun Than You Remember..................................... 181

Newton without all the figs.. 182
Phuzzy physics.. 183

Lost in Space... 183
Becoming a space cadet.. 184
Building the space simulation... 185

Don’t Be a Drag — Adding Drag Effects... 186
Drag racing.. 186
Implementing drag.. 188

Do You Catch My Drift?... 190
Burning virtual rubber... 190
Adding drift to your sprites... 192

Recognizing the Gravity of the Situation... 193
Adding rockets to your ride.. 193
Use the force (vector), Luke.. 195

Houston, We’ve Achieved Orbit... 196
Round and round she goes 197
Decoding the alphabet soup... 198
This isn’t rocket science.. 199
Writing the orbit code.. 199

Does This Car Come with a Missile Launcher?... 202
Projectiles in a nutshell.. 203
It’s time to launch the missiles... 203

Building a Multi-State Animation.. 206

xi Table of Contents

Chapter 9: Going Mobile . 211
Using HTML5 as a Mobile Language... 211

Don’t you need a special language?.. 211
HTML5 is a great compromise.. 212
So what else do you need?... 213

Putting Your Game on a Server.. 213
Using a control panel... 214
Uploading a page with a control panel.. 216
Using an FTP client... 218

Making Your Game App-Ready... 220
Managing the screen size... 220
Making your game look like an app.. 221
Removing the Safari toolbar.. 223
Storing your game offline... 224

Managing Alternate Input.. 225
Adding buttons.. 225
Responding to the mouse.. 228

Reading the Virtual Joystick... 231
Controlling an object with the virtual joystick............................... 234
Driving with joy(sticks).. 236
Using virtual arrow keys.. 239
Tilting at windmills with the accelerometer................................... 240
Reading the tilt.. 241
Calibrating the accelerometer.. 243

Chapter 10: Documenting simpleGame . 247
Overview of simpleGame... 247
The Scene Object.. 248

Primary properties of the Scene object... 248
Important methods of the Scene class... 249

The Sprite Class.. 250
Main properties of the sprite.. 251
Appearance methods of the Sprite... 251
Movement methods of the sprite... 252
Boundary methods of the sprite... 254
Collision methods of the sprite... 255
Animation methods of the sprite.. 255

Utility Classes.. 256
The Sound object.. 256
The Timer object.. 257
The virtual joystick... 258
The virtual accelerometer... 258
The game button... 259
Keyboard array... 260

Making the Game Engine Your Own... 260

HTML5 Game Development For Dummies xii
Part IV: The Part of Tens.. 261

Chapter 11: Ten Great Game Asset Resources 263
Dia Diagramming Tool... 263
GIMP — A Powerful Image Editor... 264
Ari’s SpriteLib... 266
Reiner’s Tilesets... 267
OpenGameArt.. 268
Blender... 269
Audacity — Useful for Sound Effects... 270
Freesound.org... 271
SoundJay.com... 271
BFXR Incredible Eight-Bit Sound Effects.. 272
InkScape... 273

Chapter 12: Ten Concepts Behind simpleGame 275
Using the Canvas Tag... 276

Looking at a canvas.. 276
Basic canvas drawing... 277

Creating an Animation Loop... 278
Angles in the Outfield... 280
Transformations in Canvas... 281

Coordinates inside coordinates 281
Transforming an image.. 282

Vector Projection... 285
Examining the problem.. 286
Building a triangle... 287
Would you like sides with that?.. 287
Solving for dx and dy.. 288
Converting components back to vectors.. 289

Using the Sound Object... 290
Reading the Keyboard.. 291

Managing basic keyboard input.. 293
Responding to multiple key presses.. 293

Managing the Touch Interface.. 294
Handling touch data and events... 297

Collision Detection... 298
Enabling bounding-box collisions... 298
Calculating the distance between sprites.. 300

Boundary Checking.. 301

Chapter 13: Ten Game Starters . 305
Lunar Lander... 306

The eagle has landed.. 307
Producing a text console... 308
Enhancing the game... 309

xiii Table of Contents

Mail Pilot.. 309
Building an “endless” background... 310
Improving the top-down racer.. 312

The Marble-Rolling Game.. 312
Managing dual input... 312
Building an array of obstacles... 314
Improving the marble game.. 315

Whack-a-Mole.. 316
Building a mole in a hole game... 316
Other features of the mole game.. 318
Improving the mole game.. 319

Jump and Run on Platforms.. 320
Jumping and landing.. 321
Coming in for a landing.. 321
Making draggable blocks... 322
Improving the platform game.. 323

Pong — the Granddaddy of Them All.. 323
Building the player paddle.. 324
Adding artificial stupidity.. 324
Building a ball to bounce off boundaries .. 325
Putting some spin on the ball.. 326
Improving the Pong game.. 327

I’m a Fighter, Not a Lover — RPGs... 328
Building the base Character class.. 329
One does not simply build an orc 331
We need a hero... 331
Improving the role-playing game.. 333

Tanks — and You’re Welcome!... 333
Tanks, turrets, and shells.. 334
Building a bullet.. 337
Improving the tank game... 338

Miles and Miles of Tiles and Tiles.. 339
Creating a Tile object... 341
Building a map from tiles... 343
Updating the tiles.. 344
Loading a tile map.. 344
Improving the tile world.. 345

Tic-Tac-Toe Is the Way to Go.. 346
Creating the board.. 347
Setting up the visual layout... 349
Checking for a winning combination.. 350
Adding an AI.. 351
Improving the tic-tac-toe game... 352

Index.. 353

HTML5 Game Development For Dummies xiv

Introduction

I
’ve been working on this book for about 35 years. I’ve always liked invent-
ing games. Even as a kid, I would try to think up new kinds of board games

with paper and pencil. I must have come up with hundreds of terrible game
ideas.

When I was a teenager (in the early ’80s,) I got access to a computer. That
changed everything. Sure, you could do cool things with it, but my favorite
part was how I could make any game I could imagine. I learned how to pro-
gram specifically so that I could write games.

Eventually, I grew up (at least chronologically) and turned my computing
skills to “serious” pursuits like commercial programming and teaching. But
I never forgot about games, and I still write games for fun. Whenever I get
a new machine or programming language, I master it by creating games.
Playing games is fun, but making them is incredible.

Game programming was simple in the early days because computers couldn’t
do much. As things have become more complicated and expectations higher,
it’s become harder and harder to get into game development. Today’s tech-
nology is incredibly capable, but it can be overwhelming to a beginner.
Programming is hard enough, and game programming is often even more
difficult.

I want to concentrate on the main ideas of programming and game develop-
ment without being overwhelmed by details, and it seems I’m not the only
one. People still want to create games for themselves, and they’re willing to
learn how to write computer programs to do so. What they need is a way
to learn real programming and make some fun games without being over-
whelmed with arcane details, and without spending a ton of money on soft-
ware and equipment.

If you want to learn programming through game development in HTML5, you
need a tool to hide some of the more arcane details. I developed an open-
source (and completely free) game development library designed specifically
to make programming and game development easy to learn. Even if you’ve
never programmed before, you should be building a game or two after your
very first session, and by the time you’re halfway through the book, you’ll be
building your own web-based arcade games.

2 HTML5 Game Development For Dummies

About This Book
This is the book I wish I’d had 35 years ago. It’s my sincere hope that this
book changes your life by giving you the tools to build the great games that
are perhaps germinating within you.

As you read this book, you’ll develop a lot of skills:

	 ✓	HTML5: This markup language is the foundation of the modern Internet.
Although you won’t uncover every detail of HTML, you will master
enough to make a functional web page.

	 ✓	CSS: This language allows you to change the way a web page looks. I’ve
written books much longer than this one about HTML and CSS, but in
this book, you’ll learn enough CSS to make your pages and games look
good.

	 ✓	Computer programming: Most of the book focuses on the JavaScript
programming language. You find all the main features of any program-
ming language, including variables, loops, conditions, functions, and
object-oriented programming. These are the ideas taught in most intro-
ductory computer science courses.

	 ✓	Game development: Games are a specific type of programming, and in
this book, you use the simpleGame library to build powerful and inter-
esting 2D games. You discover how games work with space and time,
how to build sprite objects, and how to handle things like sound effects,
collision detection, and multi-state game elements.

	 ✓	Mobile development: The games you write in this book will work on any
modern browser, including the one that comes with your smartphone
or tablet. The simpleGame library incorporates a number of mobile
features, including the use of touch input, a virtual joystick mechanism,
and tilt control access.

What You Will Need
One of the best things about HTML5 and JavaScript development is how easy
it is to get started. Any modern computer will do. (I tested on Windows 7,
Ubuntu Linux, and Mac OSX.) You probably already have everything you
need on your computer. There is absolutely nothing else you’ll need to buy.
However, I do recommend that you download and install a few free programs.
Chapter 1 goes into some details about the specific tools to install, but here
are the tools you need to start with:

3 Introduction

	 ✓	Your background: I don’t assume any programming or web develop-
ment knowledge. If you already have these skills, you’ll have a great
time. If you’re just getting started, you’ll probably need to concentrate
on the first few chapters before you’re ready to do things toward the
end of the book.

	 ✓	An HTML5-compliant browser: My personal favorite browser is Google
Chrome because it follows the standards you use in this book very well.
It’s available on every operating system, and it has very helpful debug-
ging tools. The latest version of any major browser will probably be fine.

	 ✓	A good text editor: You should really have a dedicated programmer’s
text editor. I like Komodo Edit because it does everything you need,
provides some help for programmers, works well on multiple operating
systems, and is free.

	 ✓	A graphics tool or two: You’ll probably want to do some artwork for
your games. I recommend GIMP (a very powerful free raster graphics
package) and Inkscape (an equally impressive vector graphics tool).

	 ✓	An audio editor: I really like Audacity, a powerful and free audio record-
ing and editing tool.

Links to all of these programs are available on my main website (www.
aharrisbooks.net/h5g). Chapter 11 highlights these and several other
great game programming resources.

How to Read This Book
People from many different backgrounds can use this book.

If you’re brand new to computer programming, I suggest going through the
whole book in order. The ideas in the book generally build on each other.
HTML provides the basic framework for your games, so you can start there. If
you’re already comfortable with modern HTML and CSS, you can skip ahead
to the JavaScript sections.

If you know how to build web pages but you’re new to JavaScript, begin by
looking into JavaScript to see how this language is similar to the language
you already know.

If you’re comfortable with programming and JavaScript, you can move
straight to the chapters on the simpleGame engine and discover how to
make your own games quickly and easily. If you’re an advanced JavaScript
programmer, you’ll particularly like Chapter 12, which explains many of the
technical details of the game engine.

http://www.aharrisbooks.net/h5g/
http://www.aharrisbooks.net/h5g/

4 HTML5 Game Development For Dummies

If you’re an experienced programmer, you can jump to the game starters in
Chapter 13. Each one is a partially completed game in a different genre. Try
your hand at building a whack-a-mole game, a role-playing game, or a tile-
based world.

Of course, feel free to just start where you wish. If you find that you’re not
following an idea, you may need to go back to review something presented
earlier in the book.

Each game and example in the book is on my website at www.aharris
books.net/h5g.

To see examples from my other books, or to drop me a question, or
just to see what I’ve been up to, you can also go to my main website at
www.aharrisbooks.net.

How This Book Is Organized
I organized this book by renting time on a supercomputer and applying a
multilinear Bayesian artificial intelligence algorithm. No, I didn’t. I don’t even
know what that means. I really just sketched it out during a meeting when
I was supposed to be paying attention. In any case, this book is organized
around the main milestones you’ll need when becoming a game programmer.

Part I: Building the Foundation
HTML5 gaming lives on the web, so you need to know a little bit about how
the web works. I show you the bare essentials of HTML and its companion
language CSS. I also show you how JavaScript fits into the mix and introduce
programming with JavaScript. Along the way, you find all the essential ele-
ments of computer programming, and you build several simple games.

Part II: Basic Game Development
In this part, I introduce the simpleGame engine, which was designed from
the ground up to give you a fun and reasonably easy start into game program-
ming. You find out how to incorporate the engine into your own projects,
how to build your own sprite objects, and how to create your first arcade
game from scratch.

http://www.aharrisbooks.net/h5g/
http://www.aharrisbooks.net/h5g/
http://www.aharrisbooks.net/

5 Introduction

Part III: Diving Deeper
After you understand the basics, you’ll no doubt be curious about the more
advanced features. In this part of the book, you apply a basic physics model
for more advanced motion. You build sprites that fall with gravity, skid
around the screen, and orbit planets realistically. You discover how to make
your games work on mobile devices like phones and tablets. You find out
how build a virtual joystick interface and read the motion sensor built into
many of these devices. Finally, you look over the formal documentation of
the simpleGame library to understand more about how this library works
and what it offers.

Part IV: The Part of Tens
The For Dummies series is famous for its “Part of Tens.” Some of the best
material in the entire book is here. When you’re ready to understand how
the simpleGame library does all the magic, you can look into ten key ideas
behind the engine. You see some of the math and programming concepts
used to build the engine. I also have a list of ten (or maybe more) resources
for game developers. Check here for great tools, graphics libraries, sound
resources, and more.

We Even Use the Internet Thingy!
Because this book is about developing games for the web, you won’t be sur-
prised that it has a web page. These are games, and you really shouldn’t just
look at them in a book. You really need to experience all these examples in a
web browser. You can find every example in the book on my website at www.
aharrisbooks.net/h5g. You can run all the programs in the book, and you
can also view the code I used to make them (Ctrl+U on most browsers). This
site is also helpful as you’re collecting your tools. I added a link to every tool
or library I recommend throughout the book.

Of course, there are other things on the site, too, like links to my other books,
a forum for questions, and a place you can send me an e-mail if you run into
any problems.

I’m looking forward to seeing you on my main website at www.aharris
books.net.

http://www.aharrisbooks.net/h5g/
http://www.aharrisbooks.net/h5g/
http://www.aharrisbooks.net/
http://www.aharrisbooks.net/

6 HTML5 Game Development For Dummies

Icons Used in This Book
Every once in a while, a concept is important enough to warrant special
attention. This book uses a few margin icons to point out certain special
information.

	 These are tidbits of additional information you ought to think about or at least
keep in mind.

	 Occasionally, I feel the need to indulge my “self-important computer sci-
ence instructor” nature, and I give some technical background on things.
These ideas are interesting but not critical, so you can skip them if you want.
However, you might want to memorize a couple of them before you go to your
next computer science cocktail party. You’ll be the hit of the party.

	 Tips are suggestions for making things easier.

	 Be sure to read anything marked with this icon. Failure to do so might result in
a plague of frogs, puffs of black smoke, or your program not working like you
expect.

Where to Go from Here
Thank you for buying this book. I truly hope you find it fun and useful. I had
a great time writing it, and I think you’ll enjoy using it. I’m looking forward
to hearing from you and seeing what you can do with the skills you pick up
here. Drop me a line at andy@aharrisbooks.net and let me know how it’s
going!

Also, be sure to visit the companion website for this book at www.dummies.
com/go/html5gamedevfd, where you’ll find files and images used through-
out the book. For updates to this edition, check out www.dummies.com/go/
html5gamedevfdupdates. For helpful tables and other information, check
out the book’s Cheat Sheet at www.dummies.com/cheatsheet/html5
gamedevelopment.

mailto:andy@aharrisbooks.net
http://www.dummies.com/go/html5gamedevfd
http://www.dummies.com/go/html5gamedevfd
http://www.dummies.com/go/html5gamedevfdupdates
http://www.dummies.com/go/html5gamedevfdupdates
http://www.dummies.com/cheatsheet/html5gamedevelopment
http://www.dummies.com/cheatsheet/html5gamedevelopment

Part I
Building the
Foundation

In this part . . .

H
TML5 games are built on the web. Before you can
push the limits of what the web can do, you need to

have a basic command of fundamentals. This part pro-
vides a quick overview or refresher on basic web technol-
ogies, at least enough so you can start writing games.

Chapter 1 introduces the key components of HTML5 and
CSS. If you’ve never used HTML before, you’ll find the
concepts pretty easy to understand. If you’re an old hand
at HTML, you may still want an overview of HTML5. Even
in this very first chapter, you build an adventure game
while learning how to create the HTML and CSS
infrastructure you’ll use for more advanced games.

Chapter 2 introduces the JavaScript programming
language and explains how it’s used to interact with web
pages. You use JavaScript throughout the book, and the
techniques described here will be used for scoreboards
and user input. As you explore these topics, you build the
classic Word Story game.

Chapter 3 introduces all the main ideas of computer
programming including data conversion, loops and
branches, functions and parameters, and arrays. These
ideas form the foundation of all computer programming,
and you’ll see them in practically every game you write.

Chapter 4 combines all the ideas in the first part to build a
complete number-guessing game. You find out how to put
together a game development plan, how to work with
random numbers, and how to assemble a game with a lot
of moving parts.

Chapter 1

Playing on the Web
In This Chapter
▶	Introducing HTML5
▶	Building a basic game with only HTML
▶	Designing an adventure game
▶	Incorporating media into your pages

T
wo particular flavors of programming have always appealed to me: game
development and web programming. These have historically been very

different kinds of programming, with vastly different tools and techniques.

With the advent of HTML5 and its related technologies, these two formerly
different forms of programming are finally one. In this book, I show you how
to build basic video games entirely with free web technologies.

Soon enough you’ll be building games with moving elements, animated char-
acters, and realistic physics. You’ll discover a number of interesting web
technologies as the book progresses, but they all build on two basic and
related technologies: HTML and CSS. Web-based games are web pages first,
so you need to have a basic grasp of web development before you move on
to the more elaborate game development.

HTML has been around for a long time. Although the latest version (HTML5)
has a lot of new features, it’s still very similar to older versions. HTML is a
markup language, which means it’s designed to help you determine the types
of elements in a page. In this chapter, you find out how to build a web page
in HTML5. I don’t cover all the details, but enough so you can make any basic
page.

HTML is about what things mean, but another language, Cascading Style
Sheets (CSS), is about how things look. Typically, CSS and HTML are used
together to build a page and style it. In this chapter, you also learn enough
CSS to add basic style to your pages. You’ll be able to add colors, change
where things are positioned, and make basic changes to fonts.

10 Part I: Building the Foundation

Of course, this is a game development book, so you develop a game even in the
very first chapter. You learn how to build a simple “choose your own adven-
ture” game. It’s a pretty fun way to practice your web development skills.

Web-based game development has a number of interesting aspects:

	 ✓	The technology is freely available. If you have a reasonably modern
computer, you already have everything you need to get started. You
don’t need to buy anything at all, although you probably will want to
download a few free tools.

	 ✓	It can be easier. Game programming is well known to be one of the more
difficult forms of programming. This is especially true when you use one
of the traditional programming languages, like C++. The languages used
in this book are quite a bit more friendly for beginners.

	 ✓	You can reach a huge audience. Anybody with a modern web browser
can play your games instantly. They won’t need to install plug-ins like
Flash, and they won’t need to download your game, as it appears imme-
diately in the browser.

	 ✓	You can write mobile games. Mobile gaming is very hot. The traditional
approach to writing mobile games is to use native application develop-
ment tools. The web approach I use is much simpler than the native
tools and bypasses app stores for much easier distribution.

	 ✓	It’s fun. Game development is a hoot. You get to build your own world,
set up a story for the player to interact with, and see what happens.

	 ✓	It’s a great start to more “serious” programming. Games are cool, but
some people think they aren’t really serious. Even if you’re not aiming
for a career in the gaming industry, the skills you learn in this book help
you learn web development and programming. If you work through the
exercises in the entire book, you’ll learn advanced programming tech-
niques such as object-oriented programming (OOP), local data storage,
and animation loops.

Building the Framework
Game development with web technologies has been attempted for years, but
the new technologies change everything. For this book, I’m using a number of
technologies as a foundation:

	 ✓	HTML5: HTML5 is the newest version of HTML (the primary language of
the web). It offers many new capabilities. All of the other new technolo-
gies are built from the HTML5 foundation.

11 Chapter 1: Playing on the Web

	 ✓	CSS3: CSS (Cascading Style Sheets) is a language that applies formatting
to the structure determined with HTML. The new version of CSS adds
some new features that allow great gaming options. For the first time,
you can easily scale and rotate web elements, as well as animate and
add shadows.

	 ✓	JavaScript: JavaScript is a full-blown programming language. If you want
your game to really do anything interesting, you need to learn how to
program. Don’t worry. JavaScript is a reasonably easy language to use,
and modern implementations have more than enough power.

	 ✓	Canvas: In the past, it was very difficult for the user or programmer to
draw dynamically on a web page. The new canvas tag adds this ability
to web pages, making it much easier to build a game and add it to your
page.

	 ✓	SimpleGame: Although HTML5 and its related tools do make it possible
to build games, there are a number of advanced techniques to learn.
I show you everything you need to build games on your own, but to
speed things up, I provide a game engine called simpleGame that sim-
plifies this process. This tool allows you to create powerful Flash-style
games after only a few chapters!

	 ✓	Multimedia tools: Games are truly multimedia applications, so you’ll
need some media assets to work with. I introduce my favorite tools for
building games, including free tools for developing sketches, graphic
images, 3D models, and audio.

Setting Up Your Workshop
You won’t need a lot to get started, but a number of tools are helpful. All are
free and work on every major platform (Windows, Mac OS X, and Linux).

Web browsers
All the games created in this book require a modern version of HTML and
related technologies. To run the programs, you need a modern browser. Here
are the browsers I check the programs with:

	 ✓	Google Chrome 13+: The Chrome browser by Google has become a
favorite of HTML5 developers. It has very good support for HTML5 stan-
dards, and it has one of the speediest JavaScript engines around. It is
available for all major desktop operating systems.

12 Part I: Building the Foundation

	 ✓	Mozilla Firefox 6+: Firefox is one of the most popular browsers. It has
very good support for HTML5 features. It has a strong add-on system
that allows you to add extensions. The Firebug add-on turns Firefox into
a high-powered programmer’s tool.

	 ✓	Apple Safari: The Safari browser is standard on all Apple products,
although it’s also available for other systems. Safari and Chrome use the
same underlying engine (so they have similar behavior) but they are not
identical. The iPad and iPhone devices have a form of Safari built in.

	 ✓	Opera: The Opera browser is popular among some developers because
it has very good support for standards. It offers versions for the Wii and
some mobile devices.

	 ✓	Internet Explorer 10: Microsoft has long frustrated web developers by
choosing not to follow the standards completely. Internet Explorer 10
finally supports most of the tools you need for game development, but
sadly, it’s not available unless the user is running Windows 7 or greater.
Fortunately, all of the other browsers are available on any version of
Windows.

A programmer’s editor
You’ll need some type of text editor to work with all the various files. Most
operating systems come with a default editor, but these often do not have
enough power for a programmer’s needs:

	 ✓	Notepad: If you use Windows, you’re familiar with the ubiquitous note-
pad program. It does the job, but it’s very simplistic. When you start to
get serious, you’ll want features like line numbers, support for multiple
files, and syntax highlighting. Notepad doesn’t have any of these fea-
tures, but it’s fine if you’re just getting started.

	 ✓	TextEdit: If you’re using a Mac, you know TextEdit. It is much more pow-
erful than its Windows counterpart, but it still has some problems. Be
sure to save all text in plain text format (TEXT – Save as Text) or your
programs won’t work correctly.

	 ✓	Gedit: If you’re a Linux user, you’re probably using something like gedit.
It’s probably the best of the default text editors, but it still doesn’t have
every feature you might want.

	 ✓	Word: Don’t use it. Word processing is different than text editing. All the
fancy stuff that Word does for you (fonts, spacing, paragraph formatting,
and so on) are ignored in programming and will just cause problems.

So if none of these programs are ideal, what should you use? I think a pro-
grammer’s editor should have the following features:

13 Chapter 1: Playing on the Web

	 ✓	Syntax highlighting: Some editors can recognize what kind of code
you’re writing and add color hints so you can see what’s going on. For
example, all comments might be blue. This is incredibly helpful when
you’re programming.

	 ✓	Line numbers: Sounds like a simple thing, but it’s often really important
to know what line a certain error is on, and many basic editors do not
have this feature.

	 ✓	Multi-file support: Often a program like a game consists of more than
one file. It’s nice to have some sort of tab system that allows you to edit
multiple files at once.

	 ✓	Code completion: A number of editors help you write code by guessing
as you type. This works surprisingly well and can really help you remem-
ber syntax.

	 ✓	Remote file management: Sometimes you have files out on a web server
somewhere. A number of editors allow you to work on remote files as if
they were on your machine.

My current favorite editor is Komodo Edit. It does all of these things, works
the same on all major operating systems, and is totally free. If you don’t
already have a favorite text editor, I recommend trying this one. Check my
website www.aharrisbooks.net for a link to the current version (7 as of
this writing).

Graphics tools
Most games involve some form of graphics. You may be able to find every-
thing you need, but usually you’ll need to modify or create your own graphics
images. The most popular graphic editor on the planet is Adobe Photoshop.
It’s very capable, but it can be expensive. I prefer Gimp, which does every-
thing you need, and is free. Look at Chapter 11 for help and resources on
using Gimp to create game graphics.

	 Modern browsers (finally) support another type of graphics called vector
graphics. This style of graphics can be easier for building game characters
than programs like Gimp or Photoshop. My favorite vector editor is Inkscape,
which is also described in Chapter 11. I used both Inkscape and Gimp to gen-
erate the graphics shown in this chapter and throughout the book.

Users often expect 3D graphics, but 3D games are much more difficult to
build. If you’re interested in making your game look like a 3D game, you can
use a 3D modeling tool like Blender to build your graphics and then produce
2D images for the game. Blender is also discussed in Chapter 11.

Links to all these tools are available on my website at www.aharrisbooks.net.

http://www.aharrisbooks.net/websitebaker/
http://www.aharrisbooks.net/websitebaker/

14 Part I: Building the Foundation

Audio tools
Modern games also require audio. You’ll definitely want to include sound
effects. You’ll need a tool that can record and manipulate sounds. Audacity
is a wonderful free tool that helps you with this process. Like all other tools,
I’ve provided a link to this program on my website at www.aharrisbooks.
net. You can learn more about editing sound for your games in Chapter 11.

Building Your First Game
Enough background. Let’s make a game!

The first game will be a simple take on the old “Choose your own adventure”
genre. This game uses nothing but HTML and CSS and can get as simple or
complicated as you want. This game highlights the adventures of an aspiring
game programmer. I create it in a cartoon style (mainly because I’ve got no
artistic talent). Figure 1-1 shows the first screen in the game.

	

Figure 1-1:
The first

page of my
epic adven-
ture game.

	

On each page, you are given a situation. Most situations involve making a
choice, which takes you to a new situation.

The overall plan for the game is shown in Figure 1-2.

http://www.aharrisbooks.net/websitebaker/
http://www.aharrisbooks.net/websitebaker/

15 Chapter 1: Playing on the Web

	

Figure 1-2:
This

diagram
illustrates
the over-
all game

design.
	

Adventure games have a particular pattern (which computer scientists would
call a finite state machine, but everyone knows gamers have more fun than
computer scientists). Each situation could be considered a node, and in each
node, the player has to make some sort of decision. The decision determines
which node the player travels to next.

Of course, the question is how to generate the various nodes. There are
many solutions, but one of the easiest is to simply build a web page for each
node. That’s exactly how I do it in this chapter.

Building a Basic Page
Here’s the great thing. You can learn how to build web pages at the same
time you learn how to build a node for an adventure game. If you already
know how to make pages, you should still follow along because I use a new
fancy-dancy form of web development in this book. Old versions of HTML
were pretty limited, but the latest version (HTML5) is a fully capable game
programming platform.

The basic web page is nothing but a text file. Figure 1-3 shows one example.

16 Part I: Building the Foundation

	

Figure 1-3:
A basic web

page.
	

To make this page, all you need to do is open a text editor (see “A program-
mer’s editor” earlier in this chapter for my suggestions on which editor to
use). Then type the following code:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head> <meta charset=”UTF-8”>
 <title>Adventures of Goo Goo</title>
</head>
<body>
 <h1>Adventures of Goo Goo</h1>
 <p>
 You are Goo Goo, an intrepid adventurer.
 Your goal is to become a game developer.
 Best of luck to you as you begin.
 </p>

</body>
</html>

17 Chapter 1: Playing on the Web

Although this isn’t the fanciest page on the Internet, it provides a pretty good
foundation for everything I do in this book. Before you look at the details,
note the following:

	 ✓	It’s written in plain text. Even with fancy editors, web pages are really
nothing more than plain old text.

	 ✓	There are some funky <> things in there. The angle braces indicate
tags. A tag is like instructions to the browser. The various tags indicate
how the browser should treat the various parts of the document.

	 ✓	Most tags are containers. Most of the tags seem to happen in pairs, for
example, <head> and </head> or <p> and </p>. That’s because tags
usually contain other things (like text and other tags, for example).

	 ✓	This page is written in HTML5. If you know something about web devel-
opment, you may have seen different forms of HTML (HTML4 or XHTML,
most likely). This book uses HTML5, which is a bit more capable than
the earlier versions. Fortunately, it’s also actually easier to use.

	 ✓	The code is indented. Although web browsers don’t really care how
code is formatted, programmers do care about such things. Typically,
I indent every time I begin a new structure, so I won’t forget to end
every container. If you look carefully at the code, it’s pretty easy to see
through the indentation that everything has a beginning and an end.

	 ✓	The code doesn’t look exactly like the page. What the user sees in the
web browser isn’t exactly what was written in the text editor. This is
deliberate. Unlike a word-processing program, web pages are designed
as code that is interpreted by the browser.

Even before you understand all the details of the code, you can probably
guess a lot about what’s going on. HTML is pretty easy to follow most of the
time. The key to understanding HTML is to know what the various tags mean.
Here are the tags used in this page:

	 ✓	<!DOCTYPE>: This special tag is used to indicate what kind of document
is being built. The exclamation point indicates it is a special tag meant to
send a message to the browser. <!DOCTYPE HTML> means the page will
be built in HTML5.

	 ✓	<html lang = “en”>: The html tag is a container for the entire docu-
ment. Web pages begin with <html> and end with </html>. In HTML5,
the html tag specifies the language. I build my websites in English, so
lang = “en” indicates that.

	 ✓	<head>: The head of a document is a lot like the engine compartment of
a car. A lot of important stuff happens here, but it’s not where the users
usually go. For now, the head is relatively empty, but as you write more
complex games, much of your programming code will go here.

18 Part I: Building the Foundation

	 ✓	<meta charset = “utf-8”>: The meta tag provides information
about the document. There are many different types of meta tags, but
the most commonly used in HTML5 sets the character set. The utf-8
character set is the one usually used with English.

	 ✓	<title>: Each web page has a title. The title traditionally appears in the
browser’s header bar (but this is not always the case). The title is also
shown when a user searches for a page with a search engine. It’s impor-
tant that the title describes the page.

	 ✓	<body>: If the head is the engine compartment, the body is where
the driver and passengers go. All the content the user typically sees is
described in the body section of the page.

	 ✓	<h1>: This tag indicates a level-one headline. An h1 tag is the most
important headline on your page (so typically you’ll only have one).
Subsections of your page may have level two headlines (signified by
<h2>). Headlines go all the way to level six (<h6>), but it’s unusual to go
much deeper than level three. (Even in a book this size, I rarely use level
three.)

	 ✓	<p>: The p tag marks a paragraph. Paragraphs are the most important
units in writing, and they are the foundation of web pages as well. Most
of the text in your pages is contained inside a paragraph. You can have
as many paragraphs as you want.

It’s tempting to think that using HTML is just like working in a word proces-
sor, but that’s not completely true. Most modern word processors use a tech-
nique called WYSIWYG (What You See Is What You Get). In the print world,
this makes sense because the end result of a word-processed document is
a print document, and printers can be controlled very precisely. The web
doesn’t work that way. You web page may be viewed on a huge projector, on
a big desktop monitor, on a smaller notebook, on an iPad, on a smart phone,
and on a tiny feature phone screen. Each of these devices determines exactly
how the page looks.

In HTML, we don’t exactly control how things look. Instead, HTML code
describes what things mean. It’s a crucial difference. You’ll still get to sug-
gest how things look with a technology called CSS, and these suggestions will
usually be followed. Web coding is about trading precise control for amazing
flexibility. All in all, it’s a good trade.

	 I’m covering HTML pretty quickly here, and it’s actually a bit more complex
than I’m making it out to be. If you want a more complete introduction to
HTML and CSS (and a bunch of other technologies) please check out one of
my other books, HTML, XHTML, & CSS All-In-One For Dummies, published by
John Wiley & Sons. It’s chock-full of information.

19 Chapter 1: Playing on the Web

Dressing up the page
I’ve created the first page of my game, but it isn’t very exciting. It would be
nice to dress it up. There are many ways to do this. The first way is to pro-
vide an image. Take a look at Figure 1-4.

	

Figure 1-4:
Now the

page has a
picture.

	

Adding a picture really spices up the page. It’s not the world’s greatest game
yet, but at least it’s a bit more interesting than it was. Here’s the new code.
(Note that I bolded the part that was added.)

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>Adventures of Goo Goo</title>
</head>
<body>
 <h1>Adventures of Goo Goo</h1>
 <p>
 <img src = “GooGoo1.png”
 alt = “Goo Goo makes a game!” />
 </p>

 <p>

20 Part I: Building the Foundation

 You are Goo Goo, an intrepid adventurer.
 Your goal is to become a game developer.
 Best of luck to you as you begin.
 </p>

</body>
</html>

The key to adding images is a tag called (cleverly enough) . The img
tag allows you to add images to your page. Here’s what you need to do to add
an image to a page:

	 1.	 Obtain a picture.

		 This seems obvious, I suppose, but it’s true. In order to display a pic-
ture, you need to have one. You can use an image editor to create or
modify a picture or grab a picture you already have.

	 2.	 Put the picture in the right format.

		 On the web, only a few image formats are universal. Most web images
are in .png, .jpg, or .gif format. The best format for a simple line
drawing like my image is .png. You may need to use your image editor
to modify the image type if it’s not already in the right format.

	 3.	 Put the image file in the right place.

		 Typically, you’ll move the image file to the same directory as the web
page itself. (I’m not a fan of a separate images directory unless there are
a large number of images in a document. Things get complex enough
without adding another layer.)

	 4.	 Create a container for the image.

		 An image is considered an inline element. That means it is meant to be
placed inside some sort of container. The most common container is a
paragraph, so I place the image in its own paragraph. (You can combine
an image with text in the same paragraph, but the formatting becomes
trickier, so I’m just making a paragraph with a single image in it.)

	 5.	 Add the tag to the document.

		 The tag tells the browser how to retrieve and display the image.
It needs a little more information to do its job, so it has a couple of spe-
cial elements called attributes.

	 6.	 Use the src attribute to indicate where the image is.

		 The src attribute is used to tell the browser where it will find the image
file. If the image file is in the same directory as the HTML page, all you
need to do is list the name of the image file. (Note that capitalization

21 Chapter 1: Playing on the Web

matters — the filename on the page must be exactly like the one in the
operating system.) The filename must be enclosed within double quotes.

	 7.	 Use the alt attribute to describe the image.

		 It’s possible the image will not display. If there is a problem download-
ing the image, or the user has a visual disability, the alt tag is used
to describe the image. The alt tag is also used by search engines to
determine the contents of an image. Like all attributes, it is enclosed in
double quotes.

	 8.	 End with a slash.

	 	 Because the tag won’t contain any text content, it isn’t consid-
ered a container, and it doesn’t have a closing tag. Indicate the end of
the tag with a slash character.

Providing a link
Right now, your game has a single page. That’s not much of a game, but
you’re gonna fix that. One of the biggest features of HTML is how it allows
you to link pages. This linking mechanism is a perfect way to make an adven-
ture game because you can build a page for each node, and link all the nodes
together to make the game. For the first link, modify the page you’re working
on so it leads to the first decision. Figure 1-5 shows the newest version of the
first page of your adventure. Note the link in the bottom left of the screen.

	

Figure 1-5:
The page
now has
a link to
the first

decision.
	

22 Part I: Building the Foundation

This page is starting to look pretty good. It has a heading, an image, some text,
and a link. The link looks something like ordinary text, except it is blue and
underlined. If you click on it, presumably your browser will go to a new page.

The code for the new version of the page (addLink.html) builds on the pre-
vious examples. As usual, I’ve bolded the new part.

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>Adventures of Goo Goo</title>
</head>
<body>
 <h1>Adventures of Goo Goo</h1>
 <p>
 <img src = “GooGoo1.png”
 alt = “Goo Goo makes a game!” />
 </p>

 <p>
 You are Goo Goo, an intrepid adventurer.
 Your goal is to become a game developer.
 Best of luck to you as you begin.
 </p>

 <p>
 Begin your adventure</

a>
 </p>

</body>
</html>

The only new section is a paragraph containing a link. Here’s how you add a
link:

	 1.	 Create a paragraph or other container.

		 A link is an inline tag (like the img tag). It cannot stand on its own, but
needs to be inside a container. The paragraph is a great container, so
just build a paragraph with the <p></p> set.

	 2.	 Use the <a> tag to create an anchor.

		 The links in a web page are called anchors and are generated by the
<a> tag.

	 3.	 Add the href attribute.

		 The href attribute stands for hypertext reference and it indicates the file
the browser navigates to when the user clicks the button.

23 Chapter 1: Playing on the Web

	 4.	 Include the name of the new file.

		 You need a filename so the browser knows where to go when the link is
clicked. You haven’t built the file yet, but that’s okay. From the diagram
listed in Figure 1-2, you know that the first decision point will be “choose
tool,” so call the next page “chooseTool.html”.

	 5.	 Add the text of the link.

		 The next text (“Begin your adventure”) appears on the web page as a link.
Any text that is placed between the <a> and tags is a clickable link.

	 6.	 End the anchor with .

		 The tag ends the anchor and subsequent text looks like ordinary
text.

Of course, you should look at the code in your browser to see how it looks.

	 If you are looking at my example online, it indeed goes to another page, but
if you’re writing your own version, you’ll get an error when you click on the
link. That’s exactly what you should expect because the page you’re linking to
doesn’t exist yet. Just stay with me and it will all make sense soon.

Beautifying the page
The first page of your adventure works pretty well, but it sure is ugly. HTML
does not produce beautiful pages, but there’s another tool that can help a lot.
CSS (Cascading Style Sheets) is a technology that allows you to add visual
appeal to a page described in HTML. Figure 1-6 illustrates the page with a
little CSS dress-up.

CSS code is a special language that allows you to modify the visual appear-
ance of a page. CSS and HTML work together to give you a great deal of con-
trol of your page’s appearance. There is a lot you can do with CSS, but this
example adds the following features:

	 ✓	The background of the page is yellow. You can change the background
color of most elements, including the page itself. (I know you can’t see
yellow in this black-and-white book, but you really should be playing
along on the website.)

	 ✓	The headline is centered. You can also modify the alignment of text.
I think headlines look better centered.

	 ✓	Paragraphs are centered. I want to center each paragraph.

	 ✓	The anchor is black instead of the default blue. The default blue color
of a link didn’t seem to fit with my color scheme, so I changed the
anchor to black.

24 Part I: Building the Foundation

	

Figure 1-6:
With CSS,

the page
looks nicer.

	

All of these changes are possible through CSS. Take a look at this version of
the code, and you can see how I’ve added the style instructions:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>Adventures of Goo Goo</title>
 <style type=”text/css”>
 body {
 background-color: yellow;
 }
 p {
 text-align: center;
 }
 h1 {
 text-align: center;
 }
 a {
 color: black;
 }
 </style>
</head>
<body>
 <h1>Adventures of Goo Goo</h1>
 <p>
 <img src = “GooGoo1.png”
 alt = “Goo Goo makes a game!” />
 </p>

 <p>

25 Chapter 1: Playing on the Web

 You are Goo Goo, an intrepid adventurer.
 Your goal is to become a game developer.
 Best of luck to you as you begin.
 </p>

 <p>
 Begin your adventure</

a>
 </p>

</body>
</html>

As usual, I’ve bolded the interesting part. I didn’t actually change anything in
the body of the page. Instead, I added a new element to the head, called a style.

The <style></style> tag is special because all code inside the style is
interpreted as CSS rather than HTML code. CSS works by defining certain ele-
ments and then describing various attributes of these elements. Each type of
tag in the page can have its own style rules defined. For example, look at this
portion of the CSS style:

 body {
 background-color: yellow;
 }

A number of interesting things are happening in this passage:

	 ✓	Part of the page is specified for modification. Any part of the page that
has a tag can be modified through CSS (although it doesn’t make sense
to modify things the user cannot see, such as the head). This particular
style segment applies to the body. Any styles applied to the body influ-
ence the entire page.

	 ✓	A list of rules will be enclosed in braces ({}). After you indicate the
part of the page you want to change, you can start listing rules. The
braces indicate the beginning and end of the rule sets. It’s traditional
(though not absolutely necessary) to indent all the content in braces.

	 ✓	Each rule is an attribute/value pair. CSS defines a bunch of proper-
ties or characteristics of a page element. Most of the properties can be
applied to any element. Assign a value to a property to determine how
the element changes.

	 ✓	Change the background-color property. The property names are
usually pretty easy to understand. They are technically a single word,
so you’ll sometimes see a dash, as in background-property.

	 ✓	Add a colon (:). After you describe the property you want to change,
add a colon to indicate you’re about to provide a value.

26 Part I: Building the Foundation

	 ✓	Set the background color. You can then indicate a color. There are
many ways to do this, but for a simple color like yellow, you can simply
type the color name.

	 ✓	End the rule with a semicolon (;). Each rule ends with a semicolon.
This is a common rule in programming languages.

	 ✓	Repeat with more properties if you wish. I applied only one rule to the
body, but you can add as many rules as you wish.

There are many style rules, but I needed only a few for this example. Here are
the rules I used in this page:

	 ✓	background-color: This indicates the background color of the ele-
ment. You can either indicate the color with a color name or use hex
values like #FF00CC (if you know how to use them).

	 ✓	text-align: The text-align attribute indicates how text lines up
inside the element. You can set text alignment to left, center, right, or
justify.

	 ✓	color: The color attribute describes the foreground color of an ele-
ment. As with background-color, you can often simply type a color
name.

	 I’m showing you a small tip of the CSS iceberg here. There is much more to
know about how to modify elements. If this is all new to you, I recommend my
much larger book HTML, XHTML & CSS All-In-One For Dummies, published by
John Wiley & Sons. I’ve also added a more complete bonus chapter on CSS on
the website for this book if you need a more complete introduction.

Making a style reusable
This game will consist of many pages, and all should use the same style, so I’m
going to pull out a really amazing CSS trick. You can devise a single style and
reuse it among many pages. Take a look at the code for externCSS.html:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>Adventures of Goo Goo</title>
 <link rel = “stylesheet”
 type = “text/css”
 href = “gooGoo.css” />

</head>

27 Chapter 1: Playing on the Web

<body>
 <h1>Adventures of Goo Goo</h1>
 <p>
 <img src = “GooGoo1.png”
 alt = “Goo Goo makes a game!” />
 </p>

 <p>
 You are Goo Goo, an intrepid adventurer.
 Your goal is to become a game developer.
 Best of luck to you as you begin.
 </p>

 <p>
 Begin your adventure</

a>
 </p>

</body>
</html>

The neat thing about this program is what’s missing: The style code is not
there. Instead, you find this mysterious-looking code:

 <link rel = “stylesheet”
 type = “text/css”
 href = “gooGoo.css” />

This little code snippet indicates that the CSS code is in another file.
Essentially, it tells the browser, “Go find a file called gooGoo.css, and you’ll
see the CSS code you need there.”

Of course I’ve created such a file. Look it over, and you’ll find it eerily familiar:

body {
 background-color: yellow;
}
p {
 text-align: center;
 font-size: 200%;
}
h1 {
 text-align: center;
}
a {
 color: black;
}

Of course you’ve seen this before. It’s exactly the same code I used to have
inside the style tags. Now, however, it’s in its own file.

28 Part I: Building the Foundation

This doesn’t seem like a big deal, but it’s really useful when you start build-
ing systems (like this adventure game) with multiple pages that use the same
style. I put the same link code in every page, and then I can change the style
of every page in the system by changing a single file. Genius!

Building the next node
That’s enough work for the first page. The good news is that the groundwork
is entirely laid. The next page is easy to build. Figure 1-7 shows how it looks.

	

Figure 1-7:
The first

decision.
	

This second page is much like the first, except there are a few differences:

	 ✓	The headline defines the node. Use a heading to encapsulate the cur-
rent situation.

	 ✓	A small text segment describes the new problem. Most nodes are really
decision points, so use a small text segment to illustrate the situation
the adventurer currently faces.

	 ✓	This page has three images. I’ve created a picture to illustrate each of
the two options that the user currently faces.

	 ✓	Two of the pictures are also links. If the user clicks either of these
images (the book or the software), she is taken to the corresponding
page of the game.

29 Chapter 1: Playing on the Web

Look over the code for chooseTool.html, and you’ll see most of it is really
familiar:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>Choose your tool</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”gooGoo.css” />
</head>
<body>
<h1>Choose your tool</h1>
<p>
 Will you use an expensive software tool or will you use a book to learn how to

build your own games?
</p>

<p>

 <img src = ”MEGPE.png”
 alt = ”Expensive Game Software” />

 <img src = ”GooGooConfused.png”
 alt = ”confused Goo Goo”/>

 <img src = ”Dummies.png”
 alt = ”Dummies book” />

</p>

</body>
</html>

Building this type of node (with a choice) is pretty easy.

	 1.	 Begin with a standard HTML5 page.

		 Use the same framework as the first page. All the standard HTML stuff
goes in there, like a head, body, h1, and a paragraph or two.

	 2.	 Add a link to the external style sheet.

		 Here’s where building the external style sheet pays off. Now you can
simply link to the existing sheet without having to rewrite everything.
Better yet, if you decide to change something, one sheet rules them all.

	 3.	 Describe the problem.

		 Use a standard paragraph to describe the problem.

30 Part I: Building the Foundation

	 4.	 Make an image for each choice.

		 I just drew a (bad) image for each of the options. Use the standard img
tag to display the images. Remember that images belong in a paragraph.
Because these images are typically displayed side by side, I put them in
the same paragraph.

	 5.	 Two images are links.

		 The <a> tag turns text into a link, but if you surround an image with an
anchor, the image becomes a link. Use the original diagram to determine
what page should be displayed when the user clicks on the image.

Adding a sound effect
If the user chooses the expensive software, she is taken to a page that looks
like Figure 1-8.

	

Figure 1-8:
This page

has a funny
sound
effect.

	

Most of the page is built like the other pages in this project, but it does have
a new feature. Note there is a little bar under the image with a Play button.
This indicates an audio sample that can be played. If the user clicks the
Play button, he hears Goo Goo’s anguished cries of pain and frustration.
(Seriously, you’ve got to go to the website. A book just can’t do this corny
sound effect justice.)

31 Chapter 1: Playing on the Web

	 You might wonder why the user has to click the Play button. Couldn’t I make
the sound play automatically when the user gets to the page? Yes, I could, but
it’s generally considered bad form to have a web page automatically play a
sound without the user’s permission. It’s not a big deal in a game, though, and
this particular application is somewhere between a game and a web page.
Look ahead to Chapter 6 for information on how to add sound effects to your
games.

Sound has long been one of the biggest headaches for web-based gaming.
Web browsers could never agree on a good way to handle sound, which is
one reason Flash became the de facto standard for web-based gaming.

However, HTML5 provides native audio support, so there’s finally a good way
to get sound effects working in any modern browser. Look at the code for
software.html, and you’ll see how it works:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>Software</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”gooGoo.css” />
</head>
<body>
 <h1>Software</h1>

 <p>
 <img src = “mad.png”
 alt = “mad” />

 <audio controls = ”controls”>
 <source src = ”mad.ogg”
 type = ”audio/ogg” />
 <source src = ”mad.mp3”
 type = ”audio/mp3” />
 play sound
 </audio>
 </p>

 <p>
 You chose the software, but now you have no money,
 and you can’t figure out how to use it anyway.
 </p>

 <h2>You Lose!</h2>

32 Part I: Building the Foundation

 <p>
 Try again?
 </p>
</body>
</html>

The new tag is called audio. It is designed to make it easy to incorporate
audio clips into your web pages. Here’s how to add audio to an HTML5 web
page:

	 1.	 Obtain your audio clip.

		 The cleanest approach is to build your own audio samples. I love
Audacity, a free recording tool available for every major operating
system. A link to Audacity (as well as an add-on library you’ll need for
recording MP3 files) is available on the website for this book. See this
book’s Introduction for more on the website and Chapter 11 for a bit
more about Audacity.

	 2.	 Store MP3 and Ogg versions of your sound.

		 Although every modern browser supports the audio tag, they don’t
all agree on the format. Some prefer MP3, and some prefer Ogg. Store
both formats for the best results. (You can use the export command in
Audacity to easily export files to Ogg and MP3 format.)

	 3.	 Create the <audio> tag.

		 The <audio> tag is a relatively new HTML5 tag. You can either place it
on its own or inside a paragraph or other container. I placed mine in a
paragraph because I thought it looked better. I also used a special tag
called
 to force a line break so the audio controls show up on
their own line.

	 4.	 Designate whether controls will be displayed.

		 Because you’re going to be polite and not automatically play the sound
effect, you should let the user control the audio directly. The controls
= controls attribute (defined by the department of redundancy
department) does the trick.

	 5.	 Add a source element for each format.

		 For maximum effectiveness, I ship both an Ogg and an MP3 version of
each sound effect. The source element inside the audio element allows
me to define as many audio source files as I want. The browser goes
through the list of sources until it finds one that works.

33 Chapter 1: Playing on the Web

	 6.	 For each source, indicate the audio type.

		 The audio types are self-explanatory: audio/ogg or audio/mp3.

	 7.	 Include a fallback anchor.

		 If the user has a really old browser, you can provide a link (with an ordi-
nary anchor tag) that plays the sound in an external window. It’s not
very satisfying, but at least it works.

Add another page for a victory
Because this chapter is getting long, I simply add one more page that
displays when the user makes the right choice. The final page looks like
Figure 1-9.

	

Figure 1-9:
Choosing
the right

answer has
incredible
rewards.

	

Though you can’t tell from the screen shot, this page features another silly
sound effect. You really have to look at this project on the website.

There is really nothing new about this final page. It uses the same techniques
as the other pages.

34 Part I: Building the Foundation

Here’s the code for the book.html page:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>Read a book</title>
 <link rel=”stylesheet”
 type=”text/css”
 href=”gooGoo.css” />
</head>
<body>
 <h1>Read a book</h1>
 <p>
 <img src = ”gooGooHappy.png”
 alt = ”Happy Goo Goo” />
 </p>

 <p>
 You chose to read the book.

 You learn all there is to know about building
 web-based games in HTML5. You win!

 <audio controls = ”controls”>
 <source src = ”whooHoo.mp3”
 type = ”audio/mp3” />
 <source src = ”whooHoo.ogg”
 type = ”audio/ogg” />
 WooHoo
 </audio>
 </p>

 <p>
 Start over?
 </p>

</body>
</html>

This simple page has all the same features as the other pages.

Making it your own
Of course, this adventure game is pretty short. It needs several more nodes.
However, you know everything you need to make your own. Try designing
your own game. Then use HTML5 to create each node, use CSS to design the
pages, and add links to connect the nodes.

Chapter 2

Talking to the User
In This Chapter
▶	Building a page with form elements
▶	Using CSS for better forms
▶	Introducing JavaScript
▶	Responding to button clicks
▶	Changing CSS elements

A
lthough HTML and CSS are pretty cool as they are, games are really
about interactivity. You can get a small amount of interactivity through

hyperlinks, but for the really fun stuff, you need to write computer code.

Most people think that computer programming is a challenging skill, but it’s
actually not that hard to learn. You already have everything you need to get
started: a text editor and a basic web page.

Modern web browsers all have built-in support for a programming language
called JavaScript. JavaScript is a reasonably easy language to learn, and it
provides more than enough power for some really fun games. Here are a few
key features of JavaScript:

	 ✓	It’s a scripting language. This class of programming language tends to
be a bit easier for beginners than more formal languages such as C++
and Java. Scripting languages are more focused on ease of program-
ming than squeezing every ounce of performance from the computer.
However, they still have plenty of power to make cool games.

	 ✓	It’s tightly integrated with HTML and CSS. HTML and CSS are used to
provide the visual parts of the program (like the actors in a play) and
the JavaScript code is the script that tells the actors what to do.

36 Part I: Building the Foundation

	 ✓	It’s a powerful and modern language. Some programmers act as if
JavaScript is not a serious language. That is not a fair characterization.
Modern versions of JavaScript are capable of some very sophisticated
behavior, as you see throughout this book.

	 ✓	It uses object-oriented programming. Object-oriented programming
(OOP) is a specific style of programming that allows you to describe
objects (like parts of the web page, or the robot zombie opossum in
your game). Building a game consists of building the various objects and
putting them together to make them work.

	 ✓	It is based on events. As your code is running, various events trigger
actions. For example, you want certain things to happen when your code
loads in the browser, when the user clicks on a button, or when your
hero collides with the dreaded pickle of doom.

	 JavaScript is a completely different language than Java, despite the similar
names. Sometimes Java programmers like to act all superior, but don’t believe
it. Java and JavaScript are both terrific languages, but they’re designed for dif-
ferent jobs, like a tennis racket and a baseball bat.

Traditionally, JavaScript is used to interact with specially designated parts of
the page called a form. Forms provide basic interface elements to allow the
user to enter data.

Making an Interactive Form
The basic style of interaction with the user involves creating a form and
interacting with it. A form is simply a part of the page that accepts user input.
The input can be from text boxes or more advanced elements like drop-down
lists, radio buttons, and so on.

You can use ordinary HTML to create these elements, but if you want to read
the user input, you’ll need a programming language. That’s where JavaScript
comes in.

Figure 2-1 illustrates the game you write later in this chapter.

After the user enters some words, she clicks the Tell the Story button, and
the results are shown at the bottom of the page, as in Figure 2-2.

This type of game is a Word-Story-style game, and it’s a great first interactive
program to write. You learn everything you need in this chapter to create
your own word game.

37 Chapter 2: Talking to the User

	

Figure 2-1:
The user

enters vari-
ous words
in the form
and clicks
the button.

	

	

Figure 2-2:
The pro-

gram uses
the words

to tell a silly
story.

	

Adding JavaScript to Your Page
JavaScript is a programming language embedded within the web browser. It
works very closely with HTML. In fact, HTML forms the user interface of most
JavaScript programs. Where HTML provides the structure of a web page and
CSS provides the visual interface, JavaScript adds action. Here’s an extremely
simple example:

38 Part I: Building the Foundation

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <title>alert.html</title>
 <meta charset = “UTF-8” />
</head>

<body>
 <h1>Add quick JavaScript to a page</h1>
 <p>
 <button type = “button”
 onclick = “alert(‘I said not to click me!’)”>
 don’t click me
 </button>
 </p>

</body>
</html>

This looks a lot like an HTML page because that’s mainly what it is. Here’s
what’s interesting about the page:

	 ✓	It has a button. The <button> tag creates a button on the page. This
button isn’t in a form (although often they are). Note that HTML buttons
don’t do anything when you click them. You’re about to change that.
There is more than one kind of button, so use the type = “button”
attribute to indicate that it’s a normal button.

	 ✓	The button has an onclick attribute. onclick is an event attribute.
It’s a special attribute of form elements that allows you to specify what
should happen when an event occurs. The onclick attribute signifies
what should happen when the user clicks on a button.

	 ✓	The value of the onclick attribute is JavaScript code. You can use
the onclick attribute to attach a single line of JavaScript code to your
button click. In this case, that line is alert(‘Hi there!’).

	 ✓	The alert() command pops up a message box. The alert command
is used to send a message to the user without changing the structure of
the page. Alert is easy to use, but it’s annoying for the user. See the later
section, “Modifying the page itself,” for details on a more elegant way to
talk to the user.

	 ✓	Any text inside the alert’s parentheses is displayed to the user. In this
case, the message box will contain the greeting “Hi there!”

	 ✓	Note that I used single quotes. JavaScript and HTML both allow single
and double quotes. Because this JavaScript code was embedded in an
HTML statement, I used a combination of single and double quotes to
keep the browser from being confused about which quote was which.

When you load alert.html into your browser, it will look like Figure 2-3.

39 Chapter 2: Talking to the User

The great thing about buttons is that users are guaranteed to click them. If
you want to be absolutely certain the button gets clicked, tell the user not to
click it. It works every time. When the user inevitably clicks the button, she
will see what is shown in Figure 2-4.

	

Figure 2-3:
This page
has a but-
ton. Must

click . . .
	

	

Figure 2-4:
A little dia-

log box pops
up with a
message.

Cool!
	

40 Part I: Building the Foundation

The dialog box is called an alert. It’s a simple tool, but it’s an easy (if some-
what annoying) way to send the user a message.

	 The actual appearance of the alert dialog box differs based on your browser
and operating system, but something pops up.

Creating the custom greeting
Buttons are nice, but it would be nice to allow the user to input some sort
of data and then do something with the output. HTML allows you to create
forms, which are special parts of the page designed for user input. Figure 2-5
shows one of the simplest possible forms:

	

Figure 2-5:
The user

can enter a
name and

click the
button.

	

Although the input.html form shown in Figure 2-5 won’t win any beauty
contests, it has all the main features of a form. There’s a label that describes
what the user should do, an input area for the user to type in, and a button to
do something when the user clicks on it. (Don’t get your hopes up too much.
The button in this version doesn’t do anything, but I change that in the next
example.) The code for input.html is short and sweet:

41 Chapter 2: Talking to the User

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>input.html</title>
</head>
<body>
 <form>
 <fieldset>
 <label for=”txtName”>Please type your name

</label>
 <input type=”text”
 id = “txtName”/>
 <button type = “button”>
 submit
 </button>
 </fieldset>
 </form>
</body>
</html>

Nothing horribly fancy here, but there are some new elements:

	 ✓	A form element: It probably won’t surprise you that a form is created
with the <form> tag. Every once in a while, HTML makes sense. Any ele-
ments that are meant to allow for user input are expected to be placed
in a form.

	 ✓	A fieldset element: The form is just a logical container. It explains
that the elements inside the form are used for input, but you still
need some type of other container to hold the elements. The special
<fieldset> tag is designed for exactly this purpose, so I put a
fieldset pair inside the form.

	 ✓	Labels: Labels are special HTML elements that are meant to describe
a form element. They aren’t absolutely necessary (earlier versions of
HTML did not have them), but they can be useful. Labels have a special
for attribute that helps connect the label to a specific input element.

	 ✓	An input: There are a number of elements used for user input. Most
are variations of the <input> tag. A text box (as used in this example)
is input elements with the type attribute set to text. Note that I also
assigned an id attribute to the input element. The id is used to con-
nect a label to an input, and it is used later when JavaScript code wants
to retrieve data from the input element.

	 ✓	A button: Most of the time, forms just sit there, waiting for user input.
All the real action happens when the user clicks on a button. For that
reason, most forms have at least one button. The button has a type
attribute, which must be set to button.

42 Part I: Building the Foundation

	 It may seem redundant to tell a button that its type is button, but it’s a critical
step. There are a number of different types of buttons. If you don’t specify
which type of button you’re creating, HTML assumes you want a Submit button.
This type of button is used in a totally different type of programming (on the
web server) and submits a blank request to the web server, which causes your
page to refresh rather than taking any other action. For the type of program-
ming you’ll do in this book, ensure you’ve set all buttons to type button.

Making the magic happen
If you’ve been following along, at this point you can type your name in the box
of input.html, and you can click the button, but nothing happens. That’s
because you have to tell the browser what you want it to do. The onclick trick
allows you to do simple things, but if you want to do something more inter-
esting, you’ll need to connect the button to a block of code called a function.
Figure 2-6 shows greet.html, which adds this functionality to input.html.

The HTML is almost completely unchanged. The only difference is in the
button code. The button now looks like this:

 <button type = “button”
 onclick = “greet()”>
 submit
 </button>

	

Figure 2-6:
Now when

the user
clicks on

the button,
a greeting

appears.
	

43 Chapter 2: Talking to the User

The new feature is an onclick attribute. You can attach one line of JavaScript
code to an onclick attribute. In this example, I tell JavaScript to run a func-
tion called greet(). That function doesn’t exist yet, but that’s the next step.

Most of the time when you want to add JavaScript code to a web page,
you’ll put it in the header, inside a <script></script> pair. Here’s the
JavaScript section in whole:

 <script type = “text/javascript”>
 function greet(){
 alert(“Hi there! Thanks for clicking me”);
 } // end greet
 </script>

These few lines hide a lot of sophisticated goings-on. Here’s what you’re
doing in this code:

	 1.	 Designate the beginning of a script segment.

		 The script tag is normally placed in the HTML header area. It indicates
to the browser that the enclosed code will be in a programming language.

	 2.	 Indicate the code will be written in JavaScript.

		 The type = “text/javascript” piece indicates that the following
code is written in the JavaScript language. There are a few other lan-
guage options, but they are rarely used.

	 3.	 Create a function.

		 Most of the time, you’ll store code in containers called functions. A func-
tion is a container for a block of code. At the simplest level, a function
allows you to call several lines of code with only one name. Right now,
I’m making a function called greet(). Remember, the onclick prop-
erty of the button calls greet(). So, when the user clicks the button,
any code in the greet() function will happen. Cool, huh?

	 4.	 Dress up your function.

		 Functions are a very important part of programming. You need to know
a few rules to make them work well for you. After the function name, you
need a pair of parentheses. (They are empty for now, but later on you’ll
add content here.) A function always begins and ends with squiggly
braces ({}). It’s traditional to indent all of the code inside the function.
(By “traditional,” I mean that all programming teachers and bosses abso-
lutely require it. Trust me. You need to get in the habit of doing it.)

	 5.	 Use appropriate punctuation.

		 In English, it is important to end each sentence with appropriate punc-
tuation (a period, question mark, or exclamation point). JavaScript has
similar rules. In general, every line that does not have a squiggly brace

44 Part I: Building the Foundation

needs a semicolon (;) to indicate the end of the line. Make sure it’s a
semicolon, and not a colon (:). It makes a huge difference.

	 6.	 Greet the user.

		 This function is simple. It creates a basic greeting for the user. It ignores
the user’s name for now, but that will be in the next example. For now,
appreciate that you can put any code you want inside a function and
connect that function to a button. It’s a pretty powerful tool.

	 7.	 Comment the ending.

		 The two slashes after the close brace are a comment indicator. A com-
ment is a note for programmers embedded in the code. Comments are
ignored by the computer, but they’re very useful for programmers.
There are a number of places to put comments, but one of the more
useful is at the end of a function. As your code gets more complicated,
you’ll have a lot of closing braces, and they can get hard to keep track of.
Add a comment to each closing brace so it’s clear what you’re trying to
close. It’s a great habit to learn now as you’re getting started.

A program where everyone
knows your name
The greet.html page asks the user’s name, but it doesn’t do anything inter-
esting with it. That requires a new concept, called a variable. A variable is
simply a name for a chunk of computer memory. Variables can hold all kinds
of information: words, numbers, even parts of the web page. A big part of
programming is knowing how to create and use variables. Here’s another ver-
sion of the greeting program that uses variables to give a personal response.
First I show you everything, and then I explain the details:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>greetName.html</title>
 <script type = ”text/javascript”>
 function greet(){
 var txtName = document.getElementById(”txtName”);
 var userName = txtName.value;
 alert(”Hi, ” + userName + ”!”);
 } // end greet
 </script>
</head>
<body>
 <form>

45 Chapter 2: Talking to the User

 <fieldset>
 <label for=”txtName”>Please type your name</

label>
 <input type=”text”
 id = ”txtName”/>
 <button type = ”button”
 onclick = ”greet()”>
 submit
 </button>
 </fieldset>
 </form>
</body>
</html>

This program does something more interesting when you click the button, as
you can see from Figure 2-7.

	

Figure 2-7:
Now it actu-

ally greets
me by
name!

	

Essentially, the program does these things:

	 1.	 Get access to the text box.

		 The web page and the JavaScript code are different (if related) entities.
Before I can get access to the contents of the input field, I need to give
JavaScript access to the input field. I make a variable to refer to the text
element.

46 Part I: Building the Foundation

	 2.	 Retrieve the name.

		 The user’s name is stored in the value property of the input field. I’ll
make another variable to refer to the name.

	 3.	 Output the greeting.

		 Now I have everything I need, so I make a new greeting. This greeting
combines some actual text with the user’s name. I use the standard
alert mechanism to create an easy greeting.

Implementation is not difficult once you know what you’re trying to accom-
plish, but you do have to learn some new skills. Here’s how the actual func-
tion works:

	 1.	 Create a variable for the input element.

		 The var statement creates a new variable. A variable is simply a place in
the computer memory. Whenever you create a variable, you must give it
a name. I call my variable txtName because it’s the text field containing
the user’s name. (See the upcoming sidebar for tips on naming things.)
var txtName = document.getElementById(“txtName”);

	 2.	 Attach the input element to the variable.

		 Before you can work with a part of the page, you need to tell Java
Script what you’re working with. Essentially, you create a variable to
represent any important elements of the form. The command document.
getElementById() expects the id of an element in the current page
and returns a reference to that element. The first line of the function
asks for the page element called txtName and creates a JavaScript vari-
able also called txtName. When this line of code is finished, a variable
called txtName refers to the HTML element of the same name.
var txtName = document.getElementById(“txtName”);

	 3.	 Create another variable for the user’s name.

		 The txtName variable refers to the input field, not the actual name.
If you want the user’s name, there’s another easy but important step.
Make another variable called userName. This variable contains the
actual name.
var userName = txtName.value;

	 4.	 Extract the user name from the text field.

		 Text fields have a value attribute. If you have a variable referring to a
text field, you can read or change the value of that text field. Take the
value property and assign it to the userName variable.
var userName = txtName.value;

47 Chapter 2: Talking to the User

	 5.	 Greet the user.

		 Use a standard alert statement to greet the user.
alert(“Hi, “ + userName + “!”);

	 6.	 Include the value of userName.

		 The alert statement can contain plain text: alert(“hi”). It can also
contain the value of a variable: alert(userName). Note that if you
don’t include quotes, the alert statement prints the value of the variable,
not the variable name itself. If you want to get fancy, you can combine
actual text and variables, like I do in this program. Use the plus sign to
combine variables and standard text.
alert(“Hi, “ + userName + “!”);

Naming things
One of the most important jobs a programmer
has is naming things. Programmers invent stuff
all the time, and the names you choose for these
things can have a big impact on how easy your
code is to use and maintain. A few conventions
have emerged over time. Follow these, and you
should be good in pretty much any language.

	✓	 Make names meaningful. It’s much easier
to determine what userName means than
X. Whenever possible, create a name that
describes what the thing does. In the best-
written programs, the variable names are
chosen so clearly a reader can understand
the program without comments.

	✓	 Use the name to convey the type of infor-
mation. When you’re naming a variable,
describe the kind of data the variable
will contain. If you’re naming a function,
describe what the function does (usually
function names look like verb phrases). If
you’re naming a file, describe what sort of
content the file has.

	✓	 Be careful with punctuation. Spaces and
punctuation have special meaning in most
languages, so use them carefully when
naming things. Generally, you should avoid
all spaces and punctuation symbols. Often
the underscore character is allowed, but
you should not use any other punctuation
in the name of a function, a variable, a file,
or an object.

	✓	 Use camel-case. It’s common to use all
lowercase and to use uppercase to indi-
cate word boundaries (as in userName).
Note that you’ll see other capitalization
traditions in your travels. Object names are
often capitalized, and constants are usually
all uppercase. I point out these exceptions
as you come across them.

	✓	 Make the size reasonable. You want the
name to be long enough to be clear, but not
so long that it’s difficult to type.

48 Part I: Building the Foundation

Modifying the page itself
It’s great to have a program that greets the user by name, but the dialog box
is a little annoying. It would be even better if the program could modify the
web page directly. As an example, Figure 2-8 looks a lot like the other pages,
but after the user clicks the button, the greeting is embedded directly into
the page!

	

Figure 2-8:
This

program
embeds the

greeting into
the page.

	

The new version of the program is called greetOutput.html, and here it is
in its entirety. (The new code elements are highlighted.)

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>greetName.html</title>
 <script type = “text/javascript”>
 function greet(){
 var txtName = document.getElementById(“txtName”);
 var userName = txtName.value;
 var output = document.getElementById(“output”);
 output.innerHTML = “Hi, “ + userName + “!”;
 } // end greet
 </script>

49 Chapter 2: Talking to the User

</head>
<body>
 <form>
 <fieldset>
 <label for=”txtName”>Please type your name</

label>
 <input type=”text”
 id = “txtName”/>
 <button type = “button”
 onclick = “greet()”>
 submit
 </button>
 </fieldset>
 </form>
 <div id = “output”>empty</div>
</body>
</html>

The code isn’t shockingly different, but there are some new elements:

	 1.	 Create an HTML element for output.

		 Add an HTML element to the page that will contain your output. I’m
using a standard div element. Be sure to give the element an ID so you
can refer to it in code. You’ll generally make this element empty, but I
like to put something in there (like the word empty) so I can tell where
the div is. After your program is working, you can take out any place-
holder text.

	 2.	 Create a variable for the output element.

		 Use the document.getElementById trick to create a variable repre-
senting the output area. You can use this method to create a variable for
any HTML element, not just form inputs.

	 3.	 Modify the output’s contents.

		 All HTML elements that have beginning and ending tags have an
innerHTML property. If you change the value of the property, you
change what’s displayed inside the element. You can place any legal
HTML code here, but I simply want to create the greeting.

Adding style to your forms
The greeting page is now pretty functional, but it doesn’t look very good.
At the moment, all the form elements are bunched up together. It would be
nice to have them lined up neatly. CSS can fix that. Figure 2-9 shows the page
with a custom style attached.

50 Part I: Building the Foundation

	

Figure 2-9:
Now every-

thing is lined
up neatly.

	

That’s fine, but it can get a little messy. Sometimes you might want to put all
the CSS code in a separate file and call it in when you need it. This offers a
couple of advantages. First, the CSS code stays out of the way until you need
it. Perhaps more importantly, after you’ve stored a set of CSS rules in a sepa-
rate file, you can reuse them across multiple HTML pages. So if your game
uses the same style across 100 pages, you only have to write the style rules
once. Changing the style in the external sheet changes all the pages that use
that style. It’s pretty easy to build an external style sheet:

	 1.	 Create a new empty file.

		 Use a plain text editor (usually the same one you use to build HTML
pages). Be sure to save the file with a CSS extension. Save your CSS file
in the same directory as your HTML files. I saved my file as form.css
so I can reuse it any time I want to display a form.

	 2.	 Type the CSS rules in the new file.

		 You don’t need to use the <style></style> pair in an external style
sheet. It’s already understood that you’re defining CSS. Otherwise, write
your CSS code exactly like you would inside the style pair.

	 3.	 Add a link tag to the HTML header.

		 In the HTML’s header area, you can add a link tag to indicate a link-
age to an external style sheet. Set the type to text/css, the rel to
stylesheet, and the href to the name of the style sheet you just created.

51 Chapter 2: Talking to the User

Do it with style
Of course, you need to apply some style rules to make the page look nice.
Typically, you should line up the labels and their corresponding input ele-
ments. A number of handy style rules make pages lay out better. Look over
these new style rules:

	 ✓	text-align: The text-align rule changes the alignment of text
inside an element. It only works on block-level elements. Use text-
align to align your text to the left, right, center, or to justify it. You do
not use text-align to center elements, just to center text within an
element. (See the margin rule described later in this list for element
alignment.)

	 ✓	width: Use this rule to determine the width of an element. You must
define a width whenever you use float. The width can be specified in
pixels (px), percentages (%), or by character width (em).

	 ✓	margin: The margin determines the space between the outside of
the element and the text. You can define separate margins for all sides
(margin-left, margin-top, and so on) or you can define all the mar-
gins at once with the margin rule. If you set left and right margins of a
block-level element to auto, you center that element.

	 ✓	float: The float rule removes the element from the normal placement
rules and places it using a new rule set. If you float to the left (the most
common type of float), the element goes all the way to the left of its con-
tainer unless there is another left-floated element in the way. Normally
you float a number of elements to the left and use the clear attribute to
set up rows. This is a good way to simulate a table-style layout without
having to use the table tags. (Keep reading if this is confusing. I show an
example next.)

	 ✓	clear: This rule is used to specify that a floated element is supposed
to occupy a certain area. If you set clear to left, the element tries to
move to the left-hand side of the container. If you set clear to both,
the element should be on the line by itself.

	 ✓	padding: The padding attribute allows extra padding between the
contents of an element and the border. Padding is similar to margin, but
padding is inside the border and margin is outside the border. If you
have no visible border, padding and margin act pretty much the same.
Like margin, you can set padding to particular sides: padding-right
and padding-bottom.

	 ✓	display: The display rule is used to change the basic behavior of an
element. You can use it to make a normally inline element (like a button)
act like a block-level element. You can also set display to none to
make an element disappear altogether.

52 Part I: Building the Foundation

Creating a style for the form
You can use the style rules to create an external style sheet to make your
form look nice. Remember that form.html had a reference to a style sheet
called form.css. Here’s my text for form.css:

h1 {
 text-align: center;
}

fieldset{
 width: 600px;
 margin: auto;
}

label {
 width: 15em;
 float: left;
 clear: left;
 text-align: right;
 padding-right: 1em;
}

input {
 float: left;
}

button {
 display: block;
 clear: both;
 margin-left: auto;
 margin-right: auto;
}

#output {
 text-align: center;
}

This code arranges the various CSS elements to make the page look a lot
better. Here’s how you clean up the form:

	 1.	 Center the headline.

		 Apply text-align: center to the h1 tag. This causes the headline to
be centered for a nice look.

	 2.	 Center the fieldset.

		 The fieldset is a block-level element, so you can center it by giving it
a fixed width and setting the margins to automatic.

53 Chapter 2: Talking to the User

	 3.	 Float the labels.

		 The labels should all line up on the left-hand side of the form. Set float
to left. Whenever you float an element, you should also set the width. I
set the width to 15em, which is the width of 15 capital Ms in the current
font.

	 4.	 Arrange the label text.

	 	 The standard text alignment for a label is left-justified, which makes the
labels seem far away from the input elements. Setting text-align right
moves the labels closer to the text elements, but it’s too close. Give a
padding-right of 1 em to make a nice space between the label and the
input field.

	 5.	 Adjust the input elements.

		 The only thing you need to do to the inputs is float them to the left.
That snuggles them up against the corresponding labels.

	 6.	 Center the button.

		 Typically, you want a button to be centered. That’s a little tricky until
you know how to do it. The easiest way is to force the button into block
mode so you can use the margin: auto trick.

	 7.	 Format the output.

		 I think it looks best if the output is also centered, so I add a little code
to the output. Note that if you know the id of a page element, you can
use the # sign to refer to it, so #output modifies the element that has
output as its id.

	 CSS rules can be a little daunting. If you need a more careful explanation of
what’s going on here, please look into the much more complete discussion of
CSS in my book HTML, XHTML & CSS All-In-One For Dummies. Even if you don’t
exactly understand what’s happening with this style sheet, you can still copy
it and use it for your own forms. Just add the link reference to your HTML
page.

Outsourcing your JavaScript code
Programmers love the idea of breaking up big problems into smaller prob-
lems. It’s nice to separate the CSS from the HTML because these are different
tools for solving different problems. It’s also possible to put the JavaScript
code in a separate file. As your programs get more complicated, you’ll want
to be able to do this. Here’s one more version of the greeting program. (I
won’t show a screen shot because it looks identical to the user.)

54 Part I: Building the Foundation

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>greetName.html</title>
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”form.css” />
 <script type = “text/javascript”
 src = “greet.js”></script>
</head>
<body>
 <form>
 <fieldset>
 <label for=”txtName”>Please type your name</

label>
 <input type=”text”
 id = “txtName”/>
 <button type = “button”
 onclick = “greet()”>
 submit
 </button>
 </fieldset>
 </form>
 <div id = “output”>empty</div>
</body>
</html>

The HTML code hasn’t changed at all. The only difference is the reference to
the external JavaScript code. Here’s how it works:

	 1.	 Copy all of the JavaScript code.

		 Take all the JavaScript code out of the script tags.

	 2.	 Create a new file.

		 I called my file greet.js. This is just a plain text file.

	 3.	 Paste all the code into the new file.

		 The new file contains all the JavaScript code. (I show you the file next.)

	 4.	 Add a src attribute to the script tag.

		 You can attach a src attribute to a script tag. This tells the browser to
extract the JavaScript code from an external file. It’s generally best to
keep the file in the same directory as the main HTML page.

	 5.	 Leave the script element empty.

		 You still need a </script> tag, but you don’t need any code between
<script> and </script>.

55 Chapter 2: Talking to the User

		 The greet.js file contains nothing but the code used to make the pro-
gram work. There is no need to change any of the code:
function greet(){
 var txtName = document.getElementById(“txtName”);
 var userName = txtName.value;
 var output = document.getElementById(“output”);
 output.innerHTML = “Hi, “ + userName + “!”;
} // end greet

Building the Word Story Game
If you know how to build form elements, write a little JavaScript code, and
format a form, you’re ready to build the Word Story game described at the
beginning of this chapter. (If you’re a little fuzzy on any of these areas, you
may want to go back through the chapter and review them.)

Games are complicated, so you need to think carefully about how you’re
going to build this thing. The best way to solve complex problems is to break
them into smaller steps. The multiple file system makes this a bit easier.
Here’s how to make your own Word story game:

	 1.	 Design the game on paper.

		 The most important programming happens before you turn on the com-
puter. Plan out your game. I show you my plan for this game in the next
section.

	 2.	 Build your framework.

		 The web page forms the essential infrastructure of the page. This is
done in HTML. If you’ve planned your project well, this isn’t difficult to
create.

	 3.	 Add style details.

		 Use CSS to make your page look how you want. Most of the details can
wait, but you’ll at least want to add enough CSS to ensure your page is
usable.

	 4.	 Build the code.

		 Add the JavaScript code to make your program do what it does.

	 5.	 Test.

		 Check the program to see if it does what you want. You should also have
others test your game.

56 Part I: Building the Foundation

Designing the game
This game doesn’t take a lot of work to design, but there are two compo-
nents. First is the data design, which helps you understand what data the pro-
gram is about. The data design for this game can simply be the story. In this
example, I start with a classic nursery rhyme and add placeholders for the
user input, like this:

<boy> and <girl> went up the <geol> to <verb>

a <container> of <liquid>.

<boy> fell down and broke his <bodyPart> and

<girl> came <gerund> after.

From this document, you can figure out what variables you need, which gives
you the information you need to build your user interface.

It’s generally best to sketch out your user interface on paper first. Figure 2-10
shows my sketch for the interface.

	

Figure 2-10:
Here is a

preliminary
sketch of
the page.

	

A sketch should have a number of features:

	 ✓	All the labels: Make sure you know all the elements you need before you
start coding. It’s much easier to write the code if you already know what
you need.

57 Chapter 2: Talking to the User

	 ✓	Names for all the components: You’ll need to know the name of every
text element. It’s easy to write the code using these elements if they’re
already listed in a document.

	 ✓	Any buttons you’ll need: You don’t need to specify the name of every
button, but you should indicate what will happen when the button is
clicked.

	 ✓	The general layout: The sketch should give you a sense what you’re
trying to accomplish with the layout. You won’t be able to create a
layout if you don’t know how it’s supposed to look.

Building the HTML foundation
After you have the design figured out, begin with the HTML foundation.
Everything else in the project depends on solid HTML code, so write it well.
Here’s my HTML:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>wordStory.html</title>
 <link rel = “stylesheet”
 type = “text/css”
 href = “wordStory.css” />
 <script type=”text/javascript”
 src = “wordStory.js”>
 </script>
</head>
<body>
 <h1>Word Story</h1>
 <form action=””>
 <fieldset>
 <label for = “txtBoy”>Boy’s name</label>
 <input type = “text”
 id = “txtBoy” />

 <label for = “txtGirl”>Girl’s name</label>
 <input type = “text”
 id = “txtGirl” />

 <label for = “txtGeol”>Geologic formation</

label>
 <input type = “text”
 id = “txtGeol” />

 <label for = “txtVerb”>Verb</label>
 <input type = ”text”

58 Part I: Building the Foundation

 id = ”txtVerb” />

 <label for = ”txtContainer”>Container</label>
 <input type = ”text”
 id = ”txtContainer” />

 <label for = ”txtLiquid”>Liquid</label>
 <input type = ”text”
 id = ”txtLiquid” />

 <label for = ”txtBodyPart”>Body Part</label>
 <input type = ”text”
 id = ”txtPart” />

 <label for = ”txtGerund”>ing verb</label>
 <input type = ”text”
 id = ”txtGerund” />

 <button onclick = ”tellStory()”
 type = ”button”>
 tell the story
 </button>

 </fieldset>
 </form>

 <div id = ”output”>

 </div>
</body>

The page is much like greet.html, if a bit longer. It has a number of sections:

	 ✓	An external style sheet: The style sheet is stored in an external file. One
primary advantage of an external style sheet is how it lets you ignore the
style for now. As long as you have a reference to the style, you can make
the page look however you want later.

	 ✓	External JavaScript: The JavaScript code is also stored in an external
file. This practice allows you to let the HTML page focus on the web
code and worry about the programming later. That’s a great way to
handle complex tasks like building games.

	 ✓	A form: The main purpose of this HTML page is to provide a form. I’ve
created a form asking for a number of terms. The form’s button refers to
the tellStory() function that is developed in wordStory.js.

	 ✓	An empty div for output: The results of the story are placed in a div
called output.

59 Chapter 2: Talking to the User

Adding the CSS style
With the HTML code in place, you’ll have all the elements you need, but the
page looks ugly unless you add some CSS. The wordStory.css file handles
this duty. It’s basically identical to the form CSS described earlier in the
chapter:

h1 {
 text-align: center;
}

fieldset {
 width: 600px;
 margin-left: auto;
 margin-right: auto;
}

label {
 float: left;
 width: 250px;
 clear: left;
 text-align: right;
 padding-right: 1em;
}

input {
 float: left;
}

button {
 display: block;
 clear: both;
 margin-left: auto;
 margin-right: auto;
}

#output {
 font-size: 150%;
 text-align: center;
 width: 400px;
 margin-left: auto;
 margin-right: auto;
}

60 Part I: Building the Foundation

Writing the code
The only task left is to write the JavaScript code. Although this may seem
daunting, it is pretty easy because of the level of planning you’ve put into the
game. Here’s the general plan of the code:

Create a variable for each input element

Extract the text for each variable

Compile the story in a variable

Create a variable to represent output

Write the story to the output div

The actual code is nothing new. It simply uses the skills taught throughout
this chapter to read the form elements and create a fun story:

function tellStory(){
 //gather form elements
 var txtBoy = document.getElementById(“txtBoy”);
 var txtGirl = document.getElementById(“txtGirl”);
 var txtGeol = document.getElementById(“txtGeol”);
 var txtVerb = document.getElementById(“txtVerb”);
 var txtContainer = document.getElementById(“txtContainer”);
 var txtLiquid = document.getElementById(“txtLiquid”);
 var txtPart = document.getElementById(“txtPart”);
 var txtGerund = document.getElementById(”txtGerund”);
 var output = document.getElementById(“output“);

 //create variables for input
 var boy = txtBoy.value;
 var girl = txtGirl.value;
 var geol = txtGeol.value;
 var verb = txtVerb.value;
 var container = txtContainer.value;
 var liquid = txtLiquid.value;
 var part = txtPart.value;
 var gerund = txtGerund.value;

 //write the story
 var story = boy + „ and „ + girl + „ went up the „;
 story += geol + „ to „ + verb + „ a „ + container;
 story += „ of „ + liquid + „. <br / >
“;
 story += boy + „ fell down and broke his „ + part;
 story += „ and „ + girl + „ came „ + gerund + „ after.“;

 //copy story to output
 output.innerHTML = story;
} // end tellStory

61 Chapter 2: Talking to the User

Although the code is nothing new, here are a few things you should notice
about it:

	 ✓	Lots of comments: Good coders use plenty of comments. I added com-
ments to explain everything that was happening. I’m also a big fan of
comments for right braces (to tell what’s ending) because all right
braces look the same, and this is a common place to get confused.

	 ✓	Careful variable names: I used thoughtful and consistent variable
names throughout. This was easy because the variable names were
determined during the sketch portion of the process.

	 ✓	Good organization: The code was carefully organized to flow in an easy-
to-follow pattern. Note the use of indentation and white space to make
the code easier to read.

Designing your code well leads to less frustration and much better programs.
Enjoy the game. You’ll be able to write even more amazing games soon.

62 Part I: Building the Foundation

Chapter 3

Coding Like a Pro
In This Chapter
▶	Learning more about variables
▶	Making decisions with conditions
▶	Repeating with loops
▶	Debugging your programs
▶	Breaking up your code with functions

C
omputer games are complex. They are about a lot of information:
scores, maps, characters, and all the data they represent. You also have

complicated instructions. Even simple games are complicated enough that
you’ll need to break them into smaller segments. You’ll also find that some of
your code is repetitive. You’ll also want the computer to make decisions so
the enemy characters will appear to think and the game will respond to dif-
ferent circumstances in different ways.

The basic ideas of programming are the same in any language. Programs
are about data, which is stored in variables. You’ll sometimes have a chunk
of code that you’ll want to combine into functions. Your program needs to
do different things in different situations, and sometimes it needs to be able
to repeat things. Sometimes you’ll also need more advanced ways to think
about information and instructions. Game programming shares these charac-
teristics with every other programming language.

All of these things require the basic elements of programming:

	 ✓	Variables: These are the basic data elements. Everything in your game is
housed in one or more variables.

	 ✓	Conditions: A condition is a true or false statement. Conditions are criti-
cal in loops and branches.

	 ✓	Branches: Your code can appear to make decisions. A number of tools
help you make decisions well.

64 Part I: Building the Foundation

	 ✓	Loops: Loops are useful when you have repetitive tasks to perform.

	 ✓	Arrays: These are “super-variables” that can contain a huge amount of
information.

	 ✓	Functions: A function is a group of code lines with a single name.
Functions help you organize your code.

Working with Variables
Variables are a really important part of computer programming. Although
JavaScript makes variables pretty easy to use, you still need to keep some
very important things in mind when you use a variable:

	 ✓	The var statement is preferred but not required. It’s generally consid-
ered best to use the var statement to define a variable. Throughout this
book, I use the var statement to build every major variable.

	 ✓	Just mentioning a variable creates it. If you leave out the var state-
ment, JavaScript tries to create a variable for you. For example, user-
Name = “Andy”; is similar to var userName = “Andy”:.

	 ✓	The variable type is automatically determined by JavaScript. Different
kinds of information are stored differently in the computer’s memory.
Integers (counting numbers), real numbers (with a decimal point), and
text are all stored differently in memory. JavaScript tries to automati-
cally create the right type of variable based on the context.

You’re just my type: Handling
different data types
The point about variable types is really important. Different kinds of data are
stored in different ways in the computer. Some languages (like C++ and Java)
are extremely picky about variable types and require you to think carefully
about what type of data goes into what variable. JavaScript is much more
easy-going about data types, but it still must figure out how to store the data.
When you assign a value to a JavaScript variable, JavaScript turns it into one
of these main types:

	 ✓	Integers: Integers are the counting numbers, zero, and negative num-
bers. Integers do not have a decimal point. They are pretty easy for the
computer to work with and rarely cause problems, so they are a favorite
data type.

65 Chapter 3: Coding Like a Pro

	 ✓	Floating point: Numbers with a decimal point are often called floats.
(Some languages have more than one floating type, but JavaScript just
has floats.) Floating data requires a lot more memory than integers
and can introduce some crazy errors, so JavaScript only stores values
with the float mechanism if needed (that is, if a numeric value has a deci-
mal part).

	 ✓	Strings: Text data is a special case. Text is really stored as a bunch of
integers in contiguous memory cells. This reminded early programmers
of beads on a string, so programmers never say text data, but call text
strings instead. Almost all user input and output is done through strings.

	 ✓	Boolean: Boolean value is another special case. A Boolean data element
only contains the values true or false. Simple as they are, Booleans
are extremely useful.

	 ✓	Objects: JavaScript supports an advanced programming idea called
object-oriented programming. A JavaScript object can be a very complex
element containing variables and functions. Any element on the web
page can be converted into a JavaScript object, and JavaScript supports
a rich framework of other types of objects as well.

Using a computer program to do bad math
Although JavaScript tries to shield you from worrying about data types, you
still have to think about this issue because sometimes it causes you problems.
For example, consider the code in typeConv.html (shown in Figure 3-1).

	

Figure 3-1:
3 + 5 = 35?

Something’s
not right

here.
	

66 Part I: Building the Foundation

This program asks the user for two numbers and then tries to add them
together. However, it doesn’t do it correctly. If the user inputs 3 and 5, the
result is 35. The Add Wrong button calls the cleverly named addWrong()
function. Here’s the code for addWrong():

 function addWrong(){
 //from typeConv.html
 //input two numbers
 var x = prompt(“X”);
 var y = prompt(“Y”);
 var sum = x + y;
 alert(x + ” + ” + y + ” = ” + sum);
 } // end addWrong

The code for addWrong() looks perfectly reasonable. Here’s what you’re
doing with it:

	 1.	 Ask the user for x and y.

		 Use the prompt statement to ask the user for two numbers. Store these
two numbers in the variables x and y.

	 2.	 Add x and y and put the result in sum.

		 Make a new variable called sum that will contain the sum of x and y.

	 3.	 Output the value of sum.

		 Use the standard alert() statement to output the result.

This code seems completely straightforward, and it ought to work. However,
it doesn’t do what you want. It reports that 3 plus 5 equals 35. And here we
thought computers were good at math.

Managing data types correctly
The key to fixing the addWrong problem is to understand how the computer
is misinterpreting the data. Here’s the underlying problem: The prompt()
command is asking for text from the user. That text is stored in a string vari-
able because JavaScript assumes any input from the user is a string. So, the
value 3 isn’t stored as the number 3, but as a text variable with the value ‘3.’
(The quotes are important because text values are always encased in quotes
and numeric values are not.) The plus sign combines two string values, so
if x is ‘3’ and y is ‘5’, x + y means ‘concatenate (or combine) ‘3’ and ‘5’,
resulting in an answer of ‘35’. That is not what we want at all.

67 Chapter 3: Coding Like a Pro

The way to fix this is to tell the computer that x and y should be interpreted
as integers, like this:

 function addRight(){
 //from typConv.html
 //input two numbers
 var x = prompt(“X”);
 var y = prompt(“Y”);

 //force values to integer format
 x = parseInt(x);
 y = parseInt(y);

 var sum = x + y;
 alert(x + ” + ” + y + ” = ” + sum);

 } // end addRight

This code is very similar to the addWrong() function, but it adds a new sec-
tion. The parseInt() function accepts a string and converts it to an integer.
If it cannot convert the value, it returns the special value NaN (Not a Number).

	 There are similar functions for converting data to other types. Use parse-
Float() to convert a string value to a floating point (decimal) value. The
toString() method can be used to convert a number to a string:

x = 5;
alert(x.toString());

However, JavaScript usually converts numbers to strings automatically, so it
isn’t usually necessary to use this technique.

This improved version of the adding code still pulls in the values as strings,
but it converts them to integer values before doing any calculation. The exact
same code is used to add the values (sum = x + y), but this time the values
are integers, so the computer knows that the plus sign really means add.

Figure 3-2 illustrates the addRight function working as expected.

	 Experienced programmers (especially Java programmers) might be horrified
at the cavalier way JavaScript lets you just create and change variable types
on the fly. However, it really works pretty well most of the time, so you might
just have to relax and appreciate that different languages have different goals.
JavaScript tries to do as much automatically as it can, which is nice for begin-
ners. Java (which is an entirely different language) is more focused on protect-
ing you from various kinds of mistakes often brought on by sloppy coding.
Java has much stricter rules, but when you follow those rules, you tend to
make fewer mistakes.

68 Part I: Building the Foundation

	

Figure 3-2:
The add-
Right()

function
converts

input to inte-
gers before

adding
them.

	

Making Choices with if
Sometimes you’ll need your code to make decisions. For example, if some-
body famous typed their name in your website, you might want to create a
custom greeting for them. (I know this is a goofy example, but stay with me.)
Take a look at the ifElse.html site in Figures 3-3 and 3-4.

As you can see, the program looks at the input in the text box and changes
behavior based on the value of the text field. The code is quite similar to the
code in the hiUser page. The only difference is the way the function is writ-
ten. Here’s the checkName() function called in ifElse.html:

 function checkName()
 // from ifElse.html
 lblOutput = document.getElementById(“lblOutput”);
 txtInput = document.getElementById(“txtInput”);

 userName = txtInput.value;
 if (userName == “Tim Berners-Lee”){
 lblOutput.innerHTML = “Thanks for inventing HTML!”;
 } else {
 lblOutput.innerHTML = “Do I know you?”;
 } // end if
 } // end function

69 Chapter 3: Coding Like a Pro

	

Figure 3-3:
Tim

Berners-
Lee gets
a special
greeting.

	

	

Figure 3-4:
Apparently,

this guy
isn’t famous

enough.
	

Changing the greeting with if
This code uses an important idea called a condition inside a construct called
an if statement. Here’s what’s happening:

70 Part I: Building the Foundation

	 1.	 Set up the web page as usual.

	 	 The HTML code has elements called lblOutput and txtInput. It also
has a button that calls checkName() when it’s clicked.

	 2.	 Create variables for important page elements.

	 	 You’re getting data from txtInput and changing the HTML code in
lblOutput, so create variables for these two elements.

	 3.	 Get userName from txtInput.

		 Use the txtInput.value trick to get the value of the input element
called txtInput and place it in the variable userName.

	 4.	 Set up a condition.

	 	 The key to this program is a special element called a condition — an
expression that can be evaluated as true or false. Conditions are
often (as in this case) comparisons. Note that the double equals sign
(==) is used to represent equality. In this example, I’m asking whether
the userName variable equals the value “Tim Berners-Lee”.

	 5.	 Place the condition in an if structure.

		 The if statement is one of a number of programming constructs that
use conditions. It contains the keyword if followed by a condition (in
parentheses). If the condition is true, all of the code in the following set
of braces is executed.

	 6.	 Write code to execute if the condition is true.

	 	 Create a set of squiggly braces after the condition. Any code inside these
braces executes if the condition is true. Be sure to indent your code
and use the right squiggle brace (}) to end the block of code. In this
example, I give a special greeting to Tim Berners-Lee (because he is just
that awesome).

	 7.	 Build an else clause.

	 	 You can build an if statement with a single code block, but often you
want the code to do something else if the condition is false. Use the
else construct to indicate you will have a second code block that will
execute only if the condition is false.

	 8.	 Write the code to happen when the condition is false.

		 The code block following the else clause executes only if the condition
is false. In this particular example, I have a greeting for everyone except
Tim Berners-Lee.

71 Chapter 3: Coding Like a Pro

The different flavors of if
If statements are extremely powerful, and there are a number of variations.
You can actually have one, two, or any number of branches. You can write
code like this:

if (userName == “Tim Berners-Lee”){
 lblOutput.innerHTML = “Thanks for inventing HTML”
} // end if

With this structure, the greeting occurs if userName is “Tim Berners-Lee”
and nothing happens if the userName is anything else. You can also use the
if-else structure (this is the form used in the actual code):

if (userName == “Tim Berners-Lee”){
 lblOutput.innerHTML = “Thanks for inventing HTML!”;
} else {
 lblOutput.innerHTML = “Do I know you?”;
} // end if

One more alternative lets you compare as many results as you wish by
adding new conditions:

if (userName == “Tim Berners-Lee”){
 lblOutput.innerHTML = “Thanks for inventing HTML!”;
} else if (userName == “Al Gore”) {
 lblOutput.innerHTML = “Thanks for inventing the Internet”;
} else if (userName == “Hakon Wium Lie”) {
 lblOutput.innerHTML = “Thanks for inventing CSS”;
} else {
 lblOutput.innerHTML = “Do I know you?”;
} // end if

Conditional operators
The == operator checks to see if two values are identical, but as Table 3-1
shows, JavaScript supports a number of other operators as well.

72 Part I: Building the Foundation

Table 3-1	 Conditional Operators
Operator Meaning
a == b a is equal to b.
a < b a is less than b.
a > b a is greater than b.
a <= b a is less than or equal to b.
a >= b a is greater than or equal to b.
a != b a is not equal to b.

	 If you’re coming from another programming language like Java, C++, or PHP,
you might wonder how string comparisons work because they require dif-
ferent operators in these languages. JavaScript uses exactly the same com-
parison operators for types of data, so there’s no need to learn different
operators. Yeah JavaScript!

Managing Repetition with for loops
Computers are well known for repetitive behavior. It’s pretty easy to get a
computer to do something many times. The main way to get this behavior
is to use a mechanism called a loop. The for loop is a standard kind of loop
that is used when you know how often something will happen. Figure 3-5
shows the most basic form of the for loop.

	

Figure 3-5:
This pro-

gram counts
from one

to ten.
	

73 Chapter 3: Coding Like a Pro

Setting up the web page
The same web page is used to demonstrate three different kinds of for
loops. As usual, the HTML code sets everything up. Here’s the HTML code
that creates the basic framework:

<body onload = “init()”>
 <h1>For loops</h1>
 <form action = “”>
 <fieldset>
 <button type = “button”
 onclick = “count()”>
 count to ten
 </button>

 <button type = “button”
 onclick = “back()”>
 count backwards
 </button>

 <button type = “button”
 onclick = “byFive()”>
 count by fives
 </button>

 </fieldset>
 </form>

 <div id = “output”>Click a button to see some counting...</div>
</body>
</html>

Although the HTML is pretty straightforward, it does have some important
features:

	 1.	 The body calls an initialization function.

	 	 Often you’ll want some code to happen when the page first loads. One
common way to do this is to attach a function call to the onload attri-
bute of the body element. In this example, I call the init() function
as soon as the body is finished loading. I describe the contents of the
init() function in the next section.

	 2.	 The page is mostly an HTML form.

	 	 The most important part of this page is the form with three buttons on
it. Each button calls a different JavaScript function.

	 3.	 A special div is created for output.

		 It’s a good idea to put some default text in the div so you can see where
the output should go and so you can ensure the div is actually changing
when it’s supposed to.

74 Part I: Building the Foundation

From this example, it’s easy to see why it’s a good idea to write the HTML
first. The HTML code gives me a solid base for the program, and it also pro-
vides a good outline of what JavaScript code I’ll need. Clearly this page calls
for four JavaScript functions, init(), count(), back(), and byFive().
The names of all the functions are pretty self-explanatory, so it’s pretty easy
to see what each one is supposed to do. It’s also clear that the div named
output is intended as an output area. When you design the HTML page well,
the JavaScript code becomes very easy to start.

Initializing the output
This program illustrates a situation that frequently comes up in JavaScript
programming: All three of the main functions refer to the same output area. It
seems a waste to create a variable for output three different times. Instead, I
make a single global output variable available to all functions and attach the
variable to that element once when the page loads.

In order to understand why this is necessary, it’s important to discuss an
idea called variable scope. Generally, variables are created inside functions.
As long as the function is running, the variable still exists. However, when
a function is done running, all the variables created inside that function are
instantly destroyed. This prevents functions from accidentally changing the
variables in other functions. Practically, it means you can think of each func-
tion as a separate program.

However, sometimes you want a variable to live in more than one function.
The output variable in the forLoop.html page is a great example because
all of the functions will need it. One solution is to create the variable outside
any functions. Then all the functions will have access to it.

You can create the output variable without being in a function, but you can’t
attach it to the actual div in the web page until the web page has finished
forming. The init() function is called when the body loads. Inside that
function, I assign a value to the global output variable. Here’s how the main
JavaScript and the init() method code looks:

 var output;

 function init(){
 output = document.getElementById(“output”);
 } // end init

This code creates output as a global variable, and then attaches it to the
output div after the page has finished loading.

75 Chapter 3: Coding Like a Pro

Creating the basic for loop
The standard for loop counts the values between 1 and 10. The Count to Ten
button triggers the count() function. Here’s the code for count():

 function count(){
 output.innerHTML = “”;
 for (i = 1; i <= 10; i++){
 output.innerHTML += i + “
”;
 } // end for loop
 } // end count

Although the count() function clearly prints ten lines, it only has one line
that modifies the output div. The main code repeats many times to create
the long output.

	 1.	 You can use the output var immediately.

		 Because output is a global variable and it has already been created,
you can use it instantly. There’s no need to initialize it in the function.

	 2.	 Clear the output.

	 	 Set output.value to the empty string (“”) to clear the output. This
destroys whatever text is currently in the div.

	 3.	 Start a for loop.

	 	 The for loop is a special loop used to repeat something a certain
number of times. For loops have three components: initialization, com-
parison, and update.

	 4.	 Initialize your counting variable.

		 A for loop works by changing the value of an integer many times. The
first part of a for loop initializes this variable (often called i) to a start-
ing value (usually zero or one).

	 5.	 Specify a condition for staying in the loop.

		 The second part of a for statement is a condition. As long as the condi-
tion is true, the loop continues. As soon as the condition is evaluated
as false, the loop exits.

	 6.	 Change the variable.

		 The third part of a for statement somehow changes the counting vari-
able. The most common way to change the variable is to add one to it.
The i++ syntax is shorthand for “Add one to i.”

76 Part I: Building the Foundation

	 7.	 Build a code block for repeated code.

		 Use braces and indentation to indicate which code repeats. All code
inside the braces repeats.

	 8.	 Inside the loop, write to the output.

	 	 On each iteration of the loop, add the current value of i to the output
div’s innerHTML. Also add a break (
) to make the output look
better. When you add to an innerHTML property, you’re writing HTML
code, so if you want the output to occur on different lines, you need to
write the HTML to make this happen. (See the next section on operator
shortcuts for an explanation of the += statement.)

	 9.	 Close the loop.

		 Don’t forget to end the loop, or your program won’t run correctly.

Introducing shortcut operators
You might have noticed a couple of new operators in the code for for-
Loops.html. These are some shortcut tools that allow you to express
common ideas more compactly. For example, consider the following code:

i = i + 1;

This means “Add one to i and store the result back in i.” It’s a pretty stan-
dard statement, even if it does drive algebra teachers bananas. The state-
ment is so common that it is often abbreviated, like this:

i += 1;

This statement means exactly the same as the last one: Add one to i. You
can use this to add any amount to the variable i. Because the + sign is used
to concatenate (combine) strings, you can use the += shortcut with string
manipulation, so consider this variation:

var userName = “Andy”;
userName += “, Benevolent Dictator for Life”;

The second statement appends my official (I wish) title to the end of my name.

	 You can also use the -= operator to subtract from a variable. It’s even pos-
sible to use *= and /=, but they are not commonly used.

77 Chapter 3: Coding Like a Pro

Moving back to numbers — adding one is extremely common. Here’s another
shortcut that’s even more brief:

i++;

This statement also means “Add one to i.” In the standard for loop, I use
that variation because it’s very easy.

	 When programmers decided to make a new variation of C, they called the new
language C++. Get it? It’s one better than C! Those guys are a hoot!

Counting backward
After you understand basic for loops, it’s not difficult to make a loop
that counts backward. Here’s the back() function (called by the Count
Backwards button):

 function back(){
 output.innerHTML = “”;
 for (i = 10; i > 0; i--){
 output.innerHTML += i + “
”;
 } // end for loop
 } // end back

When the user activates this function, she gets the code shown in Figure 3-6.

	

Figure 3-6:
Now the

page counts
backward.

	

78 Part I: Building the Foundation

This code is almost exactly like the first loop, but look carefully at how the
loop is created:

	 1.	 Initialize i to a high value.

		 This time I want to count backward from ten to one, so start i with the
value 10.

	 2.	 Keep going as long as i is greater than 0.

		 It’s important to note that the logic changes here. If i is greater than 0,
the loop should continue. If i becomes 0 or less, the loop exits.

	 3.	 Subtract one from i on each pass.

		 The -- operator works much like ++, but it subtracts one from the
variable.

Counting by fives
Counting by fives (or any other value) is pretty trivial when you know how
for loops work. Here’s the byFive() code called by the Count by Fives
button:

 function byFive(){
 output.innerHTML = “”;
 for (i = 5; i <= 25; i += 5){
 output.innerHTML += i + “
”;
 } // end for loop
 } // end byFive

It is remarkably similar to the other looping code you’ve seen:

	 1.	 Initialize i to 5.

		 The first value I want is 5, so that is the initial value for i.

	 2.	 Continue as long as i is less than or equal to 25.

		 Because I want the value 25 to appear, I set the condition to be less than
or equal to 25.

	 3.	 Add 5 to i on each pass.

		 Each time through the loop, I add 5 to i using the += operator.

The Count by Fives code is shown in action in Figure 3-7.

79 Chapter 3: Coding Like a Pro

	

Figure 3-7:
Now the

page counts
by fives.

	

Building While Loops
for loops are useful when you know how often a loop will continue, but
sometimes you need a more flexible type of loop. The while loop is based on
a simple idea. It contains a condition. When the condition is true, the loop
continues; if the condition is evaluated as false, the loop exits.

Making a basic while loop
Figure 3-8 shows a dialog box asking for a password. The program keeps
asking for a password until the user enters the correct password.

 function getPassword(){
 //from while.html
 var correct = “HTML5”;
 var guess = “”;
 while (guess != correct){
 guess = prompt(“Password?”);
 } // end while
 alert(“You may proceed”);
 } // end getPassword

80 Part I: Building the Foundation

	

Figure 3-8:
This pro-

gram keeps
asking for
the pass-

word until
the user

gets it right.
	

A while loop for passwords is not hard to build:

	 1.	 Store the correct password in a variable.

		 Variable names are important because they can make your code easier
to follow. I use the names correct and guess to differentiate the two
types of passwords. Beginners often call one of these variables pass-
word, but that can be confusing because there are actually two pass-
words (the correct password and the guessed password) in play here.

	 2.	 Initialize the guess to an empty value.

		 The key variable for this loop will be guess. It starts as an empty string.
It’s critical to initialize the key variable before the loop begins.

	 3.	 Set up the while statement.

		 The while statement has extremely simple syntax: the keyword while
followed by a condition, followed by a block of code.

	 4.	 Build the condition.

		 The condition is the heart of a while loop. The condition must be con-
structed so the loop happens at least once (ensure this by comparing
the condition to the variable initialization). When the condition is true,
the loop continues. When the condition is evaluated to false, the loop
exits. This condition compares guess to correct. If guess is not equal
to correct, the code continues.

81 Chapter 3: Coding Like a Pro

	 5.	 Write the code block.

		 Use braces and indentation to indicate the block of code that will be
repeated in the loop. The only code in this particular loop asks the user
for a password.

	 6.	 Add code to change the key variable inside the loop.

		 Somewhere inside the loop, you need code that changes the value of the
key variable. In this example, the prompt statement changes the password.
As long as the user eventually gets the right password, the loop ends.

Getting your loops to behave
	 While loops can be dangerous. It’s quite easy to write a while loop that

works incorrectly, and these can be an exceptionally difficult kind of bug to
find and fix. If a while loop is incorrectly designed, it can refuse to ever run
or run forever. These endless loops are especially troubling in JavaScript
because they can crash the entire browser. If a JavaScript program gets into
an endless loop, often the only solution is to use the operating system Task
Manager (Ctrl+Alt+Delete on Windows) to shut down the entire browser.

The easy way to make sure your loop works is to remember that while loops
need all the same features as for loops. (These ideas are built into the struc-
ture of a for loop. You’re responsible for them yourself in a while loop.) If
your loop doesn’t work, check that you’ve followed these steps:

	 ✓	Identify a key variable. A while loop is normally based on a condition,
which is usually a comparison (although it might also be a variable or
function that returns a Boolean value). In a for loop, the key variable
is almost always an integer. While loops can be based on any type of
variable.

	 ✓	Initialize the variable before the loop. Before the loop begins, set up the
initial value of the key variable to ensure the loop happens at least once.

	 ✓	Identify the condition for the loop. A while loop is based on a condi-
tion. Define the condition so the loop continues while the condition is
true and exits when the condition is evaluated to false.

	 ✓	Change the condition inside the loop. Somewhere inside the loop code,
you need to have statements that eventually make the condition false.
If you forget this part, your loop never ends.

	 This example is a good example of a while loop, but a terrible way to
handle security. The password is shown in the clear, and anybody could
view the source code to see the correct password. There are far better ways
to handle security, but this is the cleanest example of a while loop I could
think of.

82 Part I: Building the Foundation

Managing more complex loops
It won’t take long before you find situations where the standard for or
while loops do not seem adequate. For example, consider the password
example again. This time, you want to ask for a password until the user gets
the password correct or guesses incorrectly three times. Think about how
you would build that code. There are a number of ways to do it, but here’s
the cleanest approach:

 function threeTries(){
 //continues until user is correct or has three
 //incorrect guesses
 //from while.html

 var correct = “HTML5”;
 var guess = “”;
 var keepGoing = true;
 var tries = 0;

 while (keepGoing){
 guess = prompt(”Password?”);
 if (guess == correct){
 alert(”You may proceed”);
 keepGoing = false;
 } else {
 tries++;
 if (tries >= 3){
 alert(”Too many tries. Launching

missiles...”);
 keepGoing = false;
 } // end if
 } // end if
 } // end while
 } // end threetries

This code is a little more complex, but it uses a nice technique to greatly sim-
plify loops:

	 1.	 Initialize correct and guess.

		 As in the previous example, initialize the correct and guess
passwords.

	 2.	 Build a counter to indicate the number of tries.

		 The tries variable counts how many attempts have been made.

	 3.	 Build a Boolean sentry variable.

		 The keepGoing variable is special. Its entire job is to indicate whether
the loop should continue. It is a Boolean variable, meaning it only
contains the values true or false.

83 Chapter 3: Coding Like a Pro

	 4.	 Use keepGoing as the condition.

		 A condition doesn’t have to be a comparison. It just has to be true or
false. Use the Boolean variable as the condition. As long as keepGo-
ing has the value true, the loop continues. Any time you want to exit
the loop, set keepGoing to false.

	 5.	 Ask for the password.

		 You still need the password, so get this information from the user.

	 6.	 Check to see if the password is correct.

		 Use an if statement to see if the password is correct.

	 7.	 If the password is correct:

		 Provide feedback to the user and set keepGoing to false. The next
time the while statement is executed, the loop ends. (Remember, you
want the loop to end when the password is correct.)

	 8.	 If the password is incorrect:

		 If the (guess == correct) condition is false, that means the user
did not get the password correct. In this case, add one to the number of
tries.

	 9.	 Check the number of tries.

		 Build another if statement to check the number of tries.

		 If it’s had three tries, provide feedback (threatening global annihilation
is always fun) and set keepGoing to false.

The basic idea of this strategy is quite straightforward: Create a special
Boolean variable with the singular job of indicating whether the loop contin-
ues. Any time you want the loop to exit, change the value of that variable.

	 If you change most of your while loops to this format (using a Boolean vari-
able as the condition), you’ll generally eliminate most while loop issues.
Most beginners (like me, and I’ve been doing this for 30 years) make their
loops way too complicated. Using a Boolean variable in your loop can solve a
lot of logic problems.

Managing bugs with a debugger
When you’re writing loops and conditions, things can go pretty badly in your
code. Sometimes it’s very hard to tell what exactly is going on. Fortunately,
modern browsers have some nice tools that help you look at your code more
carefully.

84 Part I: Building the Foundation

A debugger is a special tool that allows you to run a program in “slow
motion,” moving one line at a time so you can see exactly what is happening.
Google Chrome has a built-in debugger, so I begin with that one.

To see how a debugger works, follow these steps:

	 1.	 Load a page into Chrome.

		 You can add a debugger to most browsers, but Chrome has one built in,
so start with that one. I’m loading the forLoops.html page because
loops are a common source of bugs.

	 2.	 Open the Developer Tools window.

		 If you right-click anywhere on the page and choose Inspect Element, you
get a wonderful debugging tool that looks like Figure 3-9.

	

Figure 3-9:
The Chrome

debugger
makes it
easy to

figure out
what’s

happening.
	

85 Chapter 3: Coding Like a Pro

	 3.	 Inspect the page with the Elements tab.

		 The default tab shows you the page in an outline view, letting you see
the structure of your page. If you click on any element in the outline, you
can see what styles are associated with that element. The actual element
is also highlighted on the main page so you can see exactly where every-
thing is. This can be very useful for checking your HTML and CSS.

	 4.	 Look at the Console tab.

		 Any time your code is not working as expected, look at the Console tab.
Often there will be an error message here that explains what is going
wrong.

	 5.	 Move to the Scripts tab.

		 The developer tool has a separate tab for working with JavaScript code.
Select the Scripts tab to see your entire code at once. If your page pulls
in external JavaScript files, you’ll be able to select them here as well.

	 6.	 Set a breakpoint.

		 Typically, you let the program begin at normal speed and slow down
right before you get to a trouble spot. In this case, I’m interested in the
count() function, so click on the first line (17) of that function in the
code window. (It’s more reliable to click on the first line of the function
than the line that declares it, so click line 17 instead of line 16.)

	 7.	 Refresh the page.

		 In the main browser, click the Reload button or press the F5 key to
refresh the page. The page may initially be blank. That’s fine — it means
the program has paused when it encountered the function.

	 8.	 Step into the next line.

		 On the developer tool are a series of buttons on top of the right column.
Click the Step into the Next Line button, which looks like a down arrow
with a dot under it. You can also press the F11 key to activate the
command.

	 9.	 Your page is now running.

		 If you look back over the main page, you should see it is now up and
running. Nothing is happening yet because you haven’t activated any of
the buttons.

	 10.	 Click the Count button.

		 The Count button should activate the code in the count function. Click
this button to see if that is what happens.

	 11.	 Code should now be paused on line 17.

		 Back in the code window, line 17 is now highlighted. That means the
browser is paused, and when you activate the Step button, the high-
lighted code executes.

86 Part I: Building the Foundation

	 12.	 Step a few times.

		 Use the F11 key or the Step into the Next Line button to step forward a
few times. Watch how the highlight moves around so you can actually
see the loop happening. This is very useful when your code is not behav-
ing properly because it allows you to see exactly how the processor is
moving through your code.

	 13.	 Hover over the variable i in your code.

		 When you are in debug mode, you can hover the mouse over any vari-
able in the code window, and you’ll see what the current value of that
variable is. Often when your code is performing badly, it’s because a
variable isn’t doing what you think it is.

	 14.	 Add a watch expression to simplify looking at variables.

		 If you think the loop is not behaving, you can add a watch expression
to make debugging easier. Right under the step buttons you’ll see a tab
called watch expressions. Click the plus sign to add a new expres-
sion. Type i and press Enter.

	 15.	 Continue stepping through the code.

		 Now you can continue to step through the code and see what is happen-
ing to the variable. This is incredibly useful when your code is not per-
forming like you want it to.

	 I personally think the debugger built into Chrome is one of the best out there,
but it’s not the only choice. If you’re using Firefox, the excellent Firebug
extension adds the same functionality to Firefox (http://getfirebug.
com). Safari has a similar Web Inspector tool built in, and even IE9 finally
has a decent debugger called F12. All work in roughly the same way. Usually,
though, a JavaScript error crashes any browser, so pick one you like for initial
testing and then use other browser-specific tools only when necessary.

Sending Data to and from Functions
Functions make your code safe because variables created inside a function
are destroyed when the function dies. Sometimes, though, you want data to
move from one function to another. One solution is the global variable, but
it’s kind of a crude option. A better solution is to allow data to pass into and
out of functions. As an example, look at the program in Figure 3-10.

http://getfirebug.com/
http://getfirebug.com/

87 Chapter 3: Coding Like a Pro

	

Figure 3-10:
This

program
presents

the lyrics to
a popular

song.
	

Of course, this program could be written by creating a really long string vari-
able and then copying it to the innerHTML attribute of the output div, but
that would be quite inefficient. Instead, I used functions to simplify the work.
Begin by looking over the main function: makeSong().

 function makeSong(){
 //create output variable
 //from param.html

 var output = document.getElementById(“output”);

 output.innerHTML = “”;

 output.innerHTML += verse(1);
 output.innerHTML += chorus();
 output.innerHTML += verse(2);
 output.innerHTML += chorus();
 } // end makeSong

This code demonstrates one of the primary advantages of functions; they
allow you to break a complex problem into a series of smaller problems. A
number of interesting things are going on here:

	 ✓	The program writes to a div called output. I make a variable called
output that corresponds to a div called output on the page.

	 ✓	I’m writing text to output. That’s not surprising, but it is interesting
because there are no text variables or values in the makeSong() function.

88 Part I: Building the Foundation

	 ✓	All the text is created by other functions. There are two other functions
in this program: verse() and chorus(). Both of these functions create
string values.

	 ✓	Verse can be “fed” a numeric value. The verse function is especially
important because it can be passed a value. The verse changes behavior
based on the value passed to it.

Returning a value from a function
To truly understand what’s happening here, begin with the chorus() function
(because it’s a little simpler than verse()).

function chorus(){
 //from param.html
 var result = “-and they all came marching down,
”;
 result += “to the ground, to get out, of the rain.
”;
 result += “boom boom boom boom
”;
 result += “boom boom boom boom
”;
 result += “
”;
 return result;
 } // end chorus

The chorus() function is extremely simple:

	 1.	 Create a variable called result.

	 	 This variable holds the result of the function’s work (which will be a
string value containing the chorus of the song).

	 2.	 Append HTML code to the result variable.

		 This code has several lines that build up the result. Note that I’m using
HTML formatting because this code will be printed in an HTML div.

	 3.	 Return result.

		 The last statement of the function is special. The return statement
allows you to specify a value that the function returns to whatever code
called it.

	 4.	 Use the function like a variable.

		 When a function has a return value, you can treat it like a variable.
Because this function returns a string, you can use the function like
a string variable in the makeSong() function. In that function, I said
output.innerHTML += chorus(). That means “run the chorus()
function and then add whatever comes out of that function to the
innerHTML of the output element.”

89 Chapter 3: Coding Like a Pro

Sending arguments to a function
The verse() function also returns a value, but it has another trick up its
sleeve. Although the chorus is always the same, the verse changes a bit each
time. The little one (who appears to have attention issues) gets distracted in
a different way on every verse.

The verse() function uses an important idea called parameter-passing to
allow this variation in behavior. Begin by looking at the code for the function:

 function verse(verseNumber){
 //from param.html
 var distraction = “”;
 if (verseNumber == 1){
 distraction = “suck his thumb”;
 } else if (verseNumber == 2){
 distraction = “tie his shoe”;
 } else {
 distraction = “there’s a problem here...”;
 } // end if

 var result = “The ants go marching “;
 result += verseNumber + “ by “ + verseNumber + “, “;
 result += “hurrah, hurrah
”;
 result += “The ants go marching “;
 result += verseNumber + “ by “ + verseNumber + “, “;
 result += “hurrah, hurrah
”;
 result += “The ants go marching “;
 result += verseNumber + “ by “ + verseNumber + “
”;
 result += “The little one stops to “;
 result += distraction + “

”;

 return result;
 } // end verse

The verse() function is very similar to the chorus() function, except it is
more flexible because it can accept a parameter.

	 1.	 Call the function with a value inside the parentheses.

		 When a function is intended to accept a parameter, it must be called
with a value inside the parentheses. In makeSong(), you see calls to
verse(1) and verse(2), but never verse(). That’s because verse is
designed to always accept a single integer value.

	 2.	 Define the function with a variable name inside the parentheses.

		 If you look at the function definition for verse(), you see it contains
the variable verseNumber between the parentheses. Whenever the
verse() function is called, it must be fed a value, and that value is
placed in the special variable verseNumber.

90 Part I: Building the Foundation

	 3.	 Use verseNum to find the distraction.

		 Analyze the verseNumber variable and use it to find the appropriate
distraction. Put this in a variable named distraction.

	 4.	 Build the verse.

		 Incorporate the verseNumber and distraction variables in the
result variable.

	 5.	 Return the result.

		 The main function uses the returned value as a string, printing out the
verse.

Using Arrays to Simplify Data
Computer programs are about data. Often, you’re working with a lot of data.
Programmers have a number of tools for managing large amounts of data,
but the most basic is the array. JavaScript supports a simple yet very power-
ful and flexible array mechanism that lets you do plenty with arrays. To see
arrays in action, look at Figure 3-11.

An array is actually a very simple idea; it’s simply a list. You’ve already used
lists many times in HTML coding, but in programming, lists are called arrays,
and have special characteristics. This example features two arrays — a list
of books written by a certain charming and devilishly handsome author, and
some of the topics said author writes about.

	

Figure 3-11:
Clicking the
button pro-
duces lists

of books
and topics.

	

91 Chapter 3: Coding Like a Pro

This page has four main components:

	 ✓	HTML structure: It has a form with two buttons. The body calls an ini-
tialization function when it loads, and each button calls its own function.
The page also has a div named output.

	 ✓	An init() function: This function provides access to the output div,
and it also loads up the two arrays described in this example. Arrays
usually require some kind of initialization.

	 ✓	The showBooks() function: You’ll be amazed and surprised that this
function displays a series of book titles.

	 ✓	The showTitles() function: This function demonstrates another way
to walk through the elements of an array.

Building the arrays
Arrays are frequently created as global variables because they are often
used throughout the program (and in some languages, passing an array as a
parameter can be kind of complicated).

In this program, I create a number of variables in the global space and initial-
ize them all in the init() function called with body.onload.

 var output;
 var books;
 var topics;

 function init(){
 //initialize output and arrays
 //from basicArrays.html
 output = document.getElementById(”output”);
 books = Array(”Flash Game Programming for Dummies”,
 ”Game Programming, the L Line”,
 ”HTML / XHTML / CSS All in One”,
 ”JavaScript and AJAX for Dummies”,
 ”HTML5 Quick Reference”);

 topics = Array(5);
 topics[0] = ”HTML5”;
 topics[1] = ”CSS3”;
 topics[2] = ”JavaScript”;
 topics[4] = ”AJAX”;
 } // end init

92 Part I: Building the Foundation

Setting up the arrays is the most important part of the process:

	 1.	 Create variables for the arrays.

		 I have two arrays in this example, books and topics. Each is created
just like any other variable, with the var statement. I also create an
output variable to hold a reference to the output div.

	 2.	 Build an init() function to initialize variables.

		 As programs become more complex, it is common to have an initializa-
tion function to set everything up. This function is called with body.
onload.

	 3.	 Build the output variable.

		 Because all the other functions will use output, I create it in init().

	 4.	 Use the Array() function to create the array of books.

		 This special function is used to create an array of elements. Note that it
uses an uppercase A. (If you must be technical, this is a constructor for
an Array object, but in JavaScript, that’s a function, too.)

	 5.	 Simply list each book as a parameter in the Array() function.

		 If you feed the Array function a series of values, they become the values
of the array. This technique is great if you already know what will go
into each element when you build the array.

	 6.	 Build the topics array differently.

		 The topics array is build with a different technique. In this array, I
specified a single integer, which is the number of elements the array will
contain.

	 7.	 Use the index operator to add elements to the array.

		 All array elements have the same name, but they have a different
number (corresponding to where they fit on the list). Use square braces
with an integer to refer to a specific element in the array. Note that array
elements always begin with element zero.

	 If you’ve used arrays in other programming languages, you’ll find JavaScript
arrays to be very forgiving. Be careful, though, because arrays are one of
those features that every language supports, but they all work a little bit differ-
ently. You’ll actually find the JavaScript arrays are more like the ArrayList
in Java or the Vector class in C++ than the traditional array in either of these
languages.

93 Chapter 3: Coding Like a Pro

Stepping through the books array
Arrays are wonderful because they allow you to pack a lot of data into a
single variable. Very often when you have an array, you’ll want to do some-
thing with each element in the array. The most common structure to do this
is a for loop. Look at showBooks() for an example:

 function showBooks(){
 //from basicArrays.html
 output.innerHTML = “”;
 for (i = 0; i < books.length; i++){
 output.innerHTML += books[i] + “
”;
 } // end for loop
 } // end showBooks

This function steps through the list of books and prints the name of each one
in the output area:

	 1.	 Clear the output div.

		 Output has already been defined in the init() function, so it’s pretty
easy to clear out its value in the function.

	 2.	 Build a loop for the length of the array.

		 Arrays and for loops are natural partners. In this loop, I have i count
from zero to the number of elements in the array.

	 3.	 Begin with zero.

		 Array indices always begin with zero, so your counting variable should
also start at zero (in most cases).

	 4.	 Use the length property to determine how long the array is.

		 When you build a for loop to step through an array, what you really
want to know is how many elements are in the array. Use arrayName.
length to determine the number of elements in the current array,
where arrayName is the name of the current array. This way, even if the
number of elements in the array changes, the loop still works correctly.

	 5.	 Process data inside the loop.

		 If the counting variable is i, each element of the array is arrayName[i]
inside the loop. You can do what you want with the data. In my example,
I’m simply printing it out.

94 Part I: Building the Foundation

Using the for . . . in loop to
access array elements
The showTopics() function uses a special variation of the for loop to print
out the contents of an array.

 function showTopics(){
 //from basicArrays.html
 output.innerHTML = “”;
 for (topicID in topics){
 output.innerHTML += topics[topicID] + “
”;
 } // end for
 } // end showTopics

Because loops and arrays are so commonly linked, JavaScript provides a spe-
cial shortcut version of the for loop just for working with array elements.

	 1.	 Clear the output area.

		 If there’s already data in the output div, clean it out before printing
anything new there.

	 2.	 Use the for . . . in loop variant.

		 The for loop in this function is quite a bit simpler than most. It simply
has a variable and an array. This loop repeats once per element in the
list.

	 3.	 Use the topicID variable to refer to each element in the loop.

		 The topicID variable contains each index used in the array. Use this
index to determine the value associated with that index.

	 The for . . . in loop is really great, and if you know PHP, it looks at first
glance just like the PHP foreach loop. However, they are not exactly the
same. The JavaScript version returns the key, and the PHP version returns
the associated value. I get confused every time I switch between the two
languages.

	 I’ve added another variation of the Ants program to the website that uses
arrays. Look over this code (antsArray.html) if you want to see an example
of how arrays can further simplify that program.

This chapter covers the basic ideas of JavaScript, but if you’re interested in
more depth, please check my book JavaScript & AJAX For Dummies.

Chapter 4

Random Thoughts: Building
a Simple Game

In This Chapter
▶	Generating random numbers
▶	Designing a game
▶	CSS styles through code
▶	Building the components
▶	Writing the gameplay code
▶	Testing your game

I
f you can build an HTML page and write some JavaScript code, you’re
almost ready to write a game. (If you aren’t comfortable with those skills,

you may want to glance over Chapters 1–3.)

However, a game is more than just code. This chapter explains how to build a
complete (if basic) game that involves real-time interaction with the user.

Creating Random Numbers
Random numbers are a key part of game programming. Often you want some
kind of random behavior. This is used to mimic the complexity and unpre-
dictability of the universe. Most languages have a random number generator
built in. This special function produces some sort of semi-random number.
Often you’ll have to do some manipulation to make the number fit the pattern
you want.

Figure 4-1 shows a simple page that generates random numbers between 1
and 100.

96 Part I: Building the Foundation

	

Figure 4-1:
Click the
Roll the

Dice but-
ton and get

a random
number.

	

The page in Figure 4-1 seems a little complex, but it describes a powerful and
flexible system, once you know how to use it. Here’s what’s happening:

	 1.	 JavaScript generates a random number.

		 Different languages do this in different ways, but JavaScript has a func-
tion that creates a random floating point value between 0 and 1. That
value is shown in the raw box.

	 2.	 Multiply the raw value by 100.

		 In this example, you want a number between 1 and 100. If you multiply
a 0-to-1 by 100, you’ll get 0 to 99.9999 (with a lot of nines) value. That’s
getting closer. The times 100 box shows the raw value after it has been
multiplied by 100.

	 3.	 Convert the large number into an integer.

		 The user is never going to guess a number with 17 places after the deci-
mal, so you need an integer. JavaScript has a number of ways to convert
a float to an integer. To get the 1 to 100 behavior you’re looking for, you
use a method called Math.ceil. (Don’t worry, I explain this weird name
and how it works in the next section.) The final result is shown in the
final box.

97 Chapter 4: Random Thoughts: Building a Simple Game

When you look over the code for the rand100.html page, you’ll see that it
basically does what I just said. Here’s the code in its entirety:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>rand100.html</title>
 <style type = “text/css”>
 fieldset {
 width: 600px;
 margin-right: auto;
 margin-left: auto;
 }
 label {
 float: left;
 width: 250px;
 text-align: right;
 margin-right: 1em;
 clear: left;
 }
 span {
 float: left;
 }
 button {
 display: block;
 clear: both;
 margin: auto;
 }
 </style>
 <script type = “text/javascript”>
 function roll(){
 //create variables for form elements
 var spnRaw = document.getElementById(“spnRaw”);
 var spn100 = document.getElementById(“spn100”);
 var spnFinal = document.

getElementById(“spnFinal”);

 //get random number
 var raw = Math.random();
 spnRaw.innerHTML = raw;

 //multiply by 100
 var times100 = raw * 100;
 spn100.innerHTML = times100;

 //get the ceiling
 var final = Math.ceil(times100);
 spnFinal.innerHTML = final;
 } // end roll

98 Part I: Building the Foundation

 </script>
</head>
<body>
 <h1>Make random numbers 1 - 100</h1>
 <form>
 <fieldset>
 <label>raw</label>
 0
 <label>times 100</label>
 0
 <label>final</label>
 0
 <button type = “button”
 onclick = “roll()”>
 roll the dice
 </button>
 </fieldset>
 </form>
</body>
</html>

Seriously, math can be fun
To make this program work, you need to call in the ultimate weapon of geeki-
ness: Math. (You know, now I’m going to have to write an adventure game
just so I can include an “ultimate weapon of geekiness.”)

JavaScript has a wonderful library called Math (I know, I used the words math
and wonderful in the same sentence. Keep programming, and you will too,
eventually.) The Math library has some really geeky goodness buried in it,
like a number of commonly used math functions (you know, cosine, square
root, and all that great stuff) as well as constants (like pi) and a few other util-
ity functions for working with numbers. It turns out this library has some fea-
tures that are extremely useful for the problem at hand (generating random
numbers).

First, of course, is the function that generates random numbers. It’s called
(wait for it . . .) Math.random().

	 You really need to say Math.random(). If you call random() all by itself,
JavaScript won’t know what you’re talking about. That’s because the
random() function is not part of the main body of JavaScript, but part of
the special Math library. This is actually a vestige of the object-oriented
scheme that underlies JavaScript. Just remember, you need to specify Math.
random() to invoke a random number.

The Math.random() function produces a semi-random number. (It isn’t
really random but is produced through a complex formula from another
number.) The random number will be a floating-point value between 0 and 1.

99 Chapter 4: Random Thoughts: Building a Simple Game

This doesn’t seem helpful, but with a little math, you can convert the 0 to 1
value to any other range you wish.

In addition to the random() function, the Math object has a number of func-
tions that allow you to convert a floating point value (that is, a number with a
decimal point) to an integer (you got it — a number without a decimal point).
The standard parseInt() method is built into JavaScript, but sometimes you
want to do a fancier conversion. The Math library has a number of these tools:

	 ✓	Math.round(): Converts a number using the standard rounding algo-
rithm. If the decimal part is .5 or less, the smaller integer is chosen; if the
decimal part is greater than .5, the larger integer is chosen. This means
that 3.1 rounds to 3 and 3.8 rounds to 4.

	 ✓	Math.floor(): This function always rounds down, so 3.1 and 3.8 both
become 3. The parseInt() function is identical to Math.floor().

	 ✓	Math.ceil(): This function (get it — the ceiling function) always
rounds up, so 3.1 and 3.8 both end up as 4.

The function you need depends on the specific circumstances. I show why
Math.ceil() makes sense in this project as I discuss the actual code.

Making the HTML form
As always, HTML forms the foundation of any JavaScript program. The main
thing here is the form that provides the user interface. This form has some
predictable features:

	 ✓	A span to hold the raw data: There’s really nothing for the user to type,
so I’m using a span for the various output elements. Spans are a generic
inline tag. They’re super for situations like this where you need some
simple output element that can be inline with the main flow of the page.
The raw data span is called (here you go . . .) spnRaw.

	 ✓	Another span for the times100 data: As the program does the calcula-
tions, it will display the output. (Normally, you won’t need to show the
user every detail, but this example is really about the calculations, so I
want everything to be explicitly displayed.)

	 ✓	A third span for the final output: After all the calculations are finished,
you need some way to display your brilliant work. spnFinal will serve
this purpose.

	 ✓	Labels to make everything clear: Without labels explaining what’s hap-
pening, there will just be a bunch of numbers on the screen. Don’t forget
to add labels even to simple examples so the user can figure out what’s
going on.

100 Part I: Building the Foundation

	 ✓	A button to start all the action: Nothing will happen until the user asks
for it, so add a button to the form. When the button is clicked, have it
call the roll() function to roll a number.

	 ✓	CSS to make it all look good: HTML without CSS is ugly, so add
enough CSS to make the HTML form look decent. If you need a refresher
on the CSS used in this example, please refer to Chapter 3.

Writing the roll() function
When the user clicks the button, the program will do something magical.
(Okay, it only looks magical. You know exactly what’s happening.) The code in
the roll() function creates a random number in exactly the form you want.

Building the Number Guesser
With random numbers, you can now make interesting games.

Figure 4-2 illustrates a simple game that uses HTML, CSS, and JavaScript
together.

This game has a number of interesting features:

	 ✓	It uses the web page as the interface. Like many JavaScript programs, it
uses a web page as the user interface. An input element is used for input,
a div is the main output element, and a button triggers all the actions.

	 ✓	It uses CSS for styling. The various parts of the page are formatted with
CSS. The CSS is stored in an external style sheet for convenience and
reusability.

	 ✓	It tells the user how many turns she has taken. On each pass, the com-
puter reminds the user how many turns have happened.

	 ✓	When the user has guessed correctly, a Restart button appears. This
button is hidden at first, and appears only when it is needed.

	 ✓	The right answer is available to programmers through a special
debugging feature. While testing the program, the developer can see
what the correct answer is, but this information is hidden from the user.

	 ✓	An init() function begins the game. The init() function initializes
the game. It is called when the program first begins and again when the
user wants to start over.

	 ✓	Another function is attached to the button. When the user clicks the
Check Your Guess button, the current user’s guess is compared to the
right answer, and a hint is returned to the user.

101 Chapter 4: Random Thoughts: Building a Simple Game

	

Figure 4-2:
The pro-

gram lets
you guess a

number.
	

Designing the program
When you build a complex program, you need to begin with a design plan.
Figure 4-3 shows the design for this game.

Much of the work in game development happens before you begin program-
ming. If you design the game well, the programming is much easier to do. A
game design helps you understand many things about the game before you
begin writing code:

	 ✓	General layout: While the layout isn’t completely decided by this draw-
ing, it’s easy to see the general look I’m going for.

	 ✓	Named elements: Every element that needs to have a name has been
determined, and the names are written on the document. Some elements
(like the first button) do not need names because they won’t be referred
to in code.

	 ✓	Button functions: Each button will call a function. The diagram indicates
which function each button will call.

	 ✓	Function plans: Every function is planned out with an English-language
description of what the function will do.

102 Part I: Building the Foundation

	 ✓	Global variables: The variables that will need to be shared between
functions are described.

It’s actually difficult to create a good design document, but doing so makes
the programming quite a bit easier. It’s hard to figure out what you’re trying
to do, and it’s also hard to figure out how to do it. Having a design document
separates those two processes so you can first concentrate on what you’re
doing, and then worry about how you’re going to do it.

	

Figure 4-3:
The diagram

helps you
design the

game.
	

Building the HTML for the game
The HTML code for the number-guessing game is pretty easy to write if
you’ve designed the game on paper first. Here’s the code:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>Number Guesser</title>
 <link rel = “stylesheet”
 type = “text/css”
 href = “numGuess.css” />
 <script type = “text/javascript”
 src = “numGuess.js”></script>
</head>

<body onload = “init()”>
 <h1>Number Guesser</h1>
 <form>
 <fieldset>

103 Chapter 4: Random Thoughts: Building a Simple Game

 <div id = “output”>
 I’m thinking of a number between 0 and 100.
 Guess my number, and I’ll tell if you are
 too high, too low, or correct.
 </div>
 <label for = “”>Your Guess</label>
 <input type = “text”
 id = “txtGuess”>
 <button type = “button”
 onclick = “checkGuess()”>
 check your guess
 </button>

 <button type = “button”
 id = “again”
 onclick = “init()”>
 try again
 </reset>
 </fieldset>
 </form>
</body>
</html>

It’s nice to separate HTML, CSS, and JavaScript because this practice allows
you to “divide and conquer” a big problem into a number of smaller prob-
lems. Here are the main features of the HTML document:

	 1.	 Link to the CSS in an external file.

		 At the moment, the CSS isn’t critical, so you move it off into a separate
file so you can work with it later.

	 2.	 Outsource the JavaScript code.

		 You also move the JavaScript code into an external file so you don’t
have to worry about it yet. In the HTML code, simply make the linkages
to the external files.

	 3.	 Build a form as the main component of the page.

		 The most important aspect of this page is the form. Like most forms, it
will have a fieldset, labels, input elements, and buttons.

	 4.	 Create a div for output.

		 The output div is just an ordinary div. You put it inside the
fieldset so it will maintain a visual link to the rest of the form.
You can put default text inside the div (though you will probably
change this text later). Because the div will be referred to through
code, it needs an id attribute.

104 Part I: Building the Foundation

	 5.	 Make an input area for the user’s guess.

		 The user will need to type some sort of numeric input. Use an input ele-
ment for this purpose. Refer to your documentation to remember the
id of this element. (You did make a design document, right?) It’s nice to
add a label to the input so the user knows what’s expected there.

	 6.	 Build a button for checking the guess.

		 The user doesn’t commit a guess until she clicks the Check Your Guess
button. So, you really need to have such a button. This button doesn’t
need a name, but it will call the checkGuess() function.

	 7.	 Build a second button to start again.

		 One interesting feature of this program is a button that allows the user
to restart. This second button is available only when the user has cor-
rectly guessed the answer. You create it with ordinary HTML and use
CSS and JavaScript tricks to make it disappear and appear on demand.

Writing the CSS for the number guesser
The HTML provides the foundation, but it needs some CSS code to make it
have the look you’re aiming for. The CSS isn’t just for beauty’s sake. It also
adds some functionality to the page. Specifically, one of the buttons will
appear and disappear on command. The visibility of the button is controlled
with a CSS style, which is changed through JavaScript code.

Here is how to build the CSS for the game:

	 1.	 Center the headline.

		 Most of the content of this page will be centered, so center the h1 ele-
ment. Set the text-align to center.

	 2.	 Format the fieldset.

		 The page consists of a form with a fieldset. Change the fieldset’s width
to a fixed size and set the margins to auto. This will center the fieldset
in the page.

	 3.	 Format the output div.

		 There is a special div called output that will contain the instructions
to the user. The only formatting necessary is to center the text with
text-align: center. (Remember, you center the contents of an ele-
ment with text-align. Center the element itself with margin: auto.)

105 Chapter 4: Random Thoughts: Building a Simple Game

	 4.	 Float the labels and input elements.

		 This will be a standard form with the label on the left and input elements
to the right. Assign the necessary attributes to float and input elements.
(Please refer to Chapter 3 for more information on applying float styles.)

	 5.	 Center the buttons.

		 The buttons will look best if they’re centered on the page. Convert but-
tons to block-level and set the margins to auto for this effect.

The complete CSS code is available here:

h1 {
 text-align: center;
}

fieldset {
 width: 600px;
 margin-left: auto;
 margin-right: auto;
}

#output {
 text-align: center;
}

label {
 float: left;
 width: 250px;
 clear: left;
 text-align: right;
 padding-right: 1em;
}

input {
 float: left;
}

button {
 display: block;
 clear: both;
 margin-left: auto;
 margin-right: auto;
}

Note that the Play Again button is visible. Although CSS code is used to hide
and display the button, that code will be generated through JavaScript.

106 Part I: Building the Foundation

Thinking through the game’s data
Games are ultimately about data. Before writing any code, you should think
through the various data elements you’ll need to make the program work.
If you did a good job of the design document, you’ve already thought this
through. The first few lines of numGuess.js create the variable elements
that will be shared throughout the rest of the code.

 //from numGuess.js
 //page-level variables
 var guess;
 var correct;
 var turns;

 //components
 var output;
 var txtGuess;
 var btnAgain;

In JavaScript programming, you typically have two types of page-level vari-
ables. Some of these indicate data about the game, and others refer to inter-
face elements. Both are important. First, think through the game variables:

	 ✓	guess: This will be the number that comes from the user. Remember
that data that comes from form elements is usually in string format, and
you’ll need an integer.

	 ✓	correct: This is another integer, but this one is randomly generated
by the computer. The random number will need to be in the range from
1 to 100.

	 ✓	turns: This variable represents the number of guesses the user has
made already. A smart user should be able to guess a number between
1 and 100 in 7 or fewer turns.

You’ll also need to create a variable for every form component that will be
manipulated through code. This is easy to determine from the diagram:

	 ✓	output: The output element is the div that will contain instructions
and feedback for the user.

	 ✓	txtGuess: This is a textbox that will hold the user’s name.

	 ✓	btnAgain: This is a button that will be hidden most of the time. It will
be visible only when the user has guessed the correct answer.

107 Chapter 4: Random Thoughts: Building a Simple Game

Setting up the initialization routine
If you look over the game design document again, it’s clear that the game has
two distinct phases: Initialization will happen when the game first begins, and
when the user chooses to go again. Another set of actions should happen
when the user clicks the Check Your Guess button.

Begin with the code that will happen as part of initialization:

 function init(){
 //from numGuess.js
 //initialize components
 output = document.getElementById(“output”);
 txtGuess = document.getElementById(“txtGuess”);
 btnAgain = document.getElementById(“again”);

 //hide again button
 btnAgain.style.display = “none”;

 //initialize counter
 turns = 0;

 //initialize output
 output.innerHTML = “I’m thinking of a number between 0

and 100. “;
 output.innerHTML += “Guess my number, and I’ll tell if

you are “;
 output.innerHTML += “too high, too low, or correct.”;

 //generate random for correct answer
 correct = parseInt(Math.random() * 100);
 console.log(correct);

 //make sure input text gets focus
 txtGuess.focus();

 } // end init

There is a lot of code in this section, but most of it is pretty obvious from the
documentation. Initialization routines are almost always about setting up the
data that a game will be about. This one is no different:

	 ✓	Initialize the components. Build JavaScript variables to represent any
form elements that will be referred to in code. Normally, these are input
fields and output divs. The btnAgain button will be referred to by
code, so it also needs a variable associated with it.

	 ✓	Hide the Play Again button. In this particular program, the Play Again
button should appear only when the game is over. Hide the button for
now, so you can make it visible at the appropriate time. Set the display
property to none to hide any HTML element.

108 Part I: Building the Foundation

	 ✓	Initialize the turn counter. You’ll want to indicate the number of turns
the user required. The turn counter is just an integer variable that starts
at 0.

	 ✓	Initialize the output. The output div will contain opening instructions
to the user. Put the instructions in the div with JavaScript code so that
when the game is reset, the instructions reappear.

	 ✓	Generate a random number. The correct answer will be randomly gener-
ated once per game. (See the upcoming sidebar about the console.log()
command for information on how the log can be used for debugging.)

	 ✓	Make sure the input text element has the focus. When the user begins
the game, she will probably want to type a number. It’s a good idea to
ensure that any numbers typed right away will go to the text box. The
focus() method is an easy way to place the focus on any form element
(as though the user clicked on the text field with the mouse).

Responding to the Button
As in most HTML forms, the real action happens when the user clicks a
button. This form has two buttons, but one of them is hidden most of the
time. For now, concentrate on the code that happens when the user clicks
on the Check Your Guess button.

 function checkGuess(){
 //from numGuess.js
 //increment turns
 turns++;

 response = turns + “) “;
 //get guess from user
 guess = parseInt(txtGuess.value);
 if (guess < correct){
 response += “Too low”;
 } else if (guess > correct){
 response += “Too high”;
 } else if (guess == correct){
 response += “Correct!”;
 //show again button
 btnAgain.style.display = “block”;
 } else {
 response += “Please enter a number between 1 and

100”;
 } // end if
 output.innerHTML = response;
 } // end checkGuess

109 Chapter 4: Random Thoughts: Building a Simple Game

Cheat codes and console.log
There’s a particularly interesting line in the
init() code that looks like this:
 console.log(correct);

This line prints the correct answer! It might
surprise you that the game actually gives out
its own answer key, but that’s a very common
mechanism in game programming. Two inter-
esting things are actually happening here: using
a console and adding a cheat feature to a game.

The console.log() command is a special
function that allows you to print results to a
secret console supported by some browsers.
If you right-click on the page in Chrome and
choose Inspect Element, you’ll be taken to a
special developer’s view. On any other browser,
you can use Firebug. (Use the Firebug extension
for Firefox or the Firebug Lite for other brows-
ers — all available for free at http://www.
getfirebug.com.) The console is a hidden
text area simply for programmers. Ordinary
users don’t even know it exists, so it’s perfect
for putting quick debugging code. The con-
sole.log() command does nothing unless
there is a console available. If the browser
has a console, anything after the console.
log() command is printed to the console.

The question is, why would you want to do such
a thing? The answer is play testing. You’ll need
to play this game a lot while you’re testing it,
and in testing, you really want to look for the
main cases: What happens when the guess
is too large, too small, or perfect? To do this,
you need to know what the correct answer
is. console.log() prints the answer in
a place only the programmer can see, so it’s
easier to test your code. Sneaky, huh? The fol-
lowing figure shows the program running in
Firefox with the Firebug extension running.

Incidentally, this was the original motivation for
cheat codes in games. Most games have mech-
anisms built in for the convenience of program-
mers and testers. For example, a special code
can allow you to jump directly to a certain level
or be invulnerable to damage. Programmers
use these features to test the game. Early in the
history of gaming, players learned about the
existence of these codes. Now the practical
test codes are still included in many games, and
additional cheat codes are often also included.
Today, game companies sometimes hide such
features and leak them after a period of time to
extend interest in a game.

http://www.getfirebug.com/
http://www.getfirebug.com/

110 Part I: Building the Foundation

This function is a real powerhouse, but it isn’t much of a mystery. Again,
everything this function does was predicted by the design document. Here
are the details:

	 1.	 Increment the turn counter.

		 Every time the user clicks the button, she’s taken a turn, so begin by
adding one to the turn counter.

	 2.	 Begin building the response.

		 The main purpose of the checkGuess() function is to get input from
the user and return some sort of output. That output will be stored in a
string variable called response. Response begins with the turn number
and a parenthesis.

	 3.	 Get the guess from the text field.

		 The user should have entered some value in the text box. Grab that
value, convert it to an integer, and store it in the guess variable.

	 4.	 Check to see if the guess is too low.

		 Use an if statement to determine if the guess is less than the correct
answer. Note how careful variable names make this a very easy line of
code to understand. Just tell the user that the guess is too low by adding
the message to response.

	 5.	 Check to see if the guess is too high.

		 If the guess is too high, all that’s necessary is to inform the user.

	 6.	 Check for a correct guess.

		 If the user guesses correctly, there’s a little more work to do, but none
of it is very difficult.

	 7.	 Tell the user she is correct.

		 Add a congratulation message to the response variable.

	 8.	 Show the Play Again button.

		 If the game is over, you need a way to reset it so the user can play again.
Simply show the Play Again button. When this button is clicked, it calls
init(), which restarts the entire game (and rehides the Play Again
button).

	 9.	 Check for errors.

		 You might think the user’s guess would be too high, too low, or correct,
but those aren’t the only options. If the user does something crazy (like
types the word “three” or hits the guess button before entering anything
at all), the program should do something. The else clause catches any
condition that wasn’t caught by the previous tests. Just gently remind
the user what input is required, and count it as a turn.

Part II
Basic Game
Development

In this part . . .

T
his part introduces the simpleGame engine, which
gives you the ability to make fun and powerful games

right away.

Chapter 5 introduces the simpleGame engine. It walks
you through how to build a basic game or animation. It
then provides a template you can use for your own games.
I show how to add basic keyboard input to convert an
animation to an interactive experience.

Chapter 6 focuses on those game engine elements that are
the foundation of any game. You find out how you can use
object-oriented programming to create your own new
sprite types. You add properties and methods to give
your sprites new features and behavior. You manage
sound effects and basic collision-detection, and you
discover how to use the timer object in your games.

Chapter 7 takes you from the idea stage to the delivery of
a complete game. It highlights a game design document as
well as a strategy for working on the game project. I show
the various elements of my game, how to build a library of
components, and how to bring them together. You also
find out how to convert a single element into a group of
elements and how to design a game with variable
difficulty levels.

Chapter 5

Introducing simpleGame.js
In This Chapter
▶	Using the simpleGame engine
▶	Building a game with simpleGame
▶	Understanding properties and methods
▶	Sprite motion methods
▶	Reading the keyboard

G
ames are a lot of fun to play, and they can be even more fun to create.
However, game programming is often considered one of the more dif-

ficult forms of programming to learn. Game development might seem a bit
intimidating, but there’s good news. It’s more manageable to learn how to build
games when you have a library that simplifies all various features you need.

This chapter introduces you to a simple game engine and library called…
simpleGame. Along the way you’ll also learn about object-oriented program-
ming and one of the most important types of objects you’ll use: the sprite.

Using a Game Engine
Games often use sophisticated programming techniques, and often require a
great deal of math knowledge. Eventually, you’ll learn these things, but even
experienced programmers frequently use some sort of gaming library to sim-
plify the task.

114 Part II: Basic Game Development

Essential game engine features
Game engines normally have a few important features:

	 ✓	A game/animation loop: Most games use a coding structure called the
game and animation loop. This is code that executes very quickly (usu-
ally 20 to 30 times per second). Game engines usually have some auto-
mated way to create and control this structure.

	 ✓	Sprite objects: The various elements that bounce around on the screen
(zombie robot banana slugs or whatever) are called sprites. The player
is usually a sprite and so are the enemies, bullets, and sometimes even
scoreboards and the background itself. A game engine needs some way
to manage sprites. Most sprites are based on one or more images.

	 ✓	Movement system: Sprites need some way to move around. Often you
can set the position directly, but also often you can modify the position
of each sprite a number of ways. Some systems allow you to set the
speed and direction of a sprite, which simplifies many types of games.

	 ✓	Collision detection: When sprites start moving around on the screen,
they will bonk into each other. Game engines need some mechanism for
detecting these collisions, because most of the interesting stuff that hap-
pens in a game occurs when sprites have crashed into each other.

	 ✓	Event detection: Games are about events. Somehow, the user will need
to provide input to the game. This can be through the keyboard, joy-
stick, mouse, or other elements. For web-based gaming, you will mainly
use the mouse and keyboard. In Chapter 9, I demonstrate how to use the
touch screen on mobile devices for user input.

	 ✓	Audio support: Sound effects are more than a final touch. They can add
important feedback to the user. Game engines usually have some mecha-
nism for loading and playing sounds.

	 ✓	Advanced features: Often a game engine will contain other advanced
features, like a physics system (which allows more realistic motion and
gravity effects), a tile-based system (which simplifies building large map-
based games), and a state system that allows sprites to have different
animations and behaviors in different circumstances.

Gaming on the web
JavaScript by itself is not an ideal platform for game development. This is
why most game development on the web has been based on Adobe’s Flash
environment (in fact, I wrote a book about creating games with Flash).
Although Flash is a great tool, it can be expensive, and it isn’t supported on

115 Chapter 5: Introducing simpleGame.js

all platforms. HTML5 now has some very interesting features that make it a
viable tool for game development.

The most important of these tools is a new HTML element called the canvas
tag. The canvas is a piece of the page that can be changed with programming
code. You can draw images on the canvas and change the rotation and scale
of each image. It’s not difficult to draw an image on the canvas, but transfor-
mations (moving, rotating, and resizing the image) are a bit more challenging.

The canvas tag does not directly support sprites or collisions, but it’s pos-
sible to make a special object that can add these features.

HTML5 has support for new audio elements that can be controlled through
JavaScript code. Although this is easy enough to use, it isn’t integrated tightly
with the canvas element.

JavaScript has long supported a behavior called setTimeOut, which allows
you to specify a function to run on intervals. See Chapter 12 for an example of
a program that uses the setTimeOut mechanism.

Building an Animation
with simpleGame.js

It’s possible to build a library that simplifies all of these various features
discussed in the previous section. Such a library can provide abstractions to
make everything work without worrying about the details.

Of course, I’ve provided exactly such a library: simpleGame.js. This library
is easy to use and is fully capable of sophisticated game development. It
uses a notion called object-oriented programming to simplify the complexity
of game development. This idea (object-oriented programming) is not really
new because you’ve been using objects all along. (The document is an object,
and form elements are objects, for example.) Building a game with the library
involves creating objects and using them. To get started, you really need to
understand only two objects:

	 ✓	The scene: This object starts with an HTML canvas object and adds the
main loop. The scene is the unifying object that controls the game.

	 ✓	Sprites: These objects are the elements that move around on the screen.
Most of the game elements are sprites. Each sprite must belong to a
single scene, but you can have as many sprites as you want. A sprite is
based on an image.

116 Part II: Basic Game Development

Take a look at Figure 5-1, and you see a simple program that uses this library.

	

Figure 5-1:
It looks like
a rectangle
with a ball,

but it’s
much more

than that.
	

This code is actually a lot more sophisticated than it looks. Here’s what it does:

	 ✓	It adds a canvas to the page. The gray rectangle is actually a canvas tag
that’s been automatically added to the page.

	 ✓	It begins a game loop. This program has a game loop already running at
20 frames per second.

	 ✓	It contains a sprite. The ball image is much more than an image. It’s a
sprite, which has the capability to move any speed in any direction and
other interesting features like collision detection built in.

	 ✓	The ball is moving. I know you can’t see this on a screen shot, but the
ball is moving on the screen. It automatically wraps to the other side of
the screen when it leaves one side.

With all the interesting stuff happening under the hood, you may be sur-
prised at how simple the code is. Here’s the entire code listing:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>redBall.html</title>
 <script type=”text/javascript”

117 Chapter 5: Introducing simpleGame.js

 src = “simpleGame.js”></script>
 <script type=”text/javascript”>
 //simple game with a single moving ball
 var scene;
 var ball;

 function init(){
 scene = new Scene();
 ball = new Sprite(scene, ”redBall.png”, 50, 50);
 ball.setMoveAngle(180);
 ball.setSpeed(3);

 scene.start();
 } // end init

 function update(){
 scene.clear();
 ball.update();
 } // end update

 </script>
</head>
<body onload = ”init()”>

</body>
</html>

The surprising thing about this code is how simple it is. The game engine
takes a very complex process and makes it pretty easy to understand. You
begin with a basic HTML5 page and add a few features to turn it into a gaming
environment.

Building your page
Begin by building the underlying page:

	 1.	 Begin with an HTML5 page.

		 You can use the same tools you’ve been using for your other web devel-
opment. Build a basic HTML5 template like you do for any other HTML5
document.

	 2.	 Import the simpleGame.js library.

		 This library is available for free from my website (www.aharrisbooks.
net). Use a <script> tag to import the library. Set the src property to
the name of the library (simpleGame.js). It’s generally easier to keep a
copy in the same directory as your page.

http://www.aharrisbooks.net/
http://www.aharrisbooks.net/

118 Part II: Basic Game Development

	 3.	 Keep the HTML simple.

		 You can put whatever HTML you want on the page, but you don’t need
much. The game engine will create a canvas containing the scene. You
might put a title, instructions, or other tools like scoreboards on the
page, but the game engine will do most of the work.

	 4.	 Call init() when the body loads.

		 It’s very common to have a function called when the body loads. Add
onload = “init()” to the body tag to call the init() method.

	 5.	 Create a second script tag to contain your code.

		 You need to have a second script tag for custom code. Place this after
the tag that imports the library.

	 6.	 Place two functions in your script.

		 All simpleGame programs will have at least two functions: init() hap-
pens on startup, and update() happens once per frame.

Initializing your game
The initialization part of the game happens as the page loads. It’s mainly
taken up with setting up sprites and other resources. Here’s the code:

 var scene;
 var ball;

 function init(){
 scene = new Scene();
 ball = new Sprite(scene, “redBall.png”, 50, 50);
 ball.setMoveAngle(180);
 ball.setSpeed(3);
 } // end init

Most games will use a similar style of initialization. Here’s how you set up the
game:

	 1.	 Define a variable to contain the scene.

		 Every simpleGame game will have at least one scene object. Define the
scene outside any functions, so it is available to all of them. You will
actually create the scene inside the init() function.

	 2.	 Define a variable for each sprite.

		 Every sprite in your game will need to belong to a global variable as well.
You’ll create the sprites in the init() function, but you need to make
the variable available to all functions.

119 Chapter 5: Introducing simpleGame.js

	 3.	 Build the init() function.

		 This function is called by body onload. It will run after the page has
loaded into memory.

	 4.	 Create the scene.

		 To build the scene, create an instance of the scene class. What you’re
really saying is “Make me a Scene object and call this particular instance
‘scene.’” (See the later section “Making instance pudding” on class and
instance for more details.) The scene doesn’t require any parameters.

	 5.	 Create the ball sprite.

		 The ball is a Sprite instance. To make a sprite, you need a few more bits
of information. You need a scene, an image filename, width, and height.

	 6.	 Set the ball’s movement angle.

		 You can change the angle the ball moves. The angles are measured in
degrees like on a map (0 is North, 90 is East, and so on).

	 7.	 Set the ball’s movement speed.

		 You can also determine the speed of the ball (in pixels per frame).

	 8.	 Start the scene.

		 When you’re done setting everything up, tell the scene to start.

Updating the animation
After you start the scene, a timer will begin. Twenty times a second, it will
call a function on your page called update(). So, you need to have such a
function, and it needs to have some code for your game to run.

The update() function is not terribly difficult either.

 function update(){
 scene.clear();
 ball.update();
 } // end update

The update() function typically does three things:

	 ✓	Clears the previous screen: The first order of business is to clean up
any mess caused by the last screen. The Scene object has a clear()
function for exactly this purpose.

	 ✓	Checks for events: Usually in a game, things will happen (or it isn’t
much of a game). Typically, you check for these types of events, like

120 Part II: Basic Game Development

user input, sprites crashing into each other, sprites leaving the screen,
or whatever. For this simple animation, the only event is a sprite leaving
the screen, and I’ve automated the behavior associated with this action.

	 ✓	Updates each sprite: The final part of the screen update is updating the
sprites. When you update a sprite, it will draw in its new position (taking
into account any changes you’ve made to the sprite’s speed or direction).

In this case, it isn’t necessary to check for any events. All the program does is
clear the screen and update the ball sprite.

Figure 5-2 shows what happens if you don’t clear the screen. All the sprite
motion will be drawn on the canvas, and it looks like a big smear rather than
a moving ball.

	

Figure 5-2:
If you forget
to clear the
scene, the
animation

will look like
this.

	

It might seem like a lot of work, but a similar version of this animation with-
out the simpleGame library would be much more complex, and would take
well more than 100 lines of code to write. (And that’s nothing. It would be
easily more than 200 lines in C++.)

Starting from a template
Almost every game in the rest of the book will begin with exactly the same
code. If you want, you can start from this template, but really you should just
type it yourself a few times until you can do it from memory:

121 Chapter 5: Introducing simpleGame.js

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>template for simple games</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var scene;
 var sprite1;

 function init(){
 scene = new Scene();
 sprite1 = new Sprite(scene, ”image.png”, 30,

30);

 scene.start();
 } // end init

 function update(){
 scene.clear();

 //handle events here

 //update all the sprites
 sprite1.update();
 }
 </script>
</head>
<body onload = ”init()”>

</body>
</html>

You can download this template from my website or type it in. Here are a few
things to remember:

	 ✓	You’ll probably have several sprites. I just put one sprite in the tem-
plate, but most games will have several: One for the user and one for
each enemy or target. Use better names than sprite1 so you can
remember what things are.

	 ✓	You’ll need some other files. Be sure your directory contains some suit-
able sprite images and the simpleGame.js file.

	 ✓	Define variables outside the functions. The variables for the sprites
and the scene will need to be defined outside all the functions.

	 ✓	Create the scene and the variables inside the init() function. The
main purpose of the init() function is to build all the various elements
that will be populating your game.

122 Part II: Basic Game Development

	 ✓	Don’t forget to start the scene. The last line of the init() function
should be scene.start(). This command begins the animation loop
that gets the whole ball rolling. If your game isn’t doing anything, check
to be sure this line is here.

	 ✓	You need to have an update() function. The update() function is not
optional. All the game action is controlled by this function.

	 ✓	Clear the scene every frame. The first thing to do in the update()
function is to clear the screen with scene.clear(). If you forget to do
this, you’ll have very strange trail effects.

	 ✓	Check for events in the update() function. The update() function is
where you look for events (key presses, collisions, leaving the screen,
and so on).

Considering Objects
The idea of object-oriented programming is really important in game pro-
gramming because it’s natural to think of games in terms of objects. You
can do more interesting things with the game engine, but you need to have
a grasp of how objects work. The game itself is an object (called a scene in
simpleGame). The things that move around on the screen are also objects,
called sprites. When a programming language allows you to think about your
code as objects, it’s called an object-oriented language. The simpleGame
library makes heavy use of object-oriented techniques, so it’s important to
understand a few terms.

First, an object is simply a combination of code and data. Just like functions
can be used to combine code statements and arrays can combine data ele-
ments, an object can combine functions and variables to make something
bigger and cooler. With explosions.

Making instance pudding
When you create an object, you’re essentially creating a new data type. First,
you need to define what the object is and how it works. This is called a class
definition. A class is essentially the instructions or blueprint for an object.
Sprite and Span are the main objects in the simpleGame library. (There
are others, but these are by far the most important.) Note the capital letters.
It’s customary to capitalize class names.

123 Chapter 5: Introducing simpleGame.js

A class is like a recipe, but you wouldn’t eat the recipe. Instead, you use a
recipe to make cookies. (Okay, I’ve made some cookies that aren’t much
better to eat than the recipe, but you get my drift.) The actual cookies are
instances of the class. The distinction is important because sometimes you’re
talking about a particular object, and sometimes you’re talking about a whole
class of objects. Instance names are not usually capitalized. Now look back at
this line of code:

 ball = new Sprite(scene, “redBall.png”, 50, 50);

What it’s really saying is the variable ball will now contain an instance of
the Sprite class, with all the various characteristics indicated by the param-
eters. Now you can also see why the capitalization is so important in this line:

 scene = new Scene();

It isn’t as redundant as it seems. It means that the variable scene will contain
an instance of the Scene class. It’s common to give instances and classes the
same name (but with different capitalization) when there’s only one instance
of the class, but different names when there are several. There are usually
many sprites in a scene, and it’s helpful to give them useful variable names
like ball so you can tell what they are.

Adding methods to the madness
Objects are like variables, but they have a lot of other features ordinary vari-
ables don’t have. For one thing, an object can have properties. These are like
sub-variables attached to a primary variable. For example, input elements in
ordinary JavaScript have a value property. You can often read and change a
property directly. Properties usually describe something about an object.

Objects also have methods, which are things the object can do. If properties
are essentially variables, methods are functions attached to an object. You’ve
seen this before, too. The document is the primary object of a web page, and
it has a method called getElementById() that is commonly used to get
access to that element as a JavaScript variable.

Custom-built objects like the Scene and Sprite classes in simpleGame
also can have properties and methods. Generally, however, I’ll stay away
from properties and mainly use methods instead. (This practice is a bit safer
because properties can cause problems if you’re not careful.) Look at the
simpleGame documentation to see all the methods of the various objects,
but don’t worry if you don’t understand them all.

124 Part II: Basic Game Development

Bringing Your Game
Animations and object-oriented theory are nice and all, but we’re here to
build a game. The biggest difference between a game and an animation is user
interaction. If you want to make it a game, you need the user to get involved.
Figure 5-3 shows a new game with a car driving around on the screen.

It really doesn’t make sense to view an interactive program on a static book
page. Please go to my website (www.aharrisbooks.net) and see the pro-
gram run in your own browser. It’s kind of fun, even if it isn’t a real game yet.

	

Figure 5-3:
The user

can steer
this car with
arrow keys!

	

The car game is similar to the ball animation, but it has some slightly differ-
ent behaviors:

	 ✓	It’s a car, not a ball. I’ll get the obvious stuff out of the way first. I can
make a sprite out of any web-capable image, so this time I’ll make the
sprite a car by basing it on a car image. (See Chapter 11 for tips on build-
ing graphics for your games.)

	 ✓	Up and down arrows change the speed. You can change the speed of
the car with the up and down arrows. (You’ll need a keyboard for this
example. If you’re on a mobile device, please look at Chapter 9 for more
on using a virtual joystick or keypad solution.)

	 ✓	Left and right keys change the direction. Pressing the left- or right-
arrow key changes the direction the car is going. Turning even works
correctly when going into reverse!

http://www.aharrisbooks.net/

125 Chapter 5: Introducing simpleGame.js

The code is actually not much more complicated than the ball animation.

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>car.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var scene;
 var car;

 function init(){
 scene = new Scene();
 car = new Sprite(scene, ”car.png”, 50, 30);
 car.setAngle(270);
 car.setSpeed(0);
 scene.start();
 } // end init

 function update(){
 scene.clear();
 //check keys

 if (keysDown[K_LEFT]){
 car.changeAngleBy(-5);
 } // end if

 if (keysDown[K_RIGHT]){
 car.changeAngleBy(5);
 } // end if

 if (keysDown[K_UP]){
 car.changeSpeedBy(1);
 } // end if

 if (keysDown[K_DOWN]){
 car.changeSpeedBy(-1);
 } // end if

 car.update();
 } // end update
 </script>
</head>
<body onload = “init()”>
 <h1>Drive the car!</h1>
</body>
</html>

126 Part II: Basic Game Development

Checking the keyboard
Somehow the user needs to interact with the page. The keyboard is one of
the easiest input elements to use. simpleGame provides a couple ways to
check the keyboard, but the most powerful technique uses a special variable
called keysDown. Here’s how it works:

	 ✓	keysDown is a global array. This variable is automatically created when
you build a scene. It is an array of Boolean values — that means each
element can be only true or only false.

	 ✓	There is a constant defined for each key. Each key on the standard
keyboard has a special constant already defined. For example, K_A rep-
resents the A key, and K_B represents the B key. See the chart for the
names of special characters like the arrow keys and space bar.

	 ✓	keysDown tells the status of every key. If the A key is currently
pressed, keysDown[A] will contain the value true. If the A key is not
pressed, keysDown[A] will contain the value false. See Table 5-1 for
a rundown of the keyboard constants.

	 ✓	You can determine the current status of any key. Just check the keys-
Down[] array to determine the current status of any key.

	 ✓	You can have multiple keys down at once. The primary purpose of this
technique is to allow for multiple keys to be pressed at once. In normal
computing, it’s unusual to have more than one key at a time (except spe-
cial keys like Shift and Ctrl). In gaming, it’s very common to press more
than one key at a time, so you need a mechanism that can support this
expectation.

Table 5-1	 Keyboard Constants in simpleGame
simpleGame Constant Key
K_A – K_Z Standard character keys (capitalization is irrelevant)
K_UP Up arrow
K_DOWN Down arrow
K_LEFT Left arrow
K_RIGHT Right arrow
K_SPACE Spacebar

See Chapter 12 for information on using other keys and defining new con-
stants for them.

127 Chapter 5: Introducing simpleGame.js

Moving the sprite
Sprites have a number of interesting built-in methods that allow you to
change the position, angle, and speed of your sprite. Table 5-2 shows the
highlights.

Table 5-2	 Sprite Movement Methods
Method Description Parameters
setPosition
(x, y)

Places the sprite at the indi-
cated position.

x: horizontal position

y: vertical position
setX(x) Sets the X position to a spe-

cific value.
x: new x position of
sprite

setY(y) Sets the Y position to a spe-
cific value.

y: new y position of
sprite

changeXby(dx) Changes the X position by
some amount one time.

dx: amount to
change x (positive
values move right)

changeYby(dy) Changes the Y position by
some amount one time.

dy: amount to
change y (positive
values move down)

setChangeX(dx) Sets an ongoing change
in X (keeps going until you
change it).

dx: amount to
change x

setChangeY(dx) Sets an ongoing change
in Y (keeps going until you
change it).

dy: amount to
change y

setAngle(angle) Sets both visual and motion
angle of sprite.

angle: angle in
degrees (standard
map format)

changeAngleBy
(dAngle)

Changes both visual and
motion angle by some
amount.

dAngle: degrees to
change (positive is
clockwise)

setImgAngle
(angle)

Sets only the visual angle
(does not affect motion).

angle: angle in
degrees (standard
map format)

changeImgAngle
(angle)

Changes only the visual
angle (does not affect
motion).

dAngle: degrees to
change (positive is
clockwise)

(continued)

128 Part II: Basic Game Development

Table 5-2 (continued)
Method Description Parameters
setMoveAngle
(angle)

Sets only the movement
angle (does not affect
appearance).

angle: angle in
degrees (standard
map format)

changeImgAngle
(angle)

Changes only the move-
ment angle (does not affect
appearance).

dAngle: degrees to
change (positive is
clockwise)

setSpeed(speed) Sets the speed of the car (in
pixels / frame).

speed: new speed
(can be negative for
backward motion)

changeSpeedBy
(dSpeed)

Changes the speed of the
car.

dSpeed: positive
values to speed up,
negative values to
slow down

There’s a lot of information in Table 5-2, but it’s not as complicated as it
might look. Essentially, a sprite has a position, which is controlled by X and Y
properties. If you remember from math class, X represents horizontal values,
and Y is for vertical location. The origin (0, 0) is the top-left corner of the
screen.

X coordinates work just like you remember from math class. As X values
get larger, the sprite moves to the right. In computer graphics, Y acts a little
different than it did in math class. Most display hardware scans from top to
bottom, so Y is 0 at the top of the screen and increases as you move down-
ward. This can be confusing at first, but I promise, you’ll get used to it.

Figure 5-4 shows the coordinate system for a scene. Note that the maximum
height and width are stored in variables: scene.height and scene.width.
(The default scene is 400px by 300px, but you can change it if you want.)

All of the various movement methods are really about manipulating X and Y.
You can set these values manually (setPosition(), setX(), and setY()),
or you can change the values (changeXby(), changeYby()). Each of these
methods acts immediately, so you can use them to direct the position or
motion of the sprite.

Some of these functions seem similar to each other. For example, changeXby()
looks a lot like setChangeX(). These functions have a subtle but important
difference. The changeXby() function changes the value of X one time. If
you want the change to continue, you have to keep calling this function. The

129 Chapter 5: Introducing simpleGame.js

setChangeX() function is more powerful because you can call it one time,
and it repeatedly changes x by whatever value you determine until you call
setChangeX() again (or something else that affects the car’s speed).

	

Figure 5-4:
Computer

screens
have the

origin at the
upper-left

corner.
	

It’s fine if all this is a little lost on you right now because you’re not going to
use any of these techniques yet. The whole point of a game engine is to pro-
vide abstraction, which allows the programmer to think in a less mathemati-
cal way.

For most sprites, you really want to simply give the sprite an angle and a
speed, and let it go. The sprite object has exactly the methods you need
for this behavior. setAngle() allows you to determine the direction the
sprite will go, and setSpeed() lets you specify the speed to go in that
direction. Like most motion functions, there are also changeAngle() and
changeSpeed() methods.

Note that for basic examples, I’m assuming that the sprite goes in the direc-
tion it’s pointing, but that’s not always the case. Sometimes, you’ll want a car
that skids or a spaceship that drifts sideways. It’s possible to separate the
movement angle from the visual angle with the provided methods.

130 Part II: Basic Game Development

	 Using the speed and angle to control a sprite is a really big deal. It vastly sim-
plifies your game programming, but what’s really going on under the hood?
Well, it’s math. The speed and angle are used to calculate a new change in X
and change in Y every frame, using a mathematical technique called vector
projection (which in turn uses basic trigonometry). I explain the technique in
Chapter 12. For now, you can consider it magic, but I absolutely promise
you’re going to use math in game programming, so it might be time to break
out those math books. When will you use math in real life? How about today?

Baby, you can drive my car
The keysDown mechanism can be combined with the motion methods to
easily control your car. Here’s the relevant code from update() again:

 function update(){
 scene.clear();
 //check keys

 if (keysDown[K_LEFT]){
 car.changeAngleBy(-5);
 } // end if

 if (keysDown[K_RIGHT]){
 car.changeAngleBy(5);
 } // end if

 if (keysDown[K_UP]){
 car.changeSpeedBy(1);
 } // end if

 if (keysDown[K_DOWN]){
 car.changeSpeedBy(-1);
 } // end if

 car.update();
 } // end update

The actual coding is pretty easy to understand:

	 1.	 Clear the scene.

		 As usual, the first order of business in the update() function is to clean
up the playroom. Make sure you’ve erased the previous frame before
you do anything else.

131 Chapter 5: Introducing simpleGame.js

	 2.	 Check for a left-arrow press.

		 Use the keysDown mechanism to determine whether the left arrow is
currently pressed. (Of course, you can use WASD or some other control
scheme if you prefer.)

	 3.	 If the left arrow is pressed, turn the car left.

		 If the user is currently pressing the left-arrow key, turn the car five
degrees counter-clockwise (which will turn its nose to the car’s left). Use
the changeAngleBy() method to change the car’s visual appearance
as well as the direction it’s travelling.

	 4.	 Repeat for the right arrow.

		 The right arrow check is similar, but this time turn the car five degrees
clockwise (a positive angle turns the car’s nose to the car’s right).

	 5.	 Use the up arrow to accelerate.

		 If the user presses the up arrow, change the car’s speed. Use a posi-
tive value to accelerate the car. It won’t take much because this code is
being checked 20 times a second.

	 6.	 Slow the car down with the down arrow.

		 Use a similar mechanism for the down arrow. Change the speed by a
negative value to slow down the car. This approach allows for negative
values, and the car will back up if you want.

	 7.	 Draw the car in its new position.

		 It’s critically important to remember that calling the sprite’s motion
functions does not change the location of the car! It only changes internal
data in the game’s memory. You must call the car’s update() method
to see these changes in action.

You’ve got a pretty good start. Try building your own. Create an image, build
a control system, and get it going. If you’re ready for a challenge, see if you
can figure out how to make your sprite go in the direction you pressed. For
example, if you press the right arrow, the car goes right. If you press the up
arrow, the car goes up.

132 Part II: Basic Game Development

Chapter 6

Creating Game Elements
In This Chapter
▶	Creating your own sprite objects
▶	Adding properties and methods to custom objects
▶	Incorporating sound effects
▶	Detecting collisions between sprites
▶	Setting up a basic timer

G
ames have things moving around, crashing into each other, and making
noise. Obviously, to have a game, you’ll need these elements. You can

build objects with the Sprite element built into the simpleGame library
(refer to Chapter 5 if you need a review of building simple games with this
library).

Building Your Own Sprite Objects
To make very powerful games, you’ll want to be able to build your own
sprites that do exactly what you want them to do.

In this chapter, you find out how to build your own new types of objects
based on existing objects. After you make an object, you can give it charac-
teristics and behavior.

134 Part II: Basic Game Development

Making a stock sprite object
To get started, take a look at this simple object:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>critter</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”>
 </script>
 <script type=”text/javascript”>
 var game;
 var critter;
 function init(){
 game = new Scene();
 critter = new Sprite(game, ”critter.gif”,

30,30);
 critter.setSpeed(0);
 game.start();
 }

 function update(){
 game.clear();
 critter.update();
 }
 </script>
</head>
<body onload = ”init()”>

</body>
</html>

This is an extremely simple program. It creates a scene and a single sprite
called critter. Right now, the critter doesn’t do much. Figure 6-1 shows what it
looks like, but it’s just an object that sits there and does nothing.

Building your own sprite
Sprite objects are great, but wouldn’t it be awesome if the critter itself were
an object and even better if it were a new object based on the sprite? It could
start with all the basic features of the sprite, but you could add new capabili-
ties to differentiate critters from other sprites.

135 Chapter 6: Creating Game Elements

	

Figure 6-1:
This is a

sprite right
out of the

box with no
modifica-

tions.
	

Take a look at CritterConstructor.html to see a way to do so:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>critter</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”>
 </script>
 <script type=”text/javascript”>
 var game;
 var critter;

 function Critter(){
 tCritter = new Sprite(game, ”critter.gif”, 30,

30);
 tCritter.setSpeed(0);
 return tCritter;
 }

 function init(){
 game = new Scene();
 critter = new Critter();
 game.start();
 }

 function update(){
 game.clear();

136 Part II: Basic Game Development

 critter.update();
 }
 </script>
</head>
<body onload = ”init()”>

</body>
</html>

This program works exactly like the last one, but it’s organized a bit
differently.

	 ✓	There is a function called Critter(). It’s important that the function
is the name of an object and it’s also capitalized. This is a very special
function, because it’s used to define a Critter() object.

	 ✓	The Critter() function creates a temporary sprite object. Inside
the Critter() function, you see a temporary sprite object called
tCritter(). This is a new sprite.

	 ✓	Modify the temporary sprite as much as you want. To make a new
type of object in JavaScript, you essentially make a new object and then
modify it to get exactly the behavior you want. In this case, I set the crit-
ter’s default speed.

	 ✓	Return the temporary Critter object. The end of the special Critter()
function returns the sprite, but now it’s not just a sprite, but a critter.

The point of this mechanism is to have new kinds of objects available. The
Critter is much like a Sprite, but it can have new behavior and character-
istics. This is an incredibly powerful feature.

	 The technical term for making a sprite act like it’s descended from another
sprite is inheritance. JavaScript’s inheritance model is usually done in a differ-
ent way (using a mechanism called prototyping). After much consideration, I
chose to use this simpler approach to inheritance for this book. It is not the way
formal JavaScript inheritance is done, but the mechanism shown here is easier
to understand than the “right” way, and it’s similar to how inheritance is done
in many other languages. There is nothing at all wrong with this approach, but
you’ll sometimes see other approaches to inheritance in JavaScript.

Using your new critter
The Critter() function gives you the ability to create new critter objects.
This changes the way you write your init() function:

137 Chapter 6: Creating Game Elements

 function init(){
 game = new Scene();
 critter = new Critter();
 game.start();
 }

The only thing that’s really new is the way the critter is created. Now that
you have a Critter() function, you can use it to build new critters. This
special type of function (one that’s designed to return a new class) is called a
constructor. When there’s only one critter to build, this may not seem like a big
deal, but building objects with constructors is the key to building large and
complex games with many kinds of interrelated objects.

Note that critter and Critter (watch the capitalization) are different
things. Object definitions are normally written with the first letter shown
in uppercase (the term is capitalized), and variables normally begin with a
lowercase letter. In this situation, you’re creating a variable called critter
that is of the new type Critter. When you’ve got only one copy of a custom
type, you often use this lower-upper trick for naming.

	 If you already know something about object-oriented programming (OOP)
in another language, like C++ or Java, you’re probably pretty confused.
JavaScript seems to be object-oriented, but not in a way you’re familiar with.
That’s true. JavaScript does have a form of OOP, but the mechanisms are dif-
ferent. Don’t get too hung up on the details. The important ideas (inheritance,
encapsulation, and polymorphism) are all there, but it may not look exactly
like what you’ve already seen. Don’t panic, and see if it all falls together as the
examples become more involved.

Adding a property to your critter
One of the most interesting things about objects is that they are variables
that can contain other variables. When a variable exists in the context of an
object, the variable is called a property. Properties are the characteristics of
an object, such as its speed or its size. As an example, please look at the fol-
lowing variation of the critter code:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>critterSpeed.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”>
 </script>

138 Part II: Basic Game Development

 <script type=”text/javascript”>
 var game;
 var critter;

 function Critter(){
 tCritter = new Sprite(game, ”critter.gif”, 30,

30);
 tCritter.speed = 3;
 tCritter.setSpeed(tCritter.speed);
 return tCritter;
 }

 function init(){
 game = new Scene();
 critter = new Critter();
 game.start();
 }

 function update(){
 game.clear();
 critter.update();
 }
 </script>
</head>
<body onload = “init()”>

</body>
</html>

A property is simply a special variable associated with an object. Normally,
you use object.property to designate that a particular property is associ-
ated with a particular object. For this example, I added a speed property to
the Critter object.

	 1.	 Build a property by referring to it.

		 In JavaScript, you can simply refer to a variable, and it will be created.
This is also true in objects. Simply make a reference to Critter.speed,
and the Critter object magically has a speed property.

	 2.	 Create properties in the constructor.

		 You can technically create or refer to a property anywhere, but normally
they’re created in the constructor.

	 3.	 Use the property like any other variable.

		 The property acts like any other variable, so you can use it to actually
change the speed of the object.

139 Chapter 6: Creating Game Elements

	 Yes, I know this is more work than you need here because you could simply pass
a number or ordinary variable to the setSpeed() method. However, I’m setting
up the next example, which creates a custom behavior for the Critter class.

Adding methods to classes
If properties describe the characteristics of an object, methods describe
the behavior. A method is a function associated with an object. You build
methods very much like creating a property, but rather than adding a simple
value, you assign an entire function to a name.

For example, the next version of the critter has a changeSpeed() method.
When the user presses the up arrow, the critter will speed up, and when the
user presses the down arrow, the critter will slow down (and eventually go the
other direction). Here’s the code for the critter with its new method in place:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>critterChangeSpeed.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”>
 </script>
 <script type=”text/javascript”>
 var game;
 var critter;

 function Critter(){
 tCritter = new Sprite(game, ”critter.gif”, 30,

30);
 tCritter.speed = 0;
 tCritter.checkKeys = function(){
 if (keysDown[K_RIGHT]){
 this.speed++;
 }
 if (keysDown[K_LEFT]){
 this.speed--;
 }
 tCritter.setSpeed(this.speed);
 } // end method
 return tCritter;
 }

 function init(){
 game = new Scene();
 critter = new Critter();
 game.start();

140 Part II: Basic Game Development

 }

 function update(){
 game.clear();
 critter.checkKeys();
 critter.update();
 }
 </script>
</head>
<body onload = “init()”>

</body>
</html>

Note that I’m not showing a screen shot of this program because it looks
exactly like the previous critter programs, except that it moves when the
user presses the keys. For this and most examples, a static image will not be
enough to help you see what’s going on. You really need to see this program
in action on my website: www.aharrisbooks.net.

In this new version of the program, the Critter object has a new behavior
identified. Essentially, a method is nothing more than a function defined
inside a class (which is also a function — my head is hurting here). Don’t
panic. It’s really not that difficult to figure out. You’re telling the system what
to do if the user ever asks the Critter object to change speed.

	 1.	 Create a new property called checkKeys.

		 In JavaScript, a property and a method are exactly the same thing. If
you attach a regular variable to an object, it’s a property. If you attach
a function to it, it’s a method. (Property names are normally nouns.
Method names are normally verbs or verb phrases.)

	 2.	 Build a new method to contain the behavior.

		 changeSpeed isn’t an ordinary property, but a method, so you’ll attach
a function to it. (For the Computer Science majors out there, building an
anonymous function on the fly like this is an example of a lambda func-
tion. Watch for it on the midterm exam!)

	 3.	 Check for keyboard input.

		 Use the mechanism described in Chapter 5 to check to see whether the
user presses the left or right arrow. The only difference is this: When
you make a Critter object, it will already know how to look for its own
key presses.

	 4.	 Change the speed based on keyboard input.

		 If the user presses right, increase the speed (at the default direction,
positive speeds move the sprite to the right). If the user presses left,
decrease the speed.

http://www.aharrisbooks.net/

141 Chapter 6: Creating Game Elements

	 5.	 Use the setSpeed() method to change the actual speed.

		 The Sprite object that provides the blueprint for critter already has a
setSpeed() method. Use this method to make the object move at the
indicated speed.

	 6.	 Inside a method, use the this keyword.

		 When you create a method inside a constructor, the computer can get a
bit confused about the names of things. For the most part, you’re adding
stuff to a temporary critter called tCritter. However, when you’re
done, the actual critter you create will normally be called something
else. To eliminate confusion, if you need to refer to other properties or
methods of the object you’re modifying, use the general keyword this
rather than the actual name of the object (which will probably change
by the time the method is being called).

	 7.	 Modify the update() function so the critter checks the keyboard.

		 Remember, the main update() function happens once per frame.
Anything you want to happen once per frame should be called in
update(). Add a call to critter.checkKeys(). This will remind
the critter to check the keyboard every frame and change its speed as
needed.

Sound Programming Principles
Sound effects have long been one of the biggest weaknesses of the web as
a gaming platform. Web browsers had very inconsistent and troublesome
audio capabilities. Fortunately, HTML5 solves the sound issue (at least at
some level).

The simpleGame library makes it very easy to build new sounds by adding a
Sound object. Here’s a very simple program that plays a sound effect:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>sound.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var scene;
 var ribbit;

 function init(){

142 Part II: Basic Game Development

 scene = new Scene();
 owMP3 = new Sound(“ow.mp3”);
 owOgg = new Sound(“ow.ogg”);
 scene.start();
 } // end init

 function update(){
 if (keysDown[K_SPACE]){
 owMP3.play();
 owOgg.play();
 } // end if
 } // end update

 </script>
</head>
<body onload = “init()”>
 <div>DO NOT press the space bar!!</div>
</body>
</html>

Sound effects are easy to manage with the simpleGame library:

	 1.	 Create your sound effect.

		 Look over Chapter 11 for information on building and modifying sound
effects, or find an audio file. The best formats are mp3 and ogg. Put your
audio file in the same directory as your program.

		 To maximize browser compatibility, continue to Step 2.

	 2.	 Make a variable to hold your sound effect.

		 Like every game asset, you’ll have a variable containing your sound.
Define the variable outside any functions.

	 3.	 Build a Sound object to initialize your sound effect.

		 The simpleGame library has a Sound object. Create an instance of this
object to build your sound. The object requires one parameter: the
name of the file containing your sound effect. Normally, you’ll do this in
the init() function of your game.

	 4.	 Play the sound with the play() method.

		 Once you’ve defined a sound effect, you can play it back easily with the
sound object’s play() method.

This program is shown in Figure 6-2, but understandably, it won’t be very
interesting in the book. You really need to view it at www.aharrisbooks.
net to get the full effect.

http://www.aharrisbooks.net/
http://www.aharrisbooks.net/

143 Chapter 6: Creating Game Elements

	

Figure 6-2:
Press the
spacebar

to hear the
sound.

	

Getting sound effects
Sound effects add a lot to your game. It used to
be quite difficult to work with sound effects in
web pages, but HTML5 has a wonderful new
<sound> tag that finally gives the browser
access to sound effects without third-party plug-
ins. The Sound object in the simpleGame
library is based on the HTML5 <sound> tag.

Great as the sound element is, there are some
problems. Although all HTML5-compliant
browsers play audio files, they do not play the
same file types. The mp3 format is very well
known, but not all browsers support it. Many
browsers prefer the newer (and open source)
Ogg format. If this isn’t confusing enough, the
support changes from version to version of the
same browser.

My suggestion is to use both mp3 and Ogg for-
mats and let the browser play whichever one it
can. That will resolve most issues.

Of course, it isn’t easy to find the same sound
effect in both formats. I recommend you use
the free audio editor, Audacity (http://
audacity.sourceforge.net). This tool
allows you to record and edit sound effects in
multiple formats. Depending on the version of
Audacity you get, you may also need the LAME
plug-in (http://lame.sourceforge.
net). With these tools, you can easily record
your own sound effects and save them in both
Ogg and mp3 formats. Please see Chapter 11 for
more information on recording your own audio.

http://audacity.sourceforge.net/
http://audacity.sourceforge.net/
http://lame.sourceforge.net/
http://lame.sourceforge.net/

144 Part II: Basic Game Development

Game Programming’s Greatest Hits!
The most interesting things in video games happen when sprites conk
into each other. Game engines normally have some sort of tool for testing
whether two sprites are overlapping. This is called collision detection, and it
can be done a number of ways. For this example, I’ll use the standard bound-
ing rectangle scheme. It’s not perfect, but it’s very easy to implement and is
commonly used.

Setting up bounding rectangle collisions
Take a look at colTest.html as shown in Figure 6-3, and you’ll see a simple
example.

	

Figure 6-3:
A Collision

message
appears

when the
critter col-
lides with

the box.
	

In the colTest.html example, the user moves the critter with the mouse,
and you’ll get a message when the critter is touching the box in the middle of
the screen.

145 Chapter 6: Creating Game Elements

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>colTest.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var game;
 var box;
 var critter;
 var output;

 function init(){
 game = new Scene();
 game.hideCursor();
 box = new Sprite(game, ”simpleBox.png”, 50,

50);
 critter = new Sprite(game, ”critter.gif”, 50,

50);
 output = document.getElementById(”output”);

 //give box fixed position
 box.setPosition(200, 150);
 box.setSpeed(0);

 //critter controlled by mouse
 critter.setPosition(100, 100);
 critter.setSpeed(0);
 critter.followMouse = function(){
 this.setX(document.mouseX);
 this.setY(document.mouseY);
 } // end followMouse

 game.start();
 } // end init

 function update(){
 game.clear();
 critter.followMouse();
 checkCollisions();
 box.update();
 critter.update();
 } // end update;

 function checkCollisions(){
 if (box.collidesWith(critter)){
 output.innerHTML = “Collision”;
 } else {

file:///Volumes/Working/Tech/9781118074763/9781118074763%20Text/9781118074763%20Final%20Text/view-source:file:///C:/xampp/htdocs/h5g/h5g_6/simpleGame.js

146 Part II: Basic Game Development

 output.innerHTML = “No collision”;
 } // end if
 } // end checkCollisions

 </script>
</head>
<body onload = “init()”>
 <div id = “output”>empty</div>
</body>
</html>

A number of interesting things are happening in this code:

	 1.	 Hide the normal mouse cursor.

		 When you’re going to have some other object follow the mouse, you
normally want to hide the normal arrow cursor. In simpleGame, use the
game.hideCursor() method to hide the mouse cursor inside the game
screen.

	 2.	 Create more than one sprite.

		 It takes two to tango, or collide. In this example, I have a box that will
remain stationary, and a critter that follows the mouse.

	 3.	 Give the critter a followMouse() method.

		 In this example, you have the critter follow the mouse. Begin by creating
a followMouse() method.

	 4.	 Determine the mouse’s position.

		 The mouse position is determined (in simpleGame.js) with the
document.mouseX and document.mouseY properties.

	 5.	 Copy the mouse position to the critter position.

		 Use the mouse’s x position to set the critter’s x position, and repeat with y.

	 6.	 Call the critter’s followMouse() method every frame.

		 As usual, the update() function is where you put code that should
happen repeatedly.

If you play around with the colTest.html page, you’ll probably notice that
the collisions are not exact. It’s possible to have a collision register even when
the critter isn’t actually touching the box. This is important because simple
Game uses a scheme called bounding box collisions. This means you’re not actu-
ally checking to see whether the images collide but whether the rectangles
around the images collide. In this example, the difference is minor, but you’ll
sometimes see significant errors with this mechanism, especially with ele-
ments that are long and thin. Figure 6-4 illustrates the problem with bounding
rectangles. As a sprite rotates, the size of the bounding rectangle can change.

147 Chapter 6: Creating Game Elements

	

Figure 6-4:
A and B are

not collid-
ing, but C

and D are!
	

Distance-based collisions
An alternative form of collision detection, called bounding circle collisions, is
available. With this mechanism, you simply calculate the distance between
the center of two sprites, and if that value is smaller than some threshold,
you consider it a collision. This approach has two advantages:

	 ✓	The collision distance is constant.The distance between image centers
will not change when images are rotated, even if the images change size.

	 ✓	The collision threshold can be varied. You can set any sensitivity you
want. Set a large collision radius for easy collisions and a smaller one
when you want collisions to be triggered only when the sprites are very
close to each other.

The simpleGame library Sprite object has a distanceTo() method,
which calculates the distance from one sprite to another. You can see an
example of this code in the distance.html example:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>

148 Part II: Basic Game Development

 <meta charset=”UTF-8”>
 <title>distance.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var game;
 var box;
 var critter;
 var output;

 function init(){
 game = new Scene();
 game.hideCursor();
 box = new Sprite(game, ”simpleBox.png”, 50,

50);
 critter = new Sprite(game, ”critter.gif”, 50,

50);
 output = document.getElementById(”output”);

 //give box fixed position
 box.setPosition(200, 150);
 box.setSpeed(0);
 critter.setPosition(100, 100);
 critter.setSpeed(0);

 //critter controlled by mouse
 critter.followMouse = function(){
 this.setX(document.mouseX);
 this.setY(document.mouseY);
 } // end followMouse

 game.start();
 } // end init

 function update(){
 game.clear();
 critter.followMouse();
 checkDistance();
 box.update();
 critter.update();
 } // end update;

 function checkDistance(){
 dist = box.distanceTo(critter);
 if (dist < 50){
 output.innerHTML = “Collision: “ + dist;
 } else {
 output.innerHTML = “No collision: “ +

dist;
 } // end if

149 Chapter 6: Creating Game Elements

 } // end checkDistance

 </script>
</head>
<body onload = “init()”>
 <div id = “output”>empty</div>
</body>
</html>

The distance-based collision method is very similar to the bounding-rectan-
gle version. Create a checkDistance() function that will act just like the
old checkCollisions(). Here are the steps for what happens in check-
Distance:

	 1.	 Find the distance between the two sprites.

		 Use the sprite’s distanceTo() method to determine the distance
between the two sprites.

	 2.	 If the distance is less than some threshold, count it as a collision.

		 Generally I use the width of the smaller sprite as a starting point for a
collision threshold, but you can adjust this to make collisions more or
less likely.

	 3.	 Report the collision status.

		 In this example, I simply print “collision” or “no collision,” but in a real
game, collisions are triggers for other actions: increasing the score,
decreasing the number of lives, changing the speed or position of the
collided elements, or whatever. (Hopefully, it involves explosions.)

I’m not showing a screen capture of the distance-based collision program
because to the user it looks exactly like the earlier collision routine. Please
run it in your own browser to see how these collision schemes compare.

Collisions are more complicated than I’m letting on
The two basic forms of collision described in
this book (bounding box and distance-based)
are adequate for most basic games, but colli-
sion detection gets far more complicated than
this. If the two objects have a very high rela-
tive speed, they might pass right through each
other without ever actually overlapping. Also,
neither scheme really takes into account the
actual shapes of the sprites, but approximates

the sprite shapes. There are more complex
collision-detection schemes that resolve these
issues (usually by creating more complex
shapes for comparison), but these schemes
often slow down the game, so they should not
be used until necessary. Stick with bounding-
rectangle and distance-based collision for now,
and you should be fine.

150 Part II: Basic Game Development

It’s All About Timing . . .
Often the passage of time will be an element in your games. Racing games
are all about speed, or you may have a time limit for performing some task.
The simpleGame library includes a very handy timer object that allows you
to manage time easily. The Timer object is created like any other JavaScript
object. It has three methods:

	 ✓	reset(): This function initializes the timer and starts the elapsed time
counter.

	 ✓	getCurrentTime(): This function returns the current system time at
the moment it’s called. (Note that the time is in a special integer format,
and it will not be recognizable by human readers.)

	 ✓	getElapsedTime(): Returns the number of seconds since the timer
was created or the last reset (whichever is more recent).

	 In JavaScript and most other languages, date and time information is generally
stored in a special integer format. Time is actually counted as a huge integer
showing the number of milliseconds since midnight January 1, 1970. Although
this may seem like a really complicated scheme, it’s actually perfect for your
use because what you really want to know is how much time has elapsed
between two events. If you want to actually get the current date and time in
a human-readable format, look up the JavaScript Date object. I actually used
this object to create the Timer object in the simpleGame library.

For an example of timing, look at timerDemo.html:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>timerDemo</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var timer;
 var output;
 var game;

 function init(){
 game = new Scene();
 output = document.getElementById(”output”);
 timer = new Timer();
 timer.reset();
 game.start();
 } // end init

151 Chapter 6: Creating Game Elements

 function update(){
 game.hide();
 currentTime = timer.getElapsedTime();
 output.innerHTML = currentTime;
 } // end update

 function reset(){
 timer.reset();
 } // end reset
 </script>
</head>

<body onload = “init()”>
 <div id=”output”>empty</div>
 <button onclick = “reset()”>
 reset timer
 </button>
</body>
</html>

This example (illustrated in Figure 6-5) demonstrates a simple timer. It dis-
plays the number of seconds the page has been running. The timer can be
reset with the (cleverly named) Reset Timer button.

	

Figure 6-5:
This page

has a simple
timer.

	

152 Part II: Basic Game Development

This program is relatively simple, but it illustrates some very powerful ideas.
Use this process to build your own time-sensing game:

	 1.	 Create a variable for the timer.

		 This should be getting familiar. All the interesting elements are objects,
and the timer is no exception. Create a variable called timer that will be
an object of type Timer.

	 2.	 Reset the timer.

		 Be sure the timer starts out at zero.

	 3.	 Get the elapsed time in every frame.

		 In the update() function, call the timer’s getElapsedTime() method
to find out how much time has passed and copy this value to the output
area.

	 4.	 Reset the timer when the user presses the button.

		 When the user presses the reset button, call the timer’s reset()
method to reset the elapsed time back to zero.

	 5.	 Hide the main scene.

		 This program uses the main loop from simpleGame, but it doesn’t
really need to display the scene. For this reason, the Scene object has
a hide() method. You can also display the scene later with its show()
method.

Chapter 7

Getting to a Game
In This Chapter
▶	Designing a 2D game
▶	Building a game in steps
▶	Creating and using a custom library
▶	Building an array of same-type objects

I
f you know how to boil and stir, you’ve got some of the mechanics of
cooking, but you’re still not a chef. It’s great to know how to build a sprite,

how to add sound effects and timers, and how to read the keyboard. But
you’re here to make a game. You’re here to find out how to design a game
and then to actually build and implement that game design. This chapter
walks you through the process of building a real game from beginning to end.

Building a Real Game
If you can build a sprite that moves under user control, you’re getting very
close to a real game, but you still need a little more. A game really needs
these elements:

	 ✓	Some sort of plot: The plot doesn’t have to be complicated (PAC-MAN),
but there has to be some kind of theme or setting.

	 ✓	Some kind of goal: The player must have a goal to achieve. Often a large
goal requires a number of smaller goals, but the player is always trying
to achieve something, whether it is capturing an enemy, getting to the
end of a level, or completing a race in first place.

	 ✓	Some kind of obstacle: To make the game interesting, something needs
to be in the player’s way. It can be things the player is trying not to hit,
things shooting at the player, or even simple things like time or gravity.

154 Part II: Basic Game Development

In addition to these game elements, you need to add a few more mechanical
concepts:

	 ✓	Collisions: The interesting part of any arcade game often happens when
things crash into each other. You need some mechanism to manage this
action.

	 ✓	Sound effects: Sound effects add tremendously to a game. They not only
add to the general atmosphere of the game, but also they often provide
important user feedback.

	 ✓	Text feedback: It can be nice to explain to the user exactly what’s going
on in the game. This can be useful for scorekeeping, displaying the
number of lives left, and so on.

	 ✓	A replay button: At some point, the game will end. You need a mecha-
nism to restart the level or move to a new one.

In this chapter, I take you through the process of adding all these features.
Along the way, you will build a working game.

Planning Your Game
The first part of game creation is planning. It’s pretty hard to program a game
in the best of circumstances, and it’s nearly impossible if you don’t know
exactly what you’re trying to accomplish.

For that reason, the first thing you need to do when you build a game is to
turn off the computer. Get out paper and pencil, and come up with a plan for
your game. The plan should be detailed enough that you know how you’re
going to code everything. Here’s what your diagram needs to include:

	 ✓	Setting and theme: What does the game look like? What is the overall
theme? What is the general style?

	 ✓	Environment: Are there any special environmental rules? For example,
is the player always moving forward in an endless scrolling world? Is
gravity a feature of the game (for example, do things fall)?

	 ✓	Avatar: What is the role of the player in the game? Does the player con-
trol a particular sprite, or is the player an omniscient presence (as in
most puzzle games)?

	 ✓	Player control: How does the player control things? Is it mouse-based?
Keyboard? Touch screen? Are there limitations to motion?

	 ✓	Goals: What is the player trying to do? Touch something? Avoid some-
thing? Gather things? Shoot something? Go somewhere?

155 Chapter 7: Getting to a Game

	 ✓	Obstacles: What is preventing the user from accomplishing this? Are
there things the player should avoid?

	 ✓	Artificial intelligence: If there are sprites on the screen that are not con-
trolled by the player, how do they behave? Do they move? How? What
happens when they leave the screen?

	 ✓	Collision management: What happens when things crash into each
other?

	 ✓	Scorekeeping: Will the game have a scorekeeping mechanism? This can
include points, but it can also incorporate a set number of lives or a time
limit.

	 ✓	Game end state: What causes the game to end? What will happen when
the game ends? How do you motivate the user to play again?

As the primary example for this chapter, I developed a game called Frog
Lunch. Figure 7-1 illustrates the main points of this game.

	

Figure 7-1:
The Frog

Lunch
planning
diagram.

	

156 Part II: Basic Game Development

Even this very simple game has a number of details. If you think about the
details in the design phase, programming the game becomes much easier to
accomplish. Here are the highlights of this game’s design:

	 ✓	The player is a hungry frog. I don’t know if there was a kissing princess
involved, but somehow, you’re a frog. Live with it.

	 ✓	Control the frog with the keyboard. The frog is controlled with the
arrow keys. Turn left and right to, well, turn left and right.

	 ✓	The forest is filled with flies. There are tasty flies running around,
acting like flies. You know what to do . . .

	 ✓	Gain points by eating flies. Run into a fly to eat it.

	 ✓	Eat the most flies in a set time to win. The main obstacle is time. After
a short time period, the game will end and you can no longer control the
frog.

The game is very simple, and that’s a good thing. At this stage, it already
requires a number of techniques you might not know, so I explain some of
these techniques as you go.

Programming On the Fly
Often I begin a game with the avatar, but in this case, I begin with the fly
because it’s one of the easiest objects in the game, and it illustrates some
really interesting new points. Figure 7-2 illustrates the fly on the screen.

	

Figure 7-2:
There is a
bug in this

program.
	

157 Chapter 7: Getting to a Game

Of course, the most interesting thing about the fly is how it moves. No self-
respecting fly would go in a straight, predictable pattern. Instead, it wanders
all around the screen, randomly turning a bit at every opportunity (looking
for coleslaw to land on). If you want to see this for yourself (and I know you
do), you need to view the program on my website: www.aharrisbooks.net.

The code for the fly follows the very standard framework for simpleGame
programs. It has a simple HTML page with some basic JavaScript code: an
init() and an update(). Here’s the code:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>fly.html</title>
 <script type=”text/javascript”
 src = “simpleGame.js”></script>

 <script type=”text/javascript”>
 var scene;
 var fly;
 var output;

 function Fly(){
 tFly = new Sprite(scene, “fly.png”, 20, 20);
 tFly.setSpeed(10);
 tFly.wriggle = function(){
 //change direction by some random amount
 newDir = (Math.random() * 90) - 45;
 this.changeAngleBy(newDir);
 } // end wriggle
 return tFly;
 } // end Fly

 function init(){
 scene = new Scene();
 scene.setBG(“green”);
 output = document.getElementById(“output”);
 //createCar();
 fly = new Fly();
 scene.start();
 } // end init

 function update(){
 scene.clear();
 fly.wriggle();
 fly.update();
 } // end update

 </script>

http://www.aharrisbooks.net/

158 Part II: Basic Game Development

</head>
<body onload = “init()”>
 <div id = “output”>output</div>
</body>
</html>

There seems to be a bug in this program
For the most part, this program is like the ones in Chapter 5, but there’s some-
thing new: A fly is moving around on the stage by itself. There are really two
changes. First, you build a fly object. Second, you figure out a way to make it
act like a fly, wriggling around on the screen in a somewhat random way.

This function creates a special version of the sprite called a fly. Refer to
Chapter 6 if you need a refresher on building custom objects, but here’s how
this one works:

	 1.	 Name the function the same as the object.

		 You make a function called Fly() to build a Fly object. It’s traditional
to capitalize object names, so that’s what you do here.

	 2.	 Build a temporary sprite.

		 Flies are sprites, so begin by making a sprite. This one has an appropri-
ately entomological picture. This temporary fly is called tFly. You’re
going to make a few more changes to it before releasing it to the wild.

	 3.	 Set the sprite’s speed.

		 Use the standard setSpeed() method to change the fly’s speed.

	 4.	 Add a new method to the fly.

		 It turns out you can add new properties and behaviors to an object quite
easily. Just create a property called wriggle and assign a function to it.

	 5.	 Change the fly’s direction.

		 To get the seemingly random pattern of a fly, change the fly’s direction
by a random value between 45 and -45 degrees. (Pick a random number
between 0 and 90; then subtract 45.) If you change the fly’s direction
according to this pattern, you’ll get surprisingly convincing fly behavior.

	 6.	 Use this.changeAngleBy() to change the fly’s direction.

		 Within the context of defining a method (that is, a function that belongs
to an object), use the keyword this to refer to the currently defined
object.

159 Chapter 7: Getting to a Game

	 7.	 Return the newly created temporary fly.

		 The point of this function is to manufacture a new Fly object based on
the Sprite pattern. When the programmer runs this function, she’ll get
a fly — and who doesn’t love bugs?

Fly, fly! fly!
The init() function of the main program builds all the standard elements,
but this time, rather than making a stock Sprite, you make a Fly() object.

 function init(){
 scene = new Scene();
 scene.setBG(“green”);
 output = document.getElementById(“output”);
 //createCar();
 fly = new Fly();
 scene.start();
 } // end init

Now that you’ve created the fly, you can manipulate it in the update() func-
tion. Take a look at how that works:

 function update(){
 scene.clear();
 fly.wriggle();
 fly.update();
 } // end update

This is a simple function, but it outlines something profound. Your fly has
an update() method because the fly is also a sprite, and sprites have
update() methods. It also has a wriggle() method. If you want the fly to
wriggle every frame, you need to call the wriggle() method from the main
update() function.

Clearly, We Need an Amphibian
When you built the fly object, you not only described how a fly will work, you
made it possible to build a lot of flies easily, just like in real life. Skip ahead to
the section “Working with Multiple Flies” to see how that works. Obviously,
before you start adding flies indiscriminately, you’re going to need some pest
control.

The frog.html page (demonstrated in Figure 7-3) shows a page much like
the fly, but this time with a frog object.

160 Part II: Basic Game Development

	

Figure 7-3:
This pro-
gram has

a frog. And
leaves.

	

The code is similar to fly.html, but of course, it has a lot more frogs and
fewer flies.

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>Frog</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var scene;
 var frog;
 var leaves;

 function init(){
 scene = new Scene();
 scene.setBG(”green”);
 frog = new Frog();
 leaves = new Sprite(scene, “leaves.png”, 640,

480);
 leaves.setSpeed(0);
 scene.start();
 }

 function update(){
 scene.clear();
 leaves.update();
 frog.checkKeys();
 frog.update();
 }

161 Chapter 7: Getting to a Game

 function Frog(){
 tFrog = new Sprite(scene, “frog.png”, 50, 50);
 tFrog.maxSpeed = 10;
 tFrog.minSpeed = -3;
 tFrog.setSpeed(0);
 tFrog.setAngle(0);
 tFrog.checkKeys = function(){
 if (keysDown[K_LEFT]){
 this.changeAngleBy(-5);
 } // end if
 if (keysDown[K_RIGHT]){
 this.changeAngleBy(5);
 } // end if
 if (keysDown[K_UP]){
 this.changeSpeedBy(1);
 if (this.speed > this.maxSpeed){
 this.setSpeed(this.maxSpeed);
 } // end if
 } // end if
 if (keysDown[K_DOWN]){
 this.changeSpeedBy(-1);
 if (this.speed < this.minSpeed){
 this.setSpeed(this.minSpeed);
 } // end if
 } // end if
 } // end checkKeys
 return tFrog;
 } // end Frog

 </script>
</head>
<body onload = “init()”>

</body>
</html>

Making a frog
The code for making a frog is similar to the fly code. It basically outlines the
creation of a frog. The frog code is a bit different than the fly because it’s
meant to be controlled by the user. Just follow these steps:

	 1.	 Create a temporary sprite.

		 As with the fly, you begin with a temporary Sprite object and hang
the various new features on it to make the sprite into a frog. Begin with
a frog image, pointing to the right. (See Chapter 11 for information on
modifying images, if necessary.)

162 Part II: Basic Game Development

	 2.	 Add some properties.

		 The frog needs a couple of properties to keep the speed under control.
maxSpeed is the upper speed limit, and minSpeed is the lower speed
limit. You allow a negative speed, meaning the frog can back up, but
slowly.

	 3.	 Add a checkKeys() method.

		 The frog is user-controlled, so it will need to respond to key presses.
You add a checkKeys() method for this purpose.

	 4.	 Turn the frog on left or right key press.

		 If the user presses the left or right arrow, use the built-in
changeAngleBy() method to change the direction the frog is
pointing. (This will also affect the direction of travel.)

	 5.	 Change the frog’s speed on up or down key press.

		 If the user presses the up or down arrow, use the built-in
changeSpeedBy() method to change the speed at which
the frog moves.

As you write the update() function for the game, you need to tell the pro-
gram when to invoke the frog’s checkKeys() method.

Adding a background
The other obvious new feature of the frog program is the addition of a back-
ground. There are a number of ways to make a background image, but the
easiest is to simply add a new large sprite. You simply make a suitable image
and create a sprite to manage that image.

	 1.	 Create a variable to hold the background.

		 Because there’s a leafy forest floor as the backdrop for the game, you
create a variable called leaves. Like all the other sprites, the variable is
created at the beginning of the code:
var leaves;

	 2.	 Instantiate the background sprite.

		 The leaves sprite is pretty simple. It doesn’t really need any new data
or behavior, so you can use a stock Sprite object. Create the sprite in
the init() function:
leaves = new Sprite(scene, “leaves.png”, 640, 480);

163 Chapter 7: Getting to a Game

	 3.	 This is a non-moving background.

		 It’s possible to create a scrolling background, but that takes a little more
effort. Set the leaves’ speed to zero:
leaves.setSpeed(0);

	 4.	 Update the background.

		 In the update() function, be sure to call the leaves.update()
method. Even though the leaves don’t move, you need to update to
ensure the leaves are drawn:
leaves.update();

Managing updates
There are now two sprites on the screen, and the interaction of these objects
is largely controlled by the update() function. Review that function:

 function update(){
 scene.clear();
 leaves.update();
 frog.checkKeys();
 frog.update();
 }

The update() function is the key to any game. This function describes
exactly what will happen on every frame of the game. In general, you use this
function to call the various methods of the sprites you’ve created. The order
in which you do things matters. Remember that the update() method of
each object draws that object on the screen. In general, you want to check
events on an object before you run its update() method, so anything that
happened in the frame is reflected by the screen.

Also, note that objects are drawn in the order of the update() method calls,
so a background image (leaves in this case) should be drawn before any
objects meant to be in the foreground. If you draw the large background last,
it will obscure the main game elements.

164 Part II: Basic Game Development

Combining the Frog and the Fly
The fly is wonderful, and so is the frog. It’s great to test each creature in iso-
lation as shown in the earlier examples (that way you’re focusing on one new
big idea at a time), but these two objects are really meant to be together. The
next version of the program puts the frog and the fly in a separate file and
creates a new program to put them together.

Building a library of reusable objects
I’ll be using the frog and the fly many more times in this chapter, and they’re
going to stay about the same. So, it makes sense to put them in a library for
easy reuse. That’s exactly what you’re going to do. Take a look at frogLib.js:

//frogLib.js
//Objects for frog game

function Fly(){
 tFly = new Sprite(scene, “fly.png”, 20, 20);
 tFly.setSpeed(10);
 tFly.wriggle = function(){
 //change direction by some random amount
 newDir = (Math.random() * 90) - 45;
 this.changeAngleBy(newDir);
 } // end wriggle
 return tFly;
} // end Fly

function Frog(){
 tFrog = new Sprite(scene, “frog.png”, 50, 50);
 tFrog.maxSpeed = 10;
 tFrog.minSpeed = -3;
 tFrog.setSpeed(0);
 tFrog.setAngle(0);
 tFrog.checkKeys = function(){
 if (keysDown[K_LEFT]){
 this.changeAngleBy(-5);
 } // end if
 if (keysDown[K_RIGHT]){
 this.changeAngleBy(5);
 } // end if
 if (keysDown[K_UP]){
 this.changeSpeedBy(1);
 if (this.speed > this.maxSpeed){
 this.setSpeed(this.maxSpeed);
 } // end if
 } // end if

165 Chapter 7: Getting to a Game

 if (keysDown[K_DOWN]){
 this.changeSpeedBy(-1);
 if (this.speed < this.minSpeed){
 this.setSpeed(this.minSpeed);
 } // end if
 } // end if
 } // end checkKeys
 return tFrog;
} // end setupFrog

This is an interesting document. It contains nothing but the two class defini-
tions. It is used because several other programs will use these two classes.

	 If you look at frogLib.js on the website, you see that the Fly definition is a
bit different than described in this section. That’s because you’ll be adding a
new feature to the fly as a part of the collision-detection feature. For now, just
look at the classes as they’re currently defined.

Using a library is simplicity itself. Here’s the frogFly.html file that puts
these two elements together in a single game:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>frogFly.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”>
 </script>
 <script type = “text/javascript”
 src = “frogLib.js”></script>
 <script type=”text/javascript”>
 var scene;
 var frog;
 var fly;
 var leaves;

 function init(){
 scene = new Scene();
 scene.setBG(”green”);
 frog = new Frog();
 fly = new Fly();
 leaves = new Sprite(scene, ”leaves.png”, 640,

480);
 leaves.setSpeed(0);

 scene.start();
 } // end init

 function update(){

166 Part II: Basic Game Development

 scene.clear();
 frog.checkKeys();
 fly.wriggle();
 leaves.update();
 frog.update();
 fly.update();
 } // end update();

 </script>
</head>
<body onload = ”init()”>

</body>
</html>

This program doesn’t introduce much that’s new. It simply implements the
elements defined in the library, according to these steps:

	 1.	 Import the froglib.js library.

		 The frogLib file created in the last section is simply a JavaScript file.
Import it in the same way you import the simpleGame.js file, with a
separate <script> tag.

	 2.	 Create the sprites.

		 The leaves sprite is just an ordinary sprite. Build the frog and fly just
like you did before, even though they’re defined in another file. (If the
frog or fly doesn’t get created, make sure you imported the library
correctly.)

	 3.	 Manage change.

		 The update() function takes responsibility for control of the game.
This is where you manage all of the various sprite behaviors: Tell the
frog to look for keystrokes (with the frog.checkKeys() method), and
tell the fly to wriggle (with the fly.wriggle() method).

	 4.	 Draw the sprites.

		 Once you’ve handled everything that caused the sprites to change, draw
the sprites on the screen. Draw each sprite by invoking its update()
method. Sprites are drawn in order, so anything you want to have in
the background should be drawn before items that will display in front.
(For example, the frog will appear on top of the background, so the frog
should be drawn after the background on each screen update.)

You can see the frog and the fly cavorting on the screen together in Figure 7-4,
but really you should check out the website for the real thing.

167 Chapter 7: Getting to a Game

	

Figure 7-4:
Now the

frog and the
fly can play

together.
	

When Sprites Collide
The basic functionality is in place, but the interesting part of the game hap-
pens when the frog collides with the fly. It’s relatively easy to add collision-
detection to the game because the sprite object has a collidesWith()
method. Of course, you need something to happen when two things collide.

For this game, you want two things to happen when the frog and the fly
collide:

	 ✓	You want to play a satisfied “ribbit” sound.

		 Nothing is tastier than a crunchy fly, so you should play some sort of
sound to indicate the frog has touched the fly. This is useful for player
feedback, so the player knows something happened.

	 ✓	You want to move the fly to a new place.

		 Normally after a collision, you either destroy one of the objects or move
it to a new spot. In this case, you move the fly to a new, random position
on the screen.

The collision.html page illustrates these new features. (Note that I’m not
providing a screen shot because it looks just like frogFly.html. To see, and
hear, the new behavior, you need to run it from my website or on your own
machine.)

168 Part II: Basic Game Development

Collisions apply to the frog and the fly
It’s time to add collisions and sound effects to the frog and fly game. For the
most part, it’s pretty straightforward. Here’s the code:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>collision.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”>
 </script>
 <script type = ”text/javascript”
 src = ”frogLib.js”></script>
 <script type=”text/javascript”>
 var scene;
 var frog;
 var fly;
 var leaves;
 var ribbitMP3;
 var ribbitOGG;

 function init(){
 scene = new Scene();
 scene.setBG(”green”);
 frog = new Frog();
 fly = new Fly();
 leaves = new Sprite(scene, ”leaves.png”, 640,

480);
 leaves.setSpeed(0);
 ribbitMP3 = new Sound(“ribbit.mp3”);
 ribbitOGG = new Sound(“ribbit.ogg”);

 scene.start();
 } // end init

 function update(){
 scene.clear();
 frog.checkKeys();
 fly.wriggle();
 checkCollisions();
 leaves.update();
 frog.update();
 fly.update();
 } // end update();

 function checkCollisions(){
 if (frog.collidesWith(fly)){
 ribbitMP3.play();
 ribbitOGG.play();

169 Chapter 7: Getting to a Game

 fly.reset();
 } // end if
 } // end checkCollisions

 </script>

</head>
<body onload = “init()”>
</body>
</html>

For the most part, it’s just a matter of incorporating sound effects and
collision-detection to the frog and fly game. Look back over the code, and
you’ll see that the new elements are highlighted. Here are the steps:

	 1.	 Add a sound effect.

		 You create a ribbit sound and save it in both Ogg and MP3 formats. You
then create a Sound object for each format. Refer to Chapter 6 if you need
a refresher on building Sound objects.

	 2.	 Make a checkCollisions() function.

		 The checkCollisions() function will (you’re way ahead of me here)
check for collisions.

	 3.	 Play the ribbit sound when the frog touches the fly.

		 In the collision code, play both sound effects. (Remember, you created
two versions to have maximum browser coverage.)

	 4.	 Reset the fly on a collision.

		 Look to the next section for an explanation of the fly.reset()
method.

Resetting the fly — on the fly
When two objects collide, it often means something important. You’ll often
want to change the score, play a sound, reduce the number of lives, or some-
thing. However, if those objects are moving slowly, they could overlap for
multiple turns. Generally, game programmers avoid this by applying a simple
rule: When two things collide, move or kill one of them. For this particular appli-
cation, the fly gets eaten by the frog, and a new fly appears. Of course, that’s
just an illusion. The same fly gets recycled and simply appears in a new space.

You can see the fly.reset() method call in the update() function, but
now you need to add that method to the fly’s definition in frogLib.js. Take
a look at the final version of the Fly class:

170 Part II: Basic Game Development

function Fly(){
 tFly = new Sprite(scene, “fly.png”, 20, 20);
 tFly.setSpeed(10);
 tFly.wriggle = function(){
 //change direction by some random amount
 newDir = (Math.random() * 90) - 45;
 this.changeAngleBy(newDir);
 } // end wriggle

 tFly.reset = function(){
 //set new random position
 newX = Math.random() * this.cWidth;
 newY = Math.random() * this.cHeight;
 this.setPosition(newX, newY);
 } // end reset

 tFly.reset();

 return tFly;
} // end Fly

The reset() method applies a new random position to the fly. Here’s how it
works:

	 1.	 Generate a random number between 0 and 1.

		 The Math.random() function built into JavaScript does this.

	 2.	 Multiply that value by the canvas width.

		 The canvas width is stored in each sprite’s cWidth property.

	 3.	 Set the sprite’s x value to the resulting random number.

		 This generates a random value between 0 and the width of the screen.

	 4.	 Repeat for the y value.

		 Calculate a new Y position in the same way, but this time multiply by the
sprite’s cHeight property.

	 5.	 Reset the temporary fly before returning it.

		 If you call the fly’s reset() method before returning it, you guarantee
that the fly begins in a random position.

Working with Multiple Flies
The game is coming along nicely, but it would be nice to have more than one
fly. That will make the game a bit more exciting.

What good are bugs if you can’t be infested with them? Figure 7-5 shows the
latest version of the game, with three flies at a time.

171 Chapter 7: Getting to a Game

	

Figure 7-5:
Now there

are three
flies zipping

around!
	

Because the game was created with object-oriented principles, it’s quite easy
to add multiple flies. Here’s the code (with the new bits highlighted, as usual).

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>multiFlies.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”>
 </script>
 <script type = ”text/javascript”
 src = ”frogLib.js”></script>
 <script type=”text/javascript”>
 var scene;
 var frog;
 var flies;
 var leaves;
 var scoreBoard;
 var hits;
 var ribbitMP3;
 var ribbitOGG;
 //var fly;
 var NUMFLIES = 3;

 function init(){
 scoreBoard = document.

getElementById(“scoreBoard”);
 hits = 0;
 scene = new Scene();
 scene.setBG(“green”);

172 Part II: Basic Game Development

 frog = new Frog();
 setupFlies();
 leaves = new Sprite(scene, “leaves.png”, 640,

480);
 leaves.setSpeed(0);
 ribbitMP3 = new Sound(“ribbit.mp3”);
 ribbitOGG = new Sound(“ribbit.ogg”);
 scene.start();
 } // end init

 function update(){
 scene.clear();
 frog.checkKeys();
 leaves.update();
 for (i = 0; i < NUMFLIES; i++){
 flies[i].wriggle();
 checkCollisions(i);
 flies[i].update();
 } // end for loop
 frog.update();
 } // end update();

 function setupFlies(){
 flies = new Array(NUMFLIES);
 for (i = 0; i < NUMFLIES; i++){
 flies[i] = new Fly();
 } // end for
 } // end setupFlies

 function checkCollisions(flyNum){
 if (frog.collidesWith(flies[flyNum])){
 flies[flyNum].reset();
 ribbitMP3.play();
 ribbitOGG.play();
 updateScore();
 } // end if
 } // end checkCollisions

 function updateScore(){
 //update the scoreboard
 hits += 1;
 scoreBoard.innerHTML = “Hits: “ + hits
 } // end updateScore

 </script>

</head>
<body onload = “init()”>
 <div id = “scoreBoard”>Hits: 0</div>
</body>
</html>

173 Chapter 7: Getting to a Game

Essentially, you turn a single fly into an array of flies. Every time you would
have done something with a single fly, you iterate through the array of flies.
Here are the highlights:

	 1.	 Change the fly variable so it’s now called flies.

		 Rather than a single fly variable, you’ll be working with an array of
flies.

	 2.	 Create a NUMFLIES constant.

		 Store the number of flies in a special variable called NUMFLIES. This
tracks the number of flies in the game. You can easily change this value
to make the game harder or easier. Note that the value of NUMFLIES
isn’t expected to change during a single run of the game, so you put it all
in uppercase to indicate it’s a constant.

	 3.	 Add a hits variable and a scoreboard div.

		 This variable will keep track of the number of fly-frog collisions. There’s
a corresponding div, which will display the score.

	 4.	 Set up the flies.

		 The setupFlies() function runs through a loop NUMFLIES times. Each
time through the loop, it creates a fly and appends it to the numFlies
array:
 function setupFlies(){
 flies = new Array(NUMFLIES);
 for (i = 0; i < NUMFLIES; i++){
 flies[i] = new Fly();
 } // end for
 } // end setupFlies

	 5.	 Modify the update() function.

		 Now that you have multiple flies, you need to make sure you update
each element of the flies array. Again, use a for loop to go through
the array. For each fly in the array, call its wriggle() method, check
for collisions with the frog, and update:
 function update(){
 scene.clear();
 frog.checkKeys();
 leaves.update();
 for (i = 0; i < NUMFLIES; i++){
 flies[i].wriggle();
 checkCollisions(i);
 flies[i].update();
 } // end for loop
 frog.update();
 } // end update();

174 Part II: Basic Game Development

	 6.	 Modify the checkCollisions() function.

		 You need to make some minor changes to checkCollisions so it can
check for a collision between the frog and the current fly. Simply pass a
fly number to the function and use that index to make the collision check:
 function checkCollisions(flyNum){
 if (frog.collidesWith(flies[flyNum])){
 flies[flyNum].reset();
 ribbit.play();
 updateScore();
 } // end if
 } // end checkCollisions

	 7.	 Update the scoreboard.

		 The last step is to update the scoreboard. All this requires is to incre-
ment the number of hits and then change the scoreboard div to
reflect the new number of hits:
 function updateScore(){
 //update the scoreboard
 hits += 1;
 scoreBoard.innerHTML = “Hits: “ + hits
 } // end updateScore

Adding the Final Touches
The game is nearly complete, but it needs a couple more features. There’s
no real sense of urgency because the game just goes on forever. You need
some sort of ending state. The simplest to implement is a basic timer. After a
predetermined length of time (ten seconds in the test version, but longer in a
production version of the game), the game will stop. Of course, you also need
a way to restart the game. Both of these are relatively easy to add.

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>timing.html</title>
 <style type=”text/css”>
 #reset {
 position: absolute;
 left: 150px;
 top: 300px;
 }
 </style>
 <script type=”text/javascript”
 src = “simpleGame.js”>

175 Chapter 7: Getting to a Game

 </script>
 <script type = “text/javascript”
 src = “frogLib.js”></script>
 <script type=”text/javascript”>
 var scene;
 var frog;
 var flies;
 var leaves;
 var ribbitMP3;
 var ribbitOGG;
 var scoreBoard;
 var hits;
 var NUMFLIES = 3;
 var MAXTIME = 10;
 var timer;
 var time;

 function init(){
 scoreBoard = document.

getElementById(”scoreBoard”);
 hits = 0;
 timer = new Timer();
 scene = new Scene();
 scene.setBG(“green”);
 frog = new Frog();
 leaves = new Sprite(scene, “leaves.png”, 640,

480);
 leaves.setSpeed(0);
 ribbitMP3 = new Sound(“ribbit.mp3”);
 ribbitOGG = new Sound(“ribbit.ogg”);

 setupFlies();
 scene.start();
 } // end init

 function update(){
 scene.clear();
 checkTime();
 frog.checkKeys();
 leaves.update();
 for (i = 0; i < NUMFLIES; i++){
 flies[i].wriggle();
 checkCollisions(i);
 flies[i].update();
 } // end for loop
 frog.update();
 } // end update();

 function setupFlies(){
 flies = new Array(NUMFLIES);
 for (i = 0; i < NUMFLIES; i++){

176 Part II: Basic Game Development

 flies[i] = new Fly();
 } // end for
 } // end setupFlies

 function checkCollisions(flyNum){
 if (frog.collidesWith(flies[flyNum])){
 flies[flyNum].reset();
 ribbitMP3.play();
 ribbitOGG.play();
 hits += 1;
 updateScore();
 } // end if
 } // end checkCollisions

 function updateScore(){
 //update the scoreboard
 scoreBoard.innerHTML = “Hits: “ + hits + “.

Time: “ + time;
 } // end updateScore

 function checkTime(){
 time = timer.getElapsedTime();
 if (time > MAXTIME){
 scene.stop();
 } // end if
 updateScore();

 } // end checkTime

 function restart(){
 document.location.href = “”;
 } // end restart

 </script>

</head>
<body onload = “init()”>
 <div id = “scoreBoard”>Hits: 0</div>
 <div id = “reset”>
 <button type = “button”
 onclick = “restart()”>
 Play again
 </button>
 </div>
</body>

</html>

Figure 7-6 illustrates the final version of the program with the timer and the
Play Again button.

177 Chapter 7: Getting to a Game

	

Figure 7-6:
Now the
game is
ready to

play.
	

Adding the timer
The timer is easy to add. Refer to Chapter 6 if you need a refresher on
how timers work in the simpleGame engine. This timer will actually do
something, though. When the timer reaches a certain limit (ten seconds at
first) the game will automatically end.

Here’s the process:

	 1.	 Create a timer variable.

		 Use a variable to hold the timer object.

	 2.	 Build a MAXTIME constant to determine the game time.

		 Constants make your code easier to read and modify. The MAXTIME con-
stant indicates the length of the game in seconds.

	 3.	 Initialize the timer.

		 In the init() function, create your timer.

	 4.	 Check the time on every frame.

		 In the update() method, call the checkTime() method every frame.

	 5.	 In checkTime(), get the elapsed time.

		 Use the timer’s getElapsedTime() method to see how much time has
passed since the game began.

178 Part II: Basic Game Development

	 6.	 If the time has expired, stop the main loop.

		 The Scene object has a stop() method. Invoke this method to stop all
gameplay. The game screen and objects will still be visible, but the event
loop will no longer happen.

Resetting the game
Of course, if the game can stop, you need a way to restart it. The easiest way
is to use a dirty trick. Because the game is in a web page, all you have to do is
refresh the web page in the browser, and the game will restart. You can cause
the browser to refresh in JavaScript by setting the document.location.
href property to the value “”. This will effectively reload the current page
in the browser, restarting the game in the process. It’s not hard to implement
this feature.

	 1.	 Add a button to your page.

		 Use an ordinary HTML button to trigger the reset. If you want, you can
position the button with CSS to appear exactly where you want it to be.
(Use position: absolute along with the left and top attributes to
set the position of your button.)

	 2.	 Tell the button to call the restart() function.

		 Every button has an onclick attribute. Use this to determine a
JavaScript function to run when the button is clicked. In this case, you
call the restart() function.

	 3.	 Build a restart() function.

		 Of course, if you’re going to call a restart() function, you need to
create it.

	 4.	 Reload the current document.

		 The easiest way to restart a JavaScript program is to reload the current
page in the browser. This will not only reload the HTML code but also
the JavaScript, starting all the code over from the beginning.

	 5.	 Set document.location.href to nothing.

		 If you set the document.location.href attribute to the empty string
(“”) you will in effect reload the current page. This is the easiest way to
restart the game.

Part III
Diving Deeper

In this part . . .

T
his part takes you into more advanced ideas in game
programming. Once the basics are out of the way,

you’ll want to know how to make more interesting motion
and how to take advantage of mobile devices.

Chapter 8 is all about motion and animation. It explains
how useful basic physics concepts can be and uses a
simple physics model to generate interesting behavior. It
explains how to move a spacecraft, how to add drag and
drifting behavior to vehicles, how to manage jumping and
falling, how to create realistic orbital mechanics, how to
fire bullets and other projectiles, and how to build a multi-
image animation from a sprite sheet.

Chapter 9 demonstrates the mobile features of the
simpleGame library. Use this chapter to convert your
games to phone and tablet wonders. You find out how to
adjust the size and position of your game scene for various
mobile devices. You create full-screen games with custom
icons (and the ability to be run off-line). You add buttons
for input, and you learn how to use the touch screen to
create a virtual joystick. Finally, you explore how to use
your mobile device’s accelerometer to read tilt input.

Chapter 10 is the documentation for the simpleGame
library. Use this chapter to see all the objects provided by
the library and every feature presented by each object.

Chapter 8

Motion and Animation
In This Chapter
▶	Understanding the basic physics principles used in gaming
▶	Adding a force vector to your sprites
▶	Using a force vector for space simulation
▶	Adding drag and skidding behavior
▶	Working with gravity
▶	Building multi-image animations

S
prites move around on the screen. That’s the central part of most
games. But if you’ve looked at Chapters 6 and 7, you’ve seen that the

sprite motion was somewhat simplistic in those chapters. Now you find out
how to add more zip to your sprites. You make sprites accelerate smoothly,
slow down with drag, skid around corners, and fall off cliffs.

All of these fun effects are made possible by understanding a little about how
things move in the real world. In school, they called that physics class. Don’t
worry, though. This will be the most fun you’ve ever had with physics. We
make missiles.

Physics — Even More Fun
Than You Remember

In prior chapters, I explain how to build a game, how sprites and scenes
work together, and how to use sprites to make all your game elements. The
simpleGame.js library supports a nice form of motion using speed and
direction, but often you will want more direct control of motion. When you
understand a little more about how objects move in the real world, you
will have a head start on making more interesting motion in your games.
Understanding how real objects move will give you access to realistic accel-
eration, skidding, space-based motion, and gravity effects. These can add a
great deal of interest to your games.

182 Part III: Diving Deeper

Newton without all the figs
Sir Isaac Newton would have been a terrific game programmer. He came up
with a number of observations about how things move. These observations
have become immortalized as Newton’s Laws of Motion. Newton’s laws do a
pretty good job of describing how things move, and if you understand them,
you can create a reasonable approximation of real-world motion. Of course,
being an eighteenth-century scholar, Newton was a bit stuffy. I present my
own version of Newton’s laws of motion:

	 ✓	If it’s moving, it’s moving. If it ain’t, it ain’t.

		 A more official version of Newton’s first law goes like this: “An object in
motion stays in motion, and an object at rest stays at rest.” If an object
is not moving, it won’t start until some kind of force causes it to move.
If it’s currently moving, it will stay moving unless some kind of force
stops it. If a ball is rolling, it will continue rolling, but (at least on earth)
it will eventually stop because it will encounter wind resistance and roll-
ing resistance. In a game, we’re constantly making things start and stop
moving, but so far it’s been done in an unrealistic manner. Newton’s first
law explains that you need force to get motion.

	 ✓	If you want it to go farther, kick it harder.

		 My version has a certain style, but Newton expressed this idea in a math
formula (f = ma). What it really means is that there is a simple math-
ematical relationship between the mass (m) of an object, the force (f)
applied to that object, and the acceleration (a) of the object. If you know
any two variables, you can do a little algebraic magic to find the third.
This second law tells how much force you need to get the motion you
want (or how much motion you’ll get with a given amount of force).

	 ✓	When you throw a ball, the ball throws you.

		 Newton’s third law is really useful for engineers because it explains how
to apply a force. His original version goes something like this: “For every
action, there’s an equal and opposite reaction.” Imagine you’re in an art
museum standing on a skateboard and holding a bowling ball. (I don’t
know how you got into this situation. Just go with me here.) If you throw
the bowling ball from the front of the skateboard, a number of interest-
ing things will happen. The ball will move forward, but you and the
skateboard will move backward. Mayhem will ensue until the big guys
with no sense of humor make you leave the museum. Newton predicted
that applying a force in one direction automatically applies a force in the
opposite direction. Presumably he did not destroy any art galleries in
the process. This is useful to game programmers because it helps us see
the relationship between applying a force and seeing the results.

183 Chapter 8: Motion and Animation

Phuzzy physics
Don’t panic. I’m not going to make you start doing all kinds of calculations.
The main thing to get here is how physics relates to the gaming world. In the
simpleGame library, I’ve provided a simple kind of motion that’s really easy
to understand. If you’ve gone through some of the earlier chapters, you’ve
already used this basic mechanism. Every object can have a position, a speed,
and a direction. This is easy to work with, but it’s a little simplistic. A lot of
motion doesn’t work like that: Cars skid sideways, gravity pulls helicopters
downward, and spacecraft often travel backward. You don’t have to get all the
math exactly right, but you need to understand the big ideas.

In a game, you can set an object’s position to whatever you want. It’s perfectly
reasonable to set an object’s position directly, and the setPosition()
method does exactly that. However, it isn’t satisfying.

In the real world, you can never actually set the position of anything. Instead,
the object has a position, which is modified by a motion vector. The motion
vector is the combination of speed and direction that determines how an
object is currently moving. In the simpleGame library, you can also manage
the motion vector. The setSpeed() and setAngle() methods directly
set the speed and angle.

But this is also unrealistic. In the real world, you can’t directly change the
motion, either. Instead, you have to apply a force vector. A force vector influ-
ences the motion vector, which in turn influences the position. To get more
realistic motion, you don’t directly set position or motion; instead, you use
force vectors to indirectly change the motion, which will change the position.

All of the interesting motion techniques in this chapter use this technique.
Rather than changing the speed and direction directly, they apply a force vector
to the sprite, which changes the sprite’s motion. It’s a really powerful idea.

The Sprite object has a function called addVector(degrees, speed).

This function adds a force vector to the current object in the specified direc-
tion and speed. The addVector() function is the secret to all the interesting
motion effects. It expects an angle in degrees and a force in pixels per frame
as parameters.

Lost in Space
Take a look at space.html. This simple game (shown in Figure 8-1) uti-
lizes the control scheme made famous in the classic games Asteroids and
Spacewar! (Though Asteroids is better-known, Spacewar! is by far the earlier
and more influential game.)

184 Part III: Diving Deeper

	

Figure 8-1:
The space-
ship moves

following
Newton’s

laws.
	

Like all the examples in this chapter, the motion of the objects is the interest-
ing thing, so a static screen shot is simply not adequate. You’ll need to see the
example on my website (www.aharrisbooks.net) to get the full experience.

Becoming a space cadet
The ship is controlled by the arrow keys, but Newton’s effect is easier to see
in space than on the ground (no pesky drag forces to get in the way). The left-
and right-arrow keys rotate the ship, but they do not affect the ship’s motion.
The up arrow fires a rocket, which adds a force vector in the direction the
ship is currently facing.

Here’s the code:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>space</title>
 <script type=”text/javascript”
 src = “simpleGame.js”></script>
 <script type=”text/javascript”>

http://www.aharrisbooks.net/

185 Chapter 8: Motion and Animation

 var ship;
 var game;

 function Ship(){
 tShip = new Sprite(game, “ship.png”, 25, 25);
 tShip.setSpeed(3);
 tShip.checkKeys = function(){
 if (keysDown[K_LEFT]){
 this.changeImgAngleBy(-5);
 }
 if (keysDown[K_RIGHT]){
 this.changeImgAngleBy(5);
 }
 if (keysDown[K_UP]){
 this.addVector(this.getImgAngle(), .1);
 }
 } // end function
 return tShip;
 } // object definition

 function init(){
 game = new Scene();
 ship = new Ship();
 game.setBG(“black”);

 game.start();
 } // end init

 function update(){
 game.clear();
 ship.checkKeys();
 ship.update();
 } // end update

 </script>
</head>
<body onload = “init()”>

</body>
</html>

Building the space simulation
This example is similar to motion examples described in Chapters 6 and 7.
Here’s the rundown:

	 1.	 Begin the example in the normal way.

		 Like most simpleGame demos, begin with a sprite and a scene. Because
the ship will have a custom method, you make it a unique object. Check
Chapter 6 if you need a refresher on how to build a custom object.

186 Part III: Diving Deeper

	 2.	 Give the ship a checkKeys() method.

		 The checkKeys() method looks for key presses and changes the ship’s
behavior accordingly.

	 3.	 Change the image angle.

		 A sprite actually has two distinct angles. It can have an angle that it’s
pointing (called the imgAngle in simpleGame) and the angle it’s moving
(called the moveAngle). When you change the angle (as you do in many
examples throughout the book), you’re changing both the movement
and the image angles on the assumption that the object will simply
travel in the direction it’s facing. For simple examples this is fine, but
many kinds of motion require decoupling the image and motion angles.
The changeImgAngleBy() method allows you to change the direction
the image is pointing without changing the motion angle. (There is a
changeMotionAngle() method, too, but it isn’t used very often.)

	 4.	 Add a force vector to simulate thrust.

		 When the user presses the up arrow, the ship fires its main rockets. This
adds a small force vector in the direction the ship is currently facing.
Use the getImgAngle() method to determine the direction the ship is
currently facing, and use this value to specify where the force should be
added. Because this code is happening in the animation loop and is ampli-
fied as the arrow key is held down, only a very small force is needed.

Don’t Be a Drag — Adding Drag Effects
The vector addition principle can be useful in other ways. For one, it can
lead to more accurate land-vehicle behavior. Imagine my car is stuck in a bad
neighborhood in the middle of the night (again). I can’t simply change the
position of the car directly. I can’t even change its motion. What I have to do
instead is add a force. When I add force (by pushing the car while murmuring
affectionately to this unreliable piece of transportation), I slowly add to the
motion vector. Eventually, the car starts moving. If I stop applying force, it will
eventually stop as wind resistance and rolling resistance slow the car down.

Drag racing
The drag.html example illustrated in Figure 8-2 shows a realistic car that
accelerates slowly and slows to a stop as the accelerator (in this case, the up
arrow) is released.

As before, you’ll really need to see the program in action to appreciate its
behavior.

187 Chapter 8: Motion and Animation

	

Figure 8-2:
This car

has smooth
acceleration

and coasts
to a stop.

	

Again, the code is probably familiar from Chapters 6 and 7:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>Drag</title>
 <script type = ”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var game;
 var boat;

 function Car(){
 tCar = new Sprite(game, ”car.png”, 100, 50);

 tCar.checkKeys = function(){
 console.log(this.speed);
 if (keysDown[K_LEFT]){
 this.changeImgAngleBy(-5);
 }

 if (keysDown[K_RIGHT]){

188 Part III: Diving Deeper

 this.changeImgAngleBy(5);
 }

 if (keysDown[K_UP]){
 this.addVector(this.imgAngle, 2);
 }

 //move in the current direction
 this.addVector(this.imgAngle, 2);
 } // end checkKeys

 tCar.checkDrag = function(){
 speed = this.getSpeed();
 speed *= .95;
 this.setSpeed(speed);
 } // end checkDrag

 return tCar;
 } // end car def

 function init(){
 game = new Scene();
 game.setBG(“#666666”);
 car = new Car();
 game.start();
 } // end init

 function update(){
 game.clear();

 car.checkKeys();
 car.checkDrag();
 car.update();
 } // end update

 </script>

</head>
<body onload = “init()”>

</body>
</html>

Implementing drag
This example is similar to the critter app illustrated in Chapter 6, but this ver-
sion uses a more realistic force-based motion. When the user presses the up
arrow, the car builds up speed. If the user leaves the up arrow pressed, the

189 Chapter 8: Motion and Animation

car reaches a top speed naturally. When the user releases the up arrow, the
car gradually slows and eventually stops. Force vectors are the key.

Here’s how it works:

	 1.	 Build a basic vehicle.

		 The starting place for this type of motion is very familiar if you’ve exam-
ined the other examples in this chapter. Create a custom sprite with a
checkKeys() method, and check for all the normal arrow keys. The
code for checking left and right arrows is exactly what you expect.

	 2.	 Move forward with a force vector.

		 The code for moving forward is slightly different. Rather than simply
modifying the speed directly, apply a force in the car’s current direction.
Use the sprite’s getImgAngle() method to determine which direction
the car is pointing, and add a small force in that direction.

	 3.	 Create a checkDrag() method.

		 Cars don’t just keep going without power. Wind and ground resistance
will slow them down, and eventually they will stop. Simulate the various
drag forces by adding a checkDrag() method to your object.

	 4.	 Multiply the speed by a drag factor.

		 For this example, the various drag forces will rob the car of 5 percent of
its speed every frame. Remember that the game is running at 20 frames
per second, so the drag force is quite substantial. You can achieve the
drag effect in many ways (add a force vector opposite the car’s direc-
tion, for example), but the easiest way is to multiply the car’s speed by
some value smaller than 1.

	 5.	 No brakes!

		 You can add brakes, but I didn’t bother. What self-respecting arcade car
has brakes? Seriously, you might want to add a down-arrow input, but it
shouldn’t be necessary because the car will slow down on its own.

	 6.	 Season to taste.

		 This example provides a rough outline, but you can modify a number of
values to get exactly the car performance you want. You can simulate a
more powerful engine (or a smaller mass) by increasing the force vector
when you press the accelerator. You can simulate a more responsive
suspension by altering the turning rate if the user presses the right or
left arrows. You can also simulate a more or less efficient car by modify-
ing the drag ratio. Right now, the car turns at any speed, but you can
prevent left- and right-arrow inputs if the car is below a certain speed.

190 Part III: Diving Deeper

Do You Catch My Drift?
You can use force vectors in another interesting way. Many racing games
include skidding or drifting mechanisms. Getting this behavior exactly right
requires very sophisticated mathematics, but you can make a reasonable
approximation of this behavior without too much effort. Take a look at
drift.html, shown in Figure 8-3.

I’ve said it for every example in this chapter: This image is not enough. You
really need to see this as a working program because it’s really cool. As you
move the boat around on the screen, the boat drifts and skids. It’s really fun
to play with.

Burning virtual rubber
To get a simple drifting behavior, simply add a small force vector (I started
with 5 percent of the boat’s current speed) in the boat’s current direction
regardless of whether the user is currently pressing the accelerator.

	

Figure 8-3:
This boat

has a real-
istic drifting
mechanism.

	

191 Chapter 8: Motion and Animation

This technique is a compromise between the space-based motion (where the
force vector is added only when the accelerator is pressed) and standard
car behavior (where the direction of travel is always following the vehicle’s
nose). Each frame has a little of each behavior.

Here’s the code:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>drift.html</title>
 <script type = ”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var game;
 var boat;

 function Boat(){
 tBoat = new Sprite(game, ”boat.png”, 100, 50);

 tBoat.checkKeys = function(){
 console.log(this.speed);
 if (keysDown[K_LEFT]){
 this.changeImgAngleBy(-5);
 }

 if (keysDown[K_RIGHT]){
 this.changeImgAngleBy(5);
 }

 if (keysDown[K_UP]){
 this.addVector(this.getImgAngle(), 2);
 }
 this.addVector(this.getImgAngle(), (this.speed

/ 20));
 } // end checkKeys

 tBoat.checkDrag = function(){
 speed = this.getSpeed();
 speed *= .95;
 this.setSpeed(speed);
 }
 return tBoat;
 }

 function init(){
 game = new Scene();
 game.setBG(“#000066”);
 boat = new Boat();

192 Part III: Diving Deeper

 game.start();
 } // end init

 function update(){
 game.clear();

 boat.checkKeys();
 boat.checkDrag();
 boat.update();
 }

 </script>

</head>
<body onload = “init()”>

</body>
</html>

Adding drift to your sprites
There’s really only one new line here. Most of the code is familiar from the
other examples in this chapter.

	 1.	 Build a standard vehicle model.

		 This time I made a boat, just to be different. The code is really the same
as the car from the last example.

	 2.	 Use a force vector for acceleration.

		 Again, you’re manually controlling the speed, so the addVector()
mechanism gives you great power. The acceleration force vector (used
in the up-arrow key press) can be a literal value, but it doesn’t need
to be huge. Because you’re actually going to be adding a second force
vector, you might want to tone down the acceleration vector — but I
didn’t. More power!!! Muhaahaa!

	 3.	 Add a small force vector every frame.

		 The primary force vector happens only when you accelerate, but a
secondary smaller vector is added every frame. This vector goes in the
direction the boat is currently facing. This small motion vector will simu-
late momentum. It’s important that this force vector be a percentage of
the speed rather than a literal value. If you always move forward one
pixel, for example, the boat will never stop.

193 Chapter 8: Motion and Animation

Recognizing the Gravity of the Situation
Yet another use of force vectors involves gravity. Gravity calculations have
been a part of video games from the very beginning. There are actually two
kinds of gravity to consider. In platform-style games, the player is close to a
planet, and all gravity appears to pull everything straight down. (You calcu-
late gravity differently in space, but that’s covered in the section “Houston,
We’ve Achieved Orbit” later in this chapter.)

When you know how to add acceleration vectors, platform-style gravity is
actually easy to work with. Think of gravity as a constant force always pulling
down a small amount every frame. To illustrate, take a look at hoverCar.
html shown in Figure 8-4.

You know what I’m going to say. This example is no fun as an image in a
book. You need to play with the example to see what’s going on.

	

Figure 8-4:
If you

press the
up arrow,

the car will
fire rocket

boosters
and hover.

	

Adding rockets to your ride
This example has one other interesting feature. When you press the up
arrow, the car image is changed to another image with flames. (I wish my car
had booster rockets.)

194 Part III: Diving Deeper

The code for the hoverCar example is shown here in its entirety:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>hoverCar.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var car;
 var city;
 var game;

 function Car(){
 tCar = new Sprite(game, ”hoverCar.png”, 70,

50);
 tCar.setSpeed(0);
 tCar.hSpeed = 0

 tCar.checkKeys = function(){
 tCar.changeImage(“hoverCar.png”);
 if (keysDown[K_LEFT]){
 this.hSpeed -= 1
 }

 if (keysDown[K_RIGHT]){
 this.hSpeed += 1
 }

 if (keysDown[K_UP]){
 this.addVector(0, .5);
 this.changeImage(“hoverCarThrust.png”);
 }

 this.changeXby(this.hSpeed);
 } // end checkKeys

 tCar.checkGravity = function(){
 if (this.y > 580){
 this.setPosition(this.x, 580);
 } else {
 this.addVector(180, .1);
 } // end if
 } // end checkGravity

 return tCar;
 } // end car def

 function init(){

195 Chapter 8: Motion and Animation

 game = new Scene();
 car = new Car();
 city = new Sprite(game, “city.png”, 800, 600);
 city.setSpeed(0);
 city.setPosition(400, 300);

 game.start();
 } // end init

 function update(){
 game.clear();
 city.update();

 car.checkKeys();
 car.checkGravity();
 car.update();
 } // end update

 </script>
</head>
<body onload = “init()”>
</body>
</html>

Use the force (vector), Luke
Gravity is actually pretty straightforward. It’s simply a force vector. The
other interesting parts of this example involve changing the horizontal
motion without changing the car’s image angle and adjusting the image to
indicate the thruster. Here are the steps:

	 1.	 Build two different images.

		 Use your image editor to build two different versions of the image. My
two images are identical, except one has flames for the retro-rockets and
the other does not.

	 2.	 Build an ordinary sprite.

		 Like most vehicle sprites, you need a checkKeys() method. This one is
set up in the ordinary way, but the behavior is a bit different.

	 3.	 Set the image to default.

		 The default image has no thrusters. Use the changeImage() method
to make this the default image. When the thrusters are turned on, the
image will be changed.

196 Part III: Diving Deeper

	 4.	 Use a variable to control horizontal speed.

		 I created the hSpeed variable to manage the horizontal speed of the car.
I found this gave the performance I was looking for (easy forward and
back motion with a lot of momentum).

	 5.	 Set the left and right arrows to modify hSpeed.

		 The left and right arrow keys modify the hSpeed variable.

	 6.	 Use changeXby to set the horizontal speed.

		 After checking all the keys, change the x value of the car to the current
value of hSpeed.

	 7.	 The up arrow adds a vector upward.

		 Use the now-infamous addVector() function to add a small force
vector upward when the user presses the up arrow. Remember that 0
degrees is up. Play around with this value to get the amount of thrust
you want for your game.

	 8.	 Show the thrusters when the up arrow is pressed.

		 If the user is pressing the up arrow, you need to show the thrusters. Use
the changeImage() method to set the sprite’s image to the one with
rocket thrusters.

	 9.	 Build a checkGravity() method.

		 This method will be called every frame to compensate for gravity.

	 10.	 Check to see if you’re on the ground.

		 In this example, the ground is defined as a y value larger than 580.

	 11.	 If you’re not on the ground, add a gravity force vector.

		 Because it will accumulate, the gravity force vector needs to be pretty
small. You’ll need to balance the force of the gravity and the thrusters
to get the behavior you want. If gravity is too strong, the thrusters won’t
work. If thrusters are too strong, the car simply flies into space.

Houston, We’ve Achieved Orbit
The kind of gravity described in the hoverCar example is fine when you’re
really close to a planet because when tiny things like people, cars, or build-
ings are interacting with huge things like planets, the world seems flat, and
gravity always seems to be pulling down.

However, when you get into space, things become more complicated. A
planet has a large gravitational pull that influences the smaller things moving
around that planet.

197 Chapter 8: Motion and Animation

Round and round she goes . . .
Play around with orbit.html (see Figure 8-5) to confirm that the orbit
shown in this example acts like real-world orbits.

Orbits may seem difficult to program because they follow a very specific set
of rules. Any orbit should have the following characteristics:

	 ✓	An orbit is actually an ellipse. Orbits aren’t perfect circles but are ellipses.

	 ✓	The planet is one focus of the ellipse. As you may remember from math
class, an ellipse is defined as a constant sum of radii from two points,
called foci.

	 ✓	The distance from the planet predicts the speed. When the ship is
closer to the planet, it will move more quickly.

	 ✓	Accelerate on one side to influence the other. Firing your thrusters
in the current direction of travel moves the opposite side of the ellipse
away from the planet. Firing against the direction of travel moves the
opposite side of the ellipse closer to the planet.

	 ✓	Smaller orbits are faster than larger orbits. This is an odd fact of space
travel, but to speed up in orbit, you typically fire backward, bringing
yourself into a tighter orbit that moves more quickly!

	

Figure 8-5:
Orbits follow

very spe-
cific rules.

	

198 Part III: Diving Deeper

This may seem like a lot of rules that will be difficult to program, but it turns
out to be really easy to generate a realistic orbit. Newton (there’s that guy
again; I told you he’d be an amazing game programmer) predicted exactly
how it works in his famous law of universal gravitation. Newton’s law is sum-
marized in a somewhat dizzying formula, as shown in Figure 8-6.

	

Figure 8-6:
Newton’s

law of
universal

gravitation.
	

Decoding the alphabet soup
Newton’s law can look a bit daunting, I know, but it’s really easy to follow
when you have the secret decoder ring that explains what all the variables
mean. Here’s what’s happening:

	 ✓	It describes the length of a force vector. Any two objects will exert
some kind of gravitational force on each other. It is an attractive force,
so the direction is simply the direction between the centers of the
objects. The formula describes the strength of the force.

	 ✓	f is the force magnitude. That is, it’s the amount of force between the
two objects.

	 ✓	m1 is the mass of the first object. For this example, the first object will
be the planet. It will have a really big mass.

	 ✓	m2 is the mass of the second object. The second object is the space-
ship, which will have a much smaller mass.

	 ✓	d is the distance between the objects. It doesn’t matter exactly how you
measure the distance as long as you’re consistent. Here, pixels are used.

	 ✓	G is a universal gravitational constant. If you were doing real calcula-
tions, you would modify by a universal constant.

	 ✓	Divide the product of the masses by the distance squared. The basic
calculation is simply the product of the masses divided by the distance
between the centers squared, and the whole thing is multiplied by the
gravitational constant.

199 Chapter 8: Motion and Animation

This isn’t rocket science
Okay, it is, sort of, but it’s really simplified. You should really take a genuine
physics course to learn more about this fascinating topic. For the purposes
of game programming, I’m going to simplify Newton’s law in a couple of ways:

	 ✓	Mass is measured in an arbitrary unit. It really doesn’t matter exactly
what the masses are as long as the planet is a lot heavier than the space-
ship. I’m going with a mass of 1000 units for the planet and one unit for
the ship. That gives pretty good behavior, but you can modify these
values if you want.

	 ✓	Distance is measured in pixels. This isn’t genuine unit of distance mea-
sure, either. It doesn’t matter how much space a real pixel represents as
long as the simulation acts like you want it to.

	 ✓	You can skip G. Because the mass and distance are already somewhat
arbitrary, you don’t really need to worry about G because you can just
wrap that into the already-arbitrary masses without any problems.

	 ✓	Calculate in only one direction. It’s true that each object will exert a
force on the other, but the ship’s pull on the planet is immeasurably
small, so you can just skip it in your code.

Writing the orbit code
Now you’re ready to see some code. After you know what’s going on, you’ll
be surprised at how easy the code is:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>orbit</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var ship;
 var planet;
 var game;

 function Ship(){
 tShip = new Sprite(game, ”ship.png”, 25, 25);
 tShip.setSpeed(3);
 tShip.setBoundAction(CONTINUE);
 tShip.setPosition(400, 200);

200 Part III: Diving Deeper

 tShip.checkKeys = function(){
 if (keysDown[K_LEFT]){
 this.changeImgAngleBy(-5);
 }
 if (keysDown[K_RIGHT]){
 this.changeImgAngleBy(5);
 }
 if (keysDown[K_UP]){
 this.addVector(this.getImgAngle(), .1);
 }
 } // end function
 return tShip;
 } // end object definition

 function init(){
 game = new Scene();
 ship = new Ship();
 planet = new Sprite(game, ”planet.png”, 50, 50);
 planet.setSpeed(0);
 planet.setPosition(400, 300);

 game.setBG(”black”);

 game.start();
 } // end init

 function update(){
 game.clear();
 ship.checkKeys();
 checkGravity();
 planet.update();
 ship.update();
 } // end update

 function checkGravity(){
 //checks gravity pull of planet on ship
 PLANET_MASS = 1000;
 SHIP_MASS = 1;
 dist = ship.distanceTo(planet);
 dir = planet.angleTo(ship);
 force = (PLANET_MASS * SHIP_MASS) / (dist * dist)
 ship.addVector(dir, force);
 } // end checkGravity

 </script>
</head>
<body onload = “init()”>

</body>
</html>

201 Chapter 8: Motion and Animation

This example begins with space.html. In fact, I copied that program and
used it as a starting place for this one because the basic behavior is the
same. Here’s how I modified the space program to account for orbital gravity:

	 1.	 Change the ship’s boundAction to CONTINUE.

		 The default wrap behavior will be weird when you’re looking at orbits.
This is a good place to allow the ship to wander on forever. You might
lose your ship altogether, but space travel is a lonely business.

	 2.	 Add a planet sprite.

		 This is a pretty simple sprite. It’s just a picture of a planet, with speed
set to zero.

	 3.	 Create a checkGravity function.

		 This function will calculate the planet’s gravitational pull on the ship.

	 4.	 Determine the masses of the two objects.

		 Through careful scientific measurement, I totally made up the mass of
my planet and my ship. I stored the masses in capitalized variables to
indicate they should be considered constant values.

	 5.	 Calculate the distance between the objects.

		 Fortunately, simpleGame provides a really handy distanceTo()
method for exactly this purpose.

	 6.	 Determine the direction between the two objects.

		 Once again, simpleGame makes this easy because each sprite has an
angleTo() method. Note that if the ship seems to be thrown away from
the planet, you may have the wrong order. Determine the direction from
the planet to the ship.

	 7.	 Calculate the force magnitude.

		 Use the handy-dandy formula to figure out how strong the force pulling
the ship to the planet is.

	 8.	 Add a force vector to the ship.

		 Now just use the addVector() method to add the calculated force
vector to the ship.

That’s all there is to it. Amazingly enough, this simple calculation does all the
real work, and you’ll find that the orbits are strikingly realistic.

	 Although the math is simplified, there is still a lot of math going on here. If you
want to be a game programmer, this is just the beginning of the math you’ll
need. For example, you may wonder how I figured the distance between the
objects in simpleGame (I used the Pythagorean theorem) or how I calculated
the angle between them (I used the arc-tangent from trigonometry).

202 Part III: Diving Deeper

The simpleGame library takes care of a lot of the math for you (you’re wel-
come), but eventually you’ll need to be able to do it yourself. If you’ve ever
asked your math teacher when you would ever use math, I’ve got an answer.
Today’s a good day to start. You can’t make games without math, but our
math is fun because we blow virtual stuff up.

Does This Car Come with
a Missile Launcher?

Normal car dealerships are touchy about installing weaponry in your ride,
but that’s exactly why we became game programmers. If I want missiles in
my mini-van, I’ll have missiles (at least in the virtual minivan). Lots of video
games involve shooting, and that’s a pretty easy effect to add. The missile.
html example illustrated in Figure 8-7 shows how it works.

	

Figure 8-7:
Now my car

fires mis-
siles. It’s

about time.
	

203 Chapter 8: Motion and Animation

Projectiles in a nutshell
Missiles, bullets, and other projectiles are pretty easy to work with. Here are
a few ideas to keep in mind:

	 ✓	The projectile is a sprite. Make a new sprite for the projectile. You can
make it a simple dot, or (as I did) draw a complete missile.

	 ✓	Make a custom sprite for the missile. The missile will need some meth-
ods, so you might as well make it a custom sprite.

	 ✓	Missiles die when they leave the screen. The easiest way to get this
behavior is to set the missile’s boundAction to DIE.

	 ✓	Add a fire() method. The fire() method will activate when the mis-
sile is fired.

	 ✓	Reuse the same missile over and over. Old missiles never die. They are
just hidden and reused when the user shoots again. When a missile hits
something, hide the missile. That will make it invisible and impervious
to collisions.

It’s time to launch the missiles
The code for missile.html is like much of the standard car code you’ve
seen:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>missile.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var game;
 var car;
 var missile;

 function Car(){
 tCar = new Sprite(game, ”car.png”, 50, 30);
 tCar.setSpeed(3);
 tCar.setAngle(135);

 tCar.checkKeys = function(){
 if (keysDown[K_LEFT]){
 this.turnBy(-5);

204 Part III: Diving Deeper

 }
 if (keysDown[K_RIGHT]){
 this.turnBy(5);
 }
 if (keysDown[K_SPACE]){
 missile.fire();
 }
 } // end checkKeys

 return tCar;
 } // end car def

 function Missile(){
 tMissile = new Sprite(game, ”missile.png”, 30,20);
 tMissile.hide();

 tMissile.fire = function(){
 this.show();
 tMissile.setSpeed(15);
 this.setBoundAction(DIE);
 this.setPosition(car.x, car.y);
 this.setAngle(car.getImgAngle());
 this.setImage(“missile.png”);
 this.setSpeed(15);
 } // end fire

 return tMissile;
 } // end missile def

 function init(){
 game = new Scene();
 car = new Car();
 missile = new Missile();
 game.start();
 } // end init

 function update(){
 game.clear();

 car.checkKeys();
 car.update();
 missile.update();
 } // end update

 </script>
</head>
<body onload = “init()”>

</body>
</html>

205 Chapter 8: Motion and Animation

Projectiles are lots of fun to build, and they aren’t very difficult, as shown here:

	 1.	 Build a normal sprite to launch the projectile.

		 This isn’t absolutely necessary, but normally a bullet will be fired from a
gun, an arrow will be fired from a bow, and a nuclear banana rocket will
be fired from whatever vehicle has that sort of thing. (I want one.)

	 2.	 The projectile will be its own sprite.

		 The projectile works just like an ordinary sprite, but it will be created
and destroyed dynamically.

	 3.	 Add a trigger to fire the missile.

		 In my game, the spacebar fires the missile. Because my car will launch
the missile, I put the trigger code in the car’s checkKeys method.

	 4.	 Set the missile to be hidden by default.

		 The missile is always around, but it’s hidden offstage when it isn’t
needed. If you invoke a sprite’s hide() method, that sprite will still be
in memory, but it won’t be drawn, and it won’t trigger any collisions.

	 5.	 Create a fire() method for the missile.

		 The missile is sitting around waiting to be activated. The fire()
method springs the missile into action.

	 6.	 Make the projectile visible.

		 The show() method is the opposite of hide(). It causes a sprite to be
visible and trigger collisions.

	 7.	 Give the missile a quick initial speed.

		 As you know, missiles are normally fast.

	 8.	 Hide the missile when it hits the edge.

		 When the missile hits the edge of the screen, it needs to be hidden.
Setting the missile’s boundAction to DIE will make this behavior
automatic.

	 9.	 Hide the missile if it hits anything else.

		 This simple example doesn’t have any other objects, but if the missile
collides with something else, invoke its hide() method to simulate the
missile being destroyed on contact.

After you have the ordinary missile behavior working, you can try a number
of interesting variations:

	 ✓	Add gravity to the missiles. If it’s a side scroller, add a gravitational
force to your missiles for a worm-like effect. See the hoverCar.html
example earlier in this chapter for details.

206 Part III: Diving Deeper

	 ✓	Add other physics to missiles. You can make the missiles have drag like
any other sprite. See the drag.html example earlier in this chapter for
more details.

	 ✓	Make a smart missile. Use the angleTo method to determine the angle
between a missile and a target, and turn the missile toward the target
on every frame. This will simulate a smart missile that never misses. (A
great power-up, but it makes the game too easy if you have too many.)

	 ✓	Make a not-so-smart missile. If the enemy is firing a missile at the player,
you don’t want it quite so smart. You can do so in a few ways. First,
make the missile as smart as you want but slow enough that it can be
outrun. Second, put barriers that can destroy the missile in the way.
Third, make the missile smart only once in a while so that it only checks
for the position of the target once every five or ten frames. Use your
imagination!

Building a Multi-State Animation
With all this motion going on, you’re sure to want more sophisticated anima-
tions. You can use the changeImage() or setImage() function (they’re
two different names for the same thing) to change the image associated with
a sprite any time. Sometimes, though, you want much more sophisticated
animations. Take a look at walkAnim.html shown in Figure 8-8.

	

Figure 8-8:
When you
press the

arrows, the
character

walks with
a realistic

animation.

	

207 Chapter 8: Motion and Animation

Like all examples in this chapter (indeed in the entire book), you really need
to see it on my website and play with it to get a feel for what this example is
doing.

There’s a whole lot of image-swapping going on here. The walking animation
is actually a series of eight different images rapidly swapped to give the illu-
sion of walking. There are 4 different animations (one for each of the cardinal
directions), so that’s a total of 32 different images. However, if you look over
the code, you’ll see that the character sprite contains only one image. That
image is pretty special, as you can see in Figure 8-9.

	

Figure 8-9:
This file

has all the
needed
images

combined
into one!

	

This image is a composite animation. Each row represents a direction, and
each row contains a cycle, or a series of images, meant to be repeated.

	 The rpg_sprite_walk.png image was created by Franck Dupont. He gener-
ously posted this image on the OpenGameArt.org site (http://open
gameart.org), where he is known as “Arikel.” He released his work under
a special license called “Attribution — Share Alike.” This means people can
use or remix his work for free, as long as they attribute the original author.
The background image is by an author named Hyptosis, who released images
under the public domain on the same site. Talented and thoughtful contribu-
tors like Franck and Hyptosis are the key to the thriving creative community.
Feel free to look over the open game art site for more great artwork to use in
your games, but be sure to thank and attribute the authors as they deserve.

The simpleGame.js library contains a feature for making multi-image ani-
mations quite easily. Look over the code for walkAnim.html to see how it
works:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>

http://www.opengameart.org/
http://www.opengameart.org/

208 Part III: Diving Deeper

 <title>walkAnim.html</title>
 <script type = ”text/javascript”
 src = ”simpleGame.js”></script>
 <script type = ”text/javascript”>
 var game;
 var background;
 var character;

 function init(){
 game = new Scene();
 background = new Sprite(game, “rpgMap.png”,

800, 600);
 background.setSpeed(0,0);
 background.setPosition(400, 300);
 character = new Sprite(game, “rpg_sprite_walk.

png”, 192, 128);
 character.loadAnimation(192, 128, 24, 32);
 character.generateAnimationCycles();
 character.renameCycles(new Array(“down”, “up”,

“left”, “right”));
 character.setAnimationSpeed(500);

 //start paused
 character.setPosition(440, 380);
 character.setSpeed(0);
 character.pauseAnimation();
 character.setCurrentCycle(“down”);

 game.start();
 } // end init

 function update(){
 game.clear();
 checkKeys();

 background.update();
 character.update();
 } // end update

 function checkKeys(){

 if (keysDown[K_LEFT]){
 character.setSpeed(1);
 character.playAnimation()
 character.setMoveAngle(270);
 character.setCurrentCycle(“left”);
 }
 if (keysDown[K_RIGHT]){
 character.setSpeed(1);
 character.playAnimation()
 character.setMoveAngle(90);
 character.setCurrentCycle(“right”);

209 Chapter 8: Motion and Animation

 }
 if (keysDown[K_UP]){
 character.setSpeed(1);
 character.playAnimation()
 character.setMoveAngle(0);
 character.setCurrentCycle(“up”);
 }
 if (keysDown[K_DOWN]){
 character.setSpeed(1);
 character.playAnimation()
 character.setMoveAngle(180);
 character.setCurrentCycle(“down”);
 }

 if (keysDown[K_SPACE]){
 character.setSpeed(0);
 character.pauseAnimation();
 character.setCurrentCycle(“down”);
 }

}

 </script>
</head>
<body onload = “init()”>
</body>
</html>

You need to take a few new steps to build an animation, but the results are
completely worth the effort.

	 1.	 Obtain an animation image.

		 You can either create an image yourself, or look at the excellent resources
like OpenGameArt.org to find work that others have done. Of course, you
have a responsibility to respect other’s work, but there is some great work
available in very permissive licenses today. Be sure the image is organized
in rows and columns and that each sub-image is exactly the same size. You
may have to mess with your image editor to ensure that the image is in the
right format and that you know the size of each sub-image.

	 2.	 Attach the animation image to your sprite.

		 You’ll be attaching the entire image to your sprite, but just displaying a
small part of it at any one time. This is easier than working with a bunch
of images, and it’s also more efficient.

	 3.	 Create an animation object with the loadAnimation() method.

		 When you invoke the loadAnimation() method of an object, you’re
creating an animation tool that helps manage the animation. The first
two parameters are the size of the entire image (width and height), and

210 Part III: Diving Deeper

the second two parameters are the width and height of each sub-image.
If you get these values wrong, the animation will appear to scroll. Keep
playing until you get these values right:
character.loadAnimation(192, 128, 24, 32);

	 4.	 Build the animation cycles.

		 Each row will be turned into an animation cycle. The default version
(without any parameters) works fine in most situations. Look up the
documentation for the more advanced usages of this tool:
character.generateAnimationCycles();

	 5.	 Rename the cycles.

		 The animations created with the buildAnimationCycles() command
have default names, but it’s almost always better to attach your own,
more meaningful names. Add an array with a name indicating what each
row represents:
character.renameCycles(new Array(“down”, “up”, “left”,

“right”));

	 6.	 Set the animation speed.

		 The animation speed indicates how fast the animation will run. A value
of 500 seems right for most applications, but you can adjust this value so
the character’s walk cycle looks like it’s actually propelling the character:
character.setAnimationSpeed(500);

	 7.	 Set which cycle you intend to display.

		 The setCurrentCycle() method allows you to choose the cycle with
one of the names you indicated in the renameAnimationCycles() step:
character.setCurrentCycle(“down”);

	 8.	 Use the pauseAnimation() command to pause the animation.

		 In my example, I want the character to begin standing still, looking toward
the user. The pauseAnimation() command makes the animation tem-
porarily stop.

	 9.	 Use playAnimation() to begin the animation.

		 This method will continuously loop the current animation cycle.

As you can see, animation adds a huge amount of fun to gaming and opens up
the whole realm of role-playing games to your repertoire.

Chapter 9

Going Mobile
In This Chapter
▶	What it means to go mobile
▶	Sizing your game for mobile devices
▶	Hosting on a server
▶	Saving your game locally
▶	Using the touch interface
▶	Working with a virtual joystick
▶	Using the accelerometer for tilt controls

G
ames are fun, but today everybody wants games that work on mobile
devices. After all, a lot of us carry smartphones or tablets wherever we

go. If people can play your game on a mobile device, you can reach a huge
audience.

Here’s some good news: The HTML5 games made in this book will already
work pretty well on mobile devices. With a few new skills, you’ll be well on
your way to making great games for phones and tablets.

Using HTML5 as a Mobile Language
Mobile development is a specialized form of programming. In the past, it
has required specialized tools and knowledge. However, HTML5 and the
simpleGame library provide tools that apply the game-programming
knowledge you have to mobile devices.

Don’t you need a special language?
Up to now, most mobile development has been done in specialized program-
ming languages: Objective-C for the iPad and iPhone devices, and a special

212 Part III: Diving Deeper

form of Java for Android-based devices. You can still write games using these
platforms, but it’s a bit tricky:

	 ✓	The languages are complex. Objective-C and Java are much more
complex than the JavaScript you deal with in this book, so it takes a lot
longer to be ready to make a game.

	 ✓	You need an emulator. To test a game using these languages, you need
some sort of emulator on your computer so you can see how your game
will look on the devices.

	 ✓	You need a license. At least on the Apple platforms, you have to pur-
chase a license. (Not a problem on Android.)

	 ✓	The App Store takes a cut. If you charge for your game, the App Store
will take a percentage, just for being the App Store.

	 ✓	You’ll need multiple versions. You can’t easily write a game for both
the iPhone and the Android. Because they use entirely different lan-
guages, you’ll have to rewrite your code if you want it to work on both
device platforms.

	 ✓	Apple can reject you. It’s possible after all your hard work that your
program will be rejected. There are multiple delivery options for
Android apps, so this is really just a problem for IOS developers.

HTML5 is a great compromise
You probably know where I’m going next. HTML5 games are a great solution
to many of these problems. Write your game on the web browser and a lot of
these issues go away:

	 ✓	Write for a single platform. For the most part, you’ll write for the web
browsers rather than a specific platform, so the same exact code will
work on iPhone and Android.

	 ✓	Most testing can be done on a local machine. Much of your testing can
be done on a regular computer, simplifying the testing.

	 ✓	No App Store. All you need for distributing your games is a web server
(and I show you how to use one in section “Putting Your Game on a
Server” in this chapter). There’s no approval process, no chance of
being rejected.

	 ✓	You already know most of what you need. If you’ve been reading this
book, you’re almost there. This chapter will show you a few mobile-
specific tricks that will take you the rest of the way to your own mobile
games.

213 Chapter 9: Going Mobile

So what else do you need?
A few things make mobile game development special. First, the size of mobile
devices is unpredictable. Tablets may have a screen the same size as a small
desktop computer, but cell phones can have very different-sized screens.

Second, the input mechanisms are different. Traditional computers use the
mouse and keyboard as primary input mechanisms, but mobile devices have
different approaches to input. Some devices have keyboards and some do
not. Even those with keyboards don’t always treat them the same way as
computer keyboards. Most mobile devices have a virtual keyboard, but this
isn’t really suitable for gaming. For mobile gaming, it’s often best to build a
virtual keyboard yourself with only the keys you need for a particular game.
Of course, simpleGame makes this easy to do.

Mobile devices generally have a touch input, meaning the screen is receptive
to finger touches and swipes. At first, this may seem a lot like a mouse, but
it’s not exactly the same thing. A touch screen doesn’t really have anything
like a mouse click event, because moving and clicking the mouse is the same
thing on a touch interface. SimpleGame has a library that allows you to work
with the touch interface as though it were a normal mouse in some situa-
tions. It also allows you to control your game with a simple virtual joystick.

Many mobile devices also support the accelerometer, which is a tool that
detects motion in the device. You can use this feature to control elements in
your game.

Note that the support for mobile interface elements is very experimental. It
isn’t officially supported in any major browser yet, but you’ll find most things
work in the latest mobile devices. All of the mobile features work on an iPad 2
(my main mobile device). I also tested on an Android phone with less suc-
cess, but when I played around with a newer Android tablet at a phone store,
I found all the examples worked.

Putting Your Game on a Server
If you’ve been following along in the book, you’ve built some really great
games so far. These games work nicely on your own machine, but what if you
want to show them to other people? If you want to show games to other folks,
you’ll probably want to put your games on a web server.

If you’re going to test your game on mobile devices, you’ll definitely need a
web server, because that’s how you’ll get your game to the mobile device.

214 Part III: Diving Deeper

Although it’s possible to code a game directly on a mobile device, the on-
board editors are typically not very good, and mobile operating systems
really don’t encourage on-board editing. Building code without a real key-
board is a frustrating experience. For mobile gaming, it makes a lot of sense
to do your coding on a regular computer and then put it on a web server. You
can then test it with your mobile device. Some features I cover in this chapter
(using an accelerometer or touch screen) cannot be tested on a standard
computer, so you’ll need some way to get the game on the web.

Of course, to put your game on a web server, you’ll need access to (stay with
me here) a web server. Fortunately, this is very easy to do. Just do a quick
web search for free web hosting, and you’ll find plenty of places to put your
code online for free or for a very low cost. For current purposes, a free host-
ing plan should be fine. You won’t need a large amount of server space, and
you won’t even need features like PHP and MySQL, though if these features
come with your service, they can be a bonus. If you want to find out how to
use these tools, please check out my book HTML, XHTML, & CSS All-In-One For
Dummies for complete information on using these technologies.

If you want to have a special name associated with your site (like I use for my
examples), you can purchase a domain name. Most servers will allow you to
search for and purchase a domain name for about $10 a year. If you don’t want
to purchase a domain name, you can often get a subdomain (a domain name
associated with the hosting provider) for free. If you’re going to be a bit more
serious, you should probably purchase a domain so people can find your site.

	 The biggest downside of a free service is usually its dependability. In order to
offer server space for free, a provider will generally have dozens or hundreds
of clients sharing the same physical machine. If one of these other clients does
something irresponsible, like running a spambot or creating an out-of-control
program, your server may go down temporarily. Typically, when you pay even
a little bit for a server, you get much more reliability. The cheapest paid host-
ing services generally cost very little ($2 to $5 a month) and offer a bit more
security than the completely free services.

Using a control panel
When you’re using a remote server, most of the time, you’ll be given access to
a control panel. After you sign up for service, the provider will send you a link
to a special control page, along with a username and password combination.
Keep this information handy because it’s critical to managing your web server.

You rarely manage a server directly. Instead, you’ll generally use a web
browser to control your server remotely. Most servers use a variation of a
program called cPanel. Figure 9-1 shows cPanel running in one of my servers.

215 Chapter 9: Going Mobile

	

Figure 9-1:
cPanel

allows you
to control

your server
through
the web

browser.
	

Even if your server doesn’t use cPanel, your server will almost always use
something similar. Remote server software usually has the following functions:

	 ✓	Script installations: Often you’ll find tools for installing various scripts
and tools, including content-management systems like Drupal and
Joomla. Although these are very exciting options, they are beyond the
scope of this book. Again, for more information on this type of applica-
tion, check out my book HTML, XHTML, & CSS All-In-One For Dummies.

	 ✓	Site builders: You’ll often see some sort of tool for helping you to build
a website. Although these can be convenient, you know how to build a
basic page yourself, so they aren’t necessary.

	 ✓	File-management tools: There will be some way to manage the various
files on your server. It will feel a lot like the file manager on your local
computer. You can use this tool to upload files to your server, change
the filenames on your server, create new directories, and so on. This will
be one of your most important tools.

	 ✓	FTP support: Most servers offer something called FTP or SFTP access. FTP
stands for File Transfer Protocol, and SFTP is Secure File Transfer Protocol.
You’ll normally be given some kind of FTP logon information including a
URL, a username, and a password. Your FTP account information is not

216 Part III: Diving Deeper

necessarily the same as the information you use to log on to the control
panel. FTP is a more efficient way to manage the remote files. See the later
section “Using an FTP client” for details on how to use FTP to keep your
site up to date.

	 ✓	Domain management: Frequently, there will be one or more domain
names attached to your account. You should see information in cPanel
about these domains, including when the rental of the name will expire.

	 ✓	Much more: There will often be many more options, which are not all
absolutely necessary for current purposes. These features frequently
include databases, error logs, and e-mail management.

Uploading a page with a control panel
Although you can often do basic HTML and JavaScript editing right on the
server, it’s usually safer and easier to do most of the work on your local
machine. When you’re ready to distribute your program to the world, you
can use the cPanel application (or whatever variation your provider pro-
vides). Here’s the process:

	 1.	 Prepare your game on the client machine.

		 Be sure that everything is working pretty well on your local machine
first. If possible, organize your application to be as self-contained as pos-
sible. Put all resources used by your game in the same directory, and
have only the things you need in the directory.

	 2.	 Consider using relative references.

		 Code all links to images or external files in your game as a local refer-
ence. (Don’t use http://; instead, simply indicate a filename.) This
way, if you move all the files together, the references will still work on
the local server.

	 3.	 Log on to the control panel.

		 Use the logon information provided by your service to log on to the con-
trol panel application using your normal web browser.

	 4.	 Find the file-management tool.

		 There will be some sort of tool for file management. These tools are all a
bit different, but they’ll generally look something like Figure 9-2.

	 5.	 Navigate to the web directory.

		 Most servers have a special directory that is exposed to the web. You
may need to check your documentation to find out exactly where you

217 Chapter 9: Going Mobile

are supposed to put your files. Often you will be asked to place files in a
directory called public_html, htdocs, or www. This varies by server,
so you’ll need to check your documentation. If you put files in the wrong
directory, they may not be visible.

	 6.	 Make a subdirectory for your game.

		 It’s best to make a subdirectory containing all the files your game needs
when you build the game on your own machine. You can then create a
similar subdirectory on the server and copy all files to the server at once.

	 7.	 Upload all your files.

		 Remember, a game normally consists of several files — the HTML/
JavaScript code, the simpleGame.js library, your image files, and all
other external CSS or JavaScript files. Be sure you copy all these files to
the server, or things will not work correctly. There’s usually some sort
of upload command that allows you to browse your local file system and
select a file to upload. Repeat this process for all your files. If you want to
upload many files at once, look into the FTP instructions in the next section.

	

Figure 9-2:
A file-man-

agement
system on
the server.

	

218 Part III: Diving Deeper

	 8.	 Test on the desktop browser.

		 Use your desktop machine’s browser to check that your server is working
correctly. Your service provider will indicate the address of your main
site. You’ll probably want to build some kind of index page on your main
site to point to each of your games. Check with your standard browser
first to be sure that you know where your game is and what the URL is.

	 9.	 Test on the mobile device.

		 Use your device’s browser to check the game. Some devices have multiple
browsers, so you may want to check on more than one to ensure that the
game is working correctly. Unfortunately, there’s a great deal of variance
in mobile browsers, so it’s nearly impossible to determine if a game works
on all. I tested primarily in Safari on an iPad 2 and Android Chrome.

Using an FTP client
Because you’ll often be transferring a large number of files, it might be easier
to use a special tool called an FTP client. As I mentioned earlier, FTP stands
for File Transfer Protocol, and it’s a mechanism used for more sophisticated
file transfer problems. To use FTP, you’ll need some sort of FTP client. I like
FileZilla (shown in Figure 9-3) because it’s free, easy to use, and it works
exactly the same on all major operating systems.

	

Figure 9-3:
Using

FileZilla to
transfer

files to my
server.

	

219 Chapter 9: Going Mobile

FileZilla and other FTP programs all do pretty much the same thing. Here’s
how to use FileZilla:

	 1.	 Download and install FileZilla.

		 You can download FileZilla for free at http://download-filezilla-
ftp-free.com. (There is also a link at my main page: www.aharris
books.net.)

	 2.	 Gather the logon information.

		 You’ll need to get your FTP logon information from your service pro-
vider. Normally, this consists of a special address (like a URL, but it
begins with ftp://), a username, and a password. These are not neces-
sarily the same credentials used to log on to the server.

	 3.	 Enter host information.

		 There’s a place along the top of the editor to enter your logon informa-
tion. Put the address (which usually begins with ftp://) in the host
box, with your username and password in the other boxes. You can
typically leave the port box blank because this information is normally
determined automatically. (If in doubt, try port 21 or 22.)

	 4.	 Connect to the FTP server.

		 Click the Connect button to make the connection. A flurry of obscure mes-
sages will fly through the top panel. In a few seconds (if all went well),
you’ll see a directory listing of the remote system in the right panel.

	 5.	 Use the left panel to manage local files. The left panel controls the local
file system. Use this to find files on your local computer. It’s a normal
file-management system like My Computer or Finder.

	 6.	 Use the right panel for remote files.

		 The right panel controls the remote server file system. It works exactly
like the local system, except it allows you to manipulate files on the
remote system. Use this system to move to the appropriate directory on
the remote system. You can also create a new directory or rename files
with the appropriate buttons on this screen.

	 7.	 Drag files to transfer them.

		 To transfer files between machines, simply drag them. Drag from the local
machine to the remote machine to upload files, or in the other direction
to download them. You can move many files at a time in this manner.

	 8.	 Watch for errors.

		 Most of the time, everything works great, but sometimes there is a prob-
lem. The bottom panel shows potential error messages. If there is an
error, you may need to reload a file.

http://download-filezilla-ftp-free.com/
http://download-filezilla-ftp-free.com/
http://www.aharrisbooks.net/
http://www.aharrisbooks.net/

220 Part III: Diving Deeper

	 9.	 Make a bookmark.

		 You’re likely to need this link again, so use the Add bookmark com-
mand on the Bookmarks menu to add a bookmark to this server. When
you add a bookmark, you can also indicate which directories should be
open on each machine, so you’ll be ready to work as soon as you open
the bookmark. You may also want to add this host in the Site Manager
(found in the File menu) to keep track of the site for future connections.

	 Most remote servers run some variation of the Unix operating system. You
may not be familiar with Unix, but it really works a lot like the systems you
already know. However, it has one feature that may be new to you: file per-
missions. Most of the time, an FTP program will automatically get the file
permissions right, but if the browser cannot see a file after you upload it to
the server, try right-clicking that file in FileZilla and look at its properties.
Most web files should have a permission set called 644 (which means you can
read and write the file, everyone else can read it, and nobody can run it on the
server). If it’s set to something else, try changing it to 644. Web directories
should typically have 755 permission, which is almost always the default.

Making Your Game App-Ready
Of course, your games are really web pages, but you’re going to make them
work in a way that also makes them act like apps. You need to do a couple of
things to make that happen. You can add an icon to your game so it appears
on the desktop, you can modify the size so the game takes up the entire
screen, and you can have your game stored offline so it is still available even
when you don’t have access to the Internet.

Managing the screen size
The first thing to consider is the screen size. This is an easy thing to change,
but it can have big implications in your game. A game that works fine at one
size can be much easier or harder at a different size. You can change the size
and position of the game with the Scene object’s setSize() and setPos()
functions. Figure 9-4 shows a sample with a few screen sizes I’ve found useful.

It can be a bit tricky to determine the optimum screen size, but you can go
to a site like www.binvisions.com/articles/tablet-smartphone-
resolutions-screen-size-list to see a list of common screen
resolutions.

http://www.binvisions.com/articles/tablet-smartphone-resolutions-screen-size-list/
http://www.binvisions.com/articles/tablet-smartphone-resolutions-screen-size-list/

221 Chapter 9: Going Mobile

	

Figure 9-4:
You can use
this program
to test some

common
screen

sizes.
	

In general, you’ll find 1024 x 768 and 800 x 600 to be the most commonly used
screen sizes. With some experimentation, I’ve found that it makes sense to
go a little smaller than these resolutions. Of course, if you have a particular
device you want to program for, you can simply size your program directly
for your device.

After you know the size you want, you can simply use the Scene object’s
setSize() method to change the screen to whichever size you prefer.

Remember that for many games, changing the screen size will actually
change the gameplay. (For example, Pong is much more difficult on a larger
screen than on a smaller one.) Also, most input will happen on the actual
screen, so think about how large thumbs are, and try to design your game so
the user’s fingers don’t obscure any onscreen action.

Making your game look like an app
There are a couple of wonderful tricks you can do for IOS users. You can
design your game so the user can add an icon directly to the desktop. The
user can then start the game like any other app. You can also make the

222 Part III: Diving Deeper

browser hide the normal browser accoutrements so your game doesn’t look
like it’s running in a browser!

It turns out that both these effects are quite easy to accomplish. Modern ver-
sions of IOS (the iPhone and iPad operating system) already have the capa-
bility to store any web page on the desktop. Just view the web page in Safari
and click on the Share button. You’ll find an option to save the web page to
the desktop. You can instruct your users to do this, and they’ll be able to
launch your game like a normal app.

However, the default icon for a saved app is quite ugly. If you want a nice-
looking icon, you can save a small image from your game as a .png file and
put it in the same directory as your game. Then you can add this line to your
page (in the header), and that image will appear on the desktop when the
user saves your game:

<link rel=”apple-touch-icon” href=”plane.png” />

As an added bonus, the iPhone and the iPad will automatically adjust the
image to look like an Apple icon, adding a glassy effect and rounded corners.

Figure 9-5 shows an icon I made for an app-ready variant of the frog game.
(Refer to Chapter 7 for information on how to make the frog game.)

	

Figure 9-5:
An Apple

icon for the
frog game

is in the
upper-left

corner.
	

223 Chapter 9: Going Mobile

	 Of course, this icon trick is an Apple-only mechanism. With most versions of
Android, any bookmark you’ve designated with your main browser can be
added to the desktop, but there is no custom icon option. The apple-touch-
icon directive will simply be ignored if you’re using some other OS.

Removing the Safari toolbar
Although your game looks good from the main screen, when the user acti-
vates the game, it’s still obvious that the game is part of the web browser.
You can easily hide the browser toolbar with another line in the header:

 <meta name=”apple-mobile-web-app-capable” content=”yes” />

This code will not do anything different unless the game is called from the
desktop. However, in that case, it hides the toolbar, making the game look
and feel like a full-blown app. As an added bonus, this runs the game in a full-
screen mode, giving you a little more room for gameplay.

Figure 9-6 illustrates how the modified frog game looks when run as an app.

Again, this is an Apple-specific solution. There isn’t an easy way to achieve
the same effect on the Android devices.

	

Figure 9-6:
With the
toolbars

removed,
this page

looks like a
normal app.

	

224 Part III: Diving Deeper

Storing your game offline
Now your game is looking a lot like an app, except it runs only when you’re
connected to the Internet. HTML5 has a wonderful feature that allows you to
store an entire web page locally the first time it’s run. Then, if the user tries
to access the game and the system can’t get online, the local copy of the
game is run instead. In essence, the game is downloaded the first time it is
played.

This is a relatively easy effect to achieve:

	 1.	 Make your game stable.

		 Before you can use the offline storage mechanism, you’ll want to make
sure your game is close to release ready. At a minimum, you’ll need to
be sure you know all of the external files needed by the game.

	 2.	 Build a cache.manifest file.

		 Look at the directory containing your game, and create a new text file
called cache.manifest.

	 3.	 Write the first line.

		 The first line of the cache.manifest file should contain only the text
CACHE MANIFEST (all in capital letters).

	 4.	 Make a list of every file in the directory.

		 Write the name of every file in the directory, one file per line. Be careful
with your capitalization and spelling.

	 5.	 Add the manifest attribute.

		 The <html> tag has a new attribute called manifest. Use this to
describe to the server where the cache manifest can be found:
<html lang = “en”
 manifest = “cache.manifest”>

	 6.	 Load the page normally.

		 You’ll need to load the web page once in the normal way. If all is set up
correctly, the browser will quietly make a copy of the file.

	 7.	 Test offline.

		 The best way to test offline storage is to temporarily turn off wireless
access on your machine and then try to access the file. If things worked
out, you will be able to see your page as though you were still online.

225 Chapter 9: Going Mobile

	 8.	 Check server settings.

		 If offline storage is not working, you may need to check with your server
administration. The text/manifest MIME type needs to be configured
on the server. You may have to ask your server administrator to set this
option in the .htaccess file for your account:
addtype text/cache-manifest .manifest

	 Note that it can take the cache-manifest mechanism several hours to recog-
nize changes, so when you make changes to your page, these changes aren’t
automatically updated to the local browser. That’s why it’s best to save off-
line archiving for near the end of your project development cycle.

Managing Alternate Input
The most obvious differences between mobile games and their desktop cous-
ins are the different input mechanisms. Users of traditional computers pri-
marily use the mouse and keyboard for input, and mobile devices often don’t
have either of these mechanisms. The touch screen of a mobile device is
different than a mouse, and mobile devices also frequently allow tilt controls
with a built-in device called an accelerometer (which, as I mention earlier in
the chapter, is a tool that detects motion in the device).

If you want your games to work on mobile devices, you’ll need some way
to replace the keyboard and mouse with these mobile alternatives. The
simpleGame toolkit has some nice features for doing exactly this. You can
make buttons to emulate the keyboard, read the touch screen like a normal
mouse, use a virtual joystick to emulate the arrow keys, and respond to
motion.

Adding buttons
The keyboard is one of the easiest ways to get input in a standard browser,
but most mobile devices do not have keyboards (even when they do, they’re
often not available to the gaming interface). The first problem is to figure out
how to get user input when there’s no keyboard. Fortunately, the simple
Game library has a very handy feature called the GameButton for quickly
adding a button to the screen. Figure 9-7 shows a very simple game with a
single button.

226 Part III: Diving Deeper

	

Figure 9-7:
Click the

button and
the ball
moves.

	

The GameButton custom button object begins with the features of a stan-
dard HTML button but then adds a few tricks to make it suitable for gaming.
You can activate the button with a regular mouse or with the touch controls,
making it ideal for games that can be played on both types of devices. The
button.html page illustrates the button in action:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>button.html</title>
 <script type=”text/javascript”
 src = “simpleGame.js”></script>
 <script type=”text/javascript”>
 var btnMove;
 var game;
 var ball;

 function init(){
 game = new Scene();
 game.setSize(200, 200);
 ball = new Sprite(game, “redBall.png”, 25, 25);
 ball.setSpeed(0);

227 Chapter 9: Going Mobile

 ball.setPosition(100,100);

 btnMove = new GameButton(“Move”);
 btnMove.setPos(70, 150);
 btnMove.setSize(60, 30);
 game.start();
 } // end init

 function update(){
 game.clear();
 checkButtons();
 ball.update();
 } // end update

 function checkButtons(){
 if (btnMove.isClicked()){
 ball.setSpeed(3);
 } else {
 ball.setSpeed(0);
 } // end if
 } // end checkButtons
 </script>
</head>
<body onload = “init()”>

</body>
</html>

As usual, the new and interesting elements are indicated in bold. Here’s how
you add a game button to a game:

	 1.	 Create a variable for the button.

		 Like any other game element, you begin by creating a variable to refer to
the button. I call mine btnMove because it’s a button that moves things.
(I’m full of surprises like that.)

	 2.	 Build the GameButton object.

		 Build the GameButton object in the init() method. The single param-
eter indicates the button’s caption.

	 3.	 Set the button’s size and position.

		 You’ll want to think a bit about how your gameplay will work on mobile
devices. Place your buttons where they can easily be reached by the
player without blocking too much of the view. Note that you’ll also want
to make the buttons big enough to be pressed during the heat of the
game. (Onscreen buttons are much better for tablet-based games, where
there’s a little more room than on tiny phone screens.)

228 Part III: Diving Deeper

	 4.	 Check button status during update().

		 Just as you normally check keyboard status during the update() func-
tion, you can also call a function to check your button status. Of course,
you’ll need to write this function.

	 5.	 Read the button’s isClicked() method.

		 If the button is currently being pressed, the value of isClicked() is
true. If the button is not currently being pressed, isClicked() returns
false. Use this method to determine the current state of each button and
act accordingly.

	 6.	 Treat a button much like the keyboard.

		 Because testing the buttons ultimately returns Boolean (true or false)
values, checking for buttons usually feels a whole lot like checking for
the keyboard.

	 7.	 Consider adding buttons only when necessary.

		 If you want, you can design a game to display (and test) buttons only
when a touch screen is available. The Scene object has a special vari-
able called touchable. This variable is true if the library senses a touch
screen, and false otherwise. You can use this variable to generate a
custom interface that adapts to the playing environment.

Normally, you’ll add several buttons to your interface, one to replace each key
you expect the user to use (for example, arrows and the space bar). In this
way, you can create a virtual keyboard on the screen. You may need to test
the size and position of each key to get a comfortable gameplay experience.

Note that the caption of the button is ordinary HTML, so if you want to make
your buttons based on images, you can simply add the appropriate
tag as a button caption.

Responding to the mouse
Because web browsers are very inconsistent in the way they report the
mouse’s position, mouse input in normal JavaScript is a bit tricky. The
simpleGame library handles this by adding getMouseX() and
getMouseY() methods to the Scene object. These methods are not always
exactly correct, but they are close enough for most game programming.

Any time you want to read a normal mouse, just use the Scene object’s
getMouseX() and getMouseY() functions to determine the approximate
mouse position.

229 Chapter 9: Going Mobile

Most of the time when you want the mouse position, it’s because you’re going
to move an object where the mouse is or point an object toward the mouse.

Often, you’ll want to hide the mouse cursor, so you can use the Scene
object’s hideCursor() method to hide the cursor. (Of course, you can
retrieve the cursor with the showCursor() method.)

If you want to read a touch screen, there’s one more simple step. The
simpleGame library has a virtual joystick object called Joy. Create an
instance of this class to turn on the touch screen reading features.

Note that the touch interface of mobile devices is not exactly like the mouse,
so it needs a different interface. However, once you’ve created a Joy object,
the getMouseX() and getMouseY() functions will make touch input act
just like a normal mouse.

Figure 9-8 demonstrates touchMouse.html, which hides the normal mouse
cursor and moves a ball wherever the mouse is currently pointing. This par-
ticular example works with both a traditional browser and a touch screen
device.

	

Figure 9-8:
The ball
follows

the mouse
pointer.

	

230 Part III: Diving Deeper

The simpleGame library dramatically simplifies the process of working with
the mouse pointer by providing some easy method calls. Here’s the code:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>touchMouse.html</title>
 <script type=”text/javascript”
 src = “simpleGame.js”></script>
 <script type=”text/javascript”>
 var ball;
 var game;
 var joy;

 function init(){
 game = new Scene();
 ball = new Sprite(game, “redBall.png”, 25, 25);
 ball.setSpeed(0);
 game.hideCursor();
 joy = new Joy();
 game.start();
 } // end init

 function update(){
 game.clear();
 followMouse();
 ball.update();
 } // end update

 function followMouse(){
 x = game.getMouseX();
 y = game.getMouseY();

 if (game.touchable){
 // move object a bit higher for touch screens
 y -= 100;
 } // end touch screen test
 ball.setPosition(x, y);
 }

 </script>
</head>
<body onload = “init()”>
</body>
</html>

Getting a sprite to follow the mouse is just a matter of knowing what methods
to call.

231 Chapter 9: Going Mobile

	 1.	 Hide the mouse cursor.

		 The Scene object has a hideCursor() method. This is the easiest way
to hide the normal mouse pointer. Normally, when you follow the mouse
with an object, you mean for that object to act like the new mouse
pointer, so you’ll hide the normal arrow.

	 2.	 Create a variable for the virtual joystick.

		 If you’ll be working with a touchpad device, you’ll need a variable to
contain the virtual joystick object. I call mine joy. (If this game will be
used only on desktop machines with normal mice, you won’t need the
joystick object.)

	 3.	 Initialize the joystick.

		 Make an instance of the Joy object in the init() function. Just creating
the joystick will tell the engine to expect touch input and map it to the
normal mouse commands.

	 4.	 Add a followMouse() function.

		 It’s generally good to create a new function to handle input. The
followMouse() function will tell the object to follow the mouse. Of
course, if you’re building an object that follows the mouse, you can
make this a method of that object if you prefer. See Chapter 6 for more
on building custom methods for your objects.

	 5.	 Use getMouseX() and getMouseY() methods.

		 The Scene object has methods called getMouseX() and getMouseY().
Use these methods to get the X and Y coordinates of the mouse on the
scene. Note that the coordinates are not always exact.

	 6.	 Check to see if you have a touch screen.

		 The Scene object has a touchable property that is true if the browser
has a touch screen. You don’t normally want the object to be hidden by
your finger, so often you’ll want to offset an object when you’re using a
touch screen for input.

	 7.	 Move the object higher than your finger.

		 In a touch screen environment, you normally want the sprite to still be vis-
ible, so you’ll often offset the Y axis by some amount so it isn’t obscured
by the player’s finger. Subtract some value from Y to get this effect.

Reading the Virtual Joystick
Many touch-based games use a virtual joystick mechanism. The user touches
the screen to begin input, and then swipes to provide input. Swiping to the
left is read just like moving a joystick to the left. The farther the user swipes,

232 Part III: Diving Deeper

the larger the input value is. The simpleGame library has a virtual joystick
object that makes it easy to implement a virtual joystick on your touch-based
devices. Figure 9-9 shows joy1.html, which is a simple program illustrating
joystick input.

	

Figure 9-9:
This pro-

gram reads
inputs from

a virtual
joystick.

	

The virtual joystick works by returning numeric data. It’s often easiest to
understand how it works by looking at the numeric output before mapping it
to a visual element.

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>joystick Test</title>
 <script type=”text/javascript” src = ”simpleGame.

js”></script>
 <script type=”text/javascript”>

 var game;
 var output;
 var joystick;

 function init(){
 game = new Scene();
 output = document.getElementById(“output”);
 if (game.touchable){
 joystick = new Joy();
 } else {
 alert(“This test requires a touch-based

interface”);
 }
 game.start();
 } // end init

 function update(){
 if (game.touchable){
 jx = joystick.getMouseX();
 jy = joystick.getMouseY();

233 Chapter 9: Going Mobile

 jdx = joystick.getDiffX();
 jdy = joystick.getDiffY();

 result = “joystick x: “ + jx + “
”;
 result += “joystick y: “ + jy + “
”;
 result += “joystick dx: “ + jdx + “
”;
 result += “joystick dy: “ + jdy + “
”;

 output.innerHTML = result;

 } else {
 alert(“This example expects a touch

screen”);
 }
 } // end update
 </script>
</head>
<body onload = “init()”>
 <div id = “output”>Nothing here yet</div>
</body>
</html>

The virtual joystick is quite easy to use:

	 1.	 Create a variable for the joystick.

		 I will call mine joystick. Kind of catchy, I think.

	 2.	 Create the joystick if possible.

		 Use the game.touchable property to determine if a touch interface is
present. If not, send a message to the user. (Look ahead to the section
“Using virtual arrow keys” for how to make a game that works for key-
board and touch interfaces.)

	 3.	 Get the mouse position.

		 When the virtual Joystick object detects a touch on the screen, it trig-
gers mouseX and mouseY values. Use the joystick’s getMouseX() and
getMouseY() methods to determine the X and Y positions of the touch.
In this way, the touch interface acts much like the traditional mouse.
(Note that Scene.getMouseX() and Scene.getMouseY() compen-
sate for the scene’s position in the browser, and the joystick versions
refer to the actual position of the touch on the screen.)

	 4.	 Get a diffX and diffY reading from the joystick.

		 Here’s how a virtual joystick works: When the user touches the screen,
the library tracks the coordinates of the initial touch. It then measures

234 Part III: Diving Deeper

how far the user has swiped away from the original spot. The difference
in X is called diffX, and the difference in Y is called diffY. Use the
getDiffX() and getDiffY() methods of the virtual joystick object to
determine how many pixels in X and Y the user has moved since touch-
ing the screen.

	 5.	 Display the current values.

		 For this first pass, it’s important to understand what the joystick is dis-
playing, so just take the values and print them to an onscreen output.

Controlling an object with
the virtual joystick
Of course, the point of a virtual joystick is to move stuff around on the
screen. Take a look at joy2.html as shown in Figure 9-10 to see how you
can move a simple ball around the screen. As always, you really need to see
this program in action. In fact, you need to run it on a touch-based device to
really have fun with it.

	

Figure 9-10:
Now the vir-
tual joystick

moves the
ball.

	

235 Chapter 9: Going Mobile

Here’s the code:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>joystick Test</title>
 <script type=”text/javascript” src = “simpleGame.js”></script>
 <script type=”text/javascript”>

 var game;
 var ball;
 var joystick;

 function init(){
 game = new Scene();
 ball = new Sprite(game, “redBall.png”, 50, 50);
 if (game.touchable){
 joystick = new Joy();
 } else {
 alert(“This game requires a touch screen”);
 } // end if
 ball.setSpeed(0);
 ball.setPosition(400, 300);
 game.start();
 } // end init

 function update(){
 game.clear();

 if (game.touchable){
 ball.setDX(joystick.getDiffX());
 ball.setDY(joystick.getDiffY());
 } // end touchable

 ball.update();

 } // end update

 </script>
</head>
<body onload = “init()”>
 <div id = “output”></div>
</body>
</html>

This example is even simpler than the previous one.

	 1.	 Create a simple ball sprite.

		 For this example, a simple ball is used. Create it like any other basic
sprite.

236 Part III: Diving Deeper

	 2.	 Build a joystick object.

		 Make a virtual joystick object.

	 3.	 Map the joystick’s diffX and diffY to the ball’s dx and dy values.

		 In this very simple mapping, I displace the ball by exactly as many
pixels per frame as I moved my finger since the last touch. This gives
extremely sensitive motion, so you might want to adjust the sensitivity
by dividing the diffX and diffY by some scaling factor.

Driving with joy(sticks)
Now you can make an adaptable game that works with a regular keyboard or
virtual joystick input. Take a look at joystickCar.html in Figure 9-11.

	

Figure 9-11:
Drive the

car with a
joystick!

	

This program reads the virtual joystick if one is available, or the keyboard
if the game is running on a normal desktop machine.

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>joystickCar.html</title>
 <script type=”text/javascript”

237 Chapter 9: Going Mobile

 src = ”simpleGame.js”>
 </script>
 <script type=”text/javascript”>

 var game;
 var car;
 var joy;

 function init(){
 game = new Scene();
 car = new Sprite(game, ”car.png”, 30, 20);

 if (game.touchable){
 joy = new Joy();
 } else {
 alert(”Not a touch screen. Using keyboard”);
 } // end if

 game.start();
 } // end init

 function checkKeys(){
 if (keysDown[K_UP]){
 car.changeSpeedBy(1);
 }
 if (keysDown[K_DOWN]){
 car.changeSpeedBy(-1);
 }
 if (keysDown[K_LEFT]){
 car.changeAngleBy(-5);
 }
 if (keysDown[K_RIGHT]){
 car.changeAngleBy(5);
 }
 } // end checkKeys

 function checkJoy(){
 dx = joy.getDiffX();
 dy = joy.getDiffY();
 car.setSpeed((dy * -1) / 5);
 car.changeAngleBy(dx / 10);
 } // end checkJoy

 function update(){
 game.clear();
 if (game.touchable){
 checkJoy();
 } else {
 checkKeys();
 } // end if

238 Part III: Diving Deeper

 car.update();
 } // end update
 </script>
</head>
<body onload = “init()”>
</body>
</html>

The adaptable game is just like the car examples described in Chapter 5 but
now it can alternately accept a virtual joystick input if played on a touch
screen.

	 1.	 Check to see if a touch interface is available.

		 As usual, use Scene.touchable to see if the user has a touch screen.

	 2.	 Use the checkJoy() function if possible.

		 If the library sees a touch interface, use the checkJoy() function to
follow joystick input.

	 	 Otherwise, use the checkKeys() function for input.

		 If there is no touch screen, use the keyboard for input instead. Check
Chapter 5 if you need a refresher on how to read keyboard input.

	 3.	 Change the car’s angle with diffX.

		 When the user moves the joystick from side to side, the car will turn.

	 4.	 Modify diffX to get an appropriate turning rate.

		 The default value of diffX will create a car that’s difficult to control, so
you may need to dampen the turning rate by dividing by some value. I
divided by ten to get what seemed like the right performance.

	 5.	 Change the car speed with diffY.

		 Use diffY as the basis for changing the car’s speed. The car will move
quickly if the user pulls the joystick up, and will back up if the user pulls
the joystick down.

	 6.	 Invert diffY by multiplying by –1.

		 Remember that computer screens are inverted, so if the user pulls the
joystick up, there will be a negative diffY value. Compensate by multi-
plying diffY by negative 1.

	 7.	 Adjust the sensitivity of diffY.

		 Probably the default rate will be too difficult for the user to control, so
you’ll generally want to divide by some value to get an easier speed con-
trol. I divided by five, but you’ll need to experiment for your own games.

239 Chapter 9: Going Mobile

Using virtual arrow keys
I added one more convenience feature to the simpleGame library. There’s a
simple variation of the Joystick object that maps the virtual joystick into
ordinary arrow keys. This variation works the same on both normal keyboard-
based interfaces and touch-based machines.

I don’t show a screen shot, because it looks like any other ball-based game.

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>virtualKeys</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var game;
 var ball;
 //activate virtual arrow keys when joystick is present
 var virtKeys = true;

 function init(){
 game = new Scene();
 ball = new Sprite(game, “redBall.png”, 30, 30);
 ball.setSpeed(0);

 var joy = Joy();

 game.start();
 } // end init

 function update(){
 game.clear();
 checkKeys();

 ball.update();
 } // end update

 function checkKeys(){
 ball.setDX(0);
 ball.setDY(0);

 if (keysDown[K_UP]){
 ball.setDY(-5);
 }
 if (keysDown[K_DOWN]){
 ball.setDY(5);
 }
 if (keysDown[K_LEFT]){

240 Part III: Diving Deeper

 ball.setDX(-5);
 }
 if (keysDown[K_RIGHT]){
 ball.setDX(5);
 }
 }

 </script>
</head>
<body onload = init()>

</body>
</html>

The most interesting part about this program is what isn’t there. Although
it does respond to the virtual joystick, there is no explicit joystick testing.
Here’s how it works:

	 1.	 Turn on virtual keys.

		 In the main part of your code, create a variable called virtKeys and set
it to true. The virtual joystick will look for this variable.

	 2.	 Create a virtual joystick.

		 If the virtKeys variable is set to true, your joystick object will detect
motion and automatically map it to arrow keys. For example, moving the
virtual joystick up maps to the up arrow. Moving the joystick down maps
to the down arrow, and left and right are likewise treated as key presses.

	 3.	 Only check for the keyboard.

		 If you’re using the virtKeys mechanism, there’s no need to do a sepa-
rate joystick check. Just check the keyboard, and if you’re on a touch-
based device, the joystick behavior is quietly transferred to the keyboard.

The virtual arrow-keys technique is great when you want a quick way to make
a program that works for both a keyboard and a mobile device. You may
need to experiment with buttons or some other input mechanism if you need
additional input.

Tilting at windmills with
the accelerometer
Mobile devices have another very intriguing input mechanism. You can control
many mobile games by tilting the device. This works with a special on-board
tool called the accelerometer, which tracks motion. The accelerometer actually
measures rotation, and you can use it to get nice tilt controls in your game.

241 Chapter 9: Going Mobile

Reading the tilt
Figure 9-12 shows a game with tilt controls, but you can tilt the book all you
want and you won’t see anything interesting. You’ll really need to look at this
example on your mobile device.

	

Figure 9-12:
Tilt the

screen to
move the

ball.
	

The simpleGame library has a special object called Accel that encapsulates
the accelerometer. It works very much like the Joy object.

	 1.	 Create an Accel object.

		 SimpleGame has an Accel object. Create this object to turn on acceler-
ometer testing.

	 2.	 Use methods to determine tilt.

		 The Accel object has special methods called getAX() and getAY()
that indicate the rotation amount.

	 3.	 Modify acceleration values.

		 The AX and AY values display the amount of rotation around the X and Y
axis, respectively. The values range from –9 to 9. Generally, you’ll need
to modify the tilt values to get exactly the behavior you want. This usu-
ally involves a few simple math calculations.

242 Part III: Diving Deeper

Here’s the code for accel.html:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>accel.html</title>
 <script type=”text/javascript”
 src = ”simpleGame.js”></script>
 <script type=”text/javascript”>
 var game;
 var ball;
 var accel

 function init(){
 game = new Scene();
 ball = new Sprite(game, “redBall.png”, 50, 50);
 accel = new Accel();

 game.start();
 } // end init

 function update(){
 game.clear();

 newDX = accel.getAY();
 newDY = accel.getAX();

 newDX *= -5;
 newDY *= -5;

 ball.setDX(newDX);
 ball.setDY(newDY);

 ball.update();

 }

 </script>
</head>
<body onload = “init()”>

</body>
</html>

243 Chapter 9: Going Mobile

The accelerometer is easy to use:

	 1.	 Make a variable to hold the accelerometer object.

		 I normally call my variable accel.

	 2.	 Use accel.getAX() to get rotation around X.

		 The getAX() method returns the percentage of tilt around the X axis.
The X axis goes from side to side on the screen, so rotation around X is
normally tied to motion along the Y axis!

	 3.	 Use acccel.getAY() to determine rotation around Y.

		 Likewise, the getAY() method describes the percentage of tilt along
the (vertical) Y axis. Normally, you’ll use getAY() to control horizontal
motion.

	 4.	 Don’t be concerned about the Z axis.

		 You can also read rotation along the Z axis (which goes from the center
of the screen to your nose), but this is generally not helpful.

	 5.	 Assume (for now) that the neutral position is lying perfectly flat on a
table.

		 You’ll get zero values for getAX() and getAY() when the device is
lying completely still on a perfectly flat table. Look ahead to the next
section “Calibrating the accelerometer” for advice on setting another
position to be the default.

	 6.	 Experiment with scaling factors.

		 You’ll generally have to multiply the getAX() and getAY() results by
some amount to get the behavior you want. I multiplied both by negative
five to get appropriate values for dy and dx. You’ll need to experiment
to get exactly the behavior you want.

Calibrating the accelerometer
By default, the accelerometer assumes the neutral position is perfectly
horizontal — that is, the device is lying flat on a table. However, these are
mobile devices, and gamers will often want to have the neutral position be
somewhere else. When I’m sitting up, I may prefer to have the device at a
horizontal position. If I’m playing a game while lying on the couch, I’d prefer
a more vertical neutral position. It’s pretty easy to add a calibration mecha-
nism to your game so it is more comfortable for the user. Figure 9-13 shows
such a feature in place.

244 Part III: Diving Deeper

	

Figure 9-13:
Now the
user can
reset the
acceler-

ometer by
clicking the

button.
	

You know the drill. You’ve got to play with this on a device with tilt controls.
The basic technique for calibrating tilt controls is to keep track of an offset
value for AX and AY. When the user chooses to recalibrate, the offset values
are changed to make a new neutral position. Here’s the relevant code:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>accel.html</title>
 <script type=”text/javascript”
 src = “simpleGame.js”></script>
 <script type=”text/javascript”>
 var game;
 var ball;
 var accel;
 var btnCalibrate;
 var offsetAX = 0;
 var offsetAY = 0;

 function init(){
 game = new Scene();
 ball = new Sprite(game, “redBall.png”, 50, 50);
 accel = new Accel();
 btnCalibrate = new GameButton(“calibrate”);
 btnCalibrate.setSize(100, 100);
 btnCalibrate.setPosition(100, 100);

245 Chapter 9: Going Mobile

 game.start();
 } // end init

 function checkButton(){
 if (btnCalibrate.isClicked()){
 offsetAY = accel.getAY();
 offsetAX = accel.getAX();
 }
 }

 function update(){
 game.clear();

 checkButton();

 newDX = accel.getAY() - offsetAY;
 newDY = accel.getAX() - offsetAX;

 newDX *= -5;
 newDY *= -5;

 ball.setDX(newDX);
 ball.setDY(newDY);

 ball.update();

 }

 </script>
</head>
<body onload = “init()”>

</body>
</html>

Somehow you need to trigger the calibration. For this example, you add a
basic calibration button. Here’s how it works:

	 1.	 Add offsetAX and offsetAY variables.

		 These two variables indicate how much the device’s neutral position is
different than the standard flat-on-the-table attitude. Begin the variables
at value zero.

	 2.	 Add a calibrate button.

		 For this example, I allow the user to recalibrate by clicking a button. See
the earlier section “Adding buttons” if you need a refresher on how to
add buttons to your game.

246 Part III: Diving Deeper

	 3.	 Check for a button press.

		 As normally, I create a function to read any button presses.

	 4.	 If the button is pressed, get new offset values.

		 When the button is active, find the current AX and AY values by request-
ing them from the Accel object.

	 5.	 Subtract offsets from ax and ay on every frame.

		 Before any other calculations, subtract the offsetAX from AX and
offsetAY from AY. This will effectively set the new neutral position to
however the device was set the last time the button was clicked.

Although a calibrate button is very easy to implement, sometimes the cali-
bration is done automatically. If you prefer, just determine offsetAX and
offsetAY during the init() function, and the attitude of the device during
the init() function becomes the default attitude. This doesn’t allow the
user to reset the calibration, but it does prevent cluttering the screen with a
rarely used button.

Chapter 10

Documenting simpleGame
In This Chapter
▶	How simpleGame is organized
▶	Main characteristics of the Scene class
▶	Using the Sprite class
▶	Working with the Timer and Sound objects
▶	Using the virtual joystick for mobile input
▶	Working with the accelerometer on mobile devices
▶	Creating virtual buttons
▶	Reading the keyboard
▶	Modifying the game engine

T
he simpleGame library streamlines HTML5 game development. It’s a
powerful tool, and there are many details. This chapter simply walks

through every single object and method in the library and explains how
everything works in detail.

Overview of SimpleGame
The simpleGame.js library was designed with a few key features in mind:

	 ✓	Ease of learning: Perhaps the most important design goal was to create
a library that is easy to learn and use. The library has a relatively small
number of objects, and it strives to use straightforward language when-
ever possible.

	 ✓	Hiding complexity: Game programming often requires a great deal of
complexity. HTML5 game development can be especially tricky. Many
of the concepts needed in a game engine (collision detection, sound
effects, vector projection) involve complex math and programming,
which is hidden from the game developer when possible.

248 Part III: Diving Deeper

	 ✓	Platform-agnostic: The library was designed to work as well as possible
on many platforms. It works on most modern browsers as well as mobile
devices.

	 ✓	Mobile-friendly: The library aims to support not only traditional desk-
top web browsers but also mobile devices like cell phones and tablets.

	 ✓	Reasonably powerful: On a modern computer, the library can perform
about as well as many other web and mobile gaming platforms, includ-
ing Flash.

	 ✓	Object-oriented: The library uses objects throughout, with a consistent
scheme. All the main features are supported by an appropriate object,
which has properties and methods that allow you to manipulate the
object.

	 ✓	Free and open source: The simpleGame.js library is available for
anyone to use for free. You can also modify the library and add your
own features.

The Scene Object
The central object of the simpleGame library is the Scene. When you create
a Scene object, two primary things happen: The Scene creates a canvas
tag to hold all the visual aspects of the game, and it begins a timing loop that
causes a function called update() to run 20 times per second.

You create the Scene object variable as a global variable so it is available to
all functions. You’ll normally initialize Scene as the first line of your init()
function. The Scene constructor requires no parameters. The Scene object
is first described in Chapter 5, with more features described throughout the
book.

Primary properties of the Scene object
The Scene object has a number of interesting properties you can read
directly:

	 ✓	touchable: The touchable property returns true when the browser
detects a touch screen and false when there is no touch screen. This is
an ideal way to determine if the game is currently being run on a mobile
device. You should never change this property directly. Just use it to
determine if the current device has a touch interface (usually with an if
statement).

249 Chapter 10: Documenting simpleGame

	 ✓	canvas: The canvas property provides a reference to the canvas ele-
ment produced by the scene. You can directly modify the canvas ele-
ment (changing its size, for example), but it’s much better to use the
various methods provided for this purpose.

	 ✓	height, width: These two properties show the current height and
width of the game area. Use the setSize() method to assign new
values to height and width.

	 ✓	top, left: These two properties are used to describe the current
position of the playing area’s top-left corner. Use the setPosition()
method to change the position of the game surface.

Important methods of the Scene class
Like most objects, the Scene object is controlled with methods, which are
used to manage the scene and change its behavior and appearance.

	 ✓	start(): The start() method is used to begin the game. Normally,
you’ll call the start() method at the end of the page’s init() func-
tion, triggering the beginning of the game. The start() method adds
the canvas to the page and begins the timing loop, which causes
update() to be called 20 times per second. See Chapter 5 for more
information on initializing a scene.

	 ✓	clear(): This method clears the canvas, drawing the background color
(use setBackground() to change the background color). Typically,
you’ll call clear() at the beginning of the update() function. Failing to
clear the scene can lead to trails of sprites drawn on the playing surface.
Chapter 5 describes how to use the clear() method.

	 ✓	stop(): The stop() function is used to end the game. The timing loop
is no longer called, so the screen pauses. If you want to clear the screen,
call clear() before stopping the game. If you want to reset the game,
the easiest way is to reload the page: document.location.href =
“”. You can find out more about stopping and restarting the game in
Chapter 7.

	 ✓	setSize(width, height): This method changes the size to the given
width and height (measured in pixels). It may be necessary to adjust the
size to make your game work well on mobile devices. This function is
illustrated in Chapter 9.

	 ✓	setPos(left, top): This method changes the position of the game
surface to the given values.

	 ✓	setSizePos(width, height, left, top): This is a utility function
that allows you to change the size and the position at the same time.

250 Part III: Diving Deeper

	 ✓	setBG(color): This method changes the background color of the play-
ing area. You can use any of the normal CSS color values (named colors
or hex values). The game canvas is repainted to the indicated color
every time the scene’s clear() method is activated.

	 ✓	hideCursor(): This method allows you to hide the mouse cursor. It is
especially useful when the game uses mouse or touch screen informa-
tion as an input.

	 ✓	showCursor(): The showCursor() method makes the ordinary mouse
cursor visible again after being hidden by hideCursor(). The cursor
methods are detailed in Chapter 9.

	 ✓	getMouseX(), getMouseY(): These two methods are used to return
the position of the mouse on the game canvas. Note that these methods
(unlike the joystick variations of the same methods) compensate for
the position of the canvas. Mouse and joystick techniques are fully dis-
cussed in Chapter 9.

	 ✓	hide(): Hides the game canvas. This is useful when you want to use the
game’s timing loop but you don’t necessarily want to show the canvas. (I
used this for a few examples throughout the book when the canvas itself
wasn’t needed.)

	 ✓	show(): Displays the game canvas after it has been hidden by hide().

The Sprite Class
Scenes provide the background of a game, but the other key element in
simpleGame is the Sprite class. Nearly every game element is based on the
sprite, so understanding what the sprite can do is the key to writing games
in simpleGame. The Sprite class is first introduced in Chapter 5, and it is
further described throughout the book.

The Sprite class is quite large, so the various properties and methods are
broken into several different categories.

The sprite constructor has a number of important parameters:

mySprite = new Sprite(scene, imageFile, width, height)

You need to create each sprite as a global variable, and the sprites should
all be initialized in the init() method. You must indicate all the required
parameters when creating a sprite:

	 ✓	scene: Sprites are always associated with a given Scene. Generally,
you’ll create a Scene first and then create sprites attached to that scene.

251 Chapter 10: Documenting simpleGame

	 ✓	imageFile: This is the filename of the image the sprite will be based
on. Typically, this will be a smaller image in a web-friendly format (.gif,
.jpg, or .png). The .svg format is also allowed by most browsers.
Usually, you’ll want to design your sprites so they face east by default.
This will cause the direction properties to work as expected.

	 ✓	width, height: These are the width and height of the sprite.

Main properties of the sprite
The sprite has a number of properties. You can read values from these prop-
erties, but it’s normally best not to change them directly. Instead, use the
appropriate method to change the behavior or appearance of a sprite. Basic
sprite methods are described in Chapter 5, but you’ll see more advanced
techniques used throughout the book, especially in Chapter 8.

	 ✓	canvas: The canvas element upon which the sprite is drawn.

	 ✓	width, height: The width and height of the sprite. Important not only
for the visual display of the element but also in collision detection.

	 ✓	cWidth, cHeight: Size of the canvas containing the element. This infor-
mation can be useful when you make a custom boundary action. See the
checkBounds() method for more information.

	 ✓	x, y: Position of the sprite. Do not change these values directly, but use
one of the many sprite motion mechanisms. However, you can use these
properties to discover the current position of the sprite.

	 ✓	dx, dy: Motion of the sprite. Do not change these values directly, but
you can use these properties to determine how quickly the sprite is
moving vertically (dy) or horizontally (dx).

	 ✓	speed: You can use this property to view the speed of the sprite, but do
not change it directly. Instead, use one of the speed methods described
later.

Appearance methods of the Sprite
Use these methods to change the appearance of the Sprite element:

	 ✓	changeImage(imgFile): Changes the image to the image file. The
file should be in a web-safe format, and should not be larger than the
intended display size.

	 ✓	setImage(fileName): Another name for changeImage(). Works
exactly like changeImage().

252 Part III: Diving Deeper

	 ✓	update(): This method draws the sprite on the screen. Typically, you
will update each sprite at the end of the main program’s update() func-
tion. Sprites that are updated first appear at the bottom of the screen, so
if you want a sprite to appear above another sprite, update it later.

	 ✓	hide(): Hides the sprite. The sprite will still calculate speed and posi-
tion, but it will not be displayed on the screen, and it will not collide
with other sprites.

	 ✓	show(): This function displays a sprite that was hidden with the
hide() method.

	 ✓	report(): This is a utility method that displays the current position,
dx, dy, speed, and angle to the debugging console. It is intended only for
debugging purposes, but can be quite handy when you’re trying to dis-
cover what a sprite is supposed to be doing.

Movement methods of the sprite
One of the most important jobs of the Sprite object is to move around the
screen in interesting ways. At its very essence, position is stored as an (x, y)
coordinate pair. You can directly set the position of the sprite, but there are
many convenience methods that give you better control of sprite motion. The
basic motion format is a motion vector (dx, dy). You can set these values
directly with appropriate methods, but sprites also have speed and angle
attributes that can give much more interesting behavior. In fact, a sprite has
two different angle measurements, the imageAngle and the moveAngle. The
imageAngle determines which direction the sprite is facing, and the move-
Angle determines the direction of motion. If you simply change the angle,
you’re changing both the image and movement angles at once. All angles in
simpleGame are measured in degrees using normal navigation formatting,
with 0 degrees pointing up and 90 degrees pointing to the right.

	 ✓	setPosition(x, y): Immediately changes the position of the sprite to
the give X and Y coordinates.

	 ✓	setX(newX), setY(newY): Allow you to change X and Y to some new
value.

	 ✓	setDX(newDX), setDY(newDY): Change motion in X or Y axis. If you
set the dx value to 5, for example, the sprite will move five pixels to the
right every frame until the dx value is changed again. The angle and
speed settings of the sprite will be affected by changes in dx and dy.
(This is why you must always use functions to change dx and dy — if
you change the properties directly, the speed and angle will no longer
be accurate.) The sprite will continue moving at the indicated speed and
direction until DX or DY is changed again directly or indirectly.

253 Chapter 10: Documenting simpleGame

	 ✓	changeXby(newDX), changeYby(newDY): Immediately change the X
or Y value by the indicated amount, but do not change DX or DY. After
this method is called, the sprite will continue to move according to its
DX and DY values.

	 ✓	setSpeed(speed): Sets the speed to the indicated value. Speed is deter-
mined in pixels per frame. You can set speed to a positive or negative
value. The speed will change immediately with this method. If you want a
more realistic change in speed, use changeSpeedBy() or addVector().

	 ✓	getSpeed(): Returns the current speed based on the current settings
of dx and dy.

	 ✓	changeSpeedBy(diff): Changes the speed by the diff amount. A
positive value will cause the sprite to speed up in the moveAngle direc-
tion, and a negative value will slow the sprite down. It is possible to
attain negative speeds, which will cause the sprite to move backward.
You may want to assign top and bottom speeds to keep your sprite from
moving so quickly that it is difficult to control.

	 ✓	setImgAngle(degrees): Changes the angle at which the sprite is
drawn. Does not affect the motion angle. Use this mechanism to rotate
a sprite without changing its direction of travel. Immediately sets the
image angle to the indicated angle. The degrees value should be an inte-
ger between 0 and 360, but larger and smaller values will be accepted and
adapted to appropriate values. This method immediately turns to the
indicated angle. Use changeImgAngleBy() for animated rotation.

	 ✓	changeImgAngleBy(degrees): Changes the image angle by the indi-
cated degree measurement. Use a positive value to rotate the sprite
clockwise and a negative number to rotate counterclockwise.

	 ✓	getImgAngle(): Returns the sprite’s current image angle in degrees.

	 ✓	setMoveAngle(degrees): Immediately sets the sprite’s motion angle
to the indicated angle. Does not affect visual rotation of the image, so
this can be used when you want to decouple the direction a sprite is
pointing and the angle at which it travels. (This technique is frequently
used for skidding behavior, for example.)

	 ✓	changeMoveAngleBy(degrees): Changes the movement angle by the
indicated amount. You use it to modify the motion angle over time.

	 ✓	getMoveAngle(): Returns the sprite’s current motion angle in degrees.

	 ✓	setAngle(degrees): A utility function that sets both the image and
motion angle. You use it when the sprite will be traveling in the same
direction it’s pointing (as in most simple driving games without skidding).

	 ✓	changeAngleBy(degrees): Changes both the motion and image angle
at the same time. Used to turn the sprite gradually.

254 Part III: Diving Deeper

	 ✓	turnBy(degrees): Another name for changeAngleBy().

	 ✓	addVector(degrees, thrust): A very powerful method that adds a
motion vector to the current sprite. The function applies a vector in the
direction indicated by degrees and with the force indicated by thrust.
Skillful use of this method can lead to many interesting physics-based
behaviors. See Chapter 8 for a complete examination of this flexible
method, which is used for gravity, skidding, and orbits, among other
things.

Boundary methods of the sprite
With all this movement, it isn’t surprising that sprites sometimes leave the
confines of the game canvas. Most boundary-handling behavior is automatic,
but you can either change the default boundary-checking mechanism, or you
can add your own. Note that each sprite has a different boundary-checking
behavior, so you can have more than one boundary mechanism in the same
game. (Bullets frequently die when they leave a screen, whereas spacecraft
may wrap around, for example.)

	 ✓	setBoundAction(action): Determines what the sprite will do when it
hits a screen boundary. The action value can be one of the following:

	 •	WRAP: The sprite will keep the same speed and angle, but will appear
on the opposite of the side it left. So if a sprite leaves the left side of
the screen, it will appear on the right, but the speed and direction of
travel will remain the same. WRAP is the default bound action.

	 •	BOUNCE: The sprite will stay in the same spot, but its direction will
be reversed. If it bounces off the top or bottom of the canvas, the
dy value is inverted. If it bounces off the left or right of the canvas,
the dx value is inverted.

	 •	STOP: The sprite’s speed will be set to zero, and the sprite will stay
at the spot where it left the screen. It may appear only partially
onscreen. If you want a stopped sprite to move again, you’ll need
to change its direction, position, or boundary action.

	 •	DIE: The sprite will stop moving and will be hidden. It’s not
removed from memory, but it will no longer be displayed, nor will
it register collisions.

	 •	CONTINUE: The sprite will continue to travel beyond the visible
canvas. Use this option only when there’s some way of getting the
sprite back (as in an orbit demonstration or when the off-screen
coordinates are displayed, such as in an air-traffic control simula-
tion). If the boundAction is set to some value the game engine
does not recognize, CONTINUE will be set.

255 Chapter 10: Documenting simpleGame

	 ✓	checkBounds(): The checkBounds() function automatically uses the
indicated bound action. If you need a custom bound action (for example,
you want to wrap off the top and bottom but bounce off the sides), you
can create your own checkBounds() method. However, you’re then
completely responsible for ensuring that your method handles all the
possible boundary conditions. Never call checkBounds() directly (it’s
already called at the appropriate moment), but overwrite it if you need
some sort of fancy boundary-checking behavior.

Collision methods of the sprite
The sprite has two main ways to check collisions. There is a standard
collidesWith() method that checks for bounding-rectangle collisions. In
addition, you can use the distanceTo() and angleTo() methods to get a
better sense of the proximity of two sprites. Chapter 6 describes collision-
detection in some detail.

	 ✓	collidesWith(sprite): Returns true if this sprite’s bounding rect-
angle is currently overlapping the given sprite’s bounding rectangle.
Note that this is a very fast collision routine, but it’s not pixel-perfect. In
particular, long, thin sprites will have very different collision behaviors
if they’re diagonal, vertical, or horizontal. If you need more uniform colli-
sion mechanism, use the distanceTo() method instead. If either sprite
is invisible, a collision will not be registered.

	 ✓	distanceTo(sprite): Returns the distance (in pixels) between this
sprite and the target sprite. Useful for boundary-circle checking. If the
distance between two sprites is less than some threshold, count it as a
collision. Unlike the standard collidesWith() mechanism, the distance-
based collision technique works the same regardless of the sprites’ orien-
tations. This method works whether the sprites are visible or not.

	 ✓	angleTo(sprite): Returns the angle (in degrees) from the current
sprite to the given sprite. Use this method to have a guided missile that
always points to a target or to apply a gravity vector between a planet and
a spacecraft. This method works whether the sprites are visible or not.

Animation methods of the sprite
The simpleGame library has limited support for sprite sheet animations. See
Chapter 8 for a description of this technique. The following methods assist
with animations:

256 Part III: Diving Deeper

	 ✓	loadAnimation(width, height, cellWidth, cellHeight):
Indicates that the image associated with the sprite is actually a sprite
sheet. The first two parameters indicate the size of the overall sprite sheet,
and the second two values indicate the width and height of a single cell
within the sheet.

	 ✓	generateAnimationCycles(): Generates a series of animation
cycles. Default behavior presumes each row is a new state and each
column is an animation within that state. Typically, rows indicate direc-
tions and columns indicate cells within the animation.

	 ✓	renameCycles(cycleNameArray): This method allows you to set
string names to each of the cycles. These usually indicate directions or
behaviors.

	 ✓	setAnimationSpeed(speed): This method indicates how quickly the
animation will cycle. Setting a higher value will slow down the animation.

	 ✓	setCurrentCycle(cycleName): Changes the animation cycle to the
one indicated by the cycle name. They’re normally used to change ani-
mation state.

	 ✓	PlayAnimation(): Begins (and repeats) the currently indicated
animation.

	 ✓	PauseAnimation(): Pauses the animation until it is restarted with a
playAnimation() command.

Utility Classes
In addition to the main two classes, the simpleGame library includes a
number of helpful utility classes. Use these classes to add features to your
game, from sound effects to mobile device interface schemes.

The Sound object
The Sound class encapsulates the HTML5 audio object and makes it very
easy to build sound effects. When you build a sound object, you’ll actually be
creating an HTML5 audio object that isn’t displayed but that can be played
with JavaScript code. Note that the sound object has the same limitations
as HTML5 sound elements. Most importantly, no single audio format is guar-
anteed to play on every browser. For best results, create each sound effect
twice (once in .mp3 and once in .ogg format) and create a Sound object for
each. Use of the Sound object is described in Chapter 6.

257 Chapter 10: Documenting simpleGame

	 ✓	sndElement = new Sound(src): Creates a new Sound object.
Generally, you’ll want to store the sound in a global variable. The src
attribute indicates the filename of the sound. For maximum effectiveness,
create two objects for each sound effect (one in .mp3 and one in .ogg).

	 ✓	play(): Plays the sound effect encapsulated by the sound.

	 ✓	showControls(): Shows the HTML5 control panel (a Play button and
a simple scrubber) for the sound effect. By default, controls are turned
off. This option was added as a workaround for an issue with iPhone and
iPad browsers.

Note that the iPhone and iPad operating systems have a well-known prob-
lem playing back sound effects from JavaScript. IOS (the iPhone, iPad, and
iPod operating system) refuses to preload a sound and will load the sound
effect only after direct user feedback. In practice, this means you cannot load
a sound in the background. However, there is a loophole. Use the Sound
object’s showControls() method to make the HTML5 audio control panel
appear for each sound. The user can then manually load each sound by play-
ing it once. When the sound is in memory, it will play within the game with no
problems. Each time the page is reloaded, you will need to reload the sounds.

See Chapter 6 for complete details on how to use the sound object.

The Timer object
The Timer is a simple object designed to give you an easy way to work with
elapsed time. It has two methods, and they are both quite straightforward:

	 ✓	reset(): This command resets the timer. Use it whenever you want to
begin counting some amount of time.

	 ✓	getElapsedTime(): This method returns the number of seconds since
the timer was started or reset.

If you look at the source code, you’ll find another method, getCurrent-
Time(), but this is used only internally and isn’t likely to be useful as it is. (It
returns the current time in a format that’s useful for calculations, but it’s not
human-readable.)

The Timer is explained in Chapter 6.

258 Part III: Diving Deeper

The virtual joystick
One of the most interesting features of the simpleGame library is its sup-
port for mobile devices. Because these devices often don’t have keyboards,
they rely on alternative input methods. The virtual joystick object is used to
manage touch screen input.

	 ✓	joystickName = new Joy(): Creates a virtual joystick object.
Normally, it’s best to do this after checking for the touchable interface
through the scene.touchable property. However, if you create a vir-
tual joystick and the browser cannot support it, the joystick commands
will simply be ignored.

	 ✓	getMouseX(), getMouseY(): These methods return the X and Y
position of the touch. If a virtual joystick is turned on, the scene’s
getMouseX() and getMouseY() methods will reflect the mouse’s posi-
tion. Note that with a real mouse, there is always a value for mouseX
and mouseY. With a touch interface, there isn’t a meaningful value for
mouseX and mouseY unless the user is currently touching the screen.
Chapter 9 details the use of the touch screen and mouse.

	 ✓	getDiffX(), getDiffY(): Return a value indicating how much the
user has moved the mouse in X or Y since initially touching the screen.
This is the foundation of the virtual joystick. See Chapter 9 for details on
using the virtual joystick object.

	 ✓	virtKeys: This is an ordinary variable. If you create a variable called
virtKeys and set it to true before you create a virtual joystick, the joy-
stick will automatically act like arrow keys. This is an easy way to build a
multi-platform game. Use the arrow keys as the primary input interface,
but add the virtual arrow key interface so mobile users can replace the
keys with a virtual joystick. See Chapter 9 for more detail on using the
virtual joystick in this way.

The virtual accelerometer
In addition to touch input, mobile devices also include support for motion-
detection with a built-in accelerometer. The accelerometer measures rotation
around all three axes, but X and Y turn out to be most useful.

	 ✓	AccelName = new Accel(): Builds a new accelerometer object called
accelName. If the device does not support an accelerometer, nothing
will happen (so you’ll want to include some other input type, such as the
keyboard or buttons).

259 Chapter 10: Documenting simpleGame

	 ✓	getAX(): Gets acceleration around the X axis. Note that the X axis is side-
to-side, so acceleration around this axis will often map to changes in Y.

	 ✓	getAY(): Gets the acceleration around the Y axis, which is vertical.
Normally, you’ll map acceleration around Y to changes in an object’s X
or dx values.

	 ✓	GetAZ(): Technically, this reads acceleration around the Z axis, which
runs from the center of the screen to the user’s nose. In reality, this is
rarely used because these rotations will usually also trigger an accelera-
tion around Y.

	 ✓	getRotX(), getRotY(), getRotZ(): These utility functions indicate
the amount of rotation around each of the axes since the last frame.
They’re provided as a service, but normally the getAX() and getAY()
functions are sufficient for handling most rotation situations.

See Chapter 9 for more information on how to use the accelerometer for
motion-sensing.

The game button
The game button provides a convenient button that can be used in both
desktop and mobile games. It’s essentially a standard HTML button, but it’s
optimized for game programming, especially on mobile devices as an alterna-
tive to keyboard input.

	 ✓	buttonName = new GameButton(label): Creates a new button. The
label text will become the text of the button.

	 ✓	setPosition(x, y): Sets the position of the button to the indicated
screen coordinates. The button can be placed on the playing surface or
anywhere else on the screen.

	 ✓	setSize(width, height): Sets the width and height of the button to
the indicated values. Remember that buttons may be easier to press if
they’re larger.

	 ✓	isClicked(): Returns a true value if the button is currently pressed
or false if the button is not currently pressed. Use this method to
easily check the state of the button.

Note that the label can be any valid HTML text, including plain text or an image
(using the standard tag). You can also use CSS to style your labels (use
the standard button style) to make them semitransparent if you prefer. You
can find complete discussion of the GameButton class in Chapter 9.

260 Part III: Diving Deeper

Keyboard array
The keyboard is a primary input mechanism for the simpleGame engine, so
it’s designed to be easy to use. As soon as the Scene is initialized, a special
array called keysDown is created. There is an entry in this array for each of
the main keys on the keyboard. Check the status of a key by using the key-
board constant as the index. The keyboard constants all begin with a capital
“K,” followed by an underscore and the letter name (for example, the A key
is K_A, and B is K_B). In addition to the letter and number keys, the following
keyboard constants are defined:

	 ✓	K_UP

	 ✓	K_DOWN

	 ✓	K_LEFT

	 ✓	K_RIGHT

	 ✓	K_SPACE

	 ✓	K_ESC

	 ✓	K_PGUP

	 ✓	K_PGDOWN

	 ✓	K_HOME

	 ✓	K_END

Note that these keys are defined for a standard U.S. keyboard, and some
behavior may be different on different keyboards.

This system (unlike standard JavaScript keyboard techniques) allows for
multiple keys to be pressed at one time.

Chapter 5 describes how to read the keyboard.

Making the Game Engine Your Own
The simpleGame library is already pretty feature-packed. But there’s always
room for improvement. If you’re interested (and willing to dig around a little
bit), you can poke around the code yourself to see how it works. If you want
to add your own features, you can do so. A few adventuresome developers
are already working on improvements to the library including support for
tile-based worlds and enhanced animation features.

By all means feel free to experiment. If you add something really great, let me
know, and I’ll add it to the next version of simpleGame!

Part IV
The Part of Tens

In this part . . .

T
his part contains some of the most fun stuff in
the book. If you want to learn more about how

simpleGame works, find great places to get free artwork,
or see how a particular type of game is written, this is the
part for you.

Chapter 11 is a list of game asset resources. There are
many exceptional tools and resources for building the
graphics and sound effects you’ll need for your game.
I provide links and descriptions for my favorites.

Chapter 12 is the geekiest chapter in the book. In this
chapter, I go under the hood of the game engine and
explain how many of the key features work. Read here to
discover how the canvas element is used throughout the
game engine, how the animation loop really works, and
how the library handles sound effects and the keyboard.
As I explain how angle measurements, vector projection,
and transformations are used everyday by game
programmers, you see why mathematics is so critical
for game programmers.

Chapter 13 is just fun. I use the ideas presented
throughout the book to build ten different game starters.
Each game illustrates a different genre and introduces a
practical concept or two. I provide the beginning code for
a platform-jumping game, a whack-a-mole game, tile-
based-worlds, a simple RPG combat system, a basic tic-
tac-toe AI, and much more. I deliberately left the games
unfinished so that you can take them as starting points
and build something amazing on your own.

Chapter 11

Ten Great Game Asset Resources
In This Chapter
▶	Discover great tools for building graphics with raster, vector, and 3D technologies
▶	Record your own sound effects with free tools
▶	Learn to build retro sound effects
▶	Explore libraries of sounds and images for your games

T
his book teaches all about game development, but to make a game, you’ll
need various tools — especially graphics and sound effects. In this chap-

ter, I describe ten really great tools for making games (and I snuck in one
extra tool for your consideration). Some are software, some are websites, and
all are awesome.

Dia Diagramming Tool
Game development requires planning and documentation. Many times you’ll
want to have some sort of tool to help you plan your game, whether you’re
thinking about how the user goes from state to state in an adventure game or
you’re designing a screen diagram for your top-down racer. In any case, you’ll
probably want some kind of diagramming tool.

Dia is a very popular free tool, available at http://projects.gnome.
org/dia.

Dia is a vector editor, which means it’s particularly good at diagrams. You
can place elements and then move them around, and you can draw lines
and arrows between elements. When you move the elements, any lines
drawn between them are automatically moved. Most of the diagrams in this
book (including the state diagram in Chapter 1, the Word Story diagram in
Chapter 2, and the frog game diagram in Chapter 7) were created in Dia.

You can see Dia being used in Figure 11-1.

http://projects.gnome.org/dia/
http://projects.gnome.org/dia/

264 Part IV: The Part of Tens

	

Figure 11-1:
Dia is a

powerful
tool for

building
sketches
and dia-

grams.
	

Dia is available as a free download for every major operating system.

GIMP — A Powerful Image Editor
Perhaps the most important tool for a game developer (apart from the pro-
gramming language and game engine) is a solid graphical editor. My favorite
graphical tool by far is GIMP.

GIMP (Gnu Image Manipulation Program) is available for all major operating
systems for free at www.gimp.org. The software is quite similar to Adobe
Photoshop and other high-end image editors. Figure 11-2 shows one of the
images in the book being edited with GIMP.

GIMP supports all the main features of any high-end raster graphics editor,
including the following:

	 ✓	Standard painting tools: Any paint program should have things like
pencils, paintbrushes, airbrushes, and erasers. GIMP includes these and
other tools for cloning (copying part of an image to another part), an ink
pen simulator, and a powerful fill tool with patterns and gradients.

http://www.gimp.org/

265 Chapter 11: Ten Great Game Asset Resources

	 ✓	Selection tools: As you begin working on complex images, you’ll prob-
ably want to select and modify specific parts of your image. GIMP has
many ways to select elements, including standard lasso, circle, and
rectangular selections. It also supports more sophisticated selection
techniques like color selection, “magic” selection, Bézier paths, and a
powerful foreground selection tool.

	 ✓	Modification tools: You can use GIMP to modify parts of an image.
Standard transformations like rotation, translation, and scale are avail-
able, as well as a perspective tool, and tools to smudge, blur, and heal.

	 ✓	Layer support: Image manipulation can get complex, so some sort of
organization technique can be really helpful. Layers are used to separate
parts of your image so you can edit elements in isolation. Each layer can
have transparency built in so you can see the underlying layers.

A program as powerful as GIMP can be somewhat overwhelming, so you may
need some help. I have a free bonus chapter from a previous Wiley book
(Game Programming — The L Line) explaining how to build gaming graphics
in GIMP. You can check out that tutorial online at www.aharrisbooks.net/
pythonGame/Appendix_D.pdf.

	

Figure 11-2:
You can

create all
the game
graphics
you need

with GIMP.
	

http://www.aharrisbooks.net/pythonGame/Appendix_D.pdf
http://www.aharrisbooks.net/pythonGame/Appendix_D.pdf

266 Part IV: The Part of Tens

Ari’s SpriteLib
While GIMP is extremely powerful, it can be quite difficult to build a great
sprite image. Fortunately, there are some very nice online sprite images
you can use for free in your own games. One of my favorites is called Ari’s
SpriteLib, available at www.widgetworx.com/widgetworx/portfolio/
spritelib.html.

The SpriteLib is a library of excellent custom images. You can use the images
freely in your games. It contains nice images for a tank game, some wonderful
2D aircraft, some spacecraft, aliens, and other wonderful characters.

There’s a great chance you’ll be able to find something you can use in this
wonderful library.

Figure 11-3 shows one of the sprite sheets available in Ari’s SpriteLib.

	

Figure 11-3:
These

images are
perfect for

incorporat-
ing into a

game.
	

http://www.widgetworx.com/widgetworx/portfolio/spritelib.html
http://www.widgetworx.com/widgetworx/portfolio/spritelib.html

267 Chapter 11: Ten Great Game Asset Resources

Reiner’s Tilesets
If you’re looking for more images you can incorporate into your games, take
a look at Reiner’s tilesets at www.reinerstilesets.de. Reiner is a game
developer and artist who has released hundreds of incredible free graphics
over the years. Most of his 2D graphics come in a ZIP file containing dozens
of individual images. You may want to use a tool like GIMP (described ear-
lier in this chapter) to put the selected sprites into a single sprite sheet. See
Chapter 8 for information on how to work with sprite sheets.

Reiner’s library contains hundreds of high-quality images. Most of them were
created with 3D modeling packages and then rendered into 2D graphics, so
they provide the illusion of 3D.

You’ll find many interesting graphics in this set, including terrific RPG and
fantasy models, as well as a number of very nice vehicle and other projects.

Figure 11-4 shows a page from Reiner’s online archive.

	

Figure 11-4:
Reiner’s tile-
sets include

hundreds
of qual-

ity game
images.

	

http://www.reinerstilesets.de/

268 Part IV: The Part of Tens

OpenGameArt
OpenGameArt.org is a website, but more than that, it’s a community of game
artists and developers. Many of them put really wonderful game art online
for others to share. This is a great site to visit once in a while. You’ll find a
huge number of really super game-art projects there. I’ve been especially
impressed by the character sprite sheets and the tilesets that are available
on this site. Note that not everything posted on this site is available for reuse.
You may need to write to an artist to ask for permission to use an asset.

One of the most interesting things on this site is a resource called the
Liberated Pixel Cup (LPC). This was a contest that encouraged artists to build
open game-art resources, and then challenged programmers to put those
resources together to build fun games. The contest focused on RPG charac-
ters with a common theme and style. This means you can probably use mul-
tiple characters together with some success. You can find a complete list of
resources and the completed games for the LPC at

http://lpc.opengameart.org

Many of the images on the OpenGameArt site are stored in the .xcf format,
which is the default image format for GIMP, mentioned earlier in this chapter.

One of my favorite resources to come out of the LPC is called the Universal-
LPC sprite sheet. This is a massive GIMP file that incorporates all the vari-
ous character art that has been contributed to the site. Each element is on a
separate layer, so you can mix and match to build your own character. The
universal sprite sheet is available here:

https://github.com/makrohn/Universal-LPC-spritesheet

Note you’ll need to click on the “ZIP” button to download the sprite sheet.

You’ll also find some really great sound effects on the OpenGameArt site. As
with the images, you may need to track down the developer to get permis-
sion to use the sounds. Often, you’ll see numerous sound effects in a single
file, and you’ll need a tool like Audacity to edit the sounds and put them in
the format you need for your game (see section “Audacity – Useful for Sound
Effects,” later in this chapter).

http://lpc.opengameart.org/
https://github.com/makrohn/Universal-LPC-spritesheet

269 Chapter 11: Ten Great Game Asset Resources

Blender
Among the hottest trends in gaming today are the so-called 2.5D games.
Essentially, you use a 3D modeler to build your various elements, but then
you put them together in a 2D game engine.

I actually used this technique for some of the images shown in this book.
Figure 11-5 shows one of these images (the hovercar from Chapter 13) being
built in Blender, an especially powerful 3D modeling package available for
free on all major operating systems. You can download Blender at www.
blender.org.

3D modeling packages can be intimidating and expensive. It can take some
time to learn how to build a good-looking model, but the results can be well
worth it.

	

Figure 11-5:
You can use

Blender to
build your

own game
images.

	

http://www.blender.org/
http://www.blender.org/

270 Part IV: The Part of Tens

If you want more help with Blender, a nice video tutorial is available at www.
blendtuts.com/2010/06/blender-25-interface.html. This will give
you the basics of using Blender, but you’ll definitely need to spend some time
to discover everything Blender has to offer.

Note that Blender contains its own game engine. It’s a very powerful and
useful tool for building 3D games. Maybe one day somebody will write a book
about it . . .

Audacity — Useful for Sound Effects
If images are the key to games, audio effects are the next most important asset
for a great game. Elsewhere in this chapter, I provide links for many nice audio
resources, but you’ll still need to have access to an audio editor. Audacity is a
very powerful free audio tool, available at http://audacity.sourceforge.
net. It incorporates a number of essential audio-editing features:

	 ✓	Recording capabilities: Often the easiest way to get a sound effect is to
simply record it yourself. Audacity is an easy way to record audio files
with a standard microphone.

	 ✓	Audio editing: You’ll frequently need to modify an audio file in some
way — eliminating empty space, combining sound effects, adjusting
the volume, or changing the sampling rate. Audacity supports all these
operations.

	 ✓	Special effects: You can apply many interesting special effects to your
sound effects, including playing sounds backward, removing hiss, chang-
ing the pitch, and adding echoes.

	 ✓	Support for many formats: For HTML5 gaming, you’re generally best off
saving each file in both .ogg and .mp3 formats. Audacity allows you to
export a sound effect in either format. (Note: Some versions may require
you to download a separate file for MP3 export, but this is a straight-
forward process. Just follow the instructions available here: http://
manual.audacityteam.org/o/man/faq_installation_and_
plug_ins.html#lame.)

I edited every audio file used in this book with Audacity. Figure 11-6 shows
the main user interface.

http://www.blendtuts.com/2010/06/blender-25-interface.html
http://www.blendtuts.com/2010/06/blender-25-interface.html
http://audacity.sourceforge.net/
http://audacity.sourceforge.net/
http://manual.audacityteam.org/o/man/faq_installation_and_plug_ins.html#lame
http://manual.audacityteam.org/o/man/faq_installation_and_plug_ins.html#lame
http://manual.audacityteam.org/o/man/faq_installation_and_plug_ins.html#lame

271 Chapter 11: Ten Great Game Asset Resources

Figure 11-6:
Audacity is
an incredi-

bly powerful
audio editor.

	

Freesound.org
Freesound.org, at www.freesound.org, is an online audio effects database.
The database has a great search function that allows you to search for a
sound effect by keyword. You can also limit the search by license. You can
isolate only those files that have (for example) a very liberal creative com-
mons license.

I was able to find 17 goat sounds (and a llama — I didn’t know they made any
sounds) on this site, so the next time I need to make a goat game, I’ll be ready
to roll.

SoundJay.com
SoundJay is another terrific free resource for sound effects. This is a library
of well-organized sound effects in many categories. All of the sounds are
available for free and without requiring any royalties.

You can begin browsing SoundJay at www.soundjay.com.

http://www.freesound.org/
http://www.soundjay.com/

272 Part IV: The Part of Tens

The sound effects come in .wav and .mp3 formats, so you’ll probably also want
to make an .ogg version with Audacity (described earlier in this chapter).

BFXR Incredible Eight-Bit Sound Effects
Some consider the 8-bit era of the ‘80s to be the classic gaming era. Even if
you don’t remember them the first time through, the sound effects from the
early days of gaming are enjoying a comeback.

BFXR is an incredible program that allows you to create your own amazing old-
school sound effects. It is a simple digital synthesizer, as shown in Figure 11-7.

When you visit the BFXR website at www.bfxr.net, you’ll see a somewhat diz-
zying display of buttons and sliders, but you really don’t have to understand
everything to have a lot of fun. Grab some headphones if you value your rela-
tionships with others in your home, and start pressing some buttons. You
can generate a random sound effect by clicking the Randomize button. The
other buttons (laser, explosion, hurt, and so on) are also random, but have
presets that make the random sound more likely to fit the specific category.
Each time you click a button, you get a new random sound effect.

	

Figure 11-7:
BFXR is a
great tool
for creat-

ing your
own sound

effects.
	

273 Chapter 11: Ten Great Game Asset Resources

Every sound you generate is stored in a list, so you can compare the sounds
and listen to them again. When you find a sound you like, you can modify
it by playing with the various sliders. Even if you don’t understand exactly
what you’re doing, you can often make very interesting sound effects with
some experimentation.

You can save your sounds in two formats. The Save to Disk button saves the
file in a native format so you can reload in BFXR and continue playing. When
a sound is ready for final use, click the Export Wav button to generate a .wav
file. You’ll probably want to use Audacity to convert the file to the .ogg and
.mp3 formats preferred by simpleGame.

InkScape
GIMP uses a popular graphics technique called “raster graphics.” This is con-
sistent with the way graphics are stored and displayed in the computer hard-
ware. There is another way to think about graphics called “vector graphics.”
The vector technique is attractive for gaming because it’s a bit more flexible
and allows for arbitrary scaling and rotation without data loss.

Until very recently, web browsers did not natively support vector graphics
(which is one reason Flash was so popular among designers and developers).
This is changing with HTML5.

Inkscape is a very powerful vector graphics tool that allows you to easily
build images using the vector techniques. You can download Inkscape for
free from inkscape.org.

The simpleGame engine allows sprites to be stored in Inscape’s standard
SVG format. You can also export an image to the more standard png format.

You can find a huge number of open and freely available SVG files at
openclipart.org.

These files can be edited right in the browser, or you can download them and
edit them with Inkscape.

I have a simple character file you can modify if you wish, available at www.
aharrisbooks.net/h5g/basicChar.svg.

http://inkscape.org
http://openGameArt.org
http://www.aharrisbooks.net/h5g/basicChar.svg
http://www.aharrisbooks.net/h5g/basicChar.svg

274 Part IV: The Part of Tens

Chapter 12

Ten Concepts Behind simpleGame
In This Chapter
▶	How the canvas forms the basis of the game engine
▶	Mathematical foundations of gaming like angles and vectors
▶	How a game engine manages frame rate
▶	Adding custom event handlers for touch interface
▶	How collisions and boundary events work

T
he simpleGame library is designed to be easy to use. Like most code
libraries, it simplifies sometimes complex code. You can use simple

Game just fine without understanding how it works, but at some point, you’ll
need to know how the various technologies work. In this chapter, I show
some of the key concepts used to create the simpleGame engine.

Many of the ideas are code, but some are really math concepts. If you’ve ever
asked your math teacher when you would use math, game programming is
at least one answer. A game programmer really needs to have a solid grasp
of math, at least some algebra, geometry, and trigonometry. It’s even better
to have some knowledge of linear algebra, statistics, and calculus. (On my
campus, game programming students typically get a math minor.) It’s fine if
you don’t understand all the math right now, but be sure to look over these
ideas to see how things work.

Feel free to look over the code of simpleGame to see how everything fits
together. Throughout this chapter, I provide somewhat simplified versions of
the code used in simpleGame, but of course you’re welcome to look over the
actual library. A link is available at my website: www.aharrisbooks.net.
In fact, you can even make changes in the library if you wish, but you should
probably begin by ensuring that you understand how things work.

Some ideas mentioned here use more advanced concepts in programming
and mathematics than I expect for the reader of an introductory book, but
looking over these ideas gives you an ideal preview of things you can learn as
your studies continue.

http://www.aharrisbooks.net

276 Part IV: The Part of Tens

Using the Canvas Tag
The simpleGame engine’s Scene object uses one of the most exciting new
features of HTML5 — the canvas tag. This exciting tag allows you to draw
images and other elements directly on a portion of the browser.

Looking at a canvas
Figure 12-1 shows a basic page displaying a canvas with two rectangles and
an image.

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <title></title>
 <meta charset = ”UTF-8” />
 <style type = ”text/css”>
 </style>
 <script type = ”text/javascript”>

 function draw(){
 var canvas = document.getElementById(”surface”);
 var imgBall = new Image();
 imgBall.src = ”redBall.png”;

 if (canvas.getContext){
 var con = canvas.getContext(’2d’);
 con.fillStyle = ”rgb(255, 255, 0)”;
 con.fillRect(40, 140, 150, 50);
 con.drawImage(imgBall, 100, 100, 50, 50);

 } // end if
 } // end draw

 </script>
</head>

<body onload = ”draw()”>
 <h1>Basic Canvas Demo</h1>

 <canvas id = ”surface”
 width = ”200”
 height = ”200”>
 <p>Your browser does not support the canvas tag...</p>
 </canvas>
</body>
</html>

277 Chapter 12: Ten Concepts Behind simpleGame

	

Figure 12-1:
This page

demon-
strates the

canvas tag.
	

Basic canvas drawing
The canvas tag is an HTML tag, but it’s mainly used as a placeholder in
HTML. The canvas tag has a context attribute, which allows the programmer
to draw graphics directly on the page. Here’s how this example works:

	 1.	 Add a canvas tag to the HTML.

		 Normally, you’ll create a canvas tag in the HTML, but the simpleGame
library automatically adds a canvas tag and appends it to the end of the
page body.

	 2.	 Create a function for drawing.

		 In this example, the canvas is drawn in a function called when the page
initially loads. In simpleGame, the drawing function will be called 20
times per second.

	 3.	 Get a drawing context.

		 The canvas tag supports a 2D drawing context (yes, 3D is coming, but
it’s not yet widely supported). Use the getContext() method to make
a reference to the drawing context.

278 Part IV: The Part of Tens

	 4.	 Create a JavaScript Image Object.

		 Sprite objects in the simpleGame library are based on JavaScript
images. Begin by creating an Image object in JavaScript.

	 5.	 Set the image’s source attribute.

		 To link a file to the Image object, set the src property of the Image
object to an image file in the same directory as your program. This will
associate an image with your document, but the image will not be drawn
on the page; instead, it’s stored in memory to be used in code.

	 6.	 Set the fill style.

		 You can draw filled and open drawings with the canvas tag. The
fillStyle can be set to colors as well as patterns and gradients.

	 7.	 Create rectangles.

		 You can draw an open rectangle with the strokeRect() method and
a solid rectangle with the fillRect() method. In the simpleGame
library, the Scene object’s clear() method simply draws a filled rect-
angle in the scene’s background color.

	 8.	 Draw the image in the canvas.

		 Use the drawImage() method to draw an image inside a canvas. There
are many variations of this method, but the one used in simpleGame
specifies the image’s position and size.

Of course, there’s a great deal more to the canvas tag than this simple demo.
I show a few other features in the section “Transformations in Canvas,” later
in this chapter. For much more information, please see my book HTML5
Quick Reference For Dummies. I have an entire chapter on the canvas tag and
its various features in that book. You can view all the examples for that book
(and indeed all my books) at my website: www.aharrisbooks.net.

Creating an Animation Loop
If the canvas defines the space in a game, an animation loop defines time.
Most JavaScript games use a mechanism called setInterval() to cause
repeated behavior. This function takes two parameters: a function name and
a delay value.

Here’s some code that simply counts ten times a second:

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>

http://www.aharrisbooks.net/

279 Chapter 12: Ten Concepts Behind simpleGame

 <meta charset=”UTF-8”>
 <title>counting.html</title>
 <script type=”text/javascript”>
 var counter = 0;
 var output;

 function init(){
 output = document.getElementById(”output”);
 setInterval(count, 100);
 }

 function count(){
 counter++;
 output.innerHTML = counter;
 }
 </script>
</head>
<body onload = ”init()”>
 <div id = ”output”>
 nothing here yet
 </div>
</body>
</html>

The process is straightforward, and you can use it any time you want some-
thing to happen at regular intervals:

	 1.	 Create a function that will be repeated.

		 In this simplistic example, the function count() will be called ten times
per second.

	 2.	 In your initialization code, call setInterval().

		 This will set up the repeated call to the function.

	 3.	 Indicate the function that will repeat.

		 The first parameter is the name of the function that will be repeated.
Note that because you’re treating the function as a variable, you do not
include parentheses with the function name.

	 4.	 Indicate the delay.

		 The second parameter is a delay value in milliseconds (a millisecond is
1/1000th of a second). This example runs at a delay of 100 milliseconds,
which is 10 frames per second. The simpleGame library runs at 20
frames per second.

In simpleGame, when you create a Scene class, in addition to setting up a
canvas, you’re also, via the Scene class, creating an interval that repeatedly
calls the update() method of your game. This is why you need to have an
update() method.

280 Part IV: The Part of Tens

Angles in the Outfield
The simpleGame engine allows you to work with all angles in degrees
according to the normal navigational system (0 degrees is straight up;
angles increase clockwise). Mathematicians use an entirely different system.
Figure 12-2 illustrates the difference.

	

Figure 12-2:
Navigation
and math-

ematics use
different

angle mea-
surements.

	

Degrees are a perfectly fine (if made up) unit of measurement, but when it
comes to mathematical manipulations, they get messy. Mathematicians use
another unit called radians. The best way to describe a radian is with a true
story. When we were dating, my wife had an elderly Doberman. The dog was
frequently tied to a post with a cable in the backyard. Over the years, the dog
inscribed a perfect circle around that post in the backyard. One day I came
over and found that the cable had broken loose at the post, but the dog was
still walking around in the circle, dragging the cable behind her. The angle
inscribed by the cable in the circular groove was exactly one radian! I was
immediately thrilled by this unintentional canine math moment. My wife con-
tinues to humor my frequent geekiness episodes. We have a puppy now, and
I’m working on teaching him trigonometry.

Radians are most easily expressed as a ratio of pi. pi (π) is defined as the
ratio between the circumference and the diameter of a circle. Almost all angle
calculations in radians use pi as a starting point.

If you want to convert from degrees to radians, you typically use this formula:

radians = (degrees * pi) / 180

281 Chapter 12: Ten Concepts Behind simpleGame

If you want to go the other direction, the formula is similar:

degrees = (radians * 180) / pi

JavaScript has a prebuilt constant for pi called Math.pi.

The simpleGame library takes care of all this for you. I designed the library
so you can enter angle measurements in degrees, but these measurements are
quietly converted to radians for all the internal math. When you ask for an angle
(with the Sprite object’s getMoveAngle() method, for example), you’ll get a
measurement in degrees, even though the angle is actually stored in radians.

Angle measurements get a little trickier in computing math because radians
increase counterclockwise whereas degrees increase clockwise. Also, in
most coordinate systems, Y increases upward, but in computer graphics, Y
increases downward. The simpleGame library quietly handles these issues
for you. Feel free to look over the code to see how I handled these details
with a little bit of math.

Transformations in Canvas
The Sprite class has the capability to move and rotate, but these features
are not built into normal JavaScript. I used the transformation features of the
canvas tag to get this behavior.

Transformations are math operations that can be applied to any drawing or
image to change the appearance. There are three major transformations:

	 ✓	translation: Moves a particular amount in X and Y.

	 ✓	rotation: Rotates around a particular point.

	 ✓	scale: Changes the size of the drawing in X and Y.

The canvas element allows all these operations on any type of drawing.
However, the way the canvas element does this gets a little closer to math than
you may have gotten before. Transformations in the canvas element can be
hard to understand until you understand a little about how they really work.

Coordinates inside coordinates . . .
In math, you don’t really transform objects. Instead, you modify the coor-
dinate system and draw your image in the newly transformed coordinate
system. It’s common in a vector-drawing application to have several hidden

282 Part IV: The Part of Tens

coordinate systems working at once. That’s important, because it’s the way
canvas transformations work. Essentially, when you want to perform trans-
formations on an object, you do the following:

	 1.	 Announce the beginning of a temporary coordinate system.

		 The main image already has its own coordinate system that won’t
change. Before you can transform anything, you need to build a new
coordinate system to hold those changes. The (poorly named) save()
command indicates the beginning of a new coordinate system definition.

	 2.	 Move the center with translate().

		 The origin (0, 0) starts in the upper-left corner of the canvas by default.
Normally, you’ll build your transformed objects on the (new) origin and
move the origin to place the object. If you translate (50, 50) and then
draw an image at (0, 0), the image will be drawn at the origin of the tem-
porary coordinate system, which will be at (50, 50) in the main canvas.

	 3.	 Rotate the coordinate system with rotate().

		 The rotate() command rotates the new coordinate system around its
origin. The rotation parameter is a degree in radians.

	 4.	 Scale the coordinate system in X and Y.

		 You can also alter the new coordinate system by applying X and Y scale
values. This allows you to create stretched and squashed images.

	 5.	 Create elements in the new coordinate system.

		 After you’ve applied all the transformations you want, you can use all
the ordinary canvas drawing techniques. However, these drawings will
be drawn in the virtual coordinate system you just made, not in the can-
vas’s main coordinate system.

	 6.	 Close the temporary coordinate system.

		 Generally, you’ll want to apply different transformations to different
parts of your canvas. When you’re finished with a particular transfor-
mation, use the restore() command to close out the new coordinate
system. All subsequent drawing commands will use the default coordi-
nate system of the canvas object.

Transforming an image
It can be hard to understand how mathematical transformations work
because they seem so simple on the surface. Build a program to see how this
all fits together. Pay attention to how I create a temporary coordinate system.

283 Chapter 12: Ten Concepts Behind simpleGame

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <title>transform.html</title>
 <meta charset = “UTF-8” />
 <script type = “text/javascript”>

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);
 var car = new Image();
 car.src = “car.png”;
 con.save();
 con.translate(100, 100);
 con.rotate(Math.PI / 4);
 con.scale(3.0, 1.5);
 con.drawImage(car, -25, -25, 50, 50);
 con.restore();

 //draw a rectangle using the ordinary
 //coordinate system
 con.strokeStyle = “red”;
 con.lineWidth = 5;
 con.strokeRect(0, 0, 200, 200);

 } // end draw

 </script>
</head>

<body onload = “draw()”>
 <h1>Transformations</h1>

 <canvas id = “drawing”
 height = “200”
 width = “200”>
 <p>Canvas not supported</p>
 </canvas>

</body>
</html>

The transformation looks like Figure 12-3.

284 Part IV: The Part of Tens

	

Figure 12-3:
This image

has been
translated,

scaled, and
rotated.

	

This program does the normal canvas setup and then creates a transforma-
tion that translates the image to the center of the canvas, rotates the image,
and changes the image’s size:

	 1.	 Create a page with a canvas.

		 Normally, simpleGame will create the canvas for you, but in this case,
I’m making a canvas element by hand.

	 2.	 Do all the normal setup stuff.

		 This involves the regular housekeeping: getting access to the canvas and
its context and creating the image.

	 3.	 Begin a new coordinate system.

		 The save() command doesn’t really save anything. It indicates the
beginning of a new coordinate system. Any drawing commands that
occur between this save() statement and the matching restore() will
follow transformation functions.

	 4.	 Translate the new system.

		 Move the coordinate system to (100, 100), which is the center of the
canvas.

	 5.	 Rotate the new system.

		 Rotate the image by pi / 4 radians, which is 45 percent.

285 Chapter 12: Ten Concepts Behind simpleGame

	 6.	 Scale the new system.

		 Multiply the X values by 3 and the Y values by 1.5.

	 7.	 Draw an image.

		 Because this image is drawn inside a save() / restore() block, it’s
drawn with the transformations intact. Note that I offset the actual
drawImage() command by half the original image’s width and height.
I do this in the game engine so the x and y properties of the sprite refer
to the center of the sprite, rather than the top-left corner.

	 8.	 End the subsystem with restore().

		 The restore() command closes up the temporary coordinate system
so all subsequent commands will refer to the parent coordinate system.
(If Tim Berners-Lee is reading this: Call me. I’ll help you come up with
better names for things next time . . .)

	 9.	 Draw a red rectangle in the default system.

		 The red stroked rectangle is drawn outside the normal coordinate
system, so it’s not scaled or rotated.

The main design of the Sprite object is an image surrounded by a transfor-
mation. When you create a sprite, it builds the image object, and it defines a
transformation with translation, rotation, and scale. As you manipulate the
position, angle, and speed of the sprite, you’re really simply changing the
values sent to the transform. I offset the image so the (x, y) properties of the
sprite specify the center of the sprite. That way, sprites rotate around their
center, which gives a more natural appearance.

Vector Projection
The Sprite object stores the sprite’s position as x and y, and motion is
stored as dx (difference in x) and dy (difference in y). The computer uses
dx and dy to determine how to move a sprite on each frame, but often it’s
much easier to think in speed and direction. Wouldn’t it be great if you could
figure out the appropriate dx and dy values for any speed and direction?
Fortunately, the ancient Greeks came up with a system for solving exactly
this kind of problem. Once you understand this technique, called vector pro-
jection, you’ll be able to calculate the dx and dy values for any angle, any
speed.

286 Part IV: The Part of Tens

Examining the problem
It’s easiest to think about a sprite’s motion in terms of its speed and direc-
tion. These two characteristics taken together are called the sprite’s motion
vector. A vector is simply a mathematical construct that has a direction and a
magnitude. If you want to move a sprite at a certain speed in a certain direc-
tion, you need a way to translate the motion vector into dx and dy values so
that you know exactly how much to add to x and y during the current frame.
(dx and dy are sometimes known as the vector components).

The distance the sprite should travel in a frame is also the speed of that
sprite (in pixels-per-frame). Sometimes it’s easier to think of this value as a
speed, and sometimes it’s easier to think of it as a distance. It’s really both.
Mathematicians sometimes sidestep this issue by simply calling the length
r (for radius, like in a circle). You’ll see yet another name for this length
(hypotenuse) when you bring in trigonometry. This all seems confusing, but
it’s actually one of the nice things about math. There’s often a number of
ways to look at a problem, and the different names for things can help you
see how a particular kind of problem-solving can help. In math books, you’ll
usually see the length/speed marked as r, so that’s what I use.

The angle is a bit more straightforward, as it just indicates the angle.
Mathematicians typically use lowercase Greek symbols for angles. The
symbol theta (θ) is commonly used for a generic angle. Again, because that’s
what you’re likely to see in a math book, I use the same thing here.

Take a look at Figure 12-4 to see some notation commonly used in this kind of
problem.

	

Figure 12-4:
Speed and

direction
are com-

monly called
r and theta.

	

For the sake of argument, assume that you want to make a sprite travel at a
speed called r, in a direction called theta. The symbol θ as it appears on the
diagram is pronounced “theta.” It is a letter in the Greek alphabet.

It’s important to notice that the rotation amount is measured from the x axis.
In fact, this is one reason mathematicians use this particular kind of angle
measurement.

287 Chapter 12: Ten Concepts Behind simpleGame

Building a triangle
Given any r and theta values, you can easily make a triangle by drawing hori-
zontal and vertical lines as in Figure 12-5.

	

Figure 12-5:
Draw hori-
zontal and

vertical lines
(dashed)

to make a
triangle.

	

Once you’ve created the triangle, it’s easy to see how dx and dy are related
to r and theta. The length of the horizontal line shows exactly how far you
have to move in the x axis to get from the beginning to the end of the line.
The length of this horizontal line will be the value for dx. The vertical line
indicates how far you have to travel in the y axis to get from the beginning to
the end of the line, so the length of the vertical line is dy.

Would you like sides with that?
Now comes the clever part: The Greeks noticed that every right triangle pre-
serves certain ratios. For example, if theta is 30 degrees, the ratio between
the lengths of dx and r will remain the same, no matter how long they are. If
you have access to these ratios and you know one angle and one side length
of a right triangle, you can figure out all the other angles and side lengths.

Figure 12-6 shows the notation used to think about triangles in this way.

	

Figure 12-6:
The sides of
the triangles
have differ-
ent names

in trigonom-
etry.

	

288 Part IV: The Part of Tens

It’s easier to think about the triangle if you give the sides some new names:

	 ✓	The hypotenuse is the longest side, opposite the right angle. This side is
also the length the sprite will move.

	 ✓	The adjacent side is the side touching the angle in question. For this
problem, the adjacent side is also dx.

	 ✓	The opposite side is the side opposite theta. For vector projection prob-
lems, the opposite side is dy.

Math teachers sometimes refer to the mythical term SOHCAHTOA as a mne-
monic device for remembering how the various ratios work. Here’s what it
means:

	 ✓	SOH: The length of the opposite side divided by the length of the hypot-
enuse is called the sine of theta. This is abbreviated sin(theta) =
opp/hyp or SOH.

	 ✓	CAH: The length of the adjacent side divided by the length of the hypot-
enuse is called the cosine of theta. This is abbreviated cos(theta) =
adj/hyp or CAH.

	 ✓	TOA: The opposite side length divided by the adjacent side length is
called the tangent of theta. The tangent relationship is sometimes stated
tan(theta) = opp/adj or TOA.

Solving for dx and dy
After you have all this notation in place, it’s actually not that difficult to solve
for dx. Figure 12-7 shows the formula.

	

Figure 12-7:
Here’s how
to solve for
dx and dy.

	

289 Chapter 12: Ten Concepts Behind simpleGame

It’s not nearly as frightening as it looks. Here’s what’s going on:

	 1.	 Determine the trigonometry function you need.

		 Cosine of theta is the opposite side divided by the adjacent side (COH =
opposite over adjacent.) This will be handy for figuring out the value
of dx.

	 2.	 Translate to vector terms.

		 Translate the formula into terms that work for the actual problem:
cos(theta) = dx / r.

	 3.	 Solve for dx.

		 With a little algebra, you can transpose the problem so it solves for dx:
dx = r * cos(theta). Given any length (r) and angle (theta), you can
use this formula to determine dx.

	 4.	 Repeat for dy.

		 The process is almost the same for dy, except the sin function turns out
to be more useful.

Converting components back to vectors
It’s also possible to go in the other direction. For example, you might know
two points and want to know the angle and direction between them. To cal-
culate the angle, return to SOHCAHTOA. If you divide the opposite side (dy)
by the adjacent side (dx), you’ll get the tangent of theta. Using the arctangent
function (usually abbreviated atan), you can get the angle between dx and
dy in radians. This can then be converted to degrees. Likewise, you can use
the famous Pythagorean theorem to determine the distance between any two
points. Figure 12-8 illustrates the formulas used to determine the angle and
distance between any two points.

	

Figure 12-8:
Given any

two points,
you can

math-
ematically
determine
the angle

and distance
between

them.
	

290 Part IV: The Part of Tens

Using the Sound Object
The Sound object simply encapsulates an HTML5 audio element. The actual
code from simpleGame.js is straightforward enough:

function Sound(src){
 //sound effect class
 //builds a sound effect based on a url
 //may need both ogg and mp3.
 this.snd = document.createElement(“audio”);
 this.snd.src = src;
 //preload sounds if possible (won’t work on IOS)
 this.snd.setAttribute(“preload”, “auto”);
 //hide controls for now
 this.snd.setAttribute(“controls”, “none”);
 this.snd.style.display = “none”;
 //attach to document so controls will show when needed
 document.body.appendChild(this.snd);

 this.play = function(){
 this.snd.play();
 } // end play function

 this.showControls = function(){
 //generally not needed.
 //crude hack for IOS
 this.snd.setAttribute(“controls”, “controls”);
 this.snd.style.display = “block”;
 } // end showControls

} // end sound class def

The sound element actually acts in a way similar to the sprite: It creates an
object around a standard HTML element and adds a few new features to it.
Here’s how I designed this object:

	 1.	 Build the sound as an object.

		 The sound element is actually an object. This allows me to customize
the sound and add new methods to it. Check Chapter 6 for more infor-
mation on building custom objects.

	 2.	 Create an audio element.

		 The document.createElement() command allows you to build any
sort of HTML element you might want. In this case, the snd attribute is
an audio element.

291 Chapter 12: Ten Concepts Behind simpleGame

	 3.	 Set the src attribute.

		 When the programmer creates an instance of the Sound class, she is
expected to send a src parameter. This is used to specify the actual
sound file that will be played.

	 4.	 Try to preload the sounds.

		 The audio element has a preload property. If it is set to auto, the
sound will load before being played the first time. Unfortunately, this
feature does not work in the IOS system.

	 5.	 Turn off the controls.

		 A standard audio HTML element contains a control panel with volume, a
play button, and a scrub bar. In a game, you typically do not want these
features, so I set the controls attribute to none. I also modify the CSS
to hide the element.

	 6.	 Add the sound to the document.

		 If you want a created element to appear on the web page (as I sometimes
will with the Sound class), you use the body.appendChild() method
to attach the element to the visual display.

	 7.	 Create a play() method.

		 The play() method is quite simple. It simply plays the sound.

	 8.	 Add showControls as a workaround for IOS.

		 As mentioned, Apple’s mobile devices do not support audio preload-
ing, so if you want to play sounds on one of these devices, you need to
make the controls visible. This is easy to do with the showControls()
method.

Reading the Keyboard
The keyboard is a primary input technology, especially for desktop
machines. The standard way to read the keyboard is to set up special func-
tions called event-handlers. JavaScript has a number of predefined event-han-
dlers you can implement. The keyDemo.html program illustrates a couple of
keyboard handlers in action.

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
 <meta charset=”UTF-8”>
 <title>keyDemo.html</title>

292 Part IV: The Part of Tens

 <script type=”text/javascript”>

 var keysDown = new Array(256);
 var output;

 function init(){
 output = document.getElementById(“output”);
 initKeys();
 document.onkeydown = updateKeys;
 document.onkeyup = clearKeys
 } // end init

 updateKeys = function(e){
 //set current key
 currentKey = e.keyCode;
 keysDown[e.keyCode] = true;
 output.innerHTML = “current key: “ + currentKey;

 }

 clearKeys = function(e){
 currentKey = null;
 keysDown[e.keyCode] = false;
 output.innerHTML = “current key: None”;
 }

 initKeys = function(){
 //initialize keys array to all false
 for (keyNum = 0; keyNum < 256; keyNum++){
 keysDown[keyNum] = false;
 } // end for
 } // end initKeys

 //keyboard constants
 K_A = 65; K_B = 66; K_C = 67; K_D = 68; K_E = 69; K_F = 70; K_G = 71;
 K_H = 72; K_I = 73; K_J = 74; K_K = 75; K_L = 76; K_M = 77; K_N = 78;
 K_O = 79; K_P = 80; K_Q = 81; K_R = 82; K_S = 83; K_T = 84; K_U = 85;
 K_V = 86; K_W = 87; K_X = 88; K_Y = 89; K_Z = 90;
 K_LEFT = 37; K_RIGHT = 39; K_UP = 38;K_DOWN = 40; K_SPACE = 32;
 K_ESC = 27; K_PGUP = 33; K_PGDOWN = 34; K_HOME = 36; K_END = 35;
 K_0 = 48; K_1 = 49; K_2 = 50; K_3 = 51; K_4 = 52; K_5 = 53;
 K_6 = 54; K_7 = 55; K_8 = 56; K_9 = 57;
 </script>
</head>
<body onload = ”init()”>
 <div id = ”output”>
 Press a key to see its code
 </div>
</body>
</html>

293 Chapter 12: Ten Concepts Behind simpleGame

Managing basic keyboard input
This particular example demonstrates basic keyboard-checking as well as
the more sophisticated technique used in simpleGame. Here’s how the basic
version works:

	 1.	 Assign a function to onkeydown.

		 The document.onkeydown attribute is a special property. If you assign
a function to this property, that function will be automatically called
each time the operating system recognizes a key press. In this example,
I assign the function updateKeys.

	 2.	 Create the function, including an event parameter.

		 The updateKeys() function will automatically be given an event object
(normally called e).

	 3.	 Determine which key was pressed.

		 The e.keyCode property returns a numeric code indicating which key
was pressed. In the keyDemo program (as well as simpleGame), the
currentKey variable holds this numeric value.

	 4.	 Compare the key to one of the keyboard constants.

		 It’s hard to remember which keys are associated with which numeric
values, so keyDemo and simpleGame provide a list of keyboard con-
stants. They’re easy to remember: K_A is the A key, and K_SPACE is the
space bar. Of course, you can add other keys if there’s some key you
want to use that isn’t available.

Responding to multiple key presses
The currentKey mechanism is simple to use, but it turns out to be less than
ideal for gaming situations. Frequently, the player will have multiple keys
pressed at once. For this reason, simpleGame uses a more sophisticated
technique.

	 1.	 Create an array called keysDown.

		 This array is a global variable with 256 values. Each element of the array
will be a Boolean (true or false) value, indicating whether the associated
key is currently pressed or not.

	 2.	 Initialize the keysDown array.

		 The default value for each element of keysDown should be false (as
presumably no keys are pressed during initialization). This is done in a
function with a simple loop.

294 Part IV: The Part of Tens

	 3.	 When a key press is recognized, set the corresponding Boolean.

		 In addition to setting the currentKey variable, set the corresponding
value in the keysDown array to true.

	 4.	 Make a second event handler for key up conditions.

		 When the document senses a key being released, a second event-handler
sets the appropriate member of keysDown to false.

Managing the Touch Interface
The touch interface is a new feature of HTML5 specifically aimed at mobile
browsers. At first glance, it may seem that touch screens act just like the
mouse, but this is not the case. A mouse always has a position, and it has
multiple buttons that can be pressed. A touch screen device registers a posi-
tion only when it’s touched, so there is no hover state. Also, many devices
allow more than one finger on the screen at a time, so there’s a possibility of
multiple positions. Finally, touch screens are frequently read as gestures, so
it becomes important to determine (for example) the length of a swipe. The
controller.html page illustrated in Figure 12-9 shows how to read a touch
interface. It describes a number of touch techniques that are integrated into
simpleGame.

	

Figure 12-9:
When

the user
touches

the screen,
the red box

moves.
	

Of course, to get the full effect of this program, you need to view it on a
mobile device with a touch interface.

Look over the code to see some of the techniques used to manage touch
interfaces.

295 Chapter 12: Ten Concepts Behind simpleGame

<!DOCTYPE HTML>
<html lang=”en-US”>
<head>
<meta charset=”UTF-8”>
 <title>Controller.html</title>
 <script type=”text/javascript”>
 var touchable;
 var output;
 var box;
 var result = “No touch”;
 var touches = [];
 var startX, startY;
 var mouseX, mousey
 var diffX = 0;
 var diffY = 0;
 var bTop = 0;
 var bLeft = 0;
 var SENSITIVITY = 50;
//smaller numbers = more sensitive

function init(){
 touchable = ’createTouch’ in document;
 output = document.getElementById(”output”);
 box = document.getElementById(”box”);
 if (touchable){
 document.addEventListener(’touchstart’, onTouchStart, false);
 document.addEventListener(’touchmove’, onTouchMove, false);
 document.addEventListener(’touchend’, onTouchEnd, false);

 } // end if
 setInterval(update, 10);
 } // end init

 function onTouchStart(event){
 result = ”touch”;
 touches = event.touches;
 mouseX = touches[0].screenX;
 mouseY = touches[0].screenY;
 startX = mouseX;
 startY = mouseY;
 } // end onTouchStart

 function onTouchMove(event){
 event.preventDefault();
 touches = event.touches;
 mouseX = touches[0].screenX;
 mouseY = touches[0].screenY;
 diffX = mouseX - startX;
 diffY = mouseY - startY;
 } // end onTouchMove

296 Part IV: The Part of Tens

 function onTouchEnd(event){
 result = ”no touch”;
 touches = event.touches;
 diffX = 0;
 diffY = 0;
 } // end onTouchEnd

 function update(){
 output.innerHTML = result + ”
”;
 output.innerHTML += ”mouse: (” + mouseX + ”, ” + mouseY + ”)
”;
 output.innerHTML += ”diff: (” + diffX + ”, ” + diffY + ”)
”;

 //move box according to controller
 bTop += parseInt(diffY/SENSITIVITY);
 bLeft += parseInt(diffX /SENSITIVITY);

 output.innerHTML += ”bTop: ” + bTop + ”, bLeft: ” + bLeft;

 box.style.top = bTop + ”px”;
 box.style.left = bLeft + ”px”;

 } // end update

 </script>
 <style type=”text/css”>
 #scene {
 width: 100px;
 height: 100px;
 color: white;
 background-color: black;
 }

 #box {
 width: 10px;
 height: 10px;
 background-color: red;
 }

 /* remove special touch styles */
 * {
 -webkit-touch-callout: none;
 -webkit-text-size-adjust: none;
 -webkit-tap-highlight-color: rgba(0, 0, 0, 0);
 -webkit-user-select: none;
 }
 </style>
</head>
<body onload = ”init()”>
 <h1>Controller</h1>

 <div id = ”box”

297 Chapter 12: Ten Concepts Behind simpleGame

 style = ”position: absolute; left:0px; top: 0px;”>
 </div>

 <div id = ”output”>
 No touch
 </div>

</body>
</html>

Handling touch data and events
As in most interesting problems, the data is really the key. Here is the data
you need to keep track of for this problem:

	 ✓	mouseX and mouseY: At its simplest, a touch interface acts somewhat
like a mouse. These variables keep track of where the touch is happen-
ing on the screen.

	 ✓	diffX and diffY: It’s common to treat a touch interface as a virtual
joystick. This is accomplished by storing the initial X and Y position of a
touch and then comparing those initial values to motion. So, if you touch
and slide left, the diffX will register a negative value.

	 ✓	startX and startY: These variables store the initial position of a
touch and are used to calculate diffX and diffY.

	 ✓	touches[]: Many devices support multi-touch, which means you
can touch the screen with more than one finger at a time. The touch
mechanism supports this feature by storing all touches as an array of
touch objects. The simpleGame library focuses on one touch, which is
touches[0].

	 ✓	SENSITIVITY: This variable is actually treated as a constant. The
diffX and diffY values that come from the virtual joystick are too
sensitive for real use, so they are divided by a sensitivity constant to
give more useful inputs. You can change this value to get a more or less
sensitive virtual joystick.

The touch mechanism relies heavily on custom events to do its magic. Here’s
how it works:

	 1.	 Determine if touch is supported.

		 If the document object has a createTouch method, the device has
touch support. This mechanism is used throughout simpleGame to
determine if the device supports touch input.

298 Part IV: The Part of Tens

	 2.	 Add event listeners.

		 When the user touches the screen, three possible events are triggered:
touchStart, touchMove, and touchEnd. In the init() function, you
can assign functions to each of these events.

	 3.	 When a touch starts, register the starting positions.

		 Record the current position as mouseX and mouseY. Also, copy these
values to startX and startY so subsequent movement can be used as
the basis of the virtual joystick.

	 4.	 When the touch moves, register the difference.

		 When the user moves a finger after the initial press, the onTouch-
Move() function will activate. This function records mouseX and
mouseY, and also determines the difference between these current
values and the startX and startY variables.

	 5.	 When the touch ends, reset the joystick.

		 The diffX and diffY variables act like a joystick, so when the touch is
finished, these values should be reset to zero.

	 6.	 Disable default touch behavior.

		 Mobile websites already have default behavior for touches (scrolling
and resizing the screen). If you’re using the touch interface as a virtual
mouse or joystick, you’ll want to turn off this default behavior. This is
done both through the event.preventDefault() method and a few
specialty CSS attributes.

Note that this example is a bit simplistic, and the actual behavior in
simpleGame is a more sophisticated example of the same principles.

Collision Detection
Collision detection is a major part of game programming because most inter-
esting things in games occur after a collision between sprites. JavaScript
does not have a built-in collision routine, so I added one.

Enabling bounding-box collisions
Here’s the basic code for collisions from simpleGame.js:

this.collidesWith = function(sprite){
 // a method of the sprite object
 //check for collision with another sprite

299 Chapter 12: Ten Concepts Behind simpleGame

 //collisions only activated when both sprites are visible
 collision = false;
 if (this.visible){
 if (sprite.visible){
 //define borders
 myLeft = this.x;
 myRight = this.x + this.width;
 myTop = this.y;
 myBottom = this.y + this.height;
 otherLeft = sprite.x;
 otherRight = sprite.x + sprite.width;
 otherTop = sprite.y;
 otherBottom = sprite.y + sprite.height;

 //assume collision
 collision = true;

 //determine non-colliding states
 if ((myBottom < otherTop) ||
 (myTop > otherBottom) ||
 (myRight < otherLeft) ||
 (myLeft > otherRight)) {
 collision = false;
 } // end if

 } // end ‘other visible’ if
 } // end ‘I’m visible’ if

 return collision;
 } // end collidesWith

The simpleGame library uses a very standard type of collision detection
called bounding rectangle detection. Essentially, this works by ignoring the
actual pixels of the sprites, but looking instead at the rectangular shapes con-
taining the sprites. This leads to a very fast and efficient (if somewhat inaccu-
rate and inconsistent) collision routine.

The collision routine not only checks for whether two objects are colliding,
but it also ignores collisions if either of the sprites is invisible:

	 1.	 Set the initial collision value to false.

		 The collision variable is a Boolean indicating whether the two
objects are considered overlapping or not. Initially, the value for colli-
sions is set to false.

	 2.	 Ensure that both sprites are visible.

		 In the simpleGame engine, sprites have a visible property. If this is
set to true, the sprite is displayed on the screen and registers colli-
sions. Before checking for collisions, ensure that both sprites are visible
with a pair of nested if statements.

300 Part IV: The Part of Tens

	 3.	 Determine boundary variables.

		 The coding is easier to follow if you begin by creating variables to repre-
sent the top, bottom, and sides of each sprite.

	 4.	 Set collision to true.

		 It’s easier to find conditions that prove two rectangles do not collide, so
begin by assuming they’re colliding.

	 5.	 Test for noncolliding states.

		 If one sprite’s bottom is smaller than the other one’s top, the sprites
do not collide. Check the other three conditions that would prevent
a collision. If any of these are true, the sprites are not colliding, so
set collision to false. Note that the || operator stands for the
Boolean operation or. I’m not typically a big fan of Boolean logic in if
statements (at least for beginning programmers), but the logic is pretty
straightforward in this case.

	 6.	 Return the collision state.

		 The function returns the value of the collision variable. If the
sprites are found to be colliding, the function returns the value true.
Otherwise, the function will return the value false.

Calculating the distance between sprites
The distanceTo() method of the Sprite object provides an alternative
collision mechanism. This technique doesn’t actually check for collisions.
Instead, it returns the distance (in pixels) between the centers of the two
sprites. You can then check this against some threshold value to determine
whether the sprites have collided.

 this.distanceTo = function(sprite){
 // method of the Sprite object
 //get centers of sprites
 myX = this.x;
 myY = this.y;
 otherX = sprite.x;
 otherY = sprite.y;
 diffX = myX - otherX;
 diffY = myY - otherY;
 dist = Math.sqrt((diffX * diffX) + (diffY * diffY));
 return dist;
 } // end distanceTo

301 Chapter 12: Ten Concepts Behind simpleGame

Distance is calculated by the old, faithful Pythagorean theorem:

	 1.	 Find the differences in X and Y.

		 This will determine the sides of a right triangle, which can be used to
determine the distance between the objects.

	 2.	 Use the Pythagorean theorem.

		 Remember that A squared plus B squared equals C squared, so if diffX
is A, diffY is B, and distance is C, you can add the squares of diffX
and diffY and then take the square root of the sums to determine the
distance.

Using the distance for collisions is about as fast as a bounding-box collision,
but has two additional advantages: The collision sensitivity can be adjusted
(by picking a larger or smaller threshold), and the distance required for a
collision is independent of the image’s size or rotation. See Chapter 6 for a
discussion on how to use both techniques in simpleGame.

Boundary Checking
Once sprites begin moving, there is always the possibility they’ll leave
the screen. Typically, game developers respond in one of five ways: wrap,
bounce, stop, die, or continue. The simpleGame library has a boundary-
checking routine that allows you to easily specify which of these default
behaviors to use. The sprite’s boundAction property indicates which action
should be used. You can use the boundary-checker to do the following:

	 1.	 Determine the borders.

		 The borders are determined by the canvas width. To make things easier,
I assigned variables called topBorder, bottomBorder, leftBorder,
and rightBorder.

	 2.	 Check to see if the user is off a border.

		 I then made another series of variables that contain Boolean values indi-
cating whether the sprite is off one of the borders: offRight, offLeft,
offTop, and offBottom. Use basic if statements to determine if the
sprite is off the screen in one of these ways.

	 3.	 Determine the boundary action.

		 Use a simple if statement to determine which boundary action is cur-
rently set for the sprite.

302 Part IV: The Part of Tens

	 4.	 If the boundAction is WRAP:

		 Change the x or y variable to the opposite side, but leave the dx and dy
values alone.

	 5.	 If the boundAction is BOUNCE:

		 Invert dy if the sprite bounced off the top or bottom, and dx if the sprite
bounced off the left or right. It’s not necessary to change x or y directly.

	 6.	 If the boundAction is STOP:

		 Simply set the speed to zero regardless of which boundary was exited.

	 7.	 If the boundAction is DIE:

		 Set the speed to zero and invoke the sprite’s hide() method. This will
cause the sprite to disappear and no longer be considered in collision
calculations.

	 8.	 Any other boundAction is considered CONTINUE.

		 No action is necessary here because the sprite will continue moving
even though it’s not visible. If this is the desired effect, you should
somehow indicate to the user where the sprite is, or provide some way
for the sprite to return.

Here is part of the code for the collision-checking routine:

 offRight = false;
 offLeft = false;
 offTop = false;
 offBottom = false;

 if (this.x > rightBorder){
 offRight = true;
 }

 if (this.x < leftBorder){
 offLeft = true;
 }

 if (this.y > bottomBorder){
 offBottom = true;
 }

 if (this.y < 0){
 offTop = true;
 }

 if (this.boundAction == WRAP){
 if (offRight){
 this.x = leftBorder;

303 Chapter 12: Ten Concepts Behind simpleGame

 } // end if

 if (offBottom){
 this.y = topBorder;
 } // end if

 if (offLeft){
 this.x = rightBorder;
 } // end if

 if (offTop){
 this.y = bottomBorder;
 }
 } else if (this.boundAction == BOUNCE){
 if (offTop || offBottom){
 this.dy *= -1;
 this.calcSpeedAngle();
 this.imgAngle = this.moveAngle;
 }

 if (offLeft || offRight){
 this.dx *= -1;
 this.calcSpeedAngle();
 this.imgAngle = this.moveAngle;
 }

 } else if (this.boundAction == STOP){
 if (offLeft || offRight || offTop || offBottom){
 this.setSpeed(0);
 }
 } else if (this.boundAction == DIE){
 if (offLeft || offRight || offTop || offBottom){
 this.hide();
 this.setSpeed(0);
 }

 } else {
 //keep on going forever
 }
 } // end checkbounds

If you want to change a sprite’s boundary action in simpleGame, you can use
the setBoundAction() method to do so.

Note that a few situations may require different behaviors. For example,
you may want to wrap around the sides but stop at the top or bottom. If you
need a more specific behavior, just build a new checkBounds() method for
your sprite. However, you’ll need to check all boundaries because your new
checkBounds() will completely overwrite the one built into simpleGame.

304 Part IV: The Part of Tens

Chapter 13

Ten Game Starters
In This Chapter
▶	Learning to build various game types
▶	Storing high scores on the browser
▶	Building tile-based worlds
▶	Creating simple artificial intelligence algorithms
▶	Writing a lot of games!

F
or the final chapter, take a look at a number of different games that can
be built with the skills learned throughout the book. Each of the games

featured below is a “starter” game. I illustrate some key ideas and sometimes
introduce a new concept or two. None of the games is completely finished:
I deliberately left the graphics simplistic, and left out many details like audio,
scorekeeping, and multiplayer functionality.

For each program, I illustrate the basic type of game I’m trying to produce,
point out a few key technologies or ideas, and give you some suggestions on
how to build your own game from this starting package.

Note that I’m not printing out every code listing in this chapter. Instead, I
encourage you to play around with each game on my website, (www.aharris
books.net) look at the code yourself, download it, and modify it as much as
you wish.

I reproduce code snippets that illustrate a particular idea from a code exam-
ple when that makes sense.

In this chapter, I also am including GIMP images in .xcf format so you can
see my original images and change them as you wish.

http://www.aharrisbooks.net/
http://www.aharrisbooks.net/

306 Part IV: The Part of Tens

Lunar Lander
This is one of the oldest game types. The basic idea is to replicate landing on
a planet without an atmosphere. The Apollo astronauts had a limited amount
of fuel to slow a rapidly moving spacecraft and bring it to the surface safely.
This game, shown in Figure 13-1, is a variation of that theme.

The essence of a lunar-lander game is the interplay between thrust and grav-
ity. The game relies heavily on the addVector() method described through-
out Chapter 8. Gravity imparts a small downward thrust every frame, which
can be counteracted by thrust from the arrow keys.

The game features four different lander images (to provide feedback that the
user is applying thrust), which are simply swapped with the setImage()
method as needed.

	

Figure 13-1:
Land the

spacecraft
on the

platform.
	

307 Chapter 13: Ten Game Starters

The eagle has landed
The most interesting part of this game is the landing routine. The ordinary
collision routine is not specific enough to handle this type of collision, as the
landing will be considered a safe landing only if a number of conditions are
true. The cleanest way to check for multiple conditions is in a deeply nested
if structure, like the following:

 tLander.checkLanding = function(){
 if (this.falling){
 if (this.y > 525){
 if (this.x < platform.x + 10){
 if (this.x > platform.x - 10){
 if (this.dx < .2){
 if (this.dx > -.2){
 if (this.dy < 2){
 this.setSpeed(0);
 this.falling = false;
 message = “Nice Landing!”;
 } else {
 message = “too much vertical speed”;
 } // end if
 } else {
 message = “too fast to left”;
 } // end if
 } else {
 message = “too fast to right”;
 } // end if
 } // end ‘x too big’ if
 } // end ‘x too small’ if
 } // end ‘y not big enough’ if
 } // end ‘are we falling?’ if
 } // end checkLanding

When you’re checking for several conditions at once, it’s best to create a
separate if statement for each. Place each if statement inside the next, so
the most deeply nested part of the code represents success.

	 1.	 Determine if you’re falling.

		 I created a Boolean variable called falling that describes whether the
spacecraft is falling or landed. If falling is true, the gravity force is
turned off. It only makes sense to check for a landing state if you’re cur-
rently falling.

	 2.	 Check the Y value.

		 Because the platform is placed at a Y value of 550, the lander will appear
to be landed when its Y value is larger than 525. I’m really only concerned
with the bottom of the lander touching the top of the platform. Note that

308 Part IV: The Part of Tens

this check happens inside the falling check. If any condition fails, it is
not necessary to check the others.

	 3.	 Check the X value.

		 I want the center of the lander to be within ten pixels of the center of the
platform, so use a pair of nested if statements to check the X locations.

	 4.	 Check horizontal speed.

		 For a safe landing, the craft must have a dx value between -0.2 and 0.2.
(This is somewhat arbitrary, but upon testing, it feels about right.) This
is best checked with a pair of nested if statements.

	 5.	 Check vertical speed.

		 If everything else is working well, check to see that the craft is not falling
too rapidly. Use the dy property to determine how quickly the space-
craft is falling.

	 6.	 Provide feedback with else clauses.

		 A deeply nested structure like this shows you the real value of proper
indentation and commenting. Provide feedback in the various else
clauses to explain why the landing was considered a failure. (Notice I
didn’t provide feedback when the lander is too far from the platform
because this state happens during most of the gameplay.)

Producing a text console
Another interesting part of the code is the mechanism for displaying text
data to the user. The easiest way to do this is through a simple HTML div.
Use CSS to place the div exactly where you want it to be. While I rarely
use absolute positioning in normal web development, it makes sense in the
context of creating a label for a game. Note that you might need to set the
z-index property to a high value to ensure it appears above the canvas, or
it may not be visible to the user. Here’s the CSS that makes my label look like
output on the screen:

 #stats {
 position: absolute;
 font-family: monospace;
 left: 50px;
 top: 50px;
 z-index: 999;
 color: white;
 }

309 Chapter 13: Ten Game Starters

Enhancing the game
This is just a starting point for the game. Many other interesting features
could be added:

	 ✓	Fuel: Add a fuel variable that is decremented each time the user applies
thrust. Vertical thrust should use more fuel than horizontal adjustments.
If the fuel level gets below zero, ignore further thrust inputs. This mech-
anism puts a realistic complication into the game.

	 ✓	Powerups: Add some other features the user can earn: bonus fuel, less
intense gravity, a wider platform.

	 ✓	Multiple landings: Maybe move the landing pad after a successful land-
ing, or have the user carry an object to a second platform.

	 ✓	Obstacles: Put space junk or buildings in the way that will crash the
player on contact.

	 ✓	Change the theme: The same mechanics can easily be used for a heli-
copter or hot air balloon game.

Mail Pilot
This is an example of a scrolling racer game. This type of game has long been
a staple of the video game universe because there can be so many interest-
ing variations. In this particular iteration, you’re a pilot flying a plane over an
island archipelago. Your job is to fly over the islands and avoid the clouds.
The game features user control of the airplane’s X position and an endlessly
scrolling world.

Figure 13-2 shows this game in action.

The approach to this game is quite similar to all games in the book:

	 ✓	Identify the key variables: In this game, the main variables are the air-
plane, the islands, and the clouds. All are implemented sprite objects.

	 ✓	Create each object in isolation: As I did with the frog game first intro-
duced in Chapter 7, identify what each object should do and implement
those basic features.

310 Part IV: The Part of Tens

	

Figure 13-2:
Fly over the
islands and

avoid the
clouds.

	

	 ✓	Build a single element; then convert it to an array: The clouds object
is really an array. It’s very common to have arrays of objects. The key
is to build a single element first that does what you want and then con-
vert that object to an array. Typically, when you do so, you’ll build two
custom functions. The first function creates the array and uses a for
loop to initialize each object in the array. The second function also has a
for loop that steps through each object, invoking any of its event func-
tions and updating each object on the screen.

	 ✓	Manage interactions: Most of the interesting things that happen in an
arcade game occur when objects collide, so collision routines are an
important part of game development.

Building an “endless” background
One interesting feature of this game is the endless tiled background. The user
avatar doesn’t move forward at all. Instead, the illusion of motion comes from
having a background that moves down perpetually, making it look like the
plane is moving up.

311 Chapter 13: Ten Game Starters

Of course, it’s impossible to create a truly endless background, but you can
do a couple of tricks to produce a believable illusion:

	 1.	 Build a sprite for the background.

		 The easiest way to get the moving background behavior is to simply
make the background a very large sprite.

	 2.	 Create an image larger than the scene.

		 As this particular graphic is meant to tile vertically, I make it the width
of the scene (800px) but much taller than the scene (1440px tall for a
600px tall scene). Larger sizes lead to less-obvious repetition but will
be more resource-intensive. If you want horizontal scrolling, make your
image larger on the X axis than the scene.

	 3.	 Duplicate the top and the bottom.

		 The key to an “endless” scrolling effect is to have the top and bottom (or
left and right of a horizontal image) identical to each other. Use the copy
and paste tool of your graphics package with the Clone and Smudge
tools to get this effect.

	 4.	 Overwrite the checkBounds function.

		 The background sprite will need custom boundary behavior, so over-
write the sprite’s checkBounds method.

	 5.	 Check to be sure the background never leaves the screen.

		 In the Mail Pilot example, the sprite starts far above the scene and moves
downward. With some testing (and the console.log() command), I
was able to determine that my background begins to leave the scene at a
Y value of 720. Use an if statement to check for when that happens.

	 6.	 Move the background so the identical section is showing.

		 The top and bottom of my ocean gif are the same, so when the ocean
is about to leave the scene, the user is seeing the top of the large ocean
gif. Change the Y value so the user is now seeing the identical bottom
of the same .GIF, and keep it moving. You may need to use console.
log() and some testing to get it to work exactly like you want.

Here’s the code for the checkBounds() method so you can see it in action.
Note that you’ll have to change the specific values to match your image size.

 tOcean.checkBounds = function(){
 //seamless ocean gif repeats
 if (this.y > 720){
 this.setPosition(400, -120)
 } // end if
 } // end checkBounds

312 Part IV: The Part of Tens

Improving the top-down racer
This type of game is very popular because it’s easy to write and can be modi-
fied in a number of simple ways to get many different types of games. Here
are a few suggestions:

	 ✓	Add a scoring mechanism. The most obvious improvement is to add
some sort of scoring system. Award points for touching the islands and
take away life for touching clouds.

	 ✓	Build up the difficulty level. Consider adding more clouds, changing
the size of the various elements, or changing the speed.

	 ✓	Add powerups. Powerups are simple sprites that provide some sort of
benefit or disadvantage when they’re activated (usually by shooting or
running over the powerup). The options are nearly limitless but here
are a few starter ideas: Temporarily allow vertical as well as horizontal
motion, change the speed, and make the plane larger or smaller.

	 ✓	Change the motion. Right now, the plane moves only on the horizon-
tal axis. Allowing motion on the vertical axis as well will dramatically
change the gameplay.

	 ✓	Add weapons. Add bullets for an interesting twist. If you want a lot of
bullets, you’ll need to create an array.

	 ✓	Switch to horizontal scrolling. You can switch to horizontal scrolling
quite easily. You can also allow scrolling in either axis, but you’ll have to
really think through the boundary-checking aspects.

The Marble-Rolling Game
This game is designed specifically for mobile devices with an accelerometer
(although it works on a desktop). The idea is to tip the device to move a
ball into the blue goal without hitting any of the blocks. Every time the user
achieves the goal, the game is redrawn with an additional block, making the
game harder and harder. The game is shown in Figure 13-3.

Managing dual input
Perhaps the most interesting part of this game is its novel input mechanism.
It feels very natural to tilt the screen for ball motion. Check Chapter 9 for
details on using the accelerometer to get tilt input. The essential plan is this:

313 Chapter 13: Ten Game Starters

	 1.	 Create an Accel object.

		 Turn on the accelerometer by creating an instance of the Accel object.

	 2.	 Build a checkAccel() method.

		 I added a method to the Ball object that checks the accelerometer.

	 3.	 Get the accelerometer rotation.

		 Use the getAX() and getAY() methods to find the amount of rotation
around these axes.

	 4.	 Convert rotation to dx and dy values.

		 Use the mechanisms described in Chapter 9 to convert rotation to
appropriate motion values.

	 5.	 Add an optional keyboard input.

		 It’s much easier to debug a program on a desktop than on a mobile
device, so often I’ll add an alternate input option so I can test as much of
the program as possible before moving to the mobile platform. Use the
Scene class’s touchable property to determine whether you’re using a
mobile device. This approach also makes the game playable for a wider
array of users.

	

Figure 13-3:
Tilt the

device to
roll the ball.

	

314 Part IV: The Part of Tens

Here’s the code (in the main update() function) for checking which type of
input is available:

 //get input from accelerometer or keyboard
 if (game.touchable){
 ball.checkAccel();
 } else {
 ball.checkKeys();
 }

And here’s the checkAccel() method of the Ball object:

 tBall.checkAccel = function(){
 //use the accelerometer to get input
 newDX = accel.getAY();
 newDY = accel.getAX();

 newDX *= -5;
 newDY *= -5;

 ball.setDX(newDX);
 ball.setDY(newDY);
 } // end checkAccel

Building an array of obstacles
Another interesting feature of this game is the ever-increasing level of dif-
ficulty. Getting the difficulty level of a game correct is very challenging. You
want the game to be beatable, but beating the game needs to feel like an
accomplishment. One way to achieve this goal is to begin with a very easy
level of difficulty and then ramp up until the game becomes more difficult.

For the marble game, I use an array of blocks as the obstacle. When the game
begins, there are only ten blocks on the screen, so it’s quite easy to get to the
target without hitting any blocks. Each time the player reaches the target, the
game scene is redrawn with one more block.

The blocks and the goal are drawn at random positions on the screen.
However, you need to be careful not to create an impossible situation. The
Block object’s reset() method tries to place a block at a random position
on the screen. However, if the block collides with the goal, the game will be
difficult to win. Likewise, if the block collides with the ball’s current posi-
tion, the player will immediately lose. If either of these conditions occurs, the
block is redrawn until a legal position is available.

315 Chapter 13: Ten Game Starters

I allowed blocks to overlap each other freely, but you could add this con-
straint as well. Here’s the block resetting routine:

 tBlock.reset = function(){
 //don’t let me overlap the goal or ball
 keepGoing = true;
 while(keepGoing){
 newX = Math.random() * this.cWidth;
 newY = Math.random() * this.cHeight;

 this.setPosition(newX, newY);
 keepGoing = false;
 if (this.collidesWith(goal)){
 keepGoing = true;
 } // end if
 if (this.distanceTo(ball)< 150){
 keepGoing = true;
 } // end if
 } // end while loop
 } // end reset

Improving the marble game
The marble game is quite playable as it is, but any game can be improved.
Here are a few suggestions:

	 ✓	Add a time limit. Require the user to reach the target at a specified
time.

	 ✓	Add new kinds of barriers. Barriers of different sizes will change the
gameplay.

	 ✓	Change the ball’s boundary action. In my version of the game, the ball
wraps around the screen. This adds an additional tactical element to the
game, but you may prefer to stop at the border.

	 ✓	Add powerups. You can always add special elements that temporarily
change gameplay. Maybe consider making the ball invincible for a few
seconds, or inverting gravity (multiply dx and dy both by -1). You could
also temporarily change the size of the ball or have a powerup that
resets the current level.

	 ✓	Create moving blocks. The game entirely changes if the blocks also
move. You’ll probably want them to move very slowly in a random direc-
tion because this feature could make the game much harder.

	 ✓	Make cosmetic improvements. Of course, you can always add sound
effects, a high score mechanism, and improved graphics.

316 Part IV: The Part of Tens

Whack-a-Mole
The whack-a-mole genre re-creates a classic physical arcade game. In the
original game, you have a series of holes and a big hammer. As a mole pops
out of a hole, the user smacks it with a hammer, and it goes back into the
hole. This game is easy to re-create for both mobile and traditional desktops,
and it can be frantic fun. Figure 13-4 shows this game in action.

My version creates a number of moles in random positions. Each mole has
two states: up and down. The mole starts in the down state. A mole in the
down state has a random chance of popping up in any frame. A mole that is
currently up stays up for a limited time. If the user clicks a mole in the UP
state, the mole drops and the player earns a point. If the mole stays up past a
time limit, the mole drops, and the player loses a life.

Building a mole in a hole game
The main concept of this game is the mole. It’s a simple Sprite object with
two states. Everything the mole does is really about changing states.

The mole has a few properties that separate it from a normal sprite:

	 ✓	state: The most important property of the mole is state. This can be
either UP or DOWN. Various game behaviors cause the state to change.

	 ✓	UP and DOWN: These values are treated like constants, and they are used
to indicate the two possible states of the mole.

	 ✓	imgUp and imgDown: These are the images representing the two states.
Obviously, I created ridiculously simplistic images for the states. Note
that both state images should be the same size, or the sprite will appear
to jump around the screen when it changes state.

	 ✓	popupPerc: This property indicates the likelihood a mole that’s cur-
rently down will pop up. The initial value is 1 percent. Remember this
value will be checked 20 times per frame, so at 1 percent, a down mole
will pop up (on average) every 5 seconds. Modify this value to change
the game difficulty (larger numbers will cause moles to pop up more fre-
quently).

	 ✓	popupLength: This property indicates how long a mole will stay vis-
ible once it has popped up. The default value is 3 seconds, but you can
adjust this to make the moles disappear more quickly or stay visible
longer.

317 Chapter 13: Ten Game Starters

	

Figure 13-4:
Whack

those
moles!

	

Here are the main methods of the mole object:

	 ✓	setState(state): Sets the state to the specified state value. States
are stored as constants (UP and DOWN). When the state is changed, the
mole’s state property is modified, and the mole’s image is modified to
reflect the current state. If the state is set to UP, a timer begins, which
will be used to track how long the mole is visible.

	 ✓	CheckClick(): Checks to see if the mole is currently clicked. If the
mole is currently UP, hide the mole and increment the score.

	 ✓	CheckTime(): The behavior of this function depends on the mole’s
status. If the mole is currently down, randomly determine if it should
pop up. If the mole is up, check to see if the popupLength has been
exceeded. If so, lose a life and consider ending the game.

The checkTime code is the most interesting code in the mole game, so here
is that method:

 tMole.checkTime = function(){
 //if down, consider popping up
 if (this.state == DOWN){
 randVal = Math.random();
 if (randVal < this.popupPerc){

318 Part IV: The Part of Tens

 this.setState(UP);
 } // end if
 } else {
 //if up, check to see how long we’ve been up
 time = this.timer.getElapsedTime();
 if (time > this.popupLength){
 this.setState(DOWN);
 //lose a life
 lives--;
 if (lives < 0){
 saveHighScore();
 alert(“You lose”);
 document.location.href = “”;
 } // end if
 } // end if
 } // end if
 } // end checkTime

Other features of the mole game
Once a single mole has been created and is acting correctly, it’s easy to build
a lot of them. As usual, I created an array to handle a large number of objects
of the same type. Modify the NUM_MOLES constant to change the number of
moles in the game.

Also note that I added a virtual joystick if the scene registers a touch object.
This will cause the touch screen to act just like a virtual mouse, and will
allow the game to be played on a touch device. (It turns out to be a really
great game for touch screens, but you should avoid using a real hammer.)

One more interesting feature is the high score mechanism. The computer
keeps track of the high score on that particular machine. The high score mech-
anism uses a relatively new feature called localStorage. It’s similar to the well-
known cookie mechanism, but safer, more powerful, and a lot easier to use.

The getHighScore() function loads the current high score. If there isn’t yet
a high score, it will be set to zero.

 function getHighScore(){
 //get the high score on this machine using localStorage
 highScore = parseInt(localStorage.getItem(“moleHighScore”));
 console.log(“highScore: “, highScore);
 if (highScore == “null”
 || highScore == null
 || isNaN(highScore)){
 highScore = 0;
 } // end if
 } // end getHighScore

319 Chapter 13: Ten Game Starters

The saveHighScore() function is called when the game ends. It checks to
see if the current high score has been exceeded. If so, the new high score is
saved.

 function saveHighScore(){
 if (hits > highScore){
 alert(“New high score!”);
 localStorage.setItem(“moleHighScore”, hits);
 } // end if
 } // end saveHighScore

Even if the user leaves the page or turns off the browser, the high score will
be maintained.

The localStorage mechanism only keeps track of the current browser. It
cannot be used to check global high scores. This requires server-side pro-
gramming, which is beyond the scope of this book.

Improving the mole game
As always, you can improve this game many ways.

	 ✓	Improve graphics and sound. The default graphics are pathetically
weak, and this game has no sound effects to speak of. These are easy
ways to improve the program.

	 ✓	Change the screen size. This game is highly dependent on screen size. A
larger screen can be much more difficult than a smaller screen.

	 ✓	Modify the number of moles. This is an easy way to change the difficulty
level. More moles will be more difficult, unless they begin to overlap.

	 ✓	Prevent overlapping moles. As a default, the placement of each mole is
completely random, so they can overlap. Use the techniques described
in the marble game earlier in this chapter to prevent a mole from spawn-
ing on top of another hole.

	 ✓	Make a more orderly setup. I actually like the randomness of this game,
but the traditional version uses an orderly grid for the moles. Line up
the moles so they are in a more organized pattern on the screen.

	 ✓	Change mole settings. The popupRate and popupTime properties give
you a great way to modify the behavior of each mole. You might adjust
these values over time to make the game speed up.

	 ✓	Move the holes. Consider moving the mole after it has gone down. This
adds variety to the game.

320 Part IV: The Part of Tens

Jump and Run on Platforms
The platform “jump and run” genre has long been a staple arcade genre for
good reason. It provides a nice interactive experience and is relatively easy
to modify for many different kinds of games.

The essential element of a platform game is — well — platforms. The action
usually happens with a side view and a player character that responds to
gravity. Normally, the player will jump around on platforms and fight enemies
by shooting, jumping, or melee combat.

My prototype shows the essential features. It includes a player character that
can jump and land on platforms. I’ve also included draggable platforms so
you can edit the scene and see how the character interacts with various plat-
form configurations.

You can see my example in Figure 13-5.

	

Figure 13-5:
The char-

acter jumps
around on

the
platforms.

	

321 Chapter 13: Ten Game Starters

Jumping and landing
The key to a side-scrolling game is the jumping and landing mechanic. As
with the lunar lander described earlier in this chapter, use a falling prop-
erty to track whether the character should respond to gravity or not. Here’s
the code from the checkKeys() method that reads the up arrow and makes
the character jump.

 if (keysDown[K_UP]){

 if (this.falling == false){
 this.setImage(“characterUp.png”);
 this.y -= 5;
 this.falling = true;
 this.addVector(0, 15);
 } // end if
 }else {
 checkFalling();
 }// end if

The checkFalling() function checks each of the blocks. If the character is
not touching any of the blocks, set falling to true. This will make the charac-
ter fall once it moves off of a block.

Coming in for a landing
The interaction between the character and the blocks is important because
you want the character to stop moving before it hits a block. This requires a
technique called predictive collision detection, which sounds a lot more com-
plicated than it is. Here’s the mechanism:

	 1.	 Move the element as normal.

		 Do the calculations to move the object (in this case the character) as
normal. Note that the character isn’t drawn yet, but new x and y values
have been determined by adding dx and dy.

	 2.	 Check for a collision.

		 Check to see if the character has collided with anything (in this case,
each block in the array of blocks).

	 3.	 If a collision occurs, back up the character.

		 You’re checking for a collision, but you don’t want the character to over-
lap with the block. Instead, you’re interested in knowing whether the
current motion vector would cause a collision.

322 Part IV: The Part of Tens

	 4.	 Subtract dx from x, dy from y.

		 A collision has been detected, so detract that collision by subtract-
ing the motion vector. This results in the sprite being where it started
before the collision was detected.

	 5.	 Set the sprite’s speed to zero.

		 Set the sprite’s speed to zero so the next frame doesn’t cause the sprite
to crash into the block again.

The easiest way to get the predictive behavior is to add a backup() method
to the Sprite object, which can be called on any type of collision:

 tCharacter.backup = function(){
 //I’m overlapping something I shouldn’t share

space with
 //back up to where I was before the collision

was detected
 X = this.x - this.dx;
 Y = this.y - this.dy;
 this.setPosition(X, Y);
 } // end backup

Making draggable blocks
This game features another very interesting feature: Each block can be dragged
to a new position so you can experiment with other block placements. Making
any sprite draggable is relatively easy. Simply check to see if the block cur-
rently is being clicked. If so, set its position equal to the mouse position:

 tBlock.checkDrag = function(){
 //allow the block to be draggable
 if (this.isClicked()){
 this.setPosition(scene.getMouseX(), scene.

getMouseY());
 } // end if

 } // end checkDrag

323 Chapter 13: Ten Game Starters

Improving the platform game
The platform game is open to many kinds of enhancements:

	 ✓	Use multiple levels. The default blocks are easy to build and work with,
but they aren’t very interesting. Experiment with different block shapes
and positions to build interesting levels. You can store the block posi-
tions in arrays to make new levels, and simply reuse the blocks.

	 ✓	Consider a tile-based approach. The platform example uses an arbitrary
block placement scheme, but you can also use a tile-based approach.
Look at the tile-based world described later in this chapter, in the “Miles
and Miles of Tiles and Tiles” section, and convert it to a side-scrolling
mechanism.

	 ✓	Add goals and enemies. An obvious improvement to this game would
be to include some goal to reach with some obstacle in the way.
Consider how you might implement enemy characters. Will they move?
Will they shoot? Also consider adding powerups to improve jumping
speed, add a ranged weapon, or whatever else you can imagine.

	 ✓	Add more firepower. Add a weapon to the character so it can shoot. In
side scrollers, the weapon normally fires horizontally, but you can play
around to get the behavior you want.

	 ✓	Improve the physics. The dynamics of this game work pretty well, but
you can improve them with a bit more tweaking. Follow the general out-
line of the existing program, but see if you can make it work exactly like
what you want.

Pong — the Granddaddy of Them All
No game development book would be complete without a mention of the
famous Pong game. While this wasn’t technically the first video game, it was
the first to attract popular attention, and it’s by far one of the more influential
games ever made. Figure 13-6 shows my take on this classic game.

Pong is a relatively easy game to write, but it does have a couple of features
that can be surprising. It can be a bit tricky to get the ball-paddle collision to
work correctly, and coming up with an interesting computer player can be
challenging. Read on to see how it’s done.

324 Part IV: The Part of Tens

	

Figure 13-6:
It’s pong.

What else
can I say?

	

Building the player paddle
The paddle object is quite straightforward, but there are actually two pad-
dles with different behaviors. In my version of the game, the left paddle is
controlled by the player, and the right paddle is controlled by a computer AI.
I built a single paddle object that can serve as either a player or an AI paddle.
(This will simplify converting the game to a multiplayer game.) The player
paddle just follows the mouse:

 tPaddle.followMouse = function(){
 //follows mouse for player control
 this.setImgAngle(90);
 this.setPosition(this.x, scene.getMouseY());
 } // end followMouse method

Adding artificial stupidity
It’s actually very easy to build an Artificial Intelligence (AI) for the opponent.
Simply set the paddle’s Y value equal to the ball’s Y value. However, this will

325 Chapter 13: Ten Game Starters

be boring, because the opponent will never miss, and will always hit the ball
squarely in the middle of the paddle, making it easy to return. A perfect AI is
no fun at all. What you need is to give the AI paddle some kind of attention
issues (but we still love it).

The AI shouldn’t directly follow the ball. Instead, it should check to see
whether the ball is above or below it, and respond accordingly.

I added two variables to control the AI paddle’s motion. The BRAINS con-
stant is a percentage. If BRAINS is set to .5, the paddle will check for ball
location only half the time. For an easier game, set the BRAINS value low.
The other primary value is V_SPEED, or the vertical speed of the paddle. This
indicates how quickly the paddle will move toward the ball. A higher value
will create a more powerful AI player. Find the right combination of these two
values to get the AI behavior you want. Here’s the code for the autoMove()
method:

 tPaddle.autoMove = function(){
 //automatically moves
 this.setImgAngle(90);

 //don’t move on every turn
 if (Math.random() < BRAINS){
 if (this.y > ball.y){
 this.setMoveAngle(0);
 } else {
 this.setMoveAngle(180);
 } // end if

 this.setSpeed(V_SPEED);
 } // end if
 } // end autoMove

Building a ball to bounce off boundaries
While the ball is a seemingly simplistic sprite, it does have some interesting
behavior. The ball has a unique boundary-checking scheme. It bounces off
the top and bottom of the screen, but if it leaves the sides, it wraps (and one
player or the other scores).

If you don’t have a boundary scheme that fits one of the standard patterns,
you can simply overwrite the checkBounds() method to do whatever you
want. (Note that you don’t need to explicitly call checkBounds(). It is auto-
matically called by the sprite’s update() method. Your custom version of
checkBounds simply replaces the built-in version. Here’s my variant:

326 Part IV: The Part of Tens

 tBall.checkBounds = function(){
 //overwrite checkbounds function to give
 //custom behavior

 //bounce off of top and bottom
 if (this.y < 0){
 this.setDY(this.dy * -1);
 }
 if (this.y > scene.height){
 this.setDY(this.dy * -1);
 }

 //wrap off of sides
 if(this.x < 0){
 this.setPosition(scene.width - 150,

this.y);
 //computer scores
 } // end if
 if (this.x > scene.width){
 this.setPosition(150, this.y);
 //player scores
 } // end if
 } // end checkBounds

If the ball hits the top or bottom of the screen, invert dy to make it bounce. If
it hits the left or right of the screen, move it to the other side (in front of the
paddle, so it doesn’t bounce off of the back of the paddle).

When the ball leaves the screen at the sides, somebody will score, so I left
myself a comment indicating where the scorekeeping (and eventually end-of-
game conditions) will go.

Putting some spin on the ball
In traditional versions of Pong, the ball can be controlled by choosing where
on the paddle to hit the ball. If you hit the ball near the top of the paddle, the
ball will move upward. If you hit the ball near the center of the paddle, it will
fly across the screen horizontally, and if you hit near the bottom, the ball will
move downward. A little bit of math gives you this behavior. (And you told
your algebra teacher you’d never need this.)

 tBall.checkBounce = function(paddle){
 //responds to a collision with the given

paddle
 //Max and min dy
 MAX = 10
 if (this.collidesWith(paddle)){
 this.setDX(this.dx * -1);

327 Chapter 13: Ten Game Starters

 dy = this.y - paddle.y;
 dy = ((dy / paddle.height) * 2);

 dy *= MAX;
 this.setDY(dy);
 } // end if
 } // end checkBounce

The dx value is easy to calculate because you simply invert dx to move in
the other direction. The dy value is calculated by determining the difference
between the ball’s y position and that of the paddle:

	 1.	 Determine a maximum dy.

		 This value determines the highest level of deflection you’ll allow. If the
MAX value is set to 10, the ball’s dy value will be -10 at the top of the
paddle, 0 at the middle, and 10 at the bottom of the paddle.

	 2.	 Invert dx.

		 If the ball is moving left, multiply the dx value by -1 to make it go right.
If it’s going right, the same operation (multiplying by -1) will make it go
left. Any paddle collision inverts the ball’s dx.

	 3.	 Find the raw difference in y values.

		 Calculate how far apart the y value of the paddle and the ball are.

	 4.	 Normalize this value.

		 If you divide the raw dy value by the height of the paddle, you’ll get a
range between -.5 and .5. Multiply that value by 2 to get a -1 to 1 range.

	 5.	 Multiply the normalized dy by MAX.

		 Multiplying the normalized dy value by the MAX value will give a dy
value between -MAX and MAX.

Improving the Pong game
While this Pong game has the basic behavior down, it’s far from ready for
actual play. Here are a few things to consider adding:

	 ✓	Add aesthetic appeal. As usual, my game is functional but not very
pretty. You can do a lot to make it look better, from customizing the
paddles to adding ball animations and sound effects.

	 ✓	Add scorekeeping. Without a scorekeeping mechanism, the game is
kind of pointless. Add the ability to track user and computer scores.
Also add some way to determine the end of the game.

328 Part IV: The Part of Tens

	 ✓	Add powerups. Add some spice to the game by having new variations:
Change the size of each paddle, invert the control of the player paddle,
change the ball speed, make the ball occasionally invisible, or invert the
ball-paddle collision algorithm for starters.

	 ✓	Tune up the AI. The AI I present here is functional, but it can be improved.
For one thing, it gets pretty jittery when the ball is traveling in a flat trajec-
tory. See if you can figure out a way to smooth out this behavior.

I’m a Fighter, Not a Lover — RPGs
The role-playing game (RPG) is one of the most enduring forms of gameplay.
While role-playing games can work in many different ways, the general setup
follows a familiar pattern. The user engages as a character with a set of basic
characteristics. The player then collects objects and defeats enemies to even-
tually improve her performance, which leads to more difficult monsters.

The simple variation shown in Figure 13-7 illustrates a basic yet very flex-
ible combat mechanic: The user controls a spear-wielding hero facing a
dastardly orc.

This game features a number of important ideas: an animated character, a
base class, and a simple combat system.

	

Figure 13-7:
Poke that
orc with a
stick, will

you?
	

329 Chapter 13: Ten Game Starters

Building the base Character class
From a data point of view, monsters and heroes are actually very similar to
each other. (I’ll leave debate about the meaning of this point to philosophers.)
Begin by building a generic Character class that supports all the common
characteristics, and you can then easily modify this class to build all the
heroes and monsters you can imagine. The keys to any character class are the
statistics used in combat and leveling. You can handle this a number of ways,
but my game uses a simplified combat form familiar to tabletop role-players:

	 ✓	Name: While this may be obvious, the name is useful for reporting what
is happening.

	 ✓	hp: Hit points. This is the amount of damage a character can take. If you
have a lot of hit points, you can take a lot of damage.

	 ✓	hitPerc: This is the percentage of likelihood that a particular attack
will hit. If the hitPerc is 50, attacks will land half the time. Higher
values lead to more successful attacks.

	 ✓	damage: The damage modifier indicates how much damage will be done
upon a successful hit. This value indicates how many six-sided dice
will be rolled. (Using dice gives a more believable damage value than a
straight random value. For example, rolling two six-sided dice will pro-
duce the values five through nine much more frequently than 2 or 12.)

	 ✓	defMod: This value is a defensive modifier. It’s used to simulate dexter-
ity and the ability to dodge an attack. The defense modifier is used to
make an opponent less likely to land a blow.

	 ✓	armor: Once an attack has landed, the armor value will absorb some
of the damage. The larger the armor value, the harder it is to hurt the
character.

The Character class holds all these values in properties, and it also contains
two functions. The showStatus() function returns a string containing all the
stats for the character. The fight() function manages a round of combat.

Here’s the code for the fight() method:

 tChar.fight = function(enemy){
 //assumes enemy is also based on Char
 hitPerc = (this.hitPerc - enemy.defMod) / 100;
 if (Math.random() < hitPerc){

 damage = 0;
 for (i = 0; i < this.damage; i++){
 damage += parseInt(Math.random() * 6);
 } // end for

 damage -= enemy.armor;

330 Part IV: The Part of Tens

 enemy.hp -= damage;

 if (enemy.hp <= 0){
 alert(enemy.name + ” is dead!”)
 document.location.href = ””;
 } // end ’enemy dead’ if
 } // end ”hit” if

 } // end fight

Here’s how the fight() method works:

	 1.	 Accept another character as a parameter.

		 The fight() method expects an enemy class, which should also be a
character (or something based on the Character class).

	 2.	 Determine the hit percentage.

		 Subtract the enemy’s defense modifier from the attacker’s hitPerc.
This will give a value between 0 and 100. Divide this value by 100 to get a
0-1 float.

	 3.	 Roll a random number.

		 The Math.random() function returns a value between 0 and 1. Compare
this to the calculated hitPerc to find out if there has been a hit.

	 4.	 Roll the dice.

		 Roll one six-sided die for each damage point, and add this value to a run-
ning total to determine how much damage is caused by this hit.

	 5.	 Compensate for enemy armor.

		 Subtract the armor value from the damage amount.

	 6.	 Subtract damage from the enemy hp.

		 Apply damage by subtracting it from hp.

	 7.	 Check to see if the enemy is dead.

		 If the hp goes below 0, the enemy is dead.

The combat model is designed to be simple and flexible. All the various pick-
ups or level improvements can be boiled down to modifying these character-
istics. For example, if your character picks up a shield, simply add a value to
the armor modifier. A stronger weapon may involve a better toHit percent-
age and/or more damage. As your character gets stronger, he gets more hp.
Likewise, all the monsters are pretty much the same, but they’ll have differ-
ent values. For example, you can make a small creature that’s difficult to hit
with a small hp, small damage, and a large defense modifier. A large slow
monster might have a lot of hp but a small defensive modifier.

331 Chapter 13: Ten Game Starters

The Character class is interesting, but it isn’t really meant to be used on its
own. Instead, it’s designed to be a base for more specific characters. It has
the minimal features you’d expect of any character, but then you can extend
it (like you extend the sprite) to add more specific behavior.

One does not simply build an orc . . .
The Orc class is a simple extension of the Character class. In my example,
the orc does very little, but I could easily extend it to move, drop treasures,
or whatever. However, this version is quite straightforward. All I do is extend
the Character class, setting specific values for the various parameters.

 function Orc(){
 tOrc = new Character(“orc”, “orc.png”);

 //orc is bigger than default but with weaker weapons
 tOrc.hitPerc = 50; // perc likelihood of hitting opponent
 tOrc.damage = 1; // damage(d6) done on a successful hit
 tOrc.defMod = 5; // subtract from opponent’s hitPerc
 tOrc.armor = 1 // subtract from opponent’s damage
 tOrc.hp = 50; // amount of damage I can sustain

 tOrc.setSpeed(0);

 tOrc.setPosition(300, 200);

 return tOrc;
 } // end orc

We need a hero
The hero is another extension of the Character class, but (as befits a hero)
it has a bit more enhancement. The hero uses a sprite sheet animation like
those described in Chapter 8. I produced the images from the marvelous
resources at openGameArt.org. In particular, I used a wonderful GIMP file
that allows you to build custom characters by turning on and off various
layers in GIMP. I then simplified those images to create only what I needed to
build my Hero class. See Chapter 11 for more information on the sprite sheet
and openGameArt.org.

http://openGameArt.org
http://openGameArt.org

332 Part IV: The Part of Tens

The Hero class is much like the default Character (in fact, it uses all the
default combat values, so I don’t change those at all). The main addition is
the animation code. Here is a portion of that code:

 function Hero(){
 tHero = new Character(“hero”, “hero.png”);

 tHero.loadAnimation(512, 256, 64, 64);
 tHero.generateAnimationCycles();
 tHero.renameCycles(new Array(“up”, “left”, “down”,

“right”));
 tHero.setAnimationSpeed(500);

 //leave all stats at their default values

 tHero.pause = function(){
 this.setSpeed(0);
 this.setCurrentCycle(“down”);
 this.pauseAnimation();
 }// end

 tHero.checkKeys = function(){
 if (keysDown[K_LEFT]){
 this.setSpeed(1);
 this.playAnimation();
 this.setMoveAngle(270);
 this.setCurrentCycle(“left”);
 }

I obviously left out some of the other keyboard-checking code, but you can
see this program is a variation of the animation described in Chapter 8. The
hero uses a predictive collision model to prevent walking into the orc. If a col-
lision is noted, the hero simply backs up to the original spot before updating
itself:

 tHero.checkCollision = function(){
 //predictive collision detection

 if (this.collidesWith(orc)){
 //back up and pause
 this.x -= this.dx;
 this.y -= this.dy;
 this.pause();
 fight();
 }

 } // end checkCollision

If the hero collides with the orc, the fight() mechanism begins. This is
actually quite simple:

333 Chapter 13: Ten Game Starters

 function fight(){
 hero.fight(orc);
 orc.fight(hero);

 heroStatus.innerHTML = hero.showStats();
 orcStatus.innerHTML = orc.showStats();
 } // end fight function

The fight() function has the hero attack the orc, and then the orc attacks
the hero. After the round, each character’s statistics are displayed in the
appropriate output.

Improving the role-playing game
This game simply begs for improvements. There are many ways to take this
particular example further:

	 ✓	Add more monsters. You can build an entire range of monsters. Note
that each monster could simply be an image and the combat statistics.
It’s relatively easy to build a data structure that stores an entire array of
ever-more challenging monsters to fight.

	 ✓	Add an inventory. Allow the user to pick up various items. Each of the
items will simply change a variable or two: making the player stronger,
giving her more damage, or better defense against attack, for example.

	 ✓	Include a dungeon. This game doesn’t have a lot of atmosphere so far.
Use some background graphics to add atmosphere. You can always use
an array of blocks for barriers as you’ve seen in other examples in this
chapter.

	 ✓	Add a tile-based dungeon. Of course, tile-based worlds and RPG combat
are natural companions. Look at the tile-based example later in this
chapter for information on building a tile-based world to hold your mon-
sters and treasures.

Tanks — and You’re Welcome!
I’ve long enjoyed the artillery genre. This type of game gives you some sort of
launch mechanism with semi-realistic physics, and has you launch projectiles
(avians with anger issues or otherwise) at some sort of target. My take begins
as a single-player game against a drone tank, but you can easily extend it to
a two-player game or give the opponent more intelligence. Figure 13-8 shows
the tank game in action.

334 Part IV: The Part of Tens

	

Figure 13-8:
I’m shooting

at the evil
enemy tank.

	

Tanks, turrets, and shells
The most interesting thing about a tank-style game is the relationship
between the tank, its turret, and the bullets it fires. In my game, the tank is
controlled by the A and D keys, and the turret’s angle is controlled by W and
S (I use these keys to reserve the arrow keys for a two-player game if you
ever want to do so).

The tank is a sprite, but the tank image (at least the player-controlled tank)
doesn’t include a turret. The turret is a separate sprite intended to be linked
to the tank and rotated on its own. When the player moves the tank, the turret
moves with it. When the user rotates the turret, the turret rotates, but the
tank doesn’t. The bullet is a third sprite, which appears when the user fires
the tank. The bullet’s initial position is determined by the tank’s position,
and the bullet’s initial motion angle is determined by the turret’s angle.

The turret sprite is the same size as the tank. Design the turret so it revolves
around its center point (which, in the simplest case, will also be the center of
the tank). Most of the turret sprite will be transparent so the tank can show
through. (Check the raw images on my website if you’re confused.)

335 Chapter 13: Ten Game Starters

Here’s the code for the tank:

 function UserTank(){
 tTank = new Sprite(game, “greenTank.png”, 50, 25);
 tTank.setSpeed(0);
 tTank.setPosition(100, 550);

 tTank.turret = new Sprite(game, “turret.png”, 50,

25);
 tTank.bullet = new Bullet(tTank);

 tTank.checkKeys = function(){
 if (keysDown[K_A]){
 this.changeXby(-2);
 }

 if (keysDown[K_D]){
 this.changeXby(2);
 }

 //always move turret with me.
 this.turret.setPosition(this.x, this.y);

 //rotate turret

 if (keysDown[K_W]){
 this.turret.changeImgAngleBy(-5);
 if (this.turret.getImgAngle() < 0){
 this.turret.setImgAngle(0);
 } // end if
 }

 if (keysDown[K_S]){
 this.turret.changeImgAngleBy(5);
 if (this.turret.getImgAngle() > 90){
 this.turret.setImgAngle(90);
 }
 }

 if (keysDown[K_SPACE]){
 this.bullet.fire();
 }

 this.turret.update();
 this.bullet.checkGravity();
 this.bullet.update();

 } // end checkKeys

 return tTank;
 } // end tank

336 Part IV: The Part of Tens

The tank design is mildly complicated by having a dependent turret sprite,
and a bullet sprite. Here’s how to build this mish-mash of armored sprite
goodness:

	 1.	 Build the tank sprite first.

		 As with most examples in simpleGame, begin by building a temporary
sprite for the tank (called tTank).

	 2.	 Build a turret sprite.

		 The turret is a second sprite. It is a property of the tank, as well as a
sprite in its own right. The turret is fairly simple, so it can be a stock
sprite. It does not need to be a complete subclass.

	 3.	 Build a bullet sprite.

		 Each tank has a sprite and a bullet. The bullet will need some specific
behaviors (boundary-checking, collision, and gravity), so it will be a sub-
class of the Sprite object. Look at the next section for information on
building the bullet. For now, just know that the tank will need a bullet.
Note that the bullet will need to know which tank it belongs to, so I send
the current tank as a parameter.

	 4.	 Read the keyboard.

		 The tank is currently set to use the WASD keys for input. (I did this to
enable a two-player game later.)

	 5.	 Move the tank left and right.

		 The left and right controls move the tank sprite itself. Move the turret so
its center is always the same as the tank’s center. This causes the turret
to always move with the tank.

	 6.	 Rotate the turret.

		 The up and down controls cause the turret to rotate. Set minimum and
maximum values to keep the turret within a reasonable range of angles.

	 7.	 Fire the bullet.

		 On the fire command (space bar by default), invoke the bullet’s fire()
method. (Of course, you’ll need to write that in the Bullet class.)

	 8.	 Update the turret.

		 Up to now, all update() calls have happened in the main update()
function. However, the main game doesn’t really need to update the
turret. Because the turret is part of the tank, updating the tank should
update the turret. Because the checkKeys() method will happen every
frame, I update the turret to ensure that it draws correctly.

337 Chapter 13: Ten Game Starters

	 9.	 Move the bullet.

		 If a bullet is active, use the checkGravity() method to track its cur-
rent course while taking gravitational pull into account. If there is no
bullet currently active, this line will be ignored.

	 10.	 Update the bullet.

		 Again, the bullet feels like part of the tank, so it should be updated auto-
matically.

Building a bullet
Okay, military purists, I know it’s a shell, but for now, let’s just call it a bullet.
It’s an arcade game, after all.

The bullet class will be fired by a tank. The bullet is a surprisingly sophisti-
cated class, as it needs a fire() method (which will fire the bullet based
on the tank and turret’s current situation) and a checkGravity() method
(which plots the bullet’s trajectory in space).

Here’s the Bullet class code:

 function Bullet(owner){
 //owner is the tank owning this bullet

 tBullet = new Sprite(game, “bullet.png”, 5, 5);

 tBullet.owner = owner;
 tBullet.hide();
 tBullet.setBoundAction(DIE);

 tBullet.fire = function(){
 //begin at center of my tank
 //pointing in tank turret’s direction
 this.setPosition(this.owner.x, this.owner.y);
 this.setMoveAngle(this.owner.turret.getImgAngle());
 this.setSpeed(20);
 this.show();
 } // end fire

 tBullet.checkGravity = function(){
 this.addVector(180, 1);
 } // end checkGravity

 return tBullet;
 } // end bullet

338 Part IV: The Part of Tens

Here’s the life story of a bullet in my game:

	 1.	 Specify the owner tank.

		 When this game has multiple tanks firing at each other (which it clearly
needs), there should be a lot of bullets flying around. Each bullet will
need to know which tank it belongs to so it can fire from the right posi-
tion in the right direction.

	 2.	 Hide.

		 The Bullet object is created at the very beginning of the game, but it
spends most of its life hidden away unseen. One of the first things you
do is hide the bullet so it will be visible only after it’s fired.

	 3.	 Set boundary action to DIE.

		 Bullets typically die when they reach the end of the screen. The sprite is
not removed from memory. It simply isn’t displayed on the screen and
doesn’t respond to collisions. Setting the boundary action to DIE will
cause the desired behavior.

	 4.	 Fire from the owning tank’s position.

		 When the bullet is fired, place it at the owning tank’s position.

	 5.	 Set the movement angle to the owning tank’s turret angle.

		 The turret’s main job is to indicate which angle is used as the bullet’s
starting trajectory.

	 6.	 Provide a large movement speed.

		 Bullets should move quickly, so set an initial velocity of 20 pixels per
frame. (You can add another control to allow the user to modify the ini-
tial velocity if you wish.)

	 7.	 Reveal the bullet.

		 Invoke the bullet’s show() method to make the bullet appear on the
screen.

	 8.	 Check for gravity.

		 All this function does is compensate for gravitational pull with the add-
Vector() method. Check Chapter 8 if you need a review on the use of
this powerful method.

Improving the tank game
Although all the tank’s basic functionality is in place, this game has a very
simplistic behavior. Right now, the only enemy is a very stupid drone tank
(which simply jitters around and doesn’t even shoot back). The improve-
ments you might make begin with these suggestions:

339 Chapter 13: Ten Game Starters

	 ✓	Improve the other tank. Modify the other tank to have a real turret and
the same general behavior as the first. (Note that you may want to invert
the second tank so it generally fires to the left.)

	 ✓	Improve the AI. The drone tank isn’t very bright or fearsome. Give it the
capability to shoot back periodically.

	 ✓	Add fixed defenses. Maybe instead of an enemy tank, you have a target
to destroy (the enemy command bunker or something) with defenses in
the way. Add some obstacles that need to be blown up before you reach
the bunker.

	 ✓	Make enemy artillery. Build fixed-position artillery units that periodi-
cally fire. The user will have to destroy these or risk being blown up.

	 ✓	Make a two-player version. The tank-style game is ideal for two players
on a single keyboard. Add the second tank and a scoring mechanism.

	 ✓	Change the whole theme. This general game can be rebuilt along many
themes. You can be a gunner defending your bomber from enemy air-
craft, or manning a turret defending from hordes of onrushing enemies.
(This is the foundation of the famous tower defense style of games.)

Miles and Miles of Tiles and Tiles
A tile-based world isn’t really a game type. Instead, it’s a technique used in
many other games to provide interesting flexible backgrounds without huge
memory costs. The basic idea is to take a number of small images and use
them in combination to build a complete background image. Figure 13-9
shows a simple map drawn with a tile-based world.

Typically, you’ll build a tile object, which contains a number of small (32 x
32 pixel) images. Each tile object can display any of the images on command.
This scheme has a number of interesting advantages:

	 ✓	Memory requirements can be very small. Each image loads into
memory only once, so you can create a very large world (much larger
than the visible screen) with a small memory footprint.

	 ✓	You can use many different tiles. My example uses only three small
tiles (grass, dirt, and water), but you can build an extremely complex
world with any of the beautiful tile sets you can download from sites like
OpenGameArt.org.

	 ✓	The map is dynamic. The image displayed in each tile can be modified
at runtime. In my example, you can click on any tile to change the terrain
type. This allows the map state to change during gameplay (for example,
a block becomes molten slag after a nuclear attack). This also allows
you to add a map editor.

http://OpenGameArt.org

340 Part IV: The Part of Tens

	

Figure 13-9:
Only three

small
images

were used
to draw this

map.
	

	 ✓	Tiles can have gameplay effects. You can use tiles to create interesting
tactical situations, like water that cannot be crossed or mountains that
give an advantage to a defender.

	 ✓	Maps are simply arrays of integers. To store a tile-based map, you don’t
need to store the tiles at all. Instead, you simply keep track of the tile
states. See the code in this section for an example.

	 ✓	Maps can be much larger than the screen. A tile map can be any two-
dimension array of integers. If you want to display a huge game world,
you can build it as large as you want and simply reflect a subset of that
world as the tiles shown on the screen.

	 ✓	Scrolling a tileset is simple. It’s easy to make large scrolling worlds with
a tile system, because the display is separated from the data. The tiles
themselves rarely move. Instead, a different subset of the map data is
displayed, giving the illusion that the player is moving in a larger world.

	 ✓	Tiles are suitable for multiple game types. Tiles are frequently used
for role-playing games, as well as board games, tactical games, and side-
scrolling platform games.

341 Chapter 13: Ten Game Starters

Creating a Tile object
The Tile object is (naturally enough) the foundation of tile-based maps.
Here’s my code for a simple tile prototype:

 var GRASS = 0;
 var DIRT = 1;
 var WATER = 2;
 var NUMSTATES = 3;

 function Tile(){
 tTile = new Sprite(scene, ”grass.png”, 32, 32);
 tTile.setSpeed(0);
 tTile.state = GRASS;
 tTile.images = new Array(”grass.png”, ”dirt.png”,

”water.png”);
 tTile.row = 0;
 tTile.col = 0;

 tTile.setState = function(state){
 this.state = state;
 this.setImage(this.images[this.state]);
 } // end setState

 tTile.getRow = function(){
 return this.row;
 } // end getRow

 tTile.getCol = function(){
 return this.col;
 } // end getCol;

 tTile.getState = function(){
 return this.state;
 } // end getState

 tTile.checkMouse = function(){
 if (this.isClicked()){

 newState = this.state;
 newState++;
 if (newState >= NUMSTATES){
 newState = 0;
 } // end if

 this.setState(newState);
 } // end if
 } // end if

 return tTile;
 } // end Tile constructor

342 Part IV: The Part of Tens

The most significant part of a tile is its multi-state nature. It has multiple
states. Each state displays a different image. Here’s how to write it:

	 1.	 Prepare your images.

		 The most visible parts of the tile-based system are the various images.
Build or obtain (with the necessary permissions, of course) some tiles
you can use. Mine came from the excellent lpc tile atlas at http://
opengameart.org. I broke each image into a separate 32-by-32 image.
Each image should be the same size, and usually these sizes will be a
power of two (16 x 16, 32 x 32, and 64 x 64 are the most common sizes).

	 2.	 Build constants for the states.

		 The easiest way to work with states is to assign constants for them.
Constants have the advantage of being easily readable by humans and
straightforward integers to the computer. I created a constant for each
state in my tileset, as well as a constant describing the number of states.
(My example has only three states, but you can easily expand it to make
as many as you want.) I also added constants for the number of ROWS
and COLS in my map.

	 3.	 Build a standard sprite.

		 The tile is still essentially a sprite. It doesn’t typically move, so you can
set its speed to 0. Use any of the sprite images you want as the default.

	 4.	 Assign a default state.

		 The state property is the most important aspect of a tile. It indicates
which state the tile is currently displaying. The state value should
always be one of the state constants.

	 5.	 Create an array of images.

		 Each tile will have access to all the possible images. Store them in an
array. Make sure the array order lines up with the constant values. For
example, “grass.png” is element zero in my array, and the GRASS con-
stant is zero, so images[GRASS] will be “grass.png”

	 6.	 Set a row and column.

		 Tiles are usually placed in a two-dimensional grid, so it can be very
useful to track the current tile’s row and column.

	 7.	 Add a setState() method.

		 This method allows you to easily change a tile to any of the state values.
Use a constant to assure the state is recognized by your tiles. The
state property is modified to reflect the current state, and the image is
also changed, so the correct image will display on the next update.

	 8.	 Provide data retrieval techniques.

		 These functions return the row, column, and current state of the tile.

http://opengameart.org/
http://opengameart.org/

343 Chapter 13: Ten Game Starters

	 9.	 Allow an editing behavior.

		 In my example, I’m actually making a map editor, so I’ll allow the user
to modify each tile by clicking on it. The checkMouse() method deter-
mines whether the tile has been clicked. If so, the state is incremented
and the new state is displayed.

Building a map from tiles
Each tile is a powerful tool, but the real power of the tile-based structure is
how tiles are combined to create a complete map. The tileset is a two-
dimension array of tile objects. Like most two-dimension arrays, it’s normally
managed by a pair of nested loops. Here’s the code for setting up the tileset:

 function setupTiles(){
 tileset = new Array(ROWS);
 for (row = 0; row < ROWS; row++){
 tRow = new Array(COLS);
 for (col = 0; col < COLS; col++){
 tRow[col] = new Tile();
 xPos = 16 + (32 * col);
 yPos = 16 + (32 * row);
 tRow[col].setPosition(xPos, yPos);
 tRow[col].row = row;
 tRow[col].col = col;
 } // end col for loop
 tileset[row] = tRow;
 } // end row for loop;
 } // end setupTiles

There are only a few points to keep in mind here:

	 ✓	The tileset is an array. Each member of the tileset array is actually a
row (which is another array). Build an array of length ROWS.

	 ✓	Step through each row. Use a standard for loop to step through all the
rows.

	 ✓	Each row is an array of length COLS. A two-dimension array is actually
an array of arrays (at least, that’s how it’s implemented in JavaScript
and many other languages). Make an array of length COLS for each row.

	 ✓	Step through the columns. Make a for loop that happens once per
column. You now have two counting variables (row and col), which
together describe the position of each tile in the two-dimension structure.

	 ✓	Create a new tile. Simply use the tile constructor to build a new tile.

344 Part IV: The Part of Tens

	 ✓	Set the tile’s position. I used a little math to calculate the appropriate
position of each tile in the scene. You can multiply the row and column
by the width and height of the cell to determine a rough placement,
but because the X and Y positions of a sprite refer to the center of the
sprite, I added half the tile’s width and height to make the tiles fit nicely
in the screen.

	 ✓	Assign the row and column data to the sprite. For easier access later,
simply copy the row and col data to properties of the sprite.

Updating the tiles
Tiles are just sprites, so they are updated in the normal way. However, there
are a lot of tiles, so it makes sense to use an organized approach to updating.
Remember, nested for loops are the natural companions of 2D arrays, so a
pair of loops is the best way to ensure every tile gets updated.

 function updateTiles(){
 for (row = 0; row < ROWS; row++){
 for (col = 0; col < COLS; col++){
 tileset[row][col].checkMouse();
 tileset[row][col].update();
 } // end col for loop
 } // end row for
 } // end updateTiles

My example is also a map editor, so I included a call to check the mouse inside
the nested loops so I don’t have to build another nested loop structure.

Loading a tile map
One of the most exciting things about tiles is how easily they’re stored,
loaded, and modified. It isn’t necessary to store and load all the tiles. All you
really need to know is the states! Take a look at the loadMap() function, and
you’ll see what I mean:

 function loadMap(){
 // loads a map from an array
 map = new Array(
 new Array(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
 new Array(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0),
 new Array(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0),
 new Array(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0),
 new Array(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0),
 new Array(0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0),
 new Array(2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2),

345 Chapter 13: Ten Game Starters

 new Array(2,2,2,2,2,2,0,0,0,0,1,0,0,0,0,0,2,2,2,2),
 new Array(0,2,2,2,2,2,2,0,0,0,1,0,0,0,2,2,2,2,2,0),
 new Array(0,0,0,0,0,0,2,2,2,2,1,2,2,2,2,2,0,0,0,0),
 new Array(0,0,0,0,0,0,0,2,2,2,1,2,2,2,0,0,0,0,0,0),
 new Array(0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0),
 new Array(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1),
 new Array(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
 new Array(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
);

 for (row = 0; row < ROWS; row++){
 for (col = 0; col < COLS; col++){
 currentVal = map[row][col];
 tileset[row][col].setState(currentVal);
 } // end col for loop
 } // end row for

The interesting part of this function is the map variable. This is nothing more
than a two-dimension array of integer values. If you squint a little bit while
staring at the array, you’ll see the map pattern in the integers. Each integer
represents the state for the corresponding tile.

Of course, you can have more than one such array, which means it’s easy to
store multiple maps. You can also make the integer array much larger than
the screen, and simply display a screen-size subset of the main map.

The second part of the function simply maps through the integer array and
sets each tile to the state indicated by the integer.

Improving the tile world
The tile-based world is really a technique more than a game, but you can use
a few techniques to improve the system:

	 ✓	Collision states: You can test to see if a sprite collides with any tile. You
might have certain states that register collisions and other states (for
example an “empty” state) that ignores collisions. You’ll frequently want
to use predictive collision detection (described in the RPG section of
this chapter) to keep your sprite from intersecting a wall or barrier.

	 ✓	Editing maps: You can build a map editor that allows you to graphically
build a map with a given tileset. Then just have your program print out
the corresponding state values. You can then embed these values in
your code. Although it would be nice to load and save worlds in external
files, JavaScript doesn’t have this capacity (for security reasons). It’s
possible to do so, but the best solutions involve server-side languages
like PHP, which are outside the scope of this book (but see one of my
other books on this topic if you’re interested).

346 Part IV: The Part of Tens

	 ✓	Large scrolling worlds: One of the nicest features of tile systems is the
capability to have worlds that are larger than the visual screen. Just
build a very large world array. Then create variables called something
like offsetLeft and offsetTop. When you want to scroll the map,
just change the values of these variables. When you display a map, just
display row + offsetTop and col + offsetLeft to display the
appropriate subset of the larger map.

	 ✓	Page maps: An alternative to the scrolling world is a page-based tile
system. For this system, you simply create a series of maps. When the
character leaves a map, simply load the new map. This is frequently
used in RPGs to simulate entering a building, for example.

While role-playing adventure games are the obvious use of tile-based worlds,
they also appear in a number of other genres.

	 ✓	Playing cards: Build a tile set based on playing cards. (There are some
good card images at http://openclipart.org.) Use these tiles to
illustrate a simple card game.

	 ✓	Platform: Platform games are great for tile-based worlds, because they
can be expanded in multiple directions. Use a collision-state mechanism
to determine if a tile registers a collision.

	 ✓	Puzzle: Certain kinds of puzzle games (like matching games and pipe
games) are ideal tile games. Essentially, you’ll store all possible ele-
ments in each cell, but display only the ones you need.

	 ✓	Strategy games: Strategy games can be implemented quite well in a tile-
based setting. Typically, the map is implemented in a tile setting to allow
for combat and movement modifiers based on terrain types.

	 ✓	Board games: Take a look at the tic-tac-toe game implemented next for
another example of a tile-based implementation.

Tic-Tac-Toe Is the Way to Go
Like many programming teachers, I see a lot of tic-tac-toe games. This game
seems pretty simple, but it can be surprisingly difficult to implement well.
There are three main aspects to tic-tac-toe:

	 ✓	The visual and data interface: The most obvious (and easy) problem is
how to manage the visual layout: How do the players interact with the
board to make their selections?

http://openclipart.org/

347 Chapter 13: Ten Game Starters

	 ✓	Determining a winner: It seems straightforward to determine if some-
body wins. After all, it’s just a series of if statements. But this is where
beginners usually get into a lot of trouble. The number of comparisons
necessary gets out of control in a hurry. I show a better technique.

	 ✓	Building an AI: Artificial intelligence is a topic in advanced classes in
computer science. However, the AI problem in tic-tac-toe is easy enough
for beginners to manage if you think carefully through the data problem.

My tic-tac-toe game is shown in Figure 13-10.

Creating the board
The best way to manage the user interface is to build a simplistic tile-based
mechanism. (Look at the “Miles and Miles of Tiles and Tiles” section of this
chapter for more on tile systems. The key to the tic-tac-toe game is a special
sprite called a cell. Each cell represents a space on the board. It has three
states (X, O, and blank). Clicking on the cell changes the internal state and (of
course) the visual representation of the state.

	

Figure 13-10:
A basic

tic-tac-toe
implementa-

tion.
	

348 Part IV: The Part of Tens

The cell object is simply a subclass of the sprite:

function Cell(){
 tCell = new Sprite(game, “blank.png”, 100, 100);
 tCell.setSpeed(0);
 tCell.state = BLANK;

 tCell.images = new Array(“blank.png”, “X.png”,
“O.png”);

 tCell.checkClick = function(){
 if (this.isClicked()){
 if (this.state == BLANK){
 this.state = currentPlayer;
 this.setImage(this.images[currentPlayer]);

 //change the player
 if (currentPlayer == X){
 currentPlayer = O;
 } else {
 currentPlayer = X;
 } // end if
 } // end if
 } // end if
 } // end checkClick

 return tCell;
} // end cell

Here’s how the cell code works:

	 1.	 Create a currentPlayer variable.

		 This variable holds the value corresponding to the current player. The
current player variable will rotate between X and O.

	 2.	 Assign constants for the states.

		 The three states are integer constants.

	 3.	 Create an array of images.

		 Assign images that correspond to the various states.

349 Chapter 13: Ten Game Starters

	 4.	 Create a checkClick() method.

		 This method will change the cell’s state appropriately. It will also change
the currentPlayer variable so the next click will register for the other
player.

	 5.	 Build an array of cells.

		 Once a single cell does what you want, you can build an array of them.

Setting up the visual layout
The placement of the cells on the screen is interesting. It may seem natural
to use a two-dimension array for the tic-tac-toe board, but the nested loop
structure can be cumbersome on such a small data structure, and treating the
board as a 2D array doesn’t provide many benefits. Instead, I build this as a
single-dimension array and use some tricks to get the visual appearance I want.

The cells are arranged like this:

0 1 2
3 4 5
6 7 8

To make them draw in the correct rectangular pattern, I use an old program-
mer’s trick to turn the single dimension array into a two-dimension visual
structure.

Try dividing all the values in the image above by 3. You’ll see some interest-
ing patterns. Every value in the first row (0, 1, and 2) yield zero (and some
remainder) when divided by 3. Each element in the second row (3, 4, and 5)
gives 1 remainder something, and each element of the third row produces a
2 remainder something. If you divide any of these numbers by 3 and convert
the result into an integer, you’ll get the row number. In JavaScript, you can
use this line of code:

row = parseInt(i / 3);

There’s another interesting pattern if you look at the remainders. All of the
numbers in the first column (0, 3, and 6) are evenly divisible by 3, meaning
they have remainders of 0. All the numbers in the next column (1, 4, and 7)
have a remainder of 1, and the last column produces a remainder of 2. In
other words, the remainder of division by 3 will give the column number. In

350 Part IV: The Part of Tens

JavaScript, the modulus operator (%) will produce the remainder of an integer
division, so you can get the column number with a similar formula:

col = i % 3

The code for creating the cells uses these formulas to extract the row and
column number for each cell, and then places the cell on the screen by multi-
plying these values by the cell width and adding an offset (just as I did in the
tile-based world, because this is another tile-based world).

 function buildCells(){
 cells = new Array(9);
 xOffset = 100;
 yOffset = 100;
 for (i = 0; i < cells.length; i++){
 cells[i] = new Cell();
 row = parseInt(i / 3);
 col = i % 3;
 xPos = (col * 100) + xOffset;
 yPos = (row * 100) + yOffset;
 cells[i].setPosition(xPos, yPos);
 } // end for loop
 } // end buildCells

Checking for a winning combination
It’s very easy for a human to tell if one player or the other has won a game
of tic-tac-toe: Just look for three in a row. The computer doesn’t understand
the concept of three in a row, and it needs to be taught. It’s possible to use a
complex series of if statements to check for all the possible winning combi-
nations, but it takes a lot of code to do this. With a little thought, you can sim-
plify the process tremendously. Take a look at the following code fragment:

 winningCombos = new Array(
 new Array(0, 1, 2),
 new Array(3, 4, 5),
 new Array(6, 7, 8),
 new Array(0, 3, 6),
 new Array(1, 4, 7),
 new Array(2, 5, 8),
 new Array(0, 4, 8),
 new Array(2, 4, 6)
);

351 Chapter 13: Ten Game Starters

The code simply sets up a two-dimension array. This array is a list of all the
winning combinations. If the same player controls cells 0, 1, and 2, that player
has won the game. Each row represents a different winning combination.

It then becomes easy to check for a winner:

 function checkWins(){
 winner = 0
 for (combo = 0; combo < winningCombos.length; combo++){
 a = winningCombos[combo][0];
 b = winningCombos[combo][1];
 c = winningCombos[combo][2];

 if (cells[a].state == cells[b].state){
 if (cells[b].state == cells[c].state){
 if (cells[a].state != BLANK){
 winner = cells[a].state;
 } // end if
 } // end if
 } // end if
 } // end for
 return winner;
 } // end checkWins

This code goes through the array of cells and checks each winning combina-
tion. If it discovers any combination with the same value (but not blank), the
value in the cells indicates the winner of the game.

Adding an AI
The most common type of artificial intelligence for this sort of problem is
called a heuristic algorithm. It’s a trick that allows the computer to quickly
come up with a good solution while not guaranteeing a perfect solution. In
general, heuristic algorithms work by assigning a point value to each possible
move and then selecting the best move available.

The general strategy is to build an array of cell rankings:

 cellRank = new Array(3,2,3,3,4,3,3,2,3);

The rank of each cell indicates the number of winning combinations that go
through it, so cell 4 (the center cell) is the most valuable cell at the beginning
of the game.

352 Part IV: The Part of Tens

As the game goes on, the computer reevaluates the grid according to the fol-
lowing simplistic calculations:

	 1.	 If any cell is nonblank, demote it.

		 The only cells you should consider are those that are blank, so if a cell is
already taken, subtract 99 from its cell ranking.

	 2.	 Look for partially completed winning combinations.

		 Step through each winning combination. If any two cells have the same
value but the third is blank, add a value to the third.

	 3.	 Find the highest cell.

		 After going through all the combinations, loop through the cell rankings
to see which is the highest cell ranking.

The tttAI.html program on the website (www.aharrisbooks.net) shows
the cellRank heuristic and a hint for the next cell.

Improving the tic-tac-toe game
The tic-tac-toe game is reasonably complete, but it can be improved. Here are
a few suggestions:

	 ✓	Implement a computer player. My version calculates the best cell for
the computer player, but it doesn’t actually play. It’s relatively easy to
have the computer player pick the best cell.

	 ✓	Improve the heuristic. While this heuristic will work, it could definitely
be improved. It plays well, but it can be beaten. Learn its weakness, and
see if you can improve on the performance.

	 ✓	Allow multiple plays. Right now the game must be reset after every
game. Add a mechanism to replay, keeping track of the score. Look into
the localStorage mechanism for how to add this feature.

http://www.aharrisbooks.net/

Index
• Symbols and
Numerics•
sign, 53
-- operator, 78
|| operator, 300
++ operator, 75, 77
+= operator, 76, 78
-= operator, 76
/= operator, 76
*= operator, 76
== operator, 71
< > (angle braces), 17
2D graphics

converting from 3D, 13
designing games, 153
producing with simpleGame.js, 2
supported with canvas elements, 277
using Reiner’s Tilesets, 267

2.5D games, 269
3D modeling

coming support in canvas elements, 277
converting into 2D graphics, 13, 267
using Blender for, 269–270

• A •
<a> element

creating image links with, 30
creating text anchors with, 22

Accel object, 241, 313
accelerometers

adding calibration features for, 243–246
creating Accel objects, 313
creating Accel objects for testing, 241–242
discussion of, 213, 225, 240
ignoring Z axis readings, 243
modifying behavior of, 241–243
reading rotation from, 313
reading rotation with getAX() and

getAY(), 243–246
using for tilt input, 313

AccelName = new Accel()
command, 258

addVector() method, 183, 201, 254
Adobe Photoshop, 13
AI (artificial intelligence)

adjusting sensitivity of, 324–325
using heuristic algorithms for, 351–352

alert() command
definition of, 38
using for output, 46, 66
using with variables, 46–47

alert dialog boxes, 40
alt attribute, 21
anchors, 22
angle braces, 17
angle controls

moving versus pointing, 186
using addVector() method, 183
using changeAngleBy() method, 162
using changeImgAngleBy()

method, 186
using degrees versus radians, 280–281
using getMoveAngle() method, 281
using setAngle() method, 183

angleTo() method, 201, 255
animation methods, 255–256
animations. See also motion; physics

building with simpleGame.js,
115–116, 207

changing sprite appearance and
movement in, 124–125, 128–130,
136, 207

creating composite (multi-state)
animations for, 206–210

creating loops for, 278–279
designing and organizing images for,

209–210
sprite movement tables for, 126–129
updating, 119–120
using keysDown for control of, 126
using loadAnimation() method with,

209–210

354 HTML5 Game Development For Dummies

animations (continued)
using math to control, 128–130
using pauseAnimation() method

with, 210
using setAnimation() method

with, 210
using setAnimationSpeed() method

with, 210
using setCurrentCycle() method

with, 210
Apple Safari browser, 12, 223
Ari’s SpriteLib, 266
armor value, 329
arrays

creating multiple sprites with, 173
definition of, 64, 90
determining length of, 93
main components of, 91–92
processing data within, 93
using for loops with, 93–94
using JavaScript versus other languages, 92
using single dimension versus two-

dimension, 349–351
arrow keys

creating Joystick object, 239
creating virtual keys, 239–240
using virtKeys variable, 240

artificial intelligence (AI)
adjusting sensitivity of, 324–325
using heuristic algorithms for, 351–352

attributes
alt, 21
background color, 26
button, 41
color, 26
controls=controls, 32
discussion of, 20, 25
fieldset, 52
for, 41
href, 22, 50
ID, 41, 49, 53
innerHTML, 49, 87
length, 93
onclick, 38
onload, 73
src, 20
text-align, 26
type, 38

type = button, 41–42
using quotes with, 21
value, 46
warning about buttons, 42

Audacity
overview of, 270–271
using to edit sound effects, 143

audio. See also sound
editing with Audacity, 14, 143, 270–271
including fallback anchors, 33
obtaining and saving sounds, 32
sound controls in programs, 31–32
using BFXR sound synthesizer, 272–273
using multiple formats, 32, 143
using sound libraries, 268, 270–272

<audio> element, 32

• B •
back() method, 74, 77–78
background color attribute, 25–26
BFXR sound synthesizer, 272–273
Blender

building 3D games with, 270
converting 3D models into 2D graphics

with, 13
overview of, 269–270
tutorial for, 270

boat drifting game
adding drifting behaviors to sprites, 192
simulating drifting within, 190–192

<body> element
calling initialization function in, 73
definition of, 18

body.appendChild() method, 291
Boolean values

checking buttons for, 228
definition of, 65
eliminating loop issues with, 83
using || operator with, 300
using with buttons, 228
using with if statements, 300
using within arrays, 126, 293–294
using within conditions, 83
using within variables, 81–83, 299–301

bottomBorder variable, 301
BOUNCE value, 254, 301
boundAction() method, 203, 205, 301

355355 Index

boundary checking
establishing borders, 301
example of, 302–303
setting proper responses, 301–302

boundary handling methods, 254–255
bounding box collisions

issues with, 146–147
overview of, 144–146

bounding circle collisions, 147–149

 element, 76
braces

using for code blocks, 76, 81
using with rules, 25
using within functions, 43

BRAINS constant, 325
branches, 63
browsers

crashing with endless loops, 81
hiding toolbar displays (IOS systems), 223
recommendations for, 11–12

btnMove variable, 227
button attribute, 41–42
<button> element, 38, 41–42
buttonName = new GameButton()

command, 259
buttons

centering tricks, 53
creating virtual buttons, 225–228
creating with HTML, 38
positioning with CSS, 178
using GameButton objects, 225
warning about attributes, 42

byFive() method, 74

• C •
camel-case punctuation, 47
<canvas> element

controlling size of, 251
definition of, 11, 116, 251
drawing in browsers with, 276–277
overview of, 277–278
transforming images with, 281–285

capitalization
using with class names, 122
using with filenames, 20–21
using with object names, 47, 122–123,

136–137, 158
Cascading Style Sheets. See CSS

cell sprites, 347–349
cellRank heuristic, 352
changeAngleBy() method, 253
changeImage() method, 206, 251
changeImgAngleBy() method, 186
changeMoveAngle() method, 253
changeSpeed() method, 140
changeSpeedby() method, 253
changeXby() method, 253
changeYby() method, 253
changing sprite appearances with

methods, 251–252
Character class, 329
cheat codes, 109
checkAccel() method, 313
checkBounds() method, 255
checkClick() method, 317, 349
checkCollisions() method,

145–146, 149
checkDistance() method, 149
checkDrag() method, 189
checkFalling() method, 321
checkGravity() method, 201, 337–338
checkKeys property, 140
checkMouse() method, 343
checkName() method, 68
checkTime() method, 317
cHeight properties, 251
chorus() method, 88
class definitions, 122
classes

adding methods to, 139–141
building with constructors, 137–141
definition of, 122–123
simpleGame.js libraries of, 256–260

clear() method, 249
clear rule, 51
col variable, 343–344
collidesWith() method, 167, 255
collision detection

adjusting sensitivity of, 300–301
definition of, 144
predictive methods, 321–323, 345
using bounding box schemes, 144–147,

298–300
using collidesWith() method, 167
using distanceTo() method, 147–149,

300–301
collision methods, 255

356 HTML5 Game Development For Dummies

collision variable, 299–300
colon use, 25
color

changing link colors, 23
controlling backgrounds, 23–25
using style rules for, 25–26

color attribute, 26
commands
AccelName-newAccel(), 258
alert(), 38, 46–47
buttonName = new GameButton(), 259
document.getElementById(), 46, 49
fillstyle, 278
prompt, 66
setTimeOut, 115, 278
txtName.value, 46

comments, 44, 61
conditional operators, 71–72
conditions

definition of, 63
setting up within if-else statements,

69–70
using within while loops, 79–80

consol.log() method, 109, 311
constructor functions, 137
containers

creating for images, 20
creating for inline elements, 22
using elements as, 17
using paragraphs as, 20

content
accessing with JavaScript, 45
creating variables to access, 46

content management systems, 215
CONTINUE value, 254, 301
control panels

building websites with, 215
installing scripts with, 215
managing domains with, 216
managing files with, 215
overview of, 214–216
uploading pages with, 216–218
using cPanel program, 214

converting data types, 67
coordinate system modification, 281–282
correct variable, 82
count() method, 74
cPanel, 214–215
createTouch() method, 297

Critter() method, 136–137
critters. See also sprites

adding properties to, 137–139
building from stock sprites, 134–136
definition of, 134
modifying temporary sprites, 136
overview of, 134–139
punctuation concerns, 137
using constructors to build, 137
using the this keyword with a

tcritter, 141
CSS (Cascading Style Sheets)

changing page appearance with, 23–26, 52
definition of, 2, 9, 11
integrating with JavaScript, 35
keeping files separate from JavaScript

and HTML, 53–55
overview of, 25
positioning objects with, 178
relationship to HTML, 9, 23, 50
reusing style sets with, 26–28

currentKey variable, 293–294
currentPlayer variable, 348
cursor control

hiding cursor display, 146, 229
using followMouse() method, 231
using hideCursor() method,

146, 231
using showCursor() method,

146, 231
cWidth properties, 251

• D •
damage value, 329
data design, 56–57
data types

converting properly, 67
overview of, 64–65

Date object, 150
debugging

available tools for, 86
definition of, 84
overview of, 83–86
using watch expressions with, 86

defMod value, 329
degrees versus radians, 280–281
development tools. See game

development tools

357357 Index

Dia diagramming tool, 263–264
DIE value, 254, 301
display rule, 51
distance measurements, 199
distanceTo() method, 149, 201, 255
<div> element

adding default text to, 73
clearing text from, 75
using for output, 60, 73
using placeholder text, 49

<!DOCTYPE> element, 17
document.createElement()

method, 290
document.getElementById()

command, 46, 49
document.onkeydown attribute, 293
domain management, 216
DOWN values, 316
drag effects

demonstrating with race game, 187–188
overview of, 186–189
simulating with checkDrag()

method, 189
dragging sprites, 322
drawImage() method, 278
drifting

adding to sprites, 192
overview of, 190

Drupal, 215
Dupont, Franck (Arikel), 207
dx, dy properties, 251

• E •
e.keyCode property, 293
elements
<a>, 22
assigning ID to, 49
<audio>, 32
<body>, 18

, 76
<button>, 38, 41–42
<canvas>, 115–116
definition of, 17
<div>, 49, 60, 73
<!DOCTYPE>, 17
<fieldset>, 41
<form>, 41
<h1>, 18

<head>, 17
<html>, 17
, 20
<input>, 41
<meta>, 18
<p>, 18
<script>, 43
<source>, 32
<style>, 25, 50
<title>, 18
using angle braces with, 17
using as containers, 17
using pairs, 17, 25, 43
using slash character with, 21

else clauses
using with if statements, 70
writing multiple branches of, 71

endless loops
using Task Manager to stop, 81
warning about, 81

== operator, 71
event attributes, 38
event-handlers, 291–294
event.preventDefault() method, 298

• F •
falling variable, 307–308, 321
fieldset attribute, 52
<fieldset> element, 41
fight() method, 330
File Transfer Protocol. See FTP
files

keeping HTML, JavaScript, and CSS files
separate, 53–55

managing with control panels, 215–216
naming conventions, 47

FileZilla, 219–220
fillRect() method, 278
fillstyle command, 278
finite state machine, 15
fire() method, 205, 336
Firebug add-on (for Firefox browser), 12,

86, 109
float rule, 51
floating point numbers, 65
floats, 65
focus() method, 108
followMouse() method, 146, 231

358 HTML5 Game Development For Dummies

for attribute, 41
for loops

accessing array elements with, 94
basic steps to create, 75–76
components of, 75
counting examples using, 77–79
definition of, 72
designed for finite behaviors, 72
overview of, 73–76

force vectors
modifying with drag effects, 189
overview of, 183
simulating drifting with, 192
simulating orbit gravity with, 196–202
simulating platform gravity with, 195–196
simulating thrust with, 186, 189

force-based motion, 188–189
<form> element, 41
forms

creating interactive pages for, 36–37
definition of, 36
main features of, 40–41
using styles with, 49–53

Freesound library, 271
frog and flies game

adding background images to, 162–163
adding collision detection and sound to,

167–169
adding timers to, 177
controlling frog movement within, 162
creating Fly() objects, 159
creating Frog() objects, 161–162
creating urgency in, 174–178
diagramming on paper, 154–156
managing multiple sprites in, 170–174
managing updates in, 163
programming random movement in,

157–159
resetting sprites after collision, 169–170
restarting games, 178

FTP (File Transfer Protocol)
managing files on control panels with,

215–216
using FileZilla for transfers, 219–220

functions. See also methods; individual
functions by name

advantages of, 87
creating, 42–43
creating text with, 88
definition of, 43, 64
parameter-passing, 89–90
passing data to and from, 86–88
using as variables, 88–89

• G •
game design

adding CSS styles, 59
building code libraries, 164
diagramming on paper, 56–57, 101–102,

154–156
diagramming with Dia, 263–264
important elements of, 153–154
keeping coding languages separate, 103
overview of, 55
writing JavaScript code, 60–61
writing solid HTML code, 57–58, 102–103

game development tools. See also
animations; simpleGame.js; sound

Audacity audio editor, 270–271
audio tools, 14
BFXR sound synthesizer, 272–273
Blender modeling program, 269–270
Dia diagramming tool, 263–264
Firebug add-on, 12, 86, 109
GIMP image editor, 264–265
graphics editors, 13
InkScape image editor, 273
programming editors, 12–13
using code libraries, 113, 115–117
using game engines, 113–114, 117–118
using graphics libraries, 266–268
using Math library, 98–99
using programming editors, 12–13
using website tools, 83–84, 86
web browsers, 11–12
web server access, 213–214

game engines. See also simpleGame.js
essential features of, 114
overview of, 113–114
simplifying math by using, 113, 275,

279–281

359359 Index

simplifying physics by using, 181
using Blender, 270

game examples. See also individual games
by name

boat drifting, 190–192
frog and flies game, 155–178
hovercar, 193–196
joystick car, 236–238
lunar-lander starter game, 306–309
mail pilot starter game, 309–312
marble-rolling starter game, 312–315
missile launcher, 202–206
number guesser, 100–110
orbit game, 196–202
platform starter games, 320–323
Pong starter game, 323–328
race game, 186–189
RPG starter games, 328–333
space game, 183–186
tank starter game, 333–339
tic-tac-toe starter game, 346–352
tile-based starter games, 339–346
whack-a-mole starter game, 316–319

game programming. See also mobile device
programming

basic elements of, 63–64
browser recommendations for, 11–12,

83–84, 86
building code libraries for, 164
creating random movements, 157–159
creating urgency with timers, 174–178
designing HTML forms, 99–100
generating random numbers, 95–99
importing libraries, 117–118
managing multiple sprites, 170–174
managing updates, 163
math concepts needed for, 275
measuring mass and distance, 199
resetting sprites after collision, 169–170
restarting games, 178
simulating drag effects, 186–189
simulating drifting behaviors, 190–192
simulating thrust with force vectors,

186, 189
timing in JavaScript, 150
using cheat codes, 109
using HTML, CSS, and JavaScript

together, 100–101

using math in, 128–130, 201–202
using variables with JavaScript, 64
using variables with sound, 142
working with angles, 280–281
writing detailed plans for, 154–156

GameButton object, 225
generateAnimationCycles()

method, 256
getAX() method, 241, 259, 313
getAY() method, 241, 259, 313
GetAZ() method, 259
getCurrentTime() method, 150
getDiffX() method, 233–234, 258
getDiffY() method, 233–234, 258
getElapsedTime() method, 150, 257
getHighScore() method, 318
getImgAngle() method, 186, 253
getMouseX() method, 228–231, 250, 258
getMouseY() method, 228–231, 250, 258
getMoveAngle() method, 253, 281
getRotX() method, 259
getRotY() method, 259
getRotZ() method, 259
getSpeed() method, 253
GIMP rastor editor, 13, 264–265
global variables

creating arrays as, 91
creating outside of functions, 74–75
reducing code with, 74

Google Chrome browser, 11
graphics. See also animations

adding to game pages, 19–21
creating containers for, 20
creating with Blender, 269–270
image formats for, 20
3D modeling, 13
tools for managing, 13
transforming images with <canvas>,

281–285
using GIMP with, 264–265
using images as links, 30
using element with, 20
using InkScape for, 273

graphics libraries
Ari’s SpriteLib, 266
InkScape, 273
OpenGameArt, 268
Reiner’s Tilesets, 267

360 HTML5 Game Development For Dummies

gravity
overview of, 195–198
simulating orbit-style, 196–202
simulating platform-style, 195–196
using force vectors to simulate, 195
writing code for, 199–202

guess variable, 82

• H •
<h1> element, 18
<head> element, 17
headlines

defining nodes with, 28
using elements to define levels, 18

height properties, 249, 251
Hero class, 331–332
heuristic algorithms, 351–352
hide() method, 205, 250, 252
hideCursor() method, 231, 250
highlighting, 43
hitPerc value, 329
hovercar game

overview of, 193–195
simulating gravity with force vectors,

195–198
hp value, 329
href attribute (hypertext reference), 22, 50
<html> element, 17
HTML, XHTML, & CSS All-in-One For

Dummies, 18
HTML5

advantages for game programming, 10,
17, 141–143

control versus flexibility, 18
definition of, 10
integrating with JavaScript, 35
keeping files separate from JavaScript

and CSS, 53–55
native support for vector graphics in, 273
overview of, 9–11
relationship to CSS, 9, 23
storing web pages offline, 224–225
using canvas elements, 115–116, 276–278
using for mobile device programming,

211–212
hypertext reference (href attribute), 22
Hyptosis, 207

• I •
i variable, 75
ID attribute, 41, 49, 53
if statements

making decisions with, 68
overview of, 68–70
setting conditions within, 69–70
using with else clauses, 70

images. See also graphics
closing element with slashes, 21
creating animation cycles, 210
creating sprites from, 124
describing with <alt> attribute, 21
designing and organizing composites,

207–210
editing with GIMP, 264–265
formatting acceptably, 20
managing with elements, 20
placing in paragraphs, 30
transforming with <canvas> element,

281–285
using Ari’s SpriteLib, 266
using as links, 30
using loadAnimation() method,

209–210
using OpenGameArt for, 268
using Reiner’s Tilesets for, 267

 element
adding images with, 20
closing with slashes, 21
using elements with, 20

indentation
discussion of, 17, 43
using for code blocks, 76, 81

init() method, 73–74, 118, 121
initializing

of arrays, 91–92
controlling output by, 74
of images, 20
as part of for loop, 75
running code on first page with init()

method, 73
setting up routines for, 107–108
of sound effects, 142
of timer functions, 150, 177
of variables, 75, 118–119

initializing variables, 75, 118–119

361361 Index

InkScape vector editor, 13, 273
inline elements

definition of, 20
using for graphics, 20
using for links, 22

innerHTML attribute, 49, 87
input devices. See also individual devices

by name
creating virtual buttons, 225–228
managing alternative mobile input,

225–246
using accelerometers, 213, 240–246
using mobile devices versus

computers, 213
using mouse mechanisms, 86, 114, 146,

213, 228–231
using touch screens, 2, 213, 225
using virtual arrow keys, 239–240
using virtual joysticks, 231–238
using virtual keyboards, 213, 228

<input> element, 41
input field

accessing content from, 45
accessing values from, 46
aligning properly, 53

instances, 122–123
integers, 64
Internet Explorer browser, 12
IOS (Apple products)

converting pages into apps, 220–223
creating icons for, 222–223
removing Safari toolbars, 223

IOS programming issues
<audio> element problems, 291
distributing software, 212
playing sound effects, 257
sound controls in programs, 291

isClicked() method, 228, 259

• J •
JavaScript

best browser for, 11
creating interactive forms with, 36–37
creating Timer object in, 150
definition of, 11
differentiating from Java, 36, 67

ease of use, 35, 67
following punctuation rules, 43–44
handling variables automatically within,

64, 67
Math library in, 98–99
obtaining date and time with, 150
overview of, 35–36
planning the code, 60
relationship to CSS and HTML, 35, 37–38
restarting with empty strings, 178
triggering with onclick attribute, 38
using object-oriented programming in,

36, 65
using quotes with, 38
writing event-triggered code with, 36

Joomla, 215
Joy object, 241
joystick car game

accepting alternate input methods, 238
adjusting joystick sensitivity in, 238
overview of, 236–238

joystickName = new Joy()
method, 258

joysticks (virtual)
adjusting sensitivity of, 238
controlling objects with, 234–236
creating for touch screens, 231
reading input from, 231–234
using getDiffX() and getDiffY()

values, 233–234

• K •
keyboards

checking with keysDown element, 126
creating virtual keyboards, 213, 260
keyboard constant list, 293
managing input from, 293
movement tables for simpleGame.js, 126
responding to multiple key presses,

293–294
using event handlers with, 291–292

keysDown mechanism
checking keyboard with, 126
combining with sprite methods, 130–131
managing multiple key presses with,

293–294
Komodo Edit, 13

362 HTML5 Game Development For Dummies

• L •
labels

aligning properly, 53
description of, 41

layout, 49–53. See also programming
layout rules

lblOutput element, 70
left properties, 249
leftBorder variable, 301
length attribute, 93
Liberated Pixel Cut (LPC) site, 268
libraries. See also game development tools;

graphics libraries; simpleGame.js;
sound libraries

building personal collections of, 164
finding SVG files, 273
importing into programs, 166
in JavaScript, 98
in simpleGame.js, 117
using for game designs, 113

line numbers, 13
links

creating, 21–23
using as anchors, 22

loadAnimation() method, 209–210, 256
loadMap() method, 344–345
localStorage mechanism, 318
loops. See also for loops; while loops

definition of, 64, 72
managing complex code, 82–83
overview of, 81
using Boolean values with, 82–83
using braces within, 76, 81
warning on endless loops, 81
writing to output within, 76

LPC (Liberated Pixel Cut) site, 268
lunar-lander starter game

creating landing routines for, 307–308
creating text displays for, 308
overview of, 306
programming suggestions for

completion, 309

• M •
mail pilot starter game

creating endless backgrounds for,
310–312

overview of, 309–310
programming suggestions for

completion, 312
marble-rolling starter game

building obstacle arrays for, 314–315
creating tilt input for, 312–314
managing dual input for, 312–314
overview of, 312
programming suggestions for completion,

314–315
margin rule, 51
mass measurements, 199
math

calculating dx and dy coordinates,
288–289

calculating vector projections, 285–289
converting angles to vectors, 289
converting vectors to angles, 285–287
JavaScript library for, 98–99
managing with simpleGame.js, 275,

279–281
modifying coordinate systems, 281–282
needed for programming, 275
using gaming libraries for, 113, 201–202
using triangles for vector calculations,

287–289
using X and Y coordinates with, 128–130
working with Newton’s laws of

motion, 182
math issues, 65–67
Math library (JavaScript), 98–99
Math.ceil() method, 99
Math.floor() method, 99
Math.random() method, 98–99, 330
Math.round() method, 99
MAX value, 327
<meta> element, 18
methods. See also functions; individual

methods by name
adding to classes, 139–141
combining with keysDown mechanism,

130–131

363363 Index

definition of, 123, 139–140
identifying within constructors, 141
versus properties, 123
table for sprite movements, 127–128
using the this keyword inside, 139–141

-- operator, 78
-= operator, 76
missile launcher game

adding gravity to missiles in, 205
adding physics to missiles in, 206
controlling missile intelligence within, 206
overview of, 203–205
using boundAction() method in, 203, 205
using fire() method in, 203
using hide() method for sprites in, 205
using show() method for sprites in, 205
writing code for, 203–204

mobile device programming
advantages of HTML5 for, 10, 211–212
creating virtual buttons within, 225–228
creating virtual joysticks within, 231
managing alternative input devices,

225–246, 312–314
managing screen size issues, 220–221
overview of, 211–214
reading virtual joystick input, 231–234
requiring web server access, 213–214
simplifying with simpleGame.js, 248
storing web pages offline, 224–225
tricks for IOS devices, 220–223
using accelerometers within, 240–246,

312–314
using computers versus mobile devices

for, 214
using virtual joysticks, 234–236
working with touch screen input, 213

motion. See also animations; physics
calculating vector projection, 285–289
controlling by force vectors, 183, 185–186
controlling with drag effects, 186–189
effect of physics upon, 181–183
understanding Newton’s laws of, 182,

198–199
motion vectors. See vectors
mouse devices

browser issues with, 228
hiding cursor display, 229
using simpleGame.js to manage,

228–231

mouseX and mouseY variables, 297–298
movement methods, 252–254
Mozilla Firefox browser, 12
multimedia tools, 11
multiple states, 342–345

• N •
Name value, 329
naming conventions

for array elements, 92
for classes, 122–123
general notes about, 47
for instances, 123
for methods, 140
for objects, 158
for properties, 140
for sprites, 121
for variables, 80, 89

Newton’s Laws of Motion, 182, 198–199
nodes

adding choices to, 29–30
adding new pages using, 28–30
using in diagramming pages, 15

number guesser game
planning and writing JavaScript for, 106
program design for, 101–102
testing with cheat codes, 109
writing button response code for,

108, 110
writing CSS code for, 103–105
writing HTML code for, 102–104
writing initialization code for, 107–108

• O •
object-oriented programming. See OOP
objects. See also OOP

controlling with setPosition,
setSpeed, and setAngle
methods, 183

definition of, 36, 65, 122
effects of physics upon, 181–183
instances versus classes, 123
punctuation concerns for, 137
using methods with, 123
working with properties, 123

offBottom variable, 301

364 HTML5 Game Development For Dummies

offLeft variable, 301
offRight variable, 301
offsetAX variable, 245–246
offsetAY variable, 245–246
offsetLeft variable, 346
offsetTop variable, 346
offTop variable, 301
onclick attribute

definition of, 38
using with functions, 42–43

onload attribute, 73
onTouchMove() method, 298
OOP (object-oriented programming)

definition of, 36, 122
manipulating complex objects with, 65
simplifying with simpleGame.js, 248
using constructors in, 137
using simpleGame.js library for,

115–117, 248
using within JavaScript, 36, 137

OpenGameArt, 268
Opera browser, 12
operators, 76–77
 || operator, 300
orbit game

overview of, 196–197
simulating orbit gravity, 196–202

Orc class, 331
output variable

clearing text from, 75
formatting tricks, 53
modifying contents of, 49
understanding variable scope concept, 74
using <div> element with, 58, 73
using variables with, 49, 74–75

• P •
<p> element, 18
padding rule, 51
page appearance, 49–53
pairs, 17, 25, 43
parameter-passing, 89–90
parenthesis

displaying text within, 38
using with conditions, 70
using with method names, 43

using with response variables, 110
using within methods, 89

parse-Float() method, 67
parseInt() method, 67
pauseAnimation() method, 210, 256
permissions

receiving from websites, 220
for sound and graphics files, 31, 209,

268, 342
physics. See also animations; motion

changing object positions indirectly, 183
controlling movement with angle

changes, 186
controlling sprite intelligence, 206
modifying behavior with drag effects, 189
overview of, 181–183
predictive collision detection, 321–323, 345
simulating drag effects, 189
simulating drifting, 190–192
simulating orbit gravity with force

vectors, 196–202
simulating platform gravity with force

vectors, 195–196
simulating thrust with force vectors, 186
understanding Newton’s Laws, 182,

198–199
using simpleGame.js to manage, 183

platform starter games
dragging sprites within, 322
managing jumping and landing mechanics

for, 321–322
overview of, 320
programming suggestions for

completion, 323
using predictive collision detection

with, 321
play() method, 142, 257
playAnimation() method, 210, 256
++ operator, 76
+= operator, 76
Pong starter game

adding spin behaviors to, 326–327
creating AI (artificial intelligence)

routines for, 324–325
designing paddles for, 324
managing boundary behaviors within,

325–326

365365 Index

overview of, 323
programming suggestions for completion,

326–327
popupLength property, 316
popupPerc property, 316
position

changing indirectly with vectors, 183
changing with update() method, 128
controlling with setPosition method,

128, 183
defining with x,y coordinates, 127
determining in simpleGame.js, 146
making angle changes, 183, 186

predictive collision detection, 321–323, 345
preload property, 291
program patterns, 15
programming. See also game programming

indenting code for, 17
language choices, 10
learning skills by game development, 10
for touch screen input, 213

programming editors
basic features needed, 13
disadvantages of default editors, 12
Komodo Edit advantages, 13
using computers versus mobile

devices, 214
writing simple pages, 16

programming layout rules
choosing names, 47, 61
indenting properly, 43
organizing code, 61
using clear labels, 41, 53
using comments, 44, 61

programming resources. See game
development tools

prompt command, 66
properties

associating with objects, 128, 137–139, 158
definition of, 123, 137
modifying elements with innerHTML

properties, 49, 76
modifying with CSS, 25–26
modifying with states, 342–345
using this keyword with, 141

punctuation, 43–44, 47. See also
individual types

• Q •
quotation marks

text values versus numeric values, 66
using double quotes, 21
using single quotes, 38
using with variables, 47

• R •
race game

overview of, 187–188
simulating drag effects in, 189

radians versus degrees, 280–281
random number generation

converting into integers, 96, 98–99
overview of, 95–99
using for game designs, 100–101
using Math library for, 98–99

raster graphics
discussion of, 273
editing with GIMP, 264–265

Reiner’s Tilesets, 267
remote file management, 13
renameCycles() method, 256
report() method, 252
reset() method, 150–152, 170, 257, 314
return statement, 88
returning values, 88
rightBorder variable, 301
role-playing games (RPGs), 328
<rotate> element, 282
rotating images. See transformations
rotation control, 313
row variable, 343–344
RPG characters, 267–268
RPG starter games

building base Character class for, 329–331
building Hero class for, 332–333
building Orc class for, 329–331
overview of, 328
programming suggestions for

completion, 333
RPGs (role-playing games), 328
rule sets

enclosing in braces, 25
ending with semicolons, 26
style rule examples, 26, 51
using attribute/value pairs, 25

366 HTML5 Game Development For Dummies

• S •
Safari browser, 12, 223
<save> method, 284–285
saveHighScore() method, 319
scaling images. See transformations
Scene() class methods, 249–250
Scene() object

adjusting properties of, 249
controlling with methods, 249–250
definition of, 123

scene.clear() method, 122
scene.start() method, 122
<script> element, 43
scrolling techniques, 205, 309–312, 321,

340, 346
Secure File Transfer Protocol (SFTP), 215
semicolon use, 26
sending arguments, 89–90
sensitivity adjustments, 147, 300–301
sensitivity variable, 297
setAngle() method, 183, 253
setAnimationSpeed() method, 210, 256
setBG() method, 250
setBoundAction() method, 254, 303
setCurrentCycle() method, 210, 256
setDX() method, 252
setDY() method, 252
setImage() method, 206, 251
setImageAngle() method, 253
setImageAngleBy() method, 253
setInterval() method, 279
setMoveAngle() method, 253
setPos() method, 249
setPosition() method, 183, 249, 252, 259
setSize() method, 220–221, 249, 259
setSizePos() method, 249
setSpeed() method, 141, 183, 253
setState() method, 317, 342
setTimeOut command, 115, 278
setX() method, 252
setY() method, 252
SFTP (Secure File Transfer Protocol), 215
shortcut operators, 76–77
show() method, 205, 250, 252
showControls() method

description of, 257
using for IOS workaround, 257, 291

showCursor() method, 250

simpleGame.js. See also graphics
libraries

adding custom features to, 260, 275
boundary checking routines, 301–303
controlling angles and forces within, 186
creating animation loops with, 115–116,

278–279
creating game buttons with, 259
creating timers with, 150
detecting bounding box collisions,

298–300
detecting collisions using distanceTo

() method, 300–301
downloading online library, 117
importing into HTML5 pages, 117–118
keyboard table for, 126
managing cursor movements with, 146
managing sound effects with, 141–143,

256–257
managing sprites with, 251–256
managing timers with, 257
managing virtual accelerometers with,

258–259
managing virtual joysticks with, 258
managing virtual keyboards with, 260
overview of, 247–248, 275
programming mobile devices with, 248
Scene object methods, 249–250
Scene object properties, 248–249
simplifying math with, 247
Sprite() class management, 250–256
table of movement methods, 127–128
using canvas elements, 277–278
utility libraries within, 256–260

skidding. See drifting
/= operator, 76
slashes, 21, 44
sndElement element, 257
sound. See also audio

adding controls to programs, 31–32
adding to game pages, 32–33
advantages of HTML5, 31, 143
attaching Sound objects to visual

displays, 291
audio issues with HTML5, 143
formatting issues, 143
overview of, 141–143
placing audio files in programs, 142,

168–169

367367 Index

playing back with play() method, 142
using multiple formats, 32
using simpleGame.js to manage,

141–143
using variables to hold sound effects, 142

sound libraries
using Freesound for, 271
using OpenGameArt for, 268
using SoundJay, 271–272

Sound object
attaching to visual displays, 291
overview of, 256–257, 290–291
programming with simpleGame.js,

290–291
sending src attributes to, 291
using body.appendChild() method

with, 291
using document.createElement()

method, 290
using play() element with, 142

SoundJay library, 271–272
<source> element, 32
space game

changing image angles in, 183, 186
controlling motion within, 185–186
observing Newton’s effect with, 184
overview of, 184–185
simulating thrust with force vectors, 186

Spans() class, 122
speed property, 251
spin control, 326
Sprite() class

adding image files to, 251
animation methods for, 256
associating with a Scene, 250
changing appearance of, 251–252
checking collisions of, 255
controlling boundary behavior of,

254–255
controlling movement of, 252–254
creating transformations in canvas,

281–285
main properties of, 251
overview of, 250–251

sprites
adding multiple state behaviors to,

342–343
creating new objects, 133–136

creating with Universal-LPC sprite
sheet, 268

definition of, 122
designing cell sprites, 347–349
inheritance versus prototyping, 136
managing with update() method, 163
storing in SVG format, 273
using Ari’s SpriteLib, 266
using Critter() method, 136
using OpenGameArt, 268

sprites control
adding spin to, 326
animation methods of, 255–256
boundary methods of, 254–255
changing angles of, 186
changing appearance and movement of,

124–125, 128–130, 136, 183
changing states, 316–318
collision methods of, 255
controlling with keysDown and motion

methods, 130–131
dragging technique for, 322
effect of physics upon, 183
managing multiple sprites, 170–174
managing with states, 114
managing with transformations,

281–285
positioning on touch screens, 231
simulating drag effects, 189
simulating drifting, 192
simulating gravity with force vectors,

195–198
simulating thrust with force

vectors, 186
table of movement methods, 127–128
using vectors for, 183

src attribute, 20, 291
*= operator, 76
start() method, 249
startx and starty variables, 297–298
state property, 316, 342
states

assigning constants to, 342
building multi-state animations, 316–318,

342–345
managing sprites with, 114

stop() method, 249
STOP value, 254, 301

368 HTML5 Game Development For Dummies

strings
clearing text from, 75
correcting math issues with, 66–67
creating with functions, 88
definition of, 65
restarting games with, 178
using comparison operators with, 72
using for input and output, 65

strokeRect() method, 278
<style> element, 25, 50
styles

applying common rules, 26, 51
reusing style sets, 26–28, 50
saving CSS code as, 50
using braces with, 25
using within forms, 52–53

Submit button warning, 42
syntax highlighting, 13

• T •
tags. See elements
tank starter game

creating bullet sprites for, 337–338
creating turret sprites for, 336
overview of, 333–334
programming suggestions for completion,

338–339
tcritter, 141
templates, 120–121
text boxes

accessing content of, 45
accessing values from, 46
using with forms, 36

text editors. See programming editors
text-align

attribute, 26
style rules, 51–52

this keyword, 141
3D modeling, 13
tic-tac-toe starter game

creating playing boards for, 347–349
managing board appearance for, 349–350
managing win decisions for, 350–351
overview of, 346–347
programming suggestions for completion,

351–352

tile-based starter games
creating tile arrays for, 343–344
managing tile maps for, 343–345
overview of, 339–340
programming suggestions for completion,

345–346
tileset array, 343
Timer object, 150, 257
timing

creating simple timers, 150–151
obtaining date and time in JavaScript, 150
overview of, 150–152
using to create urgency, 174–178

<title> element, 18
tools. See game development tools
top properties, 249
topBorder variable, 301
toString() method, 67
touch screen support

creating virtual buttons, 225–228
creating virtual joysticks, 231, 298
developing with simpleGame.js, 213
disabling default behaviors, 298
needed for mobile devices, 213
overview of, 294–297
reading virtual joystick input, 231–234
supporting multi-touch, 297
tracking data changes for, 297–298
triggering touchStart, touchMove, or

touchEnd events, 298
using touchable variable to detect,

228, 231
touchable variable, 228, 231, 248–249
touchEnd event, 298
touches[] setting, 297
touchMove event, 298
touchStart event, 298
transformations

definition of, 281
example of, 283–285
managing sprites with, 285
overview of, 281–282
using <rotate> element, 282
using <save> method with, 284–285
using scale values, 281–282, 285
using <translate> element, 282

<translate> element, 282

369369 Index

tries variable, 82
turnBy() method, 254
txtInput element, 70
txtName.value variable, 46
type attribute

using to identify programming
language, 43

using to link style sheets, 26–27, 50
using with text boxes, 41
warning about redundancy, 42

• U •
Universal-LPC sprite sheet, 268
UP values, 316
update() method

controlling animation with, 119
controlling game action with, 122
controlling image creation order with, 163
definition of, 252
frequency of calls, 118
managing sprites with, 120, 163

updateKeys method, 293

• V •
V_SPEED value, 325
value attribute, 46
values

retrieving from input fields, 46
using quotes to retrieve, 47

var statement, 46, 74–75
variable scope, 74
variables. See also individual variables by

name
accessing content with, 45
accessing values with, 46
changing with loops, 75
creating automatically, 64
creating outside of functions, 74
creating with var statement, 46
definition of, 63
initializing within loops, 75
overview of, 44–47
relating to forms, 46
types assigned automatically by

JavaScript, 64, 67

using Boolean values with, 82
using functions as, 89–90
using operators with, 76
using output variables, 74
using to hold sound effects, 142
using var statements, 64, 74–75

vector graphics
allowing scaling and rotation, 273
diagramming with Dia, 263–264
modifying coordinate systems within,

281–282
native support for in HTML5, 273
overview of, 13
using InkScape for, 273

vector projection
math calculations for, 285–289
overview of, 130, 285

vectors. See also individual vectors by
name

force vectors versus motion vectors, 183
overview of, 183
using to simulate thrust, 186

verse() method, 88
virtKeys variable, 240, 258
virtual accelerometer. See accelerometers
virtual joystick. See joysticks (virtual)
virtual keyboards. See keyboards
visible property, 299

• W •
watch expressions, 86
web pages

converting into apps (for IOS systems),
221–223

directly modifying, 48–49
managing screen size, 220–221
resetting with empty strings, 178
storing offline, 224–225
uploading with control panels,

216–218
using for games, 212

web servers. See also control panels
delivering games with, 213
fixing permissions issues from, 220
managing with control panels, 214

370 HTML5 Game Development For Dummies

web servers (continued)
required for mobile device programming,

213–214
testing games with, 214, 218
warning about free versus paid, 214

web-based programming
accessing web servers, 213–214
advantages for games, 10
new technologies for, 10–11
warning about free websites, 214

websites
of author, 3
browser recommendations for

programming, 83–84, 86
whack-a-mole starter game

adding high score mechanism to, 318–319
creating object arrays for, 318
designing two-state Sprite objects for,

316–318

managing touch screen input for, 318
programming suggestions for

completion, 319
What You See Is What You Get

(WYSIWYG), 18
while loops

creating basic loops, 79–81
designing for indefinite behaviors, 79
features required by, 81
overview of, 79–81
warning on use of, 81

width properties, 249, 251
width rule, 51
WRAP value, 254, 301
WYSIWYG (What You See Is What You

Get), 18

• X •
x, y properties, 251

http://www.Dummies.com/go/mobile
http://www.Dummies.com/go/iphone/apps

	HTML5 Game Development For Dummies®
	About the Author
	Table of Contents
	Introduction
	About This Book
	What You Will Need
	How to Read This Book
	How This Book Is Organized
	We Even Use the Internet Thingy!
	Icons Used in This Book
	Where to Go from Here

	Part I: Building the Foundation
	Chapter 1: Playing on the Web
	Building the Framework
	Setting Up Your Workshop
	Building Your First Game
	Building a Basic Page

	Chapter 2: Talking to the User
	Making an Interactive Form
	Adding JavaScript to Your Page
	Building the Word Story Game

	Chapter 3: Coding Like a Pro
	Working with Variables
	Making Choices with if
	Managing Repetition with for loops
	Building While Loops
	Sending Data to and from Functions
	Using Arrays to Simplify Data

	Chapter 4: Random Thoughts: Building a Simple Game
	Creating Random Numbers
	Building the Number Guesser

	Part II: Basic Game Development
	Chapter 5: Introducing simpleGame.js
	Using a Game Engine
	Building an Animation with simpleGame.js
	Considering Objects
	Bringing Your Game

	Chapter 6: Creating Game Elements
	Building Your Own Sprite Objects
	Sound Programming Principles
	Game Programming’s Greatest Hits!
	It’s All About Timing . . .

	Chapter 7: Getting to a Game
	Building a Real Game
	Planning Your Game
	Programming On the Fly
	Clearly, We Need an Amphibian
	Combining the Frog and the Fly
	When Sprites Collide
	Working with Multiple Flies
	Adding the Final Touches

	Part III: Diving Deeper
	Chapter 8: Motion and Animation
	Physics — Even More Fun Than You Remember
	Lost in Space
	Don’t Be a Drag — Adding Drag Effects
	Do You Catch My Drift?
	Recognizing the Gravity of the Situation
	Houston, We’ve Achieved Orbit
	Does This Car Come with a Missile Launcher?
	Building a Multi-State Animation

	Chapter 9: Going Mobile
	Using HTML5 as a Mobile Language
	Putting Your Game on a Server
	Making Your Game App-Ready
	Managing Alternate Input
	Reading the Virtual Joystick

	Chapter 10: Documenting simpleGame
	Overview of SimpleGame
	The Scene Object
	The Sprite Class
	Utility Classes
	Making the Game Engine Your Own

	Part IV: The Part of Tens
	Chapter 11: Ten Great Game Asset Resources
	Dia Diagramming Tool
	GIMP — A Powerful Image Editor
	Ari’s SpriteLib
	Reiner’s Tilesets
	OpenGameArt
	Blender
	Audacity — Useful for Sound Effects
	Freesound.org
	SoundJay.com
	BFXR Incredible Eight-Bit Sound Effects
	InkScape

	Chapter 12: Ten Concepts Behind simpleGame
	Using the Canvas Tag
	Creating an Animation Loop
	Angles in the Outfield
	Transformations in Canvas
	Vector Projection
	Using the Sound Object
	Reading the Keyboard
	Managing the Touch Interface
	Collision Detection
	Boundary Checking

	Chapter 13: Ten Game Starters
	Lunar Lander
	Mail Pilot
	The Marble-Rolling Game
	Whack-a-Mole
	Jump and Run on Platforms
	Pong — the Granddaddy of Them All
	I’m a Fighter, Not a Lover — RPGs
	Tanks — and You’re Welcome!
	Miles and Miles of Tiles and Tiles
	Tic-Tac-Toe Is the Way to Go

	Index

