

http://www.dummies.com/cheatsheet/coding

Coding

by Nikhil Abraham

Coding

Coding For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2014954659

ISBN 978-1-118-95130-9 (pbk); ISBN 978-1-118-95130-9 (ebk); ISBN 978-1-118-97091-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction .. 1

Part I: Getting Started with Coding 5
Chapter 1: What Is Coding? .. 7
Chapter 2: Programming for the Web ... 19
Chapter 3: Becoming a Programmer ... 33

Part II: Building the Silent and
Interactive Web Page ... 41
Chapter 4: Exploring Basic HTML .. 43
Chapter 5: Getting More Out of HTML .. 59
Chapter 6: Getting Stylish with CSS ... 75
Chapter 7: Next Steps with CSS .. 97
Chapter 8: Working Faster with Twitter Bootstrap ... 119
Chapter 9: Adding in JavaScript ... 135

Part III: Putting Together a Web Application 157
Chapter 10: Building Your Own App ... 159
Chapter 11: Researching Your First Web Application .. 171
Chapter 12: Coding and Debugging Your First Web Application 187

Part IV: Developing Your Coding Skills Further........... 197
Chapter 13: Getting Familiar with Ruby .. 199
Chapter 14: Wrapping Your Head around Python ... 213

Part V: The Part of Tens ... 227
Chapter 15: Ten Free Resources for Coding and Coders .. 229
Chapter 16: Ten Tips for Novice Coders ... 237

Index ...245

Table of Contents
Introduction ... 1

About This Book .. 2
Foolish Assumptions ... 2
Icons Used in This Book ... 3
Beyond the Book ... 3
Where to Go from Here ... 4

Part I: Getting Started with Coding 5

Chapter 1: What Is Coding? .7
Defining What Code Is ... 8

Following instructions ... 8
Writing code with some Angry Birds .. 9

Understanding What Coding Can Do for You .. 10
Eating the world with software .. 10
Coding on the job ... 12
Scratching your own itch (and becoming rich and famous) 13

Surveying the Types of Programming Languages 13
Comparing low-level and high-level programming languages 15
Contrasting compiled code and interpreted code 16
Programming for the web ... 16

Taking a Tour of a Web App Built with Code ... 16
Defining the app’s purpose and scope .. 17
Standing on the shoulders of giants .. 17

Chapter 2: Programming for the Web .19
Displaying Web Pages on Your Desktop and Mobile Device 19

Hacking your favorite news website ... 20
Understanding how the World Wide Web works............................. 22
Watching out for your front end and back end 24
Defining web and mobile applications .. 25

Coding Web Applications ... 26
Starting with HTML, CSS, and JavaScript .. 26
Adding logic with Python, Ruby, or PHP .. 26

Coding Mobile Applications ... 27
Building mobile web apps... 29
Building native mobile apps ... 30

viii Coding For Dummies

Chapter 3: Becoming a Programmer . .33
Writing Code Using a Process .. 33

Researching what you want to build ... 35
Designing your app .. 36
Coding your app ... 37
Debugging your code... 38

Picking Tools for the Job .. 38
Working offline ... 38
Working online with Codecademy.com .. 39

Part II: Building the Silent and Interactive Web Page41

Chapter 4: Exploring Basic HTML .43
What Does HTML Do? ... 43
Understanding HTML Structure .. 44

Identifying elements .. 45
Featuring your best attribute ... 46
Standing head, title, and body above the rest 48

Getting Familiar with Common HTML Tasks and Tags 49
Writing headlines ... 51
Organizing text in paragraphs .. 52
Linking to your (heart’s) content .. 52
Adding images .. 54

Styling Me Pretty ... 55
Highlighting with bold, italics, underline, and strikethrough 55
Raising and lowering text with superscript and subscript 56

Building Your First Website Using HTML ... 57

Chapter 5: Getting More Out of HTML . .59
Organizing Content on the Page .. 59
Listing Data ... 61

Creating ordered and unordered lists... 62
Nesting lists .. 63

Putting Data in Tables ... 64
Basic table structuring .. 65
Stretching table columns and rows ... 66
Aligning tables and cells ... 67

Filling Out Forms ... 70
Understanding how forms work .. 71
Creating basic forms.. 72

Practicing More with HTML ... 73

ix Table of Contents

Chapter 6: Getting Stylish with CSS .75
What Does CSS Do? ... 75
CSS Structure ... 77

Choosing the element to style .. 77
My property has value .. 78
Hacking the CSS on your favorite website .. 79

Common CSS Tasks and Selectors .. 81
Font gymnastics: size, color, style, family, and decoration 82
Customizing links ... 86
Adding background images and styling foreground images 88

Styling Me Pretty ... 92
Adding CSS to your HTML .. 92
Building your first web page... 94

Chapter 7: Next Steps with CSS .97
Styling (More) Elements on Your Page ... 98

Styling lists .. 98
Designing tables ... 101

Selecting Elements to Style .. 103
Styling specific elements ... 104
Naming HTML elements .. 107

Aligning and Laying Out Your Elements ... 109
Organizing data on the page ... 109
Shaping the div ... 111
Understanding the box model .. 113
Positioning the boxes .. 114

Writing More Advanced CSS .. 118

Chapter 8: Working Faster with Twitter Bootstrap 119
Figuring Out What Bootstrap Does ... 119
Installing Bootstrap ... 121
Understanding the Layout Options ... 122

Lining up on the grid system .. 122
Dragging and dropping to a website ... 124
Using predefined templates .. 125
Adapting layout for mobile, tablet, and desktop 126

Coding Basic Web page Elements ... 128
Designing buttons .. 128
Navigating with toolbars ... 130
Adding icons ... 131

Build the Airbnb Home Page .. 132

x Coding For Dummies

Chapter 9: Adding in JavaScript .135
What Does JavaScript Do? .. 135
Understanding JavaScript Structure ... 137
Using Semicolons, Quotes, Parentheses, and Braces 138
Coding Common JavaScript Tasks .. 139

Storing data with variables ... 139
Making decisions with if-else statements 140
Working with string and number methods..................................... 144
Alerting users and prompting them for input 146
Naming code with functions ... 146
Adding JavaScript to the webpage .. 148

Writing Your First JavaScript Program ... 149
Working with APIs ... 149

What do APIs do? ... 150
Scraping data without an API ... 151
Researching and choosing an API.. 152

Using JavaScript Libraries .. 153
jQuery .. 153
D3.js ... 153

Searching for Videos with YouTube’s API .. 155

Part III: Putting Together a Web Application 157

Chapter 10: Building Your Own App .159
Building a Location-Based Offer App .. 159

Understanding the situation ... 160
Plotting your next steps .. 160

Following an App Development Process .. 161
Planning Your First Web Application .. 162
Exploring the Overall Process ... 163
Meeting the People Who Bring a Web App to Life 165

Creating with designers .. 165
Coding with front- and back-end developers 167
Managing with product managers ... 168
Testing with quality assurance .. 169

Chapter 11: Researching Your First Web Application171
Dividing the App into Steps .. 172

Finding your app’s functionality .. 172
Finding your app’s functionality: My version................................. 172
Finding your app’s form .. 174
Finding your app’s form: The McDuck’s Offer App design 178

xi Table of Contents

Identifying Research Sources ... 179
Researching the Steps in the McDuck’s Offer App 181
Choosing a Solution for Each Step .. 184

Chapter 12: Coding and Debugging Your First Web Application187
Getting Ready to Code .. 187
Coding Your First Web Application .. 188

Development environment ... 188
Pre-written code ... 189
Coding steps for you to follow ... 192

Debugging Your App ... 195

Part IV: Developing Your Coding Skills Further 197

Chapter 13: Getting Familiar with Ruby .199
What Does Ruby Do? ... 199
Defining Ruby Structure .. 200

Understanding the principles of Ruby .. 201
Styling and spacing .. 202

Coding Common Ruby Tasks and Commands ... 203
Defining data types and variables.. 203
Computing simple and advanced math .. 204
Using strings and special characters .. 205
Deciding with conditionals: If, elsif, else ... 206
Input and output .. 208

Shaping Your Strings ... 209
String methods: upcase, downcase, strip 210
Inserting variables in strings with # .. 210

Building a Simple Form-Text Formatter Using Ruby 211

Chapter 14: Wrapping Your Head around Python213
What Does Python Do? ... 213
Defining Python Structure .. 214

Understanding the Zen of Python .. 215
Styling and spacing .. 216

Coding Common Python Tasks and Commands 217
Defining data types and variables.. 217
Computing simple and advanced math .. 218
Using strings and special characters .. 220
Deciding with conditionals: If, elif, else... 221
Input and output .. 222

xii Coding For Dummies

Shaping Your Strings ... 223
Dot notation with upper(), lower(), capitalize(), and strip() 224
String formatting with % ... 224

Building a Simple Tip Calculator Using Python 225

Part V: The Part of Tens .. 227

Chapter 15: Ten Free Resources for Coding and Coders229
Learning-to-Code Websites .. 229

Codecademy ... 229
Coursera and Udacity .. 230
Hackdesign.org ... 230
Code.org .. 231

Coding-Reference Websites .. 232
W3Schools .. 232
Mozilla Developer Network .. 233
Stack Overflow ... 233

Tech News and Community Websites .. 234
TechCrunch .. 234
Hacker News ... 235
Meetup .. 236

Chapter 16: Ten Tips for Novice Coders . .237
Pick a Language, Any Language ... 237
Define a Goal .. 238
Break Down Your Goal into Bite-Sized Steps ... 238
Distinguish Cupcake from Frosting ... 239
Google Is a Developer’s Best Friend .. 239
Zap Those Bugs ... 240
Just Ship It .. 241
Collect Feedback .. 242
Iterate on Your Code ... 242
Share Your Success and Failure .. 243

Index ..245

Introduction

T
he ability to read, write, and understand code has never been more
important, useful, or lucrative as it is today. Computer code has forever

changed our lives. Some people can’t even make it through the day without
interacting with something built with code. Even so, for many people, the
world of coding seems complex and inaccessible. Maybe you participated in
a tech-related business meeting and did not fully understand the conversa-
tion. Perhaps you tried to build a web page for your family and friends, but
ran into problems displaying pictures or aligning text. Maybe you’re even
intimidated by the unrecognizable words on the covers of books about
coding: words such as HTML, CSS, JavaScript, Python, or Ruby.

If you’ve previously been in these situations, then Coding For Dummies is
for you. This book explains basic concepts so you can participate in techni-
cal conversations, and ask the right questions. Don’t worry — in this book
I’ve assumed you are starting with little to no previous coding knowledge,
and I haven’t tried to cram every possible coding concept into these pages.
Additionally, I encourage you here to learn by doing, and by actually creating
your own programs. Instead of a website, imagine that you wanted to build a
house. You could spend eight years studying to be an architect, or you could
start today by learning a little bit about foundations and framing. This book
kickstarts your coding journey today.

The importance of coding is ever increasing. As author and technologist
Douglas Rushkoff famously said, “program or be programmed.” When
humans invented languages and then the alphabet, people learned to listen
and speak, and then read and write. In our increasingly digital world, it is
important to learn not just how to use programs, but how to make them as
well. For example, observe this transition in music. For over a century, music
labels decided what songs the public could listen to and purchase. In 2005,
three coders created YouTube, which allowed anyone to release songs. Today
more songs have been uploaded to YouTube than have been released by all
the record labels in the last century combined.

Accompanying this book are examples at www.codecademy.com, whose
exercises are one of the easiest ways to learn how to code without install-
ing or downloading anything. The Codecademy companion site includes
examples and exercises from this book, along with projects and examples
for additional practice.

http://www.codecademy.com

2 Coding For Dummies

About This Book
This book is designed for readers with little to no coding experience, and
gives an overview of programming to non-programmers. In plain English, you
learn how code is used to create web programs, who makes those programs,
and the processes they use. The topics covered include:

 ✓ Explaining what coding is and answering the common questions related
to code.

 ✓ Building basic websites using the three most common languages: HTML,
CSS, and JavaScript.

 ✓ Surveying other programming languages such as Ruby and Python.

 ✓ Building an application using everything you learn in the book.

As you read this book, keep the following in mind:

 ✓ The book can be read from beginning to end, but feel free to skip around
if you like. If any topic interests you, start there. You can always return
to the previous chapter, if necessary.

 ✓ At some point you will get stuck, and code you write will not work as
intended. Do not fear! There are many resources to help you including sup-
port forums, others on the Internet, and me! Using Twitter, you can send
me a public message at @nikhilgabraham with the hashtag #codingFD.

 ✓ Code in the book will appear in a monospaced font like this: <h1>Hi
there!</h1>.

Foolish Assumptions
I do not make many assumptions about you, the reader, but I do make a few:

I assume you don’t have previous programming experience. To follow along,
then, you only need to be able to read, type, and follow directions. I try to
explain as many concepts as possible using examples and analogies you
already know.

I assume you have a computer running the latest version of Google Chrome.
The examples in the book have been tested and optimized for the Chrome
browser, which is available for free from Google. Even so, the examples may
also work in the latest version of Firefox. Using Internet Explorer for the
examples in this book, however, is discouraged.

I assume you have access to an Internet connection. Some of the examples in
the book can be done without an Internet connection, but most require one
so you can access and complete the exercises on www.codecademy.com.

http://www.codecademy.com

3 Introduction

Icons Used in This Book
Here are the icons used in the book to flag text that should be given extra
attention or can be skipped.

 This icon flags useful information or explains a shortcut to help you under-
stand a concept.

 This icon explains technical details about the concept being explained. The
details might be informative or interesting, but are not essential to your
understanding of the concept at this stage.

 Try not to forget the material marked with this icon. It signals an important
concept or process that you should keep in mind.

 Watch out! This icon flags common mistakes and problems that can be
avoided if you heed the warning.

Beyond the Book
A lot of extra content that you won’t find in this book is available at www.
dummies.com. Go online to find the following:

 ✓ The source code for the examples in this book and a link to the
Codecademy exercises: You can find these at

www.dummies.com/go/codingfd

 The source code is organized by chapter. The best way to work with a
chapter is to download all the source code for it at one time.

 ✓ Cheat Sheet: You can find a list of common HTML, CSS, and JavaScript
commands, among other useful information, at

www.dummies.com/cheatsheet/coding

 ✓ Extras: Additional articles with extra content are posted for roughly
each section of the book. You can access these additional materials at

www.dummies.com/extras/coding

 ✓ Updates: Code and specifications are constantly changing, so the com-
mands and syntax that work today may not work tomorrow. You can find
any updates or corrections by visiting

www.dummies.com/extras/coding

http://www.dummies.com
http://www.dummies.com
http://www.dummies.com/go/codingfd
http://www.dummies.com/cheatsheet/coding
http://www.dummies.com/extras/coding
http://www.dummies.com/extras/coding

4 Coding For Dummies

Where to Go from Here
All right, now that all of the administrative stuff is out of the way, it’s time to
get started. You can totally do this. Congratulations on taking your first step
into the world of coding!

Part I
Getting Started with Coding

 Visit www.dummies.com for great For Dummies content online.

http://www.dummies.com

In this part . . .
 ✓ Understand what code is and what you can build with it.

 ✓ Review programming languages used to write code.

 ✓ Code for the web using front-end and back-end programming
languages.

 ✓ Follow the process programmers use to create code.

 ✓ Write your first program using code.

1
What Is Coding?

In This Chapter
▶ Seeing what code is and what it can do

▶ Touring your first program using code

▶ Understanding programming languages used to write code

“A million dollars isn’t cool, you know what’s cool? A billion dollars.”

—Sean Parker, The Social Network

E
very week the newspapers report on another technology company that
has raised capital or sold for millions of dollars. Sometimes, in the case

of companies like Instagram, WhatsApp, and Uber, the amount in the head-
line is for billions of dollars. These articles may pique your curiosity, and
you may want to see how code is used to build the applications that experi-
ence these financial outcomes. Alternatively, your interests may lie closer
to work. Perhaps you work in an industry in decline, like print media, or in a
function that technology is rapidly changing, like marketing. Whether you are
thinking about switching to a new career or improving your current career,
understanding computer programming or “coding” can help with your profes-
sional development. Finally, your interest may be more personal — perhaps
you have an idea, a burning desire to create something, a website or an app,
to solve a problem you have experienced, and you know reading and writing
code is the first step to building your solution. Whatever your motivation, this
book will shed light on coding and programmers, and help you think of both
not as mysterious and complex but approachable and something you can do
yourself.

In this chapter, you will understand what code is, what industries are affected
by computer software, the different types of programming languages used to
write code, and take a tour of a web app built with code.

8 Part I: Getting Started with Coding

Defining What Code Is
Computer code is not a cryptic activity reserved for geniuses and oracles.
In fact, in a few minutes you will be writing some computer code yourself!
Most computer code performs a range of tasks in our lives from the mundane
to the extraordinary. Code runs our traffic lights and pedestrian signals, the
elevators in our buildings, the cell phone towers that transmit our phone sig-
nals, and the space ships headed for outer space. We also interact with code
on a more personal level, on our phones and computers, and usually to check
email or the weather.

Following instructions
Computer code is a set of statements, like sentences in English, and each
statement directs the computer to perform a single step or instruction. Each
of these steps is very precise, and followed to the letter. For example, if you
are in a restaurant and ask a waiter to direct you to the restroom, he might
say, “head to the back, and try the middle door.” To a computer, these direc-
tions are so vague as to be unusable. Instead, if the waiter gave instructions
to you as if you were a computer program he might say, “From this table,
walk northeast for 40 paces. Then turn right 90 degrees, walk 5 paces, turn
left 90 degrees, and walk 5 paces. Open the door directly in front of you, and
enter the restroom.” Figure 1-1 shows lines of code from the popular game,
Pong. Do not worry about trying to understand what every single line does,
or feel intimated. You will soon be reading and writing your own code.

Figure 1-1: Computer code from the game Pong.

One rough way to measure a program’s complexity is to count its statements
or lines of code. Basic applications like the Pong game have 5,000 lines of
code, while more complex applications like Facebook currently have over

9 Chapter 1: What Is Coding?

10 million lines of code. Whether few or many lines of code, the computer
follows each instruction exactly and effortlessly, never tiring like the waiter
might when asked for the 100th time for the location of the restroom.

 Be careful of only using lines of code as a measure for a program’s complex-
ity. Just like when writing in English, 100 well written lines of code can per-
form the same functionality as 1,000 poorly written lines of code.

Writing code with some Angry Birds
If you have never written code before, now is your chance to try! Go to
http://csedweek.org/learn and under the heading “Tutorials for
Beginners” click the “Write Your First Computer Program” link with the Angry
Birds icon, as shown in Figure 1-2. This tutorial is meant for those with no
previous computer programming experience, and introduces the basic build-
ing blocks used by all computer programs. The most important take-away
from the tutorial is to understand that computer programs use code to liter-
ally and exactly tell the computer to execute a set of instructions.

Figure 1-2: Write your first computer program with a game-like tutorial
using Angry Birds.

 Computer Science Education Week is an annual program dedicated to elevat-
ing the profile of computer science during one week in December. In the past,
President Obama, Bill Gates, basketball player Chris Bosh, and singer Shakira,
among others, have supported and encouraged people from the US and
around the world to participate.

http://csedweek.org/learn

10 Part I: Getting Started with Coding

Understanding What Coding Can Do for You
Coding can be used to perform tasks and solve problems that you experience
every day. The “everyday” situations in which programs or apps can provide
assistance continues to grow at an exponential pace, but this was not always
the case. The rise of web applications, internet connectivity, and mobile
phones have inserted software programs into daily life, and lowered the bar-
rier for you to become a creator, solving personal and professional problems
with code.

Eating the world with software
In 2011, Marc Andreessen, creator of Netscape Navigator and now venture
capitalist, noted that “software is eating the world.” He predicted that
software companies would disrupt existing companies at a rapid pace.
Traditionally, code powered software used on desktops and laptops. The
software had to first be installed, and then you had to supply data to the
program. Three trends have dramatically increased the use of code in
everyday life:

 ✓ Web-based software: This software operates in the browser without
requiring installation. For example, if you wanted to check your email,
you previously had to install an email client either by downloading the
software or from a CD-ROM. Sometimes, issues arose when the software
was not available for your operating system, or conflicted with your
operating system version. Hotmail, a web-based email client, rose to
popularity, in part, because it allowed users visiting www.hotmail.
com to instantly check their email without worrying about installation or
software compatibility. Web applications increased consumer appetite
to try more applications, and developers in turn were incentivized to
write more applications.

 ✓ Internet broadband connectivity: Broadband connectivity has
increased, providing a fast Internet connection to more people in the
last few years than in the previous decade. Today, more than two bil-
lion people can access web-based software, up from approximately
50 million only a decade ago.

 ✓ Mobile phones: Today’s smartphones bring programs with you wher-
ever you go, and help supply data to programs. Many software programs
became more useful when accessed on-the-go than when limited to
a desktop computer. For instance, use of maps applications greatly
increased thanks to mobile phones because users need directions the
most when lost, not just when planning a trip at home on the computer.
In addition, mobile phones are equipped with sensors that measure
and supply data to programs like orientation, acceleration, and current

http://www.hotmail.com
http://www.hotmail.com

11 Chapter 1: What Is Coding?

location through GPS. Now instead of having to input all the data to pro-
grams yourself, mobile devices can help. For instance, a fitness applica-
tion like RunKeeper does not require you to input start and end times to
keep track of your runs. You can press start at the beginning of your run,
and the phone will automatically track your distance, speed, and time.

The combination of these trends have created software companies that have
upended incumbents in almost every industry, especially ones typically
immune to technology. Some notable examples include:

 ✓ Airbnb: Airbnb is a peer-to-peer lodging company that owns no rooms,
yet books more nights than the Hilton and Intercontinental, the largest
hotel chains in the world. (See Figure 1-3.)

Figure 1-3: Airbnb booked 5 million nights after 3.5 years, and its next
5 million nights 6 months later.

 ✓ Uber: Uber is a car transportation company that owns no vehicles,
books more trips, and has more drivers in the largest 200 cities than any
other car or taxi service.

 ✓ Groupon: Groupon, the daily deals company, generated almost $1 billion
after just two years in business, growing faster than any other company
in history, let alone any other traditional direct marketing company.

12 Part I: Getting Started with Coding

Coding on the job
Coding can be useful in the workplace as well. Outside the technology sector,
coding in the workplace is common for some professions like financial trad-
ers, economists, and scientists. However, for most professionals outside the
technology sector, coding is just beginning to penetrate the workplace, and
gradually starting to increase in relevance. Here are areas where coding is
playing a larger role on the job:

 ✓ Advertising: Spend is shifting from print and TV to digital campaigns,
and search engine advertising and optimization relies on keywords to
bring visitors to websites. Advertisers who understand code see suc-
cessful keywords used by competitors, and use that data to create more
effective campaigns.

 ✓ Marketing: When promoting products, personalizing communication is
one strategy that often increases results. Marketers who code can query
customer databases and create personalized communications that
include customer names and products tailored to specific interests.

 ✓ Sales: The sales process always starts with leads. Salespeople who code
retrieve their own leads from web pages and directories, and then sort
and quality those leads.

 Retrieving information by copying text on web pages and in directories
is referred to as scraping.

 ✓ Design: After creating a web page or a digital design, designers must
persuade other designers and eventually developers to actually program
their drawings into the product. Designers who code can more easily
bring their designs to life, and can more effectively advocate for specific
designs by creating working prototypes that others can interact with.

 ✓ Public relations: Companies constantly measure how customers and
the public react to announcements and news. For instance, if a celeb-
rity spokesperson for a company does or says something offensive,
should the company dump the celebrity? Public relations people who
code query social media networks like Twitter or Facebook, and analyze
hundreds of thousands of individual messages to understand market
sentiment.

 ✓ Operations: Additional profit can be generated, in part, by analyzing a
company’s costs. Operations people who code write programs to try
millions of combinations to optimize packaging methods, loading
routines, and delivery routes.

13 Chapter 1: What Is Coding?

Scratching your own itch (and becoming
rich and famous)
Using code built by others and coding in the workplace may cause you to
think of problems you personally face that you could solve with code of your
own. You may have an idea for a social network website, a better fitness
app, or something new altogether. The path from idea to functioning proto-
type used by others involves a good amount of time and work, but might be
more achievable than you think. For example, take Coffitivity, a productivity
website that streams ambient coffee shop sounds to create white noise. The
website was created by two people who had just learned how to program a
few months prior. Shortly after Coffitivity launched, Time Magazine named
the website one of 50 Best Websites of 2013, and the Wall Street Journal also
reviewed the website. While not every startup or app will initially receive this
much media coverage, it can be helpful to know what is possible when a solu-
tion really solves a problem.

Having a goal, like a website or app you want to build, is one of the best
ways to learn how to code. When facing a difficult bug or a hard concept, the
idea of bringing your website to life will provide the motivation you need to
keep going. Just as important, do not learn how to code to become rich and
famous, as the probability of your website or app becoming successful is
largely due to factors out of your control.

 The characteristics that make a website or app addictive are described using
the Hook Model here http://techcrunch.com/2012/03/04/how-to-
manufacture-desire. Products are usually made by companies, and the
characteristics of an enduring company are described here http://www.
sequoiacap.com/grove/posts/yal6/elements-of-enduring-
companies, based on a review of companies funded by Sequoia, one of the
most successful venture capital firms in the world and early investors in
Apple, Google, and PayPal.

Surveying the Types of Programming
Languages

Code comes in different flavors called programming languages. Some popular
programing languages are shown in Figure 1-4.

http://techcrunch.com/2012/03/04/how-to-manufacture-desire
http://techcrunch.com/2012/03/04/how-to-manufacture-desire
http://www.sequoiacap.com/grove/posts/yal6/elements-of-enduring-companies
http://www.sequoiacap.com/grove/posts/yal6/elements-of-enduring-companies
http://www.sequoiacap.com/grove/posts/yal6/elements-of-enduring-companies

14 Part I: Getting Started with Coding

Figure 1-4: Some popular programming languages.

You can think of programming languages just like spoken languages, as they
both share many of the same characteristics, such as:

 ✓ Functionality across languages: Programming languages can all create
the same functionality similar to how spoken languages can all express
the same objects, phrases, and emotions.

 ✓ Syntax and structure: Commands in programming languages can over-
lap just like words in spoken languages overlap. To output text to screen
in Python or Ruby you use the print command, just like imprimer and
imprimir are the verbs for “print” in French and Spanish.

 ✓ Natural lifespan: Programming languages are born when a program-
mer thinks of a new or easier way to express a computational concept.
If other programmers agree, they adopt the language for their own
programs and the programming language spreads. However, just like
Latin or Aramaic, if the programming language is not adopted by other
programmers or a better language comes along, then the programming
language slowly dies from lack of use.

Despite these similarities, programming languages also differ from spoken
languages in a few key ways:

 ✓ One creator: Unlike spoken languages, programming languages can
be created by one person in a short period of time, sometimes in just
a few days. Popular languages with a single creator include JavaScript
(Brendan Eich), Python (Guido van Rossum), and Ruby (Yukihiro
Matsumoto).

15 Chapter 1: What Is Coding?

 ✓ Written in English: Unlike spoken languages (except, of course, English),
almost all programming languages are written in English. Whether
they’re programming in HTML, JavaScript, Python, or Ruby, Brazilian,
French, or Chinese programmers all use the same English keywords and
syntax in their code. Some non-English programming languages exist,
such as languages in Hindi or Arabic, but none of these languages are
widespread or mainstream.

Comparing low-level and high-level
programming languages
One way to classify programming languages is either as low-level languages
or high-level languages. Low-level languages interact directly with the com-
puter processor or CPU, are capable of performing very basic commands,
and are generally hard to read. Machine code, one example of a low-level
language, uses code that consists of just two numbers — 0 and 1. Figure 1-5
shows an example of machine code. Assembly language, another low-level
language, uses keywords to perform basic commands like read data, move
data, and store data.

Figure 1-5: Machine code consists of 0s and 1s.

By contrast, high-level languages use natural language so it is easier for
people to read and write. Once code is written in a high-level language, like
C++, Python, or Ruby, an interpreter or compiler translates this high-level lan-
guage into low-level code a computer can understand.

16 Part I: Getting Started with Coding

Contrasting compiled code and interpreted code
High-level programming languages must be converted to low-level program-
ming languages using an interpreter or compiler, depending on the language.
Interpreted languages are considered more portable than compiled lan-
guages, while compiled languages execute faster than interpreted languages.
However, the speed advantage compiled languages have is starting to fade
in importance as improving processor speeds make performance differences
between interpreted and compiled languages negligible.

High-level programming languages like JavaScript, Python, and Ruby are
interpreted. For these languages the interpreter executes the program
directly, translating each statement one line at a time into machine code.
High-level programming languages like C++, COBOL, and Visual Basic are
compiled. For these languages, after the code is written a compiler translates
all the code into machine code, and an executable file is created. This execut-
able file is then distributed via the internet, CD-ROMs, or other media and
run. Software you install on your computer, like Microsoft Windows or Mac
OS X, are coded using compiled languages, usually C or C++.

Programming for the web
Software accessible on websites is gradually starting to take over installed
software. Think of the last time you downloaded and installed software
for your computer — you may not even remember! Installed software like
Windows Media Player and Winamp that play music and movies have
been replaced with websites like YouTube and Netflix. Traditional installed
word processor and spreadsheet software like Microsoft Word and Excel
are starting to see competition from web software like Google Docs and
Sheets. Google is even selling laptops called Chromebooks that contain no
installed software, and instead rely exclusively on web software to provide
functionality.

The remainder of this book will focus on developing and creating web soft-
ware, not just because web software is growing rapidly, but also because
programs for the web are easier to learn and launch than traditional installed
software.

Taking a Tour of a Web App Built with Code
With all this talk of programming, let us actually take a look at a web applica-
tion built with code. Yelp.com is a website that allows you to search and
find crowd-sourced reviews for local businesses like restaurants, nightlife,
and shopping. As shown in Figure 1-6, Yelp did not always look as polished as
it does today, but its purpose has stayed relatively constant over the years.

17 Chapter 1: What Is Coding?

Figure 1-6: Yelp’s website in 2004 and in 2014.

Defining the app’s purpose and scope
Once you understand an app’s purpose, you can identify a few actionable
tasks a user should be able to perform to achieve that purpose. Regardless of
design, the Yelp’s website has always allowed users to

 ✓ Search local listings based on venue type and location.

 ✓ Browse listing results for address, hours, reviews, photos, and location
on a map.

Successful web applications generally allow for completing only a few key
tasks when using the app. Adding too many features to an app is called scope
creep, dilutes the strength of the existing features, and so is avoided by most
developers. For example, it took Yelp, which has 30,000 restaurant reviews,
exactly one decade after its founding to allow users to make reservations at
those restaurants directly on its website. Whether you are using or building
an app, have a clear sense of the app’s purpose.

Standing on the shoulders of giants
Developers make strategic choices and decide which parts of the app to
code themselves, and which parts of the app to use code built by others.
Developers often turn to 3rd party providers for functionality that is either
not core to the business or not an area of strength. In this way, apps stand on
the shoulders of others, and benefit from others who have come before and
solved challenging problems.

Yelp, for instance, displays local listing reviews and places every listing on a
map. While Yelp solicits the reviews, and writes the code to display basic list-
ing data, it is Google, as shown in Figure 1-7, which develops the maps used
on Yelp’s website. By using Google’s map application instead of building its
own, Yelp created the first version of the app with fewer engineers than
otherwise would have been required.

18 Part I: Getting Started with Coding

Figure 1-7: Google maps used for the Yelp web application.

2
Programming for the Web

In This Chapter
▶ Seeing the code powering websites you use every day

▶ Understanding the languages used to make websites

▶ Learning how applications are created for mobile devices

To think you can start something in your college dorm room . . . and build
something a billion people use is crazy to think about. It’s amazing.

—Mark Zuckerberg

P
rogramming for the web allows you to reach massive audiences around
the world faster than ever before. Four years after its 2004 launch,

Facebook had 100 million users, and by 2012 it had over a billion. By con-
trast, it took desktop software years to reach even 1 million people. These
days, mobile phones are increasing the reach of web applications. Although
roughly 300 million desktop computers are sold every year, almost 2 billion
mobile phones are sold in that time — and the number is steadily increasing.

In this chapter you learn how websites are displayed on your computer or
mobile device. I introduce the languages used to program websites, and show
you how mobile-device applications are made.

Displaying Web Pages on Your
Desktop and Mobile Device

On desktop computers and mobile devices, web pages are displayed by
applications called browsers. The most popular web browsers include Google
Chrome, Mozilla Firefox (formerly Netscape Navigator), Microsoft Internet
Explorer, and Apple Safari. Until now, you have likely interacted with websites
you visit as an obedient user, and followed the rules the website has created
by pointing and clicking when allowed. The first step to becoming a producer
and programmer of websites is to peel back the web page, and see and play
with the code underneath it all.

20 Part I: Getting Started with Coding

Hacking your favorite news website
What’s your favorite news website? By following a few steps, you can see and
even modify the code used to create that website. (No need to worry, you
won’t be breaking any rules by following these instructions.)

 Although you can use almost any modern browser to inspect a website’s
code, these instructions assume you’re using the Google Chrome browser.
Install the latest version by going to www.google.com/chrome/browser.

To “hack” your favorite news website, follow these steps:

 1. Open your favorite news website using the Chrome browser. (In this
example, I use www.huffingtonpost.com.)

 2. Place your mouse cursor over any static fixed headline and right-click
once, which opens a contextual menu. Then, left-click once on the
Inspect Element menu choice. (See Figure 2-1.)

Figure 2-1: Right-click on a headline and select Inspect Element from
the menu.

 If using a Macintosh computer, you can right-click by holding down the
Control key and clicking once.

 The Developer Tools panel opens at the bottom of your browser. This
panel shows you the code used to create this web page! Highlighted in
blue is the specific code used to create the headline where you originally
put your mouse cursor. (See Figure 2-2.)

http://www.google.com/chrome/browser
http://www.huffingtonpost.com

21 Chapter 2: Programming for the Web

Figure 2-2: The blue highlighted code is used to create the web page
headline.

 Look at the left edge of the highlighted code. If you see a right arrow,
left-click once on the arrow to expand the code.

 3. Scan the highlighted code carefully for the text of your headline.
When you find it, double-click on the headline text. This allows you to
edit the headline. (See Figure 2-3.)

 Be careful not to click on anything that begins with http, which is the
headline link. Clicking on a headline link will open a new window or tab
and load the link.

Figure 2-3: Double-click the headline text to edit it with your own headline.

22 Part I: Getting Started with Coding

 4. Insert your name in the headline and press Enter.

 Your name now appears on the actual web page. (See Figure 2-4.) Enjoy
your newfound fame!

Figure 2-4: You successfully changed the headline of a major news
website.

 If you were unable to edit the headline after following these steps, visit
http://goggles.webmaker.org for an easier, more guided tutorial.
It’s a foolproof guided version to edit code on a page. It’s a teaching aid
that shows that any code on the Internet can be modified. On that page,
click the yellow Activate X-Ray Goggles to see and edit the code on the
webmaker.org web page. Try again to hack your favorite news website
by following the “Remix Any Webpage” instructions.

If you successfully completed the steps above and changed the original
headline, it’s time for your 15 minutes of fame to come to an end. Reload the
web page and the original headline reappears. What just happened? Did your
changes appear to everyone visiting the web page? And why did your edited
headline disappear?

To answer these questions, you first need to understand how the Internet
delivers web pages to your computer.

Understanding how the World Wide Web works
After you type a URL, such as huffingtonpost.com, into your browser, the
following steps happen behind the scenes in the seconds before your page
loads (see Figure 2-5):

http://goggles.webmaker.org

23 Chapter 2: Programming for the Web

 1. Your computer sends your request for the web page to a router. The
router distributes Internet access throughout your home or workplace.

 2. The router passes your request onto your Internet service provider
(ISP). In the United States, your ISP is a company like Comcast, Time
Warner, AT&T, or Verizon.

 3. Your ISP then converts the words and characters in your URL — “huff-
ingtonpost.com,” in my example — into a numerical address called the
Internet protocol address (or, more commonly, IP address). An IP address
is a set of four numbers separated by periods (such as, for example,
192.168.1.1). Just like your physical address, this number is unique, and
every computer has one. Your ISP has a digital phone book, similar to a
physical phonebook, called a domain name server that’s used to convert
text URLs into IP addresses.

 4. With the IP address located, your ISP knows which server on the
Internet to forward your request to, and your personal IP address is
included in this request.

 5. The website server receives your request, and sends a copy of the web
page code to your computer for your browser to display.

 6. Your web browser renders the code onto the screen.

Figure 2-5: Steps followed to deliver a website to your browser.

When you edited the website code using the Developer Tools, you modi-
fied only the copy of the website code that exists on your computer, so only
you could see the change. When you reloaded the page, you started steps 1
through 6 again, and retrieved a fresh copy of the code from the server, over-
writing any changes you made on your computer.

24 Part I: Getting Started with Coding

 You may have heard of a software tool called an ad blocker. Ad blockers work
by editing the local copy of website code, just as you did above, to remove
website advertisements. Ad blockers are controversial because websites use
advertising revenue to pay for operating costs. If ad blockers continue rising
in popularity, ad revenue could dry up, and websites would have to demand
that readers pay to see their content.

Watching out for your front end and back end
Now that you know how your browser accesses websites, let us dive deeper
into the way the actual website is constructed. As shown in Figure 2-6, the
code for websites, and for programs in general, can be divided into four
categories, according to the code’s function:

 ✓ Appearance: Appearance is the visible part of the website, including
content layout and any applied styling, such font size, font typeface, and
image size. This category is called the front end and is created using lan-
guages like HTML, CSS, and JavaScript.

 ✓ Logic: Logic determines what content to show and when. For example,
a New Yorker accessing a news website should see New York weather,
whereas Chicagoans accessing the same site should see Chicago
weather. This category is part of the group called the back end and is
created using languages like Ruby, Python, and PHP. These back end
languages can modify the HTML, CSS, and JavaScript that is displayed to
the user.

 ✓ Storage: Storage saves any data generated by the site and its users.
User-generated content, preferences, and profile data must be stored for
retrieval later. This category is part of the back end and is stored in data-
bases like MongoDB and MySQL.

 ✓ Infrastructure: Infrastructure delivers the website from the server to
you, the client machine. When the infrastructure is properly configured,
no one notices it, but it can become noticeable when a website becomes
unavailable due to high traffic from events like presidential elections,
the Super Bowl, and natural disasters.

Usually, website developers specialize in one or at most two of these cat-
egories. For example, an engineer might really understand the front end and
logic languages, or specialize in only databases. Website developers have
strengths and specializations, and outside of these areas their expertise is
limited, much in the same way that Jerry Seinfeld, a terrific comedy writer,
would likely make a terrible romance novelist.

 The rare website developer proficient in all four of these categories is referred
to as a full stack developer. Usually, smaller companies hire full stack develop-
ers, whereas larger companies require the expertise that comes with
specialization.

25 Chapter 2: Programming for the Web

Figure 2-6: Every website is made up of four different parts.

Defining web and mobile applications
Web applications are websites you visit using a web browser on any device.
Websites optimized for use on a mobile device, like a phone or tablet, are
called mobile web applications. By contrast, native mobile applications cannot
be viewed using a web browser. Instead, native mobile applications are
downloaded from an app store like the Apple App Store or Google Play, and
designed to run on a specific device such as an iPhone or an Android tablet.
Historically, desktop computers outnumbered and outsold mobile devices,
but recently two major trends in mobile usage have occurred:

 ✓ In 2014, people with mobile devices outnumbered people with desktop com-
puters. This gap is projected to continue increasing, as shown in Figure 2-7.

 ✓ Mobile-device users spend 80 percent of their time using native mobile
applications, and 20 percent of their time browsing mobile websites.

Figure 2-7: Mobile devices have increased at a faster pace than desktops.

26 Part I: Getting Started with Coding

The increase in mobile devices has happened so quickly over the last 10
years that many companies are becoming “mobile first,” designing and devel-
oping the mobile version of their applications before the desktop version.
WhatsApp and Instagram, two popular mobile applications, first built mobile
applications, which continue to have more functionality then their regular
websites.

Coding Web Applications
Web applications are easier to build than mobile applications, require little
to no additional software to develop and test, and run on all devices, includ-
ing desktop, laptops, and mobile. Although mobile applications can perform
many common web-application tasks, such as email, some tasks are still
easier to perform using web applications. For example, booking travel is
easier using web applications, especially since the steps necessary — review-
ing flights, hotels, and rental cars, and then purchasing all three — are best
achieved with multiple windows, access to a calendar, and the entry of sub-
stantial personal and payment information.

The programming languages used to code basic web applications, fur-
ther defined in the following sections, include HTML (Hypertext Markup
Language), CSS (Cascading Style Sheets), and JavaScript. Additional features
can be added to these websites using languages like Python, Ruby, or PHP.

Starting with HTML, CSS, and JavaScript
Simple websites, such as the one shown in Figure 2-8, are coded using HTML,
CSS, and JavaScript. HTML is used to place text on the page, CSS is used
to style that text, and JavaScript is used to add interactive effects like the
Twitter or Facebook Share button that allows you to share content on social
networks and updates the number of other people who have also shared the
same content. Websites conveying mainly static, unchanging information are
often coded only in these three languages. You will learn about each of these
languages in later chapters.

Adding logic with Python, Ruby, or PHP
Websites with more advanced functionality, such as user accounts, file
uploads, and e-commerce, typically require a programming language to
implement these features. Although Python, Ruby, and PHP are not the only
programming languages these sites can use, they are among the most popu-
lar. This popularity means there are large online communities of developers
who program in these languages, freely post code that you can copy to build
common features, and host public online discussions that you can read for
solutions to common issues.

27 Chapter 2: Programming for the Web

Figure 2-8: The lindaliukas.fi website, built using HTML, CSS, and
JavaScript.

Each of these languages also has popular and well documented frameworks.
A framework is a collection of generic components, such as user accounts
and authentication schemes that are reused frequently, allowing developers
to build, test, and launch websites more quickly. You can think of a frame-
work as similar to the collection of templates that comes with a word proces-
sor. You can design your resume, greeting card, or calendar from scratch, but
using the built-in template for each of these document types helps you create
your document faster and with greater consistency. Popular frameworks for
these languages include

 ✓ Django and Flask for Python

 ✓ Rails and Sinatra for Ruby

 ✓ Zend and Laravel for PHP

Coding Mobile Applications
Mobile applications are hot topics today, in part because mobile apps such
as WhatsApp and Instagram were acquired for billions of dollars, and mobile
app companies like Rovio, makers of Angry Birds, and King Digital, makers of
Candy Crush, generate annual revenues of hundreds of millions to billions of
dollars.

28 Part I: Getting Started with Coding

When coding mobile applications, developers can either build

 ✓ Mobile web applications, using HTML, CSS, and JavaScript.

 ✓ Native mobile applications using a specific language. For example, Apple
devices are programmed using Objective-C or Swift, and Android devices
are programmed using Java.

The choice between these two options may seem simple, but there are a few
factors at play. Consider the following:

 ✓ Companies developing mobile web applications must make sure the
mobile version works across different browsers, different screen sizes,
and even different manufacturers, such as Apple, Samsung, RIM, and
Microsoft. This results in thousands of possible phone combinations,
which can greatly increase the complexity of testing needed before
launch. Native mobile apps run only on one phone platform, so there is
less variation to account for.

 ✓ Despite running on only one platform, native mobile apps are more
expensive and take longer to build than mobile web apps.

 ✓ Some developers have reported that mobile web applications have
more performance issues and load more slowly than native mobile
applications.

 ✓ As mentioned before, users are spending more time using native mobile
applications and less time using browser-based mobile web apps.

 ✓ Native mobile apps are distributed through an app store, which may
require approval from the app store owner, whereas mobile web apps
are accessible from any web browser. For example, Apple has a strict
approval policy and takes up to six days to approve an app for inclusion
in the Apple App Store, while Google has a more relaxed approval policy
and takes two hours to approve an app.

 In one famous example of an app rejected from an app store, Apple blocked
Google from launching the Google Voice app in the Apple App Store because
it overlapped with Apple’s own phone functionality. Google responded by
creating a mobile web app accessible from any browser, and Apple could do
nothing to block it.

If you’re making this choice, consider the complexity of your application.
Simple applications, like schedules or menus, can likely be cheaply devel-
oped with a mobile web app, whereas more complex applications, like
messaging and social networking, may benefit from having a native mobile
app. Even well-established technology companies struggle with this choice.
Initially, Facebook and LinkedIn created mobile web applications, but both
have since shifted to primarily promoting and supporting native mobile apps.
The companies cited better speed, memory management, and developer
tools as some of the reasons for making the switch.

29 Chapter 2: Programming for the Web

Building mobile web apps
Although any website can be viewed with a mobile browser, those websites
not optimized for mobile devices look a little weird, as if the regular website
font size and image dimensions were decreased to fit on a mobile screen. (See
Figure 2-9.) By contrast, websites optimized for mobile devices have fonts
that are readable, images that scale to the mobile device screen, and a verti-
cal layout suitable for a mobile phone.

Building mobile web apps is done using HTML, CSS, and JavaScript. CSS controls
the website appearance across devices based on the screen width. Screens
with a small width, such as those on phones, are assigned one vertically-based
layout, whereas screens with a larger width, like those on tablets, are assigned
another, horizontally-based layout. Because mobile web apps are accessed from
the browser, and are not installed on the user’s device, these web apps can’t
send push notifications (alerts) to your phone, run in the background while the
browser is minimized, or communicate with other apps.

Although you can write the HTML, CSS, and JavaScript for your mobile web
app from scratch, mobile web frameworks allow you to develop from a base
of pre-written code, much like the frameworks for programming languages
I mentioned earlier. These mobile web frameworks include a collection of
generic components that are reused frequently, and allow developers to
build, test, and launch websites more quickly. Twitter Bootstrap is one such
mobile web framework, which I introduce in Chapter 8.

Figure 2-9: Left: starbucks.com not optimized for mobile. Right:
starbucks.com optimized for mobile.

30 Part I: Getting Started with Coding

Building native mobile apps
Native mobile apps can be faster, more reliable, and look more polished than
mobile web apps, as shown in Figure 2-10. Built using Java for use on Android
devices, and Objective-C or Swift for use on Apple devices (iOS), native mobile
apps must be uploaded to an app store, which may require approvals. The
main benefit of an app store is its centralized distribution, and the app may be
featured in parts of the app store that can drive downloads. Also, since native
mobile applications are programs that are installed on the mobile device, they
can be used in more situations without an Internet connection. Finally, and
most importantly, users appear to prefer native mobile apps to mobile web
apps by a wide margin, one that continues to increase.

Native mobile apps can take advantage of features that run in the background
while the app is minimized, such as push notifications, and communicate with
other apps, and these features are not available when creating a mobile web
app. Additionally, native mobile apps perform better when handling graphics-
intensive applications, such as games. To be clear, native mobile apps offer
better performance and a greater number of features, but they require longer
development times and are more expensive to build than mobile web apps.

Figure 2-10: Left: facebook.com native mobile app. Right:
facebook.com mobile web app.

31 Chapter 2: Programming for the Web

There is an alternative way to build a native mobile app — a hybrid approach
that involves building an app using HTML, CSS, and JavaScript, packaging that
code using a “wrapper,” and then running the code inside a native mobile app
container. The most popular “wrapper” is a product called PhoneGap, and it
recognizes specific JavaScript commands that allow access to device-level
functionality that’s normally inaccessible to mobile web applications. After one
version of the app is built, native mobile app containers can be launched for up
to nine platforms including Apple, Android, Blackberry, and Windows Phone.
The major advantage to using this hybrid approach is building your app once,
and then releasing it to so many platforms simultaneously.

 Imagine you knew how to play the piano, but you wanted to also learn how to
play the violin. One way you could do this is to buy a violin and start learning
how to play. Another option is to buy a synthesizer keyboard, set the tone to
violin, and play the keyboard to sound like a violin. This is similar to the
hybrid approach, except, in this example, the piano is HTML, CSS, and
JavaScript, the violin is a native iOS app, and the synthesizer keyboard is a
wrapper like PhoneGap. Just like the synthesizer keyboard can be set to
violin, cello, or guitar, so too can PhoneGap create native apps for Apple,
Android, and other platforms.

What about all those other programming
languages? (C, Java, and so on)

You may wonder why so many languages exist,
and what they all do. Programming languages
are created when a developer sees a need not
addressed by the current languages. For exam-
ple, Apple recently created the Swift program-
ming language to make developing iPhone and
iPad apps easier than Objective-C, the current
programming language used. After they’re cre-
ated, programming languages are very similar
to spoken languages, like English or Latin. If
developers code using the new language, then
it thrives and grows in popularity, like English
has over the last six centuries; otherwise, the
programming language suffers the same fate as
Latin, and becomes a dead language.

You may remember languages like C++, Java,
and FORTRAN. These languages still exist today,
and they’re used in more places than you might

think. C++ is preferred when speed and per-
formance is extremely important, and is used
to program web browsers, such as Chrome,
Firefox, and Safari, along with games like Call
of Duty, and Counter Strike. Java is preferred
by many large-scale business, and is also the
language used to program apps for the Android
phone. Finally, FORTRAN is not as widespread
or popular as it once was, but it is popular within
the scientific community, and it powers some
functionality in the financial sector, especially
at some of the largest banks in the world, many
of which continue to have old code.

As long as programmers think of faster and
better ways to program, new programming lan-
guages will continue to be created, while older
languages fall out of favor.

32 Part I: Getting Started with Coding

3
Becoming a Programmer

In This Chapter
▶ Learning the process programmers follow when coding

▶ Seeing the different roles people play to create a program

▶ Picking tools to starting coding offline or online

The way to get started is to quit talking and begin doing.

—Walt Disney

P
rogramming is a skill that can be learned by anyone. You might be a
student in college wondering how to start learning, or a professional

hoping to find a new job or improve your performance at your current job. In
just about every case, the best way to learn how to code is to

 ✓ Have a goal of what you would like to build.

 ✓ Actually start coding.

In this chapter, you discover the process every programmer follows when
programming, and the different roles programmers play to create a program
(or, more commonly these days, an “app”). You also learn the tools to use
when coding either offline or online.

Writing Code Using a Process
Writing code is much like painting, furniture making, or cooking — it isn’t
always obvious how the end product was created. However, all programs,
even mysterious ones, are created using a process. Two of the most popular
processes used today are

 ✓ Waterfall: A set of sequential steps followed to create a program.

 ✓ Agile: A set of iterative steps followed to create a program. (See
Figure 3-1.)

34 Part I: Getting Started with Coding

Let me describe a specific scenario to explain how these two process work.
Imagine you want to build a restaurant app that does the following two things:

 ✓ It displays restaurant information, such as the hours of operation and
the menu.

 ✓ It allows users to make or cancel reservations.

Using the waterfall method, you’d define everything the app needs to do:
You’d design both the information-display and the reservation parts of
the app, code the entire app, and then release the app to users. By con-
trast, using the agile method, you would define, design, and code only the
information-display portion of the app, release it to users, and collect feed-
back. Based on the feedback collected, you would then redesign and make
changes to the information-display to address major concerns. When you
were satisfied with the information-display piece, you’d then define, design,
and build the reservation part of the app. Again, you would collect feedback
and refine the reservation feature to address major concerns.

Figure 3-1: The waterfall and agile processes are two different ways of creating software.

The agile methodology stresses shorter development times, and has increased
in popularity as the pace of technological change has increased. The waterfall
approach, on the other hand, demands that the developer code and release
the entire app at once, but since completing a large project takes an enormous
amount of time, changes in technology may have occurred before the finished
product arrives. If you used the waterfall method to create our restaurant-
app example, the technology to take user reservations may have changed by
the time you get around to coding that portion of the app. Still, the waterfall
approach remains popular in certain contexts, such as with financial and gov-
ernment software, where requirements and approval are obtained at the begin-
ning of a project, and whose documentation of a project must be complete.

 The healthcare.gov website, released in October 2013, was developed using a
waterfall style process. Testing of all the code occurred in September 2013,
when the entire system was assembled. Unfortunately, the tests occurred too
late and were not comprehensive, resulting in not enough time to fix errors
before launching the site publicly.

35 Chapter 3: Becoming a Programmer

Regardless of whether you pick the agile or waterfall methodology, coding an
app involves four steps:

 1. Researching what you want to build

 2. Designing your app

 3. Coding your app

 4. Debugging your code

 On average, you will spend much more time researching, designing, and
debugging your app than doing the actual coding, which is the opposite of
what you may expect.

These steps are described in the sections that follow. You’ll use this process
when you create your own app in Chapter 10.

Researching what you want to build
You have an idea for a web or mobile application, and usually it starts with
“Wouldn’t it be great if . . . ” Before writing any code, it helps to do some
investigating. Consider the possibilities in your project as you answer the fol-
lowing questions:

 ✓ What similar website/app already exists? What technology was used to
build it?

 ✓ Which features should I include — and more importantly exclude — in
my app?

 ✓ Which providers can help create these features? For example, compa-
nies like Google, Yahoo, Microsoft, or others may have software already
built that you could incorporate into your app.

To illustrate, consider the restaurant app I discussed earlier. When conduct-
ing market research and answering the three questions above, searching
using Google is usually the best resource. Searching for restaurant reservation
app shows existing restaurant apps that include OpenTable, SeatMe, and
Livebookings. OpenTable, for example, allows users to reserve a table from
restaurants displayed on a map using Google Maps.

In the restaurant app example, you’d want to research exactly what kinds
of restaurant information you’d need to provide, and how extensive the res-
ervation system portion of the app should be. In addition, for each of these
questions you must decide whether to build the feature from scratch or use
an existing provider. For example, when providing restaurant information do
you want to just show name, cuisine, address, telephone number, and hours
of operation, or do you also want to show restaurant menus? When showing

36 Part I: Getting Started with Coding

restaurant data, do you prefer extensive coverage of a single geographical
area, or do you want national coverage even if that means you’d cover fewer
restaurants in any specific area?

Designing your app
Your app’s visual design incorporates all of your research and describes
exactly how your users will interact with every page and feature. Because
your users will be accessing your site from desktop, laptop, and mobile
devices, you’d want to make sure you create a responsive (multi-device)
design and carefully consider how your site will look on all these devices. At
this stage of the process, a general web designer, illustrator, or user interface
specialist will help create visual designs for the app.

 Many responsive app designs and templates can be found on the Internet and
used freely. For specific examples, see Chapter 8, or search Google using the
query responsive website design examples.

There are two types of visual designs (see Figure 3-2):

 ✓ Wireframes: These are low fidelity website drawings that show structur-
ally the ways your content and your site’s interface interact.

 ✓ Mockups: These are high fidelity website previews that include colors,
images, and logos.

Figure 3-2: Wireframes (left) are simple site renderings, whereas mockups (right) show full site
previews.

37 Chapter 3: Becoming a Programmer

 Balsamiq is a popular tool used to create wireframes, and Photoshop is a
popular tool to create mockups. However, you can avoid paying for addi-
tional software by using PowerPoint (PC), Keynote (Mac), or the free and
open-source OpenOffice to create your app designs.

 Professional designers create mockups with Adobe Photoshop and use layers,
which isolate individual site elements. A properly created layered Photoshop
file helps developers more easily write the code for those website elements.

In addition to visual design, complex apps will also have technical designs
and decisions to finalize. For example, if your app stores and retrieves user
data you will need a database to perform these tasks. Initial decisions here
will include the type of database to add, the specific database provider
to use, and the best way to integrate the database into the application.
Additionally, developers must design the database by choosing the fields
to store. The process is similar to the process of creating a spreadsheet to
model a company’s income — you first decide the number of columns to use,
and whether you’ll include fields as a percentage of revenue or a numerical
value, and so on. Similarly, other features like user logins or credit card pay-
ments all require you to make choices on how to implement these features.

Coding your app
With research and design done, you are now ready to code your application.
In everyday web development, you would begin by choosing which pages
and features to start coding. As you work through the projects in this book,
however, I will guide you on what to code first.

Knowing how much to code and when to stop can be tough. Developers call
the first iteration of an app the minimum viable product — meaning you’ve
coded just enough to test your app with real users and receive feedback. If no
one likes your app or thinks it’s useful, it’s best to find out as soon as possible.

An app is the sum of its features, and for any individual feature it’s a good
idea to write the minimum code necessary and then add to it. For example,
your restaurant app may have a toolbar at the top of the page with drop-
down menus. Instead of trying to create the whole menu at once, it’s better to
just create the menu, and then later create the drop-down menu effect.

Projects can involve front-end developers, who’ll code the appearance of the
app, and back-end developers, who’ll code the logic and create databases. A
“full stack developer” is one who can do both front-end and back-end devel-
opment. On large projects it’s more common to see specialized front-end and
back-end developers, along with project managers who ensure everyone is
communicating with each other and adhering to the schedule so the project
finishes on time.

38 Part I: Getting Started with Coding

Debugging your code
Debugging is going to be a natural part of any application. The computer
always follows your instructions exactly and yet no program ever works as
you expect it to. Debugging can be frustrating. Three of the more common
mistakes to watch out for are

 ✓ Syntax errors: These are errors caused by misspelling words/com-
mands, by omitting characters, or by including extra characters. Some
languages, such as HTML and CSS, are forgiving of these errors and your
code will still work even with some syntax errors, whereas other lan-
guages, such as JavaScript, are more particular and your code won’t run
when any such error is present.

 ✓ Logic errors: These are harder to fix. With logic errors, your syntax is
correct but the program behaves differently than you expected, such as
when the prices of the items in the shopping cart of an e-commerce site
do not sum up to the correct total.

 ✓ Display errors: These are common mainly to web applications. With dis-
play errors, your program might run and work properly, but it won’t appear
properly. Web apps today run on many devices, browsers, and screen sizes,
so extensive testing is the only way to catch these types of errors.

 The word debugging was popularized in the 1940s by Grace Hopper, who fixed
a computer error by literally removing a moth from a computer.

Picking Tools for the Job
Now you’re ready to actually start coding. You can develop websites either
offline, by working with an editor, or online, with a web service such as
Codecademy.com. Especially if you have never done any coding before, I
would strongly recommend you code with access to an Internet connection
using the Codecademy.com platform because you do not have to download
and install any software to start coding, you do not have to find a web host
to serve your web pages, and you do not need to upload your web page to a
web host. As you code, the Codecademy.com platform will do these tasks for
you automatically.

Working offline
To code offline, you’ll need the following:

 ✓ Editor: This refers to the text editor you’ll use to write all the code you
learn in this book, including HTML, CSS, JavaScript, Ruby, Python, and
PHP. The editor you use will depend on the type of computer you have:

39 Chapter 3: Becoming a Programmer

 • PC: Use the pre-installed Notepad, or install Notepad++, a free editor
available for download at http://notepad-plus-plus.org.

 • Mac: Use the pre-installed TextEdit or install TextMate 2.0, an open-
source editor available for download at http://macromates.com.

 ✓ Browser: Many browsers exist, including Firefox, Safari, Internet
Explorer, and Opera; however, I recommend you use Chrome, because it
offers the most support for the latest HTML standards. It’s available for
download at www.google.com/chrome/browser.

 ✓ Web host: In order for your website code to be accessible to everyone
on the Internet, you need to host your website online. Freemium web
hosts include Weebly (www.weebly.com) and Wix (www.wix.com);
these sites offer basic hosting but charge for additional features like
additional storage or removing ads. Google provides free web hosting
through Sites (http://sites.google.com) and Drive (http://
drive.google.com).

Working online with Codecademy.com
Codecademy.com is the easiest way to start learning how to code online, and
lessons from the site form the basis of this book. The site doesn’t require you
to install a code editor or sign up for a web host before you start coding, and
it’s free to individual users like you.

The site can be accessed using any up-to-date modern browser, but Google
Chrome or Mozilla Firefox is recommended.

Touring the learning environment
After signing up or signing into the site, you will either see an interactive card
or the coding interface, depending on the content you learn. (See Figure 3-3.)

Figure 3-3: Codecademy.com interactive cards (left) and the coding interface (right).

http://notepad-plus-plus.org
http://macromates.com
http://www.google.com/chrome/browser
http://www.weebly.com
http://www.wix.com
http://sites.google.com
http://drive.google.com
http://drive.google.com

40 Part I: Getting Started with Coding

The interactive cards allow you to click toggle buttons to demonstrate effects
of pre-written code, whereas the coding interface has an coding editor and a
live preview window that shows you the effects of the code entered into the
coding editor.

The coding interface has four parts:

 ✓ Background information on the upper-left side of the screen tells you
about the coding task you are about to do.

 ✓ The lower-left side of the screen shows instructions to complete in the
coding window.

 ✓ The coding window allows you to follow the exercise instructions and
write code. The coding window also includes a preview screen that
shows a live preview of your code as you type.

 ✓ After completing the coding instructions, press Save & Submit or Run. If
you successfully followed the instructions, you advance to the next exer-
cise; otherwise, the site will give you a helpful error message and a hint.

The interactive cards have three parts:

 ✓ Background information about a coding concept.

 ✓ A coding window to complete one simple coding task. A preview window
also shows a live preview of your code as you type.

 ✓ After completing the coding instructions, press the Got It button. You
can review any previous interactive cards by clicking the Go Back
button.

Receiving support from the community
If you run into a problem or have a bug you cannot fix, try the following steps

 ✓ Click on the hint underneath the instructions.

 ✓ Use the Q&A Forums to post your problem or question, and review ques-
tions others have posted.

 ✓ Tweet me at @nikhilgabraham with your question or problem, and
include the hashtag #codingFD at the end of your tweet.

Part II
Building the Silent and
Interactive Web Page

 Build webpages using HTML, CSS, and JavaScript at www.dummies.com/
extras/coding.

http://www.dummies.com/extras/coding
http://www.dummies.com/extras/coding

In this part . . .
 ✓ Place content on webpages with HTML, and styling content

with CSS.

 ✓ Structure your website layout with HTML and CSS.

 ✓ Create your first webpage — the Airbnb homepage.

 ✓ Add interactivity to webpages with JavaScript.

 ✓ Access real live data with APIs.

4
Exploring Basic HTML

In This Chapter
▶ Learning the purpose of HTML

▶ Understanding basic HTML structure

▶ Adding headlines, paragraphs, hyperlinks, and images

▶ Formatting web page text

▶ Creating a basic HTML website

You affect the world by what you browse.

— Tim Berners-Lee

H
TML, or HyperText Markup Language, is used in every single web page
you browse on the Internet. Because the language is so foundational, a

good first step for you is to start learning HTML.

In this chapter, you learn HTML basics, including basic HTML structure and
how to make text appear in the browser. Next, you learn how to format text
and display images in a web browser. Finally, you create your own, and pos-
sibly first, HTML website. You may find that HTML without any additional styl-
ing appears to be very plain, and does not look like the websites you normally
visit on the Internet. After you code a basic website using HTML, you will use
additional languages in later chapters to add even more style to your websites.

What Does HTML Do?
HTML instructs the browser on how to display text and images in a web
page. Recall the last time you created a document with a word processor.
Whether you use Microsoft Word or Wordpad, Apple Pages, or another appli-
cation, your word processor has a main window in which you type text, and
a menu or toolbar with multiple options to structure and style that text (see

44 Part II: Building the Silent and Interactive Web Page

Figure 4-1). Using your word processor, you can create headings, write in
paragraphs, insert pictures, or underline text. Similarly, you can use HTML to
structure and style text that appears on websites.

Figure 4-1: The layout of a word processor.

Markup language documents, like HTML documents, are just plain text files.
Unlike documents created with a word processor, you can view an HTML file
using any web browser on any type of computer.

 HTML files are plain text files that will appear styled only when viewed with a
browser. By contrast, the rich text file format used by word processors add
unseen formatting commands to the file. As a result, HTML written in a rich
text file won’t render correctly in the browser.

Understanding HTML Structure
HTML follows a few rules to ensure that a website will always display in
the same way no matter which browser or computer is used. Once you
understand these rules, you’ll be better able to predict how the browser
will display your HTML pages, and to diagnose your mistakes when (not if!)
the browser displays your web page differently than you expected. Since its
creation, HTML has evolved to include more effects, but the following basic
structural elements remain unchanged.

 You can use any browser to display your HTML files, though I strongly recom-
mend you download, install, and use Chrome or Firefox. Both of these browsers
are updated often, are generally fast, and support and consistently render the
widest variety of HTML tags.

45 Chapter 4: Exploring Basic HTML

Identifying elements
HTML uses special text keywords called elements to structure and style a
website. The browser recognizes an element and applies its effect if the
following three conditions exist:

 ✓ The element is a letter, word, or phrase with special meaning. For example,
h1 is an element recognized by the browser to apply a header effect, with
bold text and an enlarged font size.

 ✓ The element is enclosed with a left-angle bracket (<) and right-angle
bracket (>). An element enclosed in this way is called a tag (such as, for
example, <h1>).

 ✓ An opening tag (<element>) is followed by a closing tag (</element>).
Note that the closing tag differs from the opening tag by the addition of a
forward slash after the first left bracket and before the element (such as,
for example, </h1>).

 Some HTML tags are self-closing, and don’t need separate closing tags,
only a forward slash in the opening tag. For more about this, see the
section, “Getting Familiar with Common HTML Tasks and Tags,” later in
this chapter.

When all three conditions are met, the text between the opening and closing
tags is styled with the tag’s defined effect. If even one of these conditions is
not met, the browser just displays plain text.

For a better understanding of these three conditions, see the example code
below:

<h1>This is a big heading with all three conditions</h1>
h1 This is text without the < and > sign surrounding the tag /h1
<rockstar>This is text with a tag that has no meaning to the browser</rockstar>
This is regular text

You can see how a browser would display this code in Figure 4-2.

Figure 4-2: The example code displayed in a browser.

46 Part II: Building the Silent and Interactive Web Page

The browser applies a header effect to “This is a big heading with all three
conditions” because h1 is a header tag and all three conditions for a valid
HTML tag exist:

 ✓ The browser recognizes the h1 element.

 ✓ The h1 element is surrounded with a left (<) and right angle bracket (>).

 ✓ The opening tag (<h1>) is followed by text and then a closing tag
(</h1>).

 Notice how the h1 tag itself does not display in the heading. The browser will
never display the actual text of an element in a properly formatted HTML tag.

The remaining lines of code display as plain text because they each are missing
one of the conditions. On the second line of code, the <h1> tag is missing the
left and right brackets, which violates the second condition. The third line of
code violates the first condition because rockstar is not a recognized HTML
element. (Once you finish this chapter, however, you may feel like a rockstar!)
Finally, the fourth line of code displays as plain text because it has no opening
tag preceding the text, and no closing tag following the text, which violates the
third condition.

 Every left angle-bracket must be followed after the element with a right angle-
bracket. In addition, every opening HTML tag must be followed with a closing
HTML tag.

 Over 100 HTML elements exist, and we cover the most important elements
in the following sections. For now, don’t worry about memorizing individual
element names.

 HTML is a forgiving language, and may properly apply an effect even if you’re
missing pieces of code, like a closing tag. However, if you leave in too many
errors, your page won’t display correctly.

Featuring your best attribute
Attributes provide additional ways to modify the behavior of an element or
specify additional information. Usually, but not always, you set an attribute
equal to a value enclosed in quotes. Here’s an example using the title attri-
bute and the hidden attribute:

<h1 title="United States of America">USA</h1>
<h1 hidden>New York City</h1>

47 Chapter 4: Exploring Basic HTML

The title attribute provides advisory information about the element that
appears when the mouse cursor hovers over the affected text (in other words,
a tooltip). In this example, the word USA is styled as a header using the <h1>
tag with a title attribute set equal to "United States of America". In
a browser, then, when you place your mouse cursor over the word USA, the
text United States of America displays as a tooltip. (See Figure 4-3.)

Figure 4-3: A heading with title attribute has a tooltip.

The hidden attribute indicates that the element is not relevant, so the browser
won’t render any elements with this attribute. In this example, the words New
York City never appear in the browser window because the hidden attribute
is in the opening <h1> tag. More practically, hidden attributes are often used
to hide fields from users so they can’t edit them. For example, an RSVP website
may want to include but hide from user view a date and time field.

 The hidden attribute is new in HTML5, which means it may not work on
some older browsers.

You don’t have to use one attribute at a time. You can include multiple attri-
butes in the opening HTML tag, like this:

<h1 title="United States of America" lang="en">USA</h1>

In this example, I used the title attribute, and the lang attribute, setting
it equal to "en" to specify that the content of the element is in the English
language.

 When including multiple attributes, separate each attribute with one space.

48 Part II: Building the Silent and Interactive Web Page

Keep the following rules in mind when using attributes:

 ✓ If using an attribute, always include the attribute in the opening HTML tag.

 ✓ Multiple attributes can modify a single element.

 ✓ If the attribute has a value, then use the equal sign (=) and enclose the
value in quotes.

Standing head, title, and body above the rest
HTML files are structured in a specific way so browsers can correctly inter-
pret the file’s information. Every HTML file has the same five elements: four
whose opening and closing tags appear once and only once, and one that
appears once and doesn’t need a closing tag. These are as follows:

 ✓ !DOCTYPE html must appear first in your HTML file, and it appears
only once. This tag lets browsers know which version of HTML you are
using. In this case, it’s the latest version, HTML5. No closing tag is neces-
sary for this element.

 For HTML4 websites, the first line in the HTML file would read
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

 ✓ html represents the root or beginning of an HTML document. The <html>
tag is followed by first an opening and closing <head> tag, and then an
opening and closing <body> tag.

 ✓ head contains other elements, which specify general information about
the page, including the title.

 ✓ title defines the title in the browser’s title bar or page tab. Search
engines like Google use title to rank websites in search results.

 ✓ body contains the main content of an HTML document. Text, images,
and other content listed between the opening and closing body tag is
displayed by the browser.

Here is an example of a properly structured HTML file with these five tags
(see Figure 4-4):

<!DOCTYPE html>
<html>
<head>
 <title>Favorite Movie Quotes</title>
</head>
<body>
 <h1>"I'm going to make him an offer he can't refuse"</h1>

49 Chapter 4: Exploring Basic HTML

 <h1>"Houston, we have a problem"</h1>
 <h1>"May the Force be with you"</h1>
 <h1>"You talking to me?"</h1>
</body>
</html>

Figure 4-4: A web page created with basic HTML elements.

 Using spaces to indent and separate your tags is highly recommended. It
helps you and others read and understand your code. These spaces are only
for you and any other human that reads the code, however. Your browser
won’t care. As far as your browser is concerned, you could run all your tags
together on one line. (Don’t do this, though. The next person that reads your
code will be most unhappy.) HTML does recognize and display the first
whitespace character in text between opening and closing HTML tags.

 Our example had many h1 tags but only one opening and closing html, head,
title, and body tag.

Getting Familiar with Common
HTML Tasks and Tags

Your browser can interpret over a hundred HTML tags, but most websites
use just a few tags to do most of the work within the browser. To understand
this, let’s try a little exercise: Think of your favorite news website. Have one in
mind? Now connect to the Internet, open your browser, and type in the address
of that website. Bring this book with you, and take your time — I can wait!

In the event you can’t access the Internet right now, take a look at the article
from my favorite news website, The New York Times, found in Figure 4-5.

50 Part II: Building the Silent and Interactive Web Page

Figure 4-5: A New York Times article with headline, paragraphs, hyperlinks, and images.

Look closely at the news website on your screen (or look at mine). Four
HTML elements are used to create the majority of the page:

 ✓ Headlines: Headlines are displayed in bold and have a larger font size
than the surrounding text.

 ✓ Paragraphs: Each story is organized into paragraphs with white space
dividing each paragraph.

 ✓ Hyperlinks: The site’s homepage and article pages have links to other
stories, and links to share the story on social networks like Facebook,
Twitter, and Google+.

 ✓ Images: Writers place images throughout the story, but also look for site
images like icons and logos.

In the following sections I explain how to write code to create these common
HTML features.

51 Chapter 4: Exploring Basic HTML

Writing headlines
Use headlines to describe a section of your page. HTML has six levels of
headings (see Figure 4-6):

 ✓ h1, which is used for the most important headings

 ✓ h2, which is used for subheadings

 ✓ h3 to h6, which are used for less important headings

The browser renders h1 headings with a font size larger than h2’s, which in
turn is larger than h3’s. Headings start with an opening heading tag, the head-
ing text, and then the closing heading tag, as follows:

<h1>Heading text here</h1>

Here are some additional code examples showing various headings:

<h1>Heading 1: "I'm going to make him an offer he can't refuse"</h1>
<h2>Heading 2: "Houston, we have a problem"</h2>
<h3>Heading 3: "May the Force be with you"</h3>
<h4>Heading 4: "You talking to me?"</h4>
<h5>Heading 5: "I'll be back"</h5>
<h6>Heading 6: "My precious"</h6>

Figure 4-6: Headings created using elements h1 through h6.

 Always close what you open. With headings, remember to include a closing
heading tag, such as </h1>.

52 Part II: Building the Silent and Interactive Web Page

Organizing text in paragraphs
To display text in paragraphs you can use the p element: Place an opening
<p> tag before the paragraph, and a closing tag after it. The p element takes
text and inserts a line break after the closing tag.

 To insert a single line break after any element, use the
 tag. The

tag is self-closing so no closing tag is needed, and </br> is not used.

Paragraphs start with an opening paragraph tag, the paragraph text, and then
the closing paragraph tag:

<p>Paragraph text here</p>

Some additional examples of coding a paragraph (see Figure 4-7):

<p>Armstrong: Okay. I'm going to step off the LM now.</p>
<p>Armstrong: That's one small step for man; one giant leap for mankind.</p>
<p>Armstrong: Yes, the surface is fine and powdery. I can kick it up loosely

with my toe. It does adhere in fine layers, like powdered
charcoal, to the sole and sides of my boots.</p>

Figure 4-7: Text displayed in paragraphs using the p element.

Linking to your (heart’s) content
Hyperlinks are one of HTML’s most valuable features. Web pages that include
hyperlinked references to other sources allow the reader to access those
sources with just a click, a big advantage over printed pages.

53 Chapter 4: Exploring Basic HTML

Hyperlinks have two parts:

 ✓ Link destination: The web page the browser visits once the link is
clicked.

 To define the link destination in HTML, start with an opening anchor tag
(<a>) that has an href attribute. Then, add the value of the href attri-
bute, which is the website the browser will go to once the link is clicked.

 ✓ Link description: The words used to describe the link.

 To do this, add text to describe the link after the opening anchor tag,
and then add the closing anchor tag.

The resulting HTML should look something like this:

Link description

Three more examples of coding a hyperlink (see Figure 4-8):

Purchase anything
Rent a place to stay from a local host
Tech industry blog

Figure 4-8: Three hyperlinks created using the a element.

When rendering hyperlinks, the browser, by default, will underline the link
and color the link blue. To change these default properties, see Chapter 6.

 The <a> tag does not include a line break after the link.

 Google’s search engine ranks web pages based on the words used to describe
a web page between the opening and closing <a> tags. This improved on
search results from previous methods, which relied primarily on analyzing
page content.

54 Part II: Building the Silent and Interactive Web Page

Adding images
Images spruce up otherwise plain HTML text pages. To include an image on your
web page — your own or someone else’s — you must obtain the image’s web
address. Websites like Google Images (images.google.com) and Flickr (www.
flickr.com) allow you to search for online images based on keywords. When
you find an image you like, right-click on the image, and select Copy Image URL.

 Make sure you have permission to use an online image. Flickr has tools that
allow you to search for images with few to no license restrictions. Additionally,
websites pay to host images, and incur charges when a website directly links
to an image. For this reason, some websites do not allow hotlinking, or linking
directly from third-party websites (like you) to an image.

 If you want to use an image that has not already been uploaded to the
Internet, you can use a site like www.imgur.com to upload the image. After
uploading, you will be able to copy the image URL and use it in your HTML.

To include an image, start with an opening image tag , define the
source of the image using the src attribute, and include a forward slash at
the end of the opening tag to close the tag (see Figure 4-9):

<img src="http://upload.wikimedia.org/wikipedia/commons/b/bd/ Dts_news_bill_

gates_wikipedia.JPG"/>

Figure 4-9: Images of Grace Hopper, a US Navy rear admiral, and
Bill Gates, the co-founder of Microsoft, rendered using .

 The image tag is self-closing, which means a separate closing image
tag is not used. The image tag is one of the exceptions to the always-close-
what-you-open rule!

http://images.google.com/
http://www.flickr.com/
http://www.flickr.com/
http://www.imgur.com

55 Chapter 4: Exploring Basic HTML

Styling Me Pretty
Now that you know how to display basic text and images in a browser, you
should understand how to further customize and style them. HTML has basic
capabilities to style content, and later chapters show you how to use CSS to style
and position your content down to the last pixel. Here, however, I explain how to
do some basic text formatting in HTML, and then you’ll build your first web page.

Highlighting with bold, italics, underline, and
strikethrough
HTML allows for basic text styling using the following elements:

 ✓ strong marks important text, which the browser displays as bold.

 ✓ em marks emphasized text, which the browser displays as italicized.

 ✓ u marks text as underlined.

 ✓ del marks deleted text, which the browser displays as strikethrough.

 The underline element is not typically used for text because it can lead to
confusion. Hyperlinks, after all, are underlined by default.

To use these elements, start with the element’s opening tag, followed by the
affected text, and then a closing tag, as follows:

<element name>Affected text</element name>

Some examples (see Figure 4-10):

Grace Hopper, a US Navy rear admiral , popularized the term
"debugging."

Bill Gates co-founded a company called Microsoft.
Stuart Russell and Peter Norvig wrote a book called <u>Artificial Intelligence:

A Modern Approach</u>.
Mark Zuckerberg created a website called Nosebook Facebook.
Steve Jobs co-founded a company called Peach Apple

Figure 4-10: Sentences formatted using bold, italics, underline,
and strikethrough.

56 Part II: Building the Silent and Interactive Web Page

 You can apply multiple effects to text by using multiple HTML tags. Always
close the most recently opened tag first and then the next most recently used
tag. For an example, look at the last line of code in Figure 4-10, and the tags
applied to the word Peach.

Raising and lowering text with
superscript and subscript
Reference works like Wikipedia, and technical papers often use superscript
for footnotes and subscript for chemical names. To apply these styles, use
the elements

 ✓ sup for text marked as superscript

 ✓ sub for text marked as subscript

To use these elements, start with the element’s opening tag, followed by the
affected text, and then a closing tag as follows:

<element name>Affected text</element name>

Two examples (see Figure 4-11):

<p>The University of Pennsylvania announced to the public the first electronic
general-purpose computer, named ENIAC, on February 14,
1946.¹</p>

<p>The Centers for Disease Control and Prevention recommends drinking several
glasses of H₂0 per day.</p>

 When using the superscript element to mark footnotes, use an <a> anchor
tag to link directly to the footnote so the reader can view the footnote easily.

Figure 4-11: Text formatted to show superscript and
subscript effects.

57 Chapter 4: Exploring Basic HTML

Building Your First Website Using HTML
Now that you have learned the basics, you can put that knowledge to use.
You can practice directly on your computer by following these steps:

 1. Open any text editor, such as Notepad (on a PC) or TextEdit (on a Mac).

 On a PC running Microsoft Windows, you can access Notepad by clicking
the Start button and selecting Run; in the search box, type Notepad. On
a Macintosh, select the Spotlight Search (hourglass icon on the top-right
corner of the toolbar), and type TextEdit.

 2. Enter into the text editor any of the code samples you have seen in
this chapter, or create your own combination of the code.

 3. Once you have finished, save the file and make sure to include
“.html” at the end of the filename.

 4. Double-click on the file, which should open in your default browser.

 You can download at no cost specialized text editors that have been created
specifically for writing code. For PCs, you can download Notepad++ at www.
notepad-plus-plus.org. For Mac computers, you can download TextMate
at http://macromates.com/download.

If you would like to practice your HTML online, you can use the Codecademy
website. Codecademy is a free website created in 2011 to allow anyone to
learn how to code right in the browser, without installing or downloading any
software. (See Figure 4-12.) Practice all of the tags (and a few more) that you
learned in this chapter by following these steps:

 1. Open your browser, go to www.dummies.com/go/coding and click
on the Codecademy link.

 2. Sign up for a Codecademy account or sign in if you already have an
account. Creating an account allows you to save your progress as you
work, but it’s optional.

 3. Navigate to and click on HTML Basics.

 4. Background information is presented in the upper-left portion of the
site, and instructions are presented in the lower-left portion of the
site.

 5. Complete the instructions in the main coding window. As you type, a
live preview of your code is generated.

http://www.notepad-plus-plus.org/
http://www.notepad-plus-plus.org/
http://macromates.com/download
http://www.dummies.com/go/coding

58 Part II: Building the Silent and Interactive Web Page

 6. After you have finished completing the instructions, click the Save
and Submit Code button.

 If you have followed the instructions correctly, a green checkmark
appears, and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

Figure 4-12: Codecademy in-browser exercises.

History of HTML
A computer engineer, Tim Berners-Lee, wanted
academics to easily access academic papers
and collaborate with each other. To accom-
plish this goal, in 1989 Mr. Berners-Lee created
the first version of HTML, which had the same
hyperlink elements you learned in this chap-
ter, and hosted the first website in 1991. Unlike
most other computer software, Mr. Berners-Lee
made HTML available royalty-free, allowing
widespread adoption and use around the world.
Shortly after creating the first iteration of HTML,
Mr. Berners-Lee formed the W3C (“World Wide

Web Consortium”), which is a group of people
from academic institutions and corporations who
define and maintain the HTML language. The
W3C continues to develop the HTML language,
and has defined more than 100 HTML elements,
far more than the 18 Mr. Berners-Lee originally
created. The latest version of HTML is HTML5,
and it has considerable new functionality. In
addition to supporting elements from previous
HTML versions, HTML5 allows browsers to play
audio and video files, easily locate a user’s physi-
cal location, and build charts and graphs.

5
Getting More Out of HTML

In This Chapter
▶ Organizing content in a web page

▶ Writing HTML lists

▶ Creating HTML tables

▶ Filling out HTML forms

I’m controlling, and I want everything orderly, and I need lists.

— Sandra Bullock

E
ven your best content needs structure to increase readability for your
users. This book is no exception. Consider the “In This Chapter” bulleted

list of items at the top of this page, or the table of contents at the beginning of
the book. Lists and tables make things easier for you to understand at a glance.
By mirroring the structure you find in a book or magazine, web elements let
you precisely define how content, such as text and images, appear on the web.

In this chapter, you learn how to use HTML elements such as lists, tables,
and forms, and how to know when these elements are appropriate for your
content.

Organizing Content on the Page
Readability is the most important principle for organizing and displaying
content on your web page. Your web page should allow visitors to easily read,
understand, and act on your content. The desired action you have in mind for
your visitors may be to click on and read additional content, share the content
with others, or perhaps make a purchase. Poorly organized content will lead
users to leave your website before engaging with your content for long enough
to complete the desired action.

60 Part II: Building the Silent and Interactive Web Page

Figures 5-1 and 5-2 show two examples of website readability. In Figure 5-1, I
searched Craigslist.org for an apartment in New York. The search results are
structured like a list, and you can limit the content displayed using the filters
and search forms. Each listing has multiple attributes, such as a description,
the number of bedrooms, the neighborhood, and, most importantly, the price.
Comparing similar attributes from different listings takes some effort — notice
the jagged line your eye must follow.

Figure 5-2 shows the results of a search I conducted at Hipmunk.com for flights
from New York to London. As with the Craigslist search results, you can limit
the content displayed using the filters and search forms. Additionally, each
flight listing has multiple attributes, including price, carrier, departure time,
landing time, and duration, which are similar to the attributes of the apartment
listings. Comparing similar attributes from different flights is much easier
with the Hipmunk layout, however. Notice how the content, in contrast to
Craigslist’s, has a layout that allows your eye to follow a straight line down the
page, so you can easily rank and compare different options.

Figure 5-1: A Craigslist.org listing of apartments in New York (2014).

 Don’t underestimate the power of simplicity when displaying content.
Although Craigslist’s content layout may look almost too simple, the site is
one of the top 50 most visited websites in the world. Reddit.com is another
example of a top 50 website with a simple layout.

61 Chapter 5: Getting More Out of HTML

Figure 5-2: A Hipmunk.com listing of flights from New York to London (2014).

Before displaying your content, ask yourself a few questions first:

 ✓ Does your content have one attribute with related data, or does it
follow sequential steps? If so, consider using lists.

 ✓ Does your content have multiple attributes suitable for comparison? If
so, consider using tables.

 ✓ Do you need to collect input from the visitor? If so, consider using
forms.

 Don’t let these choices overwhelm you. Pick one, see how your visitors react,
and if necessary change how you display the content. The process of evaluat-
ing one version against another version of the same web page is called A/B
testing.

Listing Data
Websites have used lists for decades to convey related or hierarchical
information. In Figure 5-3, you can see an older version of Yahoo.com that
uses bulleted lists to display various categories and today’s Allrecipes.com
recipe page, which uses lists to display various ingredients.

62 Part II: Building the Silent and Interactive Web Page

Figure 5-3: Yahoo’s 1997 homepage using an unordered list (left) and
Allrecipes.com’s 2014 recipe using an ordered list (right).

Lists begin with a symbol, an indentation, and then the list item. The symbol
used can be a number, letter, bullet, or no symbol at all.

Creating ordered and unordered lists
The two most popular types of lists are:

 ✓ Ordered: Ordered lists are numerical or alphabetical lists in which the
sequence of list items is important.

 ✓ Unordered: These lists are usually bulleted lists in which the sequence
of list items has no importance.

You create lists by specifying the type of list as ordered or unordered, and
then adding each list item using the li tag, as shown in the following steps:

 1. Specify the type of list.

 Add opening and closing list tags that specify either an ordered (ol) or
unordered (ul) list, as follows:

 • ol to specify the beginning and end of an ordered list.

 • ul to specify the beginning and end of an unordered list.

 2. Add an opening and closing tag (that is, and) for each
item in the list.

 For example, here’s an ordered list:

 List item #1
 List item #2
 List item #3

63 Chapter 5: Getting More Out of HTML

Nesting lists
Additionally, you can nest lists within lists. A list of any type can be nested
inside another list; to nest a list, replace the list item tag with a list type
tag, either or .

The example code in Figure 5-4 shows various lists types including a nested
list. (See Figures 5-4 and 5-5.)

Figure 5-4: Coding an ordered list and a nested list.

Figure 5-5: The page produced by the code in Figure 5-4.

64 Part II: Building the Silent and Interactive Web Page

 The <h1> tag shown in this code sample is not necessary to create a list.
I use it here only to name each list.

Every opening list or list item tag must be followed with a closing list or list
item tag.

Putting Data in Tables
Tables help further organize text and tabular data on the page. (See Figure 5-6.)
The table format is especially appropriate when displaying pricing information,
comparing features across products, or in any situation where the columns or
rows share a common attribute. Tables act as containers, and can hold and dis-
play any type of content, including text, such as heading and lists, and images.
For example, the table in Figure 5-6 includes additional content and styling like
icons at the top of each column, gray background shading, and rounded but-
tons. This content and styling can make tables you see online differ from tables
you ordinarily see in books.

Figure 5-6: Box.net uses tables to display pricing information.

 Avoid using tables to create page layouts. In the past, developers created
multi-column layouts using tables, but today developers use CSS (see
Chapter 7) for layout-related tasks.

65 Chapter 5: Getting More Out of HTML

Basic table structuring
Tables are comprised of several parts, like the one shown in Figure 5-7.

Figure 5-7: The different parts of a table.

You create a table by using the following basic steps:

 1. Define a table with the table element.

 To do this, add the opening and closing <table> tags.

 2. Divide the table into rows with the tr element.

 Between the opening and closing table tags, create opening <tr> tags
and closing </tr> tags for each row of your table.

 3. Divide rows into cells using the td element.

 Between the opening and closing tr tags, create opening and closing td
tags for each cell in the row.

 4. Highlight cells that are headers using the th element.

 Finally, specify any cells that are headers by replacing the td element
with a th element.

 Your table will have only one opening and closing <table> tag; however, you
can have one or more table rows (tr) and cells (td).

66 Part II: Building the Silent and Interactive Web Page

The following example code shows the syntax for creating the table shown in
Figure 5-7.

<table>
 <tr>
 <th>Table header 1</th>
 <th>Table header 2</th>
 </tr>
 <tr>
 <td>Row #1, Cell #1</td>
 <td>Row #1, Cell #2</td>
 </tr>
 <tr>
 <td>Row #2, Cell #1</td>
 <td>Row #2, Cell #2</td>
 </tr>
</table>

 After you’ve decided how many rows and columns your table will have, make
sure to use an opening and closing <tr> tag for each row, and an opening
and closing <td> tag for each cell in the row.

Stretching table columns and rows
Take a look at the table describing Facebook’s income statement in Figure 5-8.
Data for 2011, 2012, and 2013 appears in individual columns of equal-sized
width. Now look at Total Revenue, which appears in a cell that stretches or
spans across several columns.

Figure 5-8: An income statement in a table with columns of different
sizes.

67 Chapter 5: Getting More Out of HTML

 Stretching a cell across columns or rows is called spanning.

The colspan attribute spans a column over subsequent vertical columns.
The value of the colspan attribute is set equal to the number of columns
you want to span. You always span a column from left to right. Similarly,
the rowspan attribute spans a row over subsequent horizontal rows. Set
rowspan equal to the number of rows you want to span.

The following code generates a part of the table shown in Figure 5-8. You can
see the colspan attribute spans the Total Revenue cell across two columns.
As described in Chapter 4, the tag is used to mark important text,
and is shown as bold by the browser.

 <tr>
 <td colspan="2">
 Total Revenue
 </td>
 <td>
 7,872,000
 </td>
 <td>
 5,089,000
 </td>
 <td>
 3,711,000
 </td>
 </tr>

 If you set a column or row to span by more columns or rows than are actually
present in the table, the browser will insert additional columns or rows,
changing your table layout.

 CSS helps size individual columns and rows, as well as entire tables. See
Chapter 7.

Aligning tables and cells
 The latest version of HTML does not support the tags and attributes in this

section. Although your browser may correctly render this code, there is no
guarantee your browser will correctly render it in the future. I include these
attributes because as of this writing, HTML code on the Internet, including
the Yahoo Finance site in the previous examples, still use these deprecated
(older) attributes in tables. This code is similar to expletives — recognize
them but try not to use them. Refer to Chapter 6 to see modern techniques
using Cascading Style Sheets (CSS) for achieving the identical effects.

The table element has three deprecated attributes to know — align,
width, and border. These attributes are described in Table 5-1.

68 Part II: Building the Silent and Interactive Web Page

Table 5-1 Table attributes replaced by CSS
Attribute name Possible values Description
align left

center

right

Position of table relative to the con-
taining document according to the
value of the attribute. For example,
align="right" positions the table
on the right side of the web page.

width pixels (#)

%

Width of table measured either in pixels
on-screen or as a percentage of the
browser window or container tag.

border pixels (#) Width of table border in pixels.

The following example code shows the syntax for creating the table in
Figure 5-9 with align, width, and border attributes.

Figure 5-9: A table with deprecated align, width, and border
attributes.

<table align="right" width=50% border=1>
 <tr>
 <td>The Social Network</td>
 <td>Generation Like</td>
 </tr>
 <tr>
 <td>Tron</td>
 <td>War Games</td>
 </tr>
</table>

69 Chapter 5: Getting More Out of HTML

 Always insert attributes inside the opening <html> tag, and enclose words in
quotes.

The tr element has two deprecated attributes to know — align, and
valign. These are described in Table 5-2.

Table 5-2 Table row attributes replaced by CSS
Attribute name Possible values Description
align left

right

center

justify

Horizontal alignment of a row’s cell
contents according to the value
of the attribute. For example,
align="right" positions a row’s cell
contents on the right side of each cell.

valign top

middle

bottom

Vertical alignment of a row’s cell
contents according to the value
of the attribute. For example,
align="bottom" positions a row’s
cell contents on the bottom of each cell.

The td element has four deprecated attributes to know — align, valign,
width, and height. These are described in Table 5-3.

Table 5-3 Table cell attributes replaced by CSS
Attribute name Possible values Description
align left

right

center

justify

Horizontal alignment of a cell’s
contents according to the value
of the attribute. For example,
align="center" positions the
cell’s contents in the center of the cell.

valign top

middle

bottom

Vertical alignment of a cell’s contents
according to the value of the attribute.
For example, align="middle"
positions a cell’s contents in the
middle of the cell.

width pixels (#)

%

Width of a cell measured either in
pixels on-screen or as a percentage
of the table width.

height pixels (#)

%

Height of a cell measured either in
pixels on-screen or as a percentage
of the table width.

70 Part II: Building the Silent and Interactive Web Page

The following example code shows the syntax for creating the table in
Figure 5-10 with align, valign, width, and height attributes.

Figure 5-10: A table with deprecated align, valign, width,
and height attributes.

<table align="right" width=50% border=1>
 <tr align="right" valign="bottom">
 <td height=100>The Social Network</td>
 <td>Generation Like</td>
 </tr>
 <tr>
 <td height=200 align="center" valign="middle">Tron</td>
 <td align="center" valign="top" width=20%>War Games</td>
 </tr>
</table>

 Remember, these attributes are no longer supported and should not be used
in your code.

Filling Out Forms
Forms allow you to capture input from your website visitors. Until now we
have displayed content as-is, but capturing input from visitors allows you to:

 ✓ Modify existing content on the page. For example, price and date filters
on airline websites allow for finding a desired flight more quickly.

 ✓ Store the input for later use. For example, a website may use a registra-
tion form to collect your email, username, and password information to
allow you to access it at a later date.

71 Chapter 5: Getting More Out of HTML

Understanding how forms work
Forms pass information entered by a user to a server by using the following
process:

 1. The browser displays a form on the client machine.

 2. The user completes the form and presses the submit button.

 3. The browser submits the data collected from the form to a server.

 4. The server processes and stores the data and sends a response to the
client machine.

 5. The browser displays the response, usually indicating whether the sub-
mission was successful.

 See Chapter 2 for an additional discussion about the relationship between
the client and server.

 A full description of how the server receives and stores data (Steps 3 to 5) is
beyond the scope of this book. For now, all you need to know is that server-
side programming languages such as Python, PHP, and Ruby are used to write
scripts that receive and store form submissions.

Forms are very flexible, and can record a variety of user inputs. Input fields
used in forms can include free text fields, radio buttons, checkboxes, drop-
down menus, range sliders, dates, phone numbers, and more. (See Table 5-4.)
Additionally, input fields can be set to initial default values without any user
input.

Table 5-4 Selected form attributes
Attribute
name

Possible values Description

type checkbox

email

submit

text

password

radio

(a complete list of values has
been omitted here for brevity)

Defines the type of input field
to display in the form. For
example, text is used for
free text fields, and submit
is used to create a submit
button.

value text The initial value of the input
control.

72 Part II: Building the Silent and Interactive Web Page

 View the entire list of form input types and example code at www.
w3schools.com/tags/att_input_type.asp.

Creating basic forms
You create a basic form by

 1. Defining a form with the form element.

 Start by adding an opening <form> tag and closing </form> tag.

 2. Using the action attribute, specify in the form element where to send
form data.

 Add an action attribute to your opening <form> tag and set it equal to
the URL of a script that will process and store the user input.

 3. Using the method attribute, specify in the form element how to send
form data.

 Add a method attribute to your opening <form> tag and set it equal to
POST.

 The method attribute is set equal to GET or POST. The technicalities of
each are beyond the scope of this book, but, in general, POST is used for
storing sensitive information (such as credit card numbers), whereas
GET is used to allow users to bookmark or share with others the results
of a submitted form (such as, for example, airline flight listings).

 4. Providing a way for users to input and submit responses with the
input element.

 Between the opening <form> and closing </form> tags, create one
<input> tag.

 Your form will have only one opening and closing <form> tag; however,
you will have at least two <input> tags to collect and submit user data.

 5. Specify input types using the type attribute in the input element.

 For this example, set the type attribute equal to "text".

 The <input> tag does not have a closing tag, which is an exception to
the “close every tag you open” rule. These tags are called self-closing
tags, and you can see more examples in Chapter 4.

 6. Finally, create another <input> tag and set the type attribute equal
to submit.

The following example code shows the syntax for creating the form shown in
Figure 5-11.

http://www.w3schools.com/tags/att_input_type.asp
http://www.w3schools.com/tags/att_input_type.asp

73 Chapter 5: Getting More Out of HTML

Figure 5-11: A form with one user input and a submit button.

<form action="mailto:nikhil.abraham@gmail.com" method="POST">
 <input type="text" value="Type a short message here">
 <input type="submit">
</form>

 The action attribute in this form is set equal to mailto, which signals to
the browser to send an email using your default mail client (such as Outlook
or Gmail). If your browser is not configured to handle email links, then this
form won’t work. Ordinarily, forms are submitted to a server to process and
store the form’s contents, but in this example form the contents are submit-
ted to the user’s email application.

Practicing More with HTML
Practice your HTML online using the Codecademy website. Codecademy is
a free website created in 2011 to allow anyone to learn how to code right in
the browser, without installing or downloading any software. Practice all of
the tags (and a few more) that you learned in this chapter by following these
steps:

 1. Open your browser, go to www.dummies.com/go/coding and click
on the link to Codecademy.

 2. Sign in to your Codecademy account.

 Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

 3. Navigate to and click on HTML Basics II to practice creating lists, and
HTML Basics III to practice creating tables.

http://www.dummies.com/go/coding

74 Part II: Building the Silent and Interactive Web Page

 4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the
site.

 5. Complete the instructions in the main coding window. As you type, a
live preview of your code is generated.

 6. After you have finished completing the instructions, click the Save
and Submit Code button.

 If you have followed the instructions correctly, a green checkmark
appears, and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem
or a bug you cannot fix, click on the hint, use the Q&A Forum, or tweet
me at @nikhilgabraham and include hashtag #codingFD.

6
Getting Stylish with CSS

In This Chapter
▶ Understanding CSS and its structure

▶ Formatting text size, color, and style

▶ Styling images

▶ Using CSS in three different contexts

Create your own style . . . let it be unique for yourself and yet identifiable
for others.

—Anna Wintour

T
he website code examples I have shown you in the preceding chapters
resemble websites you may have seen from a previous era. Websites

you browse today are different, and have a more polished look and feel.
Numerous factors enabled this change. Twenty years ago you might have
browsed the Internet with a dial-up modem, but today you likely use a very
fast Internet connection and a more powerful computer. Programmers have
used this extra bandwidth and speed to write code to further customize and
style websites.

In this chapter you learn modern techniques to style websites using
Cascading Style Sheets (CSS). First, I discuss basic CSS structure, and then
the CSS rules to style your content. Finally, I show you how to apply these
rules to your websites.

What Does CSS Do?
CSS styles HTML elements with greater control than just using HTML. Take a
look at Figure 6-1. On the left, Facebook appears as it currently exists; on the
right, however, the same Facebook page is shown without all the CSS styling.
Without the CSS, all the images and text appear left-justified, borders and
shading disappear, and text has minimal formatting.

76 Part II: Building the Silent and Interactive Web Page

Figure 6-1: Left: Facebook with CSS. Right: Facebook without CSS.

CSS can style almost any HTML tag that creates a visible element on the
page, including all the HTML tags used to create headings, paragraphs, links,
images, lists, and tables that I showed you in previous chapters. Specifically,
CSS allows you to style:

 ✓ Text size, color, style, typeface, and alignment

 ✓ Link color and style

 ✓ Image size and alignment

 ✓ List bullet styles and indentation

 ✓ Table size, shading, borders, and alignment

 CSS styles and positions the HTML elements that appear on a web page.
However, some HTML elements (such as, for example, <head>) are not visi-
ble on the page and are not styled using CSS.

You may wonder why creating a separate language like CSS to handle styling
was considered a better approach than expanding the capabilities of HTML.
There are three reasons:

 ✓ History: CSS was created four years after HTML as an experiment to see
whether developers and consumers wanted extra styling effects. At the
time, it was unclear whether CSS would be useful, and only some major
browsers supported it. As a result, CSS was created separately from
HTML to allow developers to build sites using just HTML.

 ✓ Code management: Initially, some CSS functionality overlapped with
existing HTML functionality. However, specifying styling effects in HTML
results in cluttered and messy code. For example, specifying a particu-
lar font typeface in HTML requires that you include the font typeface

77 Chapter 6: Getting Stylish with CSS

attribute in every paragraph (<p>) tag. Styling a single paragraph this
way is easy, but applying the font to a series of paragraphs (or an entire
page or website) quickly becomes tedious. By contrast, CSS requires
the typeface to be specified only once, and it automatically applies to
all paragraphs. This feature makes it easier for developers to write and
maintain code. In addition, separating the styling of the content from the
actual content itself has allowed search engines and other automated
website agents to more easily process the content on web pages.

 ✓ Inertia: Currently millions of web pages use HTML and CSS separately,
and every day that number grows. CSS started as a separate language
for reasons stated above, and it remains a separate language because its
popularity continues to grow.

CSS Structure
CSS follows a set of rules to ensure that websites will be displayed in the
same way no matter the browser or computer used. Sometimes, because of
varying support of the CSS standard, browsers can and do display web pages
differently. Nevertheless, generally speaking, CSS ensures that users have a
consistent experience across all browsers.

 You can use any browser to see CSS you write style your HTML files, though I
strongly recommend you download, install, and use Chrome or Firefox.

Choosing the element to style
CSS continues to evolve and support increased functionality, but the basic
syntax for defining CSS rules remains the same. CSS modifies HTML elements
with rules that apply to each element. These rules are written as follows:

selector {
 property: value;
}

A CSS rule is comprised of three parts:

 ✓ Selector: The HTML element you want to style.

 ✓ Property: The feature of the HTML element you want to style, such as,
for example, font typeface, image height, or color.

 ✓ Value: The options for the property that the CSS rule sets. For example,
if color was the property, the value could be red.

78 Part II: Building the Silent and Interactive Web Page

The selector identifies which HTML element you want to style. In HTML,
an element is surrounded by angle brackets, but in CSS the selector stands
alone. The selector is followed by a space, an opening left curly bracket ({),
property with a value, and then a closing right curly bracket (}). The line
break after the opening curly bracket, and before the closing curly bracket is
not required by CSS — in fact, you could put all your code on one line with no
line breaks or spaces. Using line breaks is convention followed by developers
to make CSS easier to modify and read.

 You can find curly brackets on most keyboards to the right of the P key.

The following code shows you an example of CSS modifying a specific HTML ele-
ment. The CSS code appears first, followed by the HTML code that it modifies:

The CSS:

h1 {
 font-family: cursive;
}

And now the HTML:

<h1>
 Largest IPOs in US History
</h1>

 2014: Alibaba - $20B
 2008: Visa - $18B

The CSS selector targets and styles the HTML element with the same name
(in this case, <h1> tags). For example, in Figure 6-2, the heading “Largest
IPOs in US History,” created using the opening and closing <h1> tag is styled
using the h1 selector, and the font-family property with cursive value.

 CSS uses a colon instead of the equals sign (=) to set values against properties.

 The font in Figure 6-2 likely does not appear to be cursive, as defined in the
code above, because cursive is the name of a generic font family, and not a
specific font. Generic font families are described later in this chapter.

My property has value
CSS syntax requires that a CSS property and its value appear within open-
ing and closing curly brackets. After each property is a colon, and after each
value is a semi-colon. This combination of property and value together is

79 Chapter 6: Getting Stylish with CSS

called a declaration, and a group of properties and values is called a declara-
tion block.

Figure 6-2: CSS targeting the heading h1 element.

Let us look at a specific example with multiple properties and values:

h1 {
 font-size: 15px;
 color: blue;
}

In this example, CSS styles the h1 element, changing the font-size prop-
erty to 15px, and the color property to blue.

 You can improve the readability of your code by putting each declaration
(each property/value combination) on its own line. Additionally, adding
spaces or tabs to indent the declarations also improves the readability.
Adding these line breaks and indentions doesn’t affect browser performance
in any way, but it will make it easier for you and others to read your code.

Hacking the CSS on your favorite website
In Chapter 2, you modified a news website’s HTML code. In this chapter, you
modify its CSS. Let’s take a look at some CSS rules in the wild. In this example,
you change the CSS on huffingtonpost.com (or your news website of choice)
using the Chrome browser. Just follow these steps:

 1. Using a Chrome browser, navigate to your favorite news website, ide-
ally one with many headlines. (See Figure 6-3.)

80 Part II: Building the Silent and Interactive Web Page

 2. Place your mouse pointer over a headline, right-click, and from the
menu that appears select Inspect Element.

 A window opens at the bottom of your browser.

 3. Click the Style tab on the right side of this window to see the CSS
rules being applied to HTML elements. (See Figure 6-4.)

Figure 6-3: The Huffington Post website before modification.

 4. Change the color of the headline using CSS. To do this, first find the
color property in the element.style section; note the square color
box within that property that displays a sample of the current color.
Click on this box and change the value by selecting a new color from
the pop-up menu, and then press Enter.

 Your headline now appears in the color you picked. (See Figure 6-5.)

 If the element.style section is blank and no color property appears,
you can still add it manually. To do so, click once in the element.style
section, and when the blinking cursor appears, type color: purple.
The headline changes to purple.

 As with HTML, you can modify any website’s CSS using Chrome’s Inspect
Element feature, also known as Developer Tools. Most modern browsers,
including Firefox, Safari, and Opera, have a similar feature.

81 Chapter 6: Getting Stylish with CSS

Figure 6-4: The CSS rules that style the Huffington Post website.

Figure 6-5: Changing the CSS changes the color of the headline.

Common CSS Tasks and Selectors
Although CSS includes over 150 properties, and many values for each prop-
erty, on modern websites a handful of CSS properties and values do the
majority of the work. In the previous section, when you “hacked” the CSS

82 Part II: Building the Silent and Interactive Web Page

on a live website, you changed the heading color — a common task in CSS.
Other common tasks performed with CSS include:

 ✓ Changing font size, style, font family, and decoration

 ✓ Customizing links including color, background color, and link state

 ✓ Adding background images and formatting foreground images

Font gymnastics: size, color, style,
family, and decoration
CSS lets you control text in many HTML elements. The most common text-
related CSS properties and values are shown in Table 6-1. I describe these
properties and values more fully in the sections that follow.

Table 6-1 Common CSS Properties and Values for Styling Text
Property name Possible

values
Description

font-size pixels
(#px)

%

em (#em)

Specifies the size of text measured
either in pixels, as a percentage of the
containing element’s font size, or with
an em value which is calculated by
desired pixel value divided by contain-
ing element font size in pixels. Example:
font-size: 16px;

color name

hex code

rgb value

Changes the color of the text specified
using names (color: blue;), hexa-
decimal code (color: #0000FF;),
or RGB (red, green, and blue) value
(color: rgb(0,0,255);).

font-style normal

italic

Sets font to appear in italics (or not).

font-weight normal

bold

Sets font to appear as bold (or not).

font-family font name Sets the font typeface. Example: font-
family: "serif";

text-
decoration

none

underline

line-
through

Sets font to have an underline or strik-
ethrough (or not).

83 Chapter 6: Getting Stylish with CSS

Setting the font-size
As in a word processor, you can set the size of the font you’re using with
CSS’s font-size property. You have a few options for setting the font size,
and the most common is to use pixels, as in the following:

p {
 font-size: 16px;
}

In this example, I used the p selector to size the paragraph text to 16 pixels.
One disadvantage of using pixels to size your font occurs when users who
prefer a large font size for readability have changed their browser settings to
a default font size value that’s larger than the one you specify on your site. In
these situations, the font size specified in the browser takes precedence, and
the fonts on your site will not scale to adjust to these preferences.

Percentage-sizing and em values, the other options to size your fonts, are con-
sidered more accessibility-friendly. The default browser font-size of normal text
is 16 pixels. With percentage-sizing and em values, fonts can be sized relative
to the user-specified default. For example, the CSS for percentage-sizing looks
like this:

p {
 font-size: 150%;
}

In this example, I used the p selector to size the paragraph text to 150% of the
default size. If the browser’s default font size was set at 16 pixels, this para-
graph’s font would appear sized at 24 pixels (150% of 16).

 A font-size equal to 1px is equivalent to one pixel on your monitor, so the
actual size of the text displayed varies according to the size of the monitor.
Accordingly, for a fixed font size in pixels, the text appears smaller as you
increase the screen resolution.

Setting the color
The color property sets the color in one of three ways:

 ✓ Name: 147 colors can be referenced by name. You can reference
common colors, such as black, blue, and red, along with uncommon
colors, such as burlywood, lemon chiffon, thistle, and rebeccapurple.

 Rebecca Meyer, the daughter of prominent CSS standards author Eric
Meyer, passed away in 2014 from brain cancer at the age of six. In
response, the CSS standardization committee approved adding a shade of
purple called rebeccapurple to the CSS specification in Rebecca’s honor.
All major Internet browsers have implemented support for the color.

84 Part II: Building the Silent and Interactive Web Page

 ✓ Hex code: Colors can be defined by component parts of red, green, and
blue, and when using hexadecimal code over 16 million colors can be
referenced. In the code example, I set the h1 color equal to #FF0000.
After the hashtag, the first two digits (FF) refers to the red in the color,
the next two digits (00) refers to the green in the color, and the final two
digits (00) refers to the blue in the color.

 ✓ RGB value: Just like hex codes, RGB values specify the red, green, and
blue component parts for over 16 million colors. RGB values are the
decimal equivalent to hexadecimal values.

 Don’t worry about trying to remember hex codes or RGB values. You can
easily identify colors using an online color picker such as the one at
www.w3schools.com/tags/ref_colorpicker.asp.

The following example shows all three types of color changes:

p {
 color: red
}
h1 {
 color: #FF0000
}
li {
 color: rgb(255,0,0)
}

 li is the element name for a list item in ordered or unordered lists.

 All three colors in the code example above reference the same shade of
red. For the full list of colors that can be referenced by name see here:
www.w3.org/TR/css3-color/#svg-color.

Setting the font-style and font-weight
The font-style property can set text to italics, and the font-weight
property can set text to bold. For each of these properties, the default is
normal, which doesn’t need to be specified. In the example below, the para-
graph is styled so the font appears italicized and bold. Here’s an example of
each:

p {
 font-style: italics;
 font-weight: bold;
}

Setting the font-family
The font-family property sets the typeface used for text. The property is
set equal to one font, or to a list of fonts separated by commas. Your website
visitors will have a variety of different fonts installed on their computers, but

http://www.w3schools.com/tags/ref_colorpicker.asp
http://www.w3.org/TR/css3-color/#svg-color

85 Chapter 6: Getting Stylish with CSS

the font-family property displays your specified font only if that font is
already installed on their system.

The font-family property can be set equal to two types of values:

 ✓ Font name: Specific font names such as Times New Roman, Arial, and
Courier.

 ✓ Generic font family: Modern browsers usually define one installed font
for each generic font family. These five generic font families include

 • serif (Times New Roman, Palantino)

 • sans-serif (Helvetica, Verdana)

 • monospace (Courier, Andale Mono)

 • cursive (Comic Sans, Florence)

 • fantasy (Impact, Oldtown)

When using font-family it’s best to define two or three specific fonts
followed by a generic font family as a fallback in case the fonts you specify
aren’t installed, as in the following example:

p {
 font-family: "Times New Roman", Helvetica, serif;
}

In this example, the paragraph’s font family is defined as Times New Roman.
If Times New Roman isn’t installed on the user’s computer, the browser then
uses Helvetica. If Helvetica is not installed, the browser will use any available
font in the generic serif font family.

 When using a font name with multiple words (such as Times New Roman)
enclose the font name in quotes.

Setting the text-decoration
The text-decoration property sets any font underlining or strikethrough.
By default, the property is equal to none, which does not have to be speci-
fied. In the following example, any text with an h1 heading is underlined
whereas any text inside a paragraph tag is made strikethrough:

h1 {
 text-decoration: underline;
}
p {
 text-decoration: line-through;
}

86 Part II: Building the Silent and Interactive Web Page

Customizing links
In general, browsers display links as blue underlined text. Originally, this
default behavior minimized the confusion between content on the page and
an interactive link. Today, almost every website styles links in its own way.
Some websites don’t underline links; others retain the underlining but style
links in colors other than blue, and so on.

 The HTML anchor element (a) is used to create links. The text between the
opening and closing anchor tag is the link description, and the URL set in the
href attribute is the address the browser visits when the link is clicked.

The anchor tag has evolved over time and today has four states:

 ✓ link: A link that a user has not clicked or visited.

 ✓ visited: A link that a user has clicked or visited.

 ✓ hover: A link that the user hovers the mouse cursor over without
clicking.

 ✓ active: A link the user has begun to click but hasn’t yet released the
mouse button.

CSS can style each of these four states, most often by using the properties
and values shown in Table 6-2.

Table 6-2 Common CSS Properties and Values for Styling Links
Property name Possible values Description
color name

hex code

rgb value

Link color specified using
names (color: blue;),
hexadecimal code (color:
#0000FF;), or RGB value
(color: rgb(0,0,255);).

text-decoration none

underline

Sets link to have an underline
(or not).

The following example styles links in a way that’s similar to the way they’re
styled in articles at Wikipedia, where links appear blue by default, underlined
on mouse hover, and orange when active. As shown in Figure 6-6, the first
link to Chief Technology Officer of the United States appears underlined as
it would if my mouse was hovering over it. Also, the link to Google appears
orange as it would if active and my mouse was clicking it.

87 Chapter 6: Getting Stylish with CSS

a:link{
 color: rgb(6,69,173);
 text-decoration: none;
}
a:visited {
 color: rgb(11,0,128)
}
a:hover {
 text-decoration: underline
}
a:active {
 color: rgb(250,167,0)
}

 Remember to include the colon between the a selector and the link state.

 Although explaining why is out of the scope of this book, CSS specifications
insist that you define the various link states in the order shown here — link,
visited, hover, and then active. However, it is acceptable to not define a link
state, as long as this order is preserved.

The various link states are known as pseudo-class selectors. Pseudo-class
selectors add a keyword to CSS selectors and allow you to style a special
state of the selected element.

Figure 6-6: Wikipedia.org page showing link, visited, hover, and active states.

88 Part II: Building the Silent and Interactive Web Page

Adding background images and
styling foreground images
You can use CSS to add background images behind HTML elements. Most
commonly, the background-image property is used to add background
images to individual HTML elements such as div, table, and p, or (when
applied to the body element) to entire web pages.

 Background images with smaller file sizes load more quickly than larger
images. This is especially important if your visitors commonly browse your
website using a mobile phone, which typically has a slower data connection.

The properties and values in Table 6-3 show the options for adding back-
ground images.

Table 6-3 CSS Properties and Values for Background Images
Property name Possible

values
Description

background-
image

url("URL") Adds a background image from the
image link specified at URL.

background-
size

auto

contain

cover

width
height
(#px, %)

Sets background size according to the
value:

auto (default value) displays the
image as originally sized.

contain scales the image’s width
and height so that it fits inside element.

cover scales the image so element
background is not visible.

Background size can also be set by
specifying width and height in pixels or
as a percentage.

background-
position

keywords

position
(#px, %)

Positions the background in element
using keywords or exact position.
Keywords are comprised of horizontal
keywords (left, right, center),
and vertical keywords (top, center,
and bottom). The placement of
the background can also be exactly
defined using pixels or a percentage
to describe the horizontal and vertical
position relative to the element.

89 Chapter 6: Getting Stylish with CSS

Property name Possible
values

Description

background-
repeat

repeat

repeat-x

repeat-y

no-repeat

Sets the background image to tile, or
repeat, as follows:

horizontally (repeat-x)

vertically (repeat-y)

horizontally and vertically (repeat)

don’t repeat at all (no-repeat).
background-
attachment

scroll

fixed

Sets the background to scroll with
other content (scroll), or to remain
fixed (fixed).

Setting the background-image
As shown in the following example, the background-image property can
set the background image for the entire web page or a specific element.

body {
background-image:
url("http://upload.wikimedia.org/wikipedia/commons/e/e5/Chrysler_Building_

Midtown_Manhattan_New_York_City_1932.jpg ");
}

 You can find background images at sites such as images.google.com,
www.flickr.com, or publicdomainarchive.com.

 Check image copyright information to see if you have permission to use the
image, and comply with image’s licensing terms, which can include attribut-
ing or identifying the author. Additionally, directly linking to images on other
servers is called hotlinking. It is preferable to download the image, and host
and link to the image on your own server.

 If you’d prefer a single-color background instead of an image, use the
background-color property. This property is defined in much the same
way as the background-image property. Just set it equal to a color name,
RGB value, or hex code, as I describe earlier in this chapter in the section
“Setting the color.”

Setting the background-size
By specifying exact dimensions using pixels or percentages, the
background-size property can scale background images to be smaller or
larger, as needed. In addition, this property has three dimensions commonly
used on web pages, as follows (see Figure 6-7):

http://images.google.com
http://www.flickr.com

90 Part II: Building the Silent and Interactive Web Page

 ✓ auto: This value maintains the original dimensions of an image.

 ✓ cover: This value scales an image so all dimensions are greater than or
equal to the size of the container or HTML element.

 ✓ contain: This value scales an image so all dimensions are less than or
equal to the size of the container or HTML element.

Figure 6-7: Setting the background size to three different values.

Setting the background-position
The background-position sets the initial position of the background
image. The default initial position is in the top left corner of the web page or
specific element. You change the default position by specifying a pair of key-
word or position values, as follows:

 ✓ Keywords: The first keyword (left, center, or right) represents the
horizontal position, and the second keyword (top, center, or bottom)
represents the vertical position.

 ✓ Position: The first position value represents the horizontal position,
and the second value represents the vertical. Each value is defined
using pixels or percentages, representing the distance from the top-left
of the browser or the specified element. For example, background-
position: center center is equal to background-position:
50% 50%. (See Figure 6-8.)

Setting the background-repeat
The background-repeat property sets the direction the background will
tile as follows:

 ✓ repeat: This value (the default) repeats the background image both
horizontally and vertically.

 ✓ repeat-x: This value repeats the background image only horizontally.

 ✓ repeat-y: This repeats the background image only vertically.

 ✓ no-repeat: This value prevents the background from repeating at all.

91 Chapter 6: Getting Stylish with CSS

Figure 6-8: The initial background image positions specified using keywords or position.

Setting the background-attachment
The background-attachment property sets the background image to move
(or not) when the user scrolls through content on the page. The property can
be set to:

 ✓ scroll: The background image moves when the user scrolls.

 ✓ fixed: The background image does not move when the user scrolls.

The following code segment uses several of the properties discussed ear-
lier to add a background image that stretches across the entire web page,
is aligned in the center, does not repeat, and does not move when the user
scrolls. (See Figure 6-9.)

body {
background-image: url("http://upload.wikimedia.org/wikipedia/commons/

thumb/a/a0/USMC-090807-M-8097K-022.jpg/640px-USMC-090807-M-
8097K-022.jpg");

background-size: cover;
background-position: center center;
background-repeat: no-repeat;
background-attachment: fixed;

}

92 Part II: Building the Silent and Interactive Web Page

Figure 6-9: An image set as the background for entire page.

Styling Me Pretty
The CSS rules discussed in this chapter give you a taste of a few common styling
properties and values. Although you aren’t likely to remember every property
and value, with practice the property and value names will come to you natu-
rally. After you understand the basic syntax, the next step is to actually incorpo-
rate CSS into your web page and try your hand at styling HTML elements.

Adding CSS to your HTML
There are three ways to apply CSS to a website to style HTML elements:

 ✓ In-line CSS: CSS can be specified within an HTML file on the same line
as the HTML element it styles. This method requires placing the style
attribute inside the opening HTML tag. Generally, in-line CSS is the least
preferred way of styling a website because the styling rules are fre-
quently repeated. Here’s an example of in-line CSS:

<!DOCTYPE html>
<html>
<head>
 <title>Record IPOs</title>
</head>
<body>

93 Chapter 6: Getting Stylish with CSS

 <h1 style="color: red;">Alibaba IPO expected to be biggest IPO of all
time</h1>

</body>
</html>

 ✓ Embedded CSS: With this approach, CSS appears within the HTML file,
but separated from the HTML tags it modifies. The CSS code appears
within the HTML file between an opening and closing <style> tag,
which itself is located between an opening and closing <head> tag.
Embedded CSS is usually used when styling a single HTML page differ-
ently than the rest of your website.

 In this example, the embedded CSS styles the header red, just like the in-
line CSS does above.

<!DOCTYPE html>
<html>
<head>
 <title>Record IPOs</title>
 <style type="text/css">
 h1 {
 color: red;
 }
 </style>
</head>
<body>
 <h1>Alibaba IPO expected to be biggest IPO of all time</h1>
</body>
</html>

 ✓ Separate style sheets: CSS can be specified in a separate style sheet —
that is, in a separate file. Using a separate style sheet is the preferred
approach to storing your CSS because it makes maintaining the HTML
file easier and allows you to quickly make changes. In the HTML file, the
<link> tag is used to refer to the separate style sheet, and has three
attributes:

 • href: Specifies the CSS filename.

 • rel: Should be set equal to "stylesheet".

 • type: Should be set equal to "text/css".

 With three different ways of styling HTML elements with CSS, all three ways
could be used with contradictory styles. For example, say your in-line CSS
styles h1 elements as red, whereas embedded CSS styles them as blue, and a
separate style sheet styles them as green. To resolve these conflicts, in-line
CSS has the highest priority and overrides any other CSS rules. If no in-line
CSS is specified, then embedded CSS has the next highest priority, and finally

94 Part II: Building the Silent and Interactive Web Page

in the absence of in-line or embedded CSS, the styles in a separate style sheet
are used. In the example, with the presence of all three styles, the h1 element
text would appear red because in-line CSS has the highest priority and over-
rides the embedded CSS blue styling, and the separate CSS green styling.

The following example uses a separate CSS style sheet to style the header
red, as in the previous two examples:

CSS: style.css

h1 {
 color: red;
}

HTML: index.html

<DOCTYPE html>
<html>
<head>
 <title>Record IPOs</title>
 <link href="style.css" text="text/css" rel="stylesheet">
</head>
<body>
 <h1>Alibaba IPO expected to be biggest IPO of all time</h1>
</body>
</html>

Building your first web page
Practice your HTML online using the Codecademy website. Codecademy is a
free website created in 2011 to allow anyone to learn how to code right in the
browser, without installing or downloading any software. You can practice
all of the tags (and a few more) discussed in this chapter by following these
steps:

 1. Open your browser, go to www.dummies.com/go/codingfd, and
click on the Codecademy link.

 2. Sign in to your Codecademy account.

 Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

 3. Navigate to and click on Get Started with HTML.

 4. Background information is presented in the upper left portion of
the site, and instructions are presented in the lower left portion of
the site.

http://www.dummies.com/go/codingfd

95 Chapter 6: Getting Stylish with CSS

 5. Complete the instructions in the main coding window. As you type, a
live preview of your code is generated.

 6. After you have finished completing the instructions, click the Save
and Submit Code button.

 If you have followed the instructions correctly, a green checkmark
appears, and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

96 Part II: Building the Silent and Interactive Web Page

7
Next Steps with CSS

In This Chapter
▶ Formatting lists and tables

▶ Styling web pages using parent and child selectors

▶ Naming pieces of code using id and class

▶ Using the box model to position HTML elements on the page

Design is not just what it looks like and feels like. Design is how it works.

—Steve Jobs

I
n this chapter, you continue building on the CSS you learned in the previ-
ous chapter. So far, the CSS rules you’ve seen applied to the entire web

page, but now they get more specific. You learn how to style several more
HTML elements, including lists, tables, and forms, and how to select and style
specific parts of a web page, such as the first paragraph in a story or the last
row of a table. Finally, you learn how professional web developers use CSS
and the box model to control down to the pixel the positioning of elements
on the page. Understanding the box model is not necessary to build our app
in Chapter 10.

Before diving in, remember the big picture: HTML puts content on the web
page, and CSS further styles and positions that content. Instead of trying
to memorize every rule, use this chapter to understand CSS basics. CSS
selectors have properties and values that modify HTML elements. There
is no better way to learn than by doing, so feel free to skip ahead to the
Codecademy practice lessons at the end of the chapter. Then, use this chap-
ter as a reference when you have questions about specific elements you are
trying to style.

98 Part II: Building the Silent and Interactive Web Page

Styling (More) Elements on Your Page
In this section, you discover common ways to style lists and tables. In the
previous chapter, the CSS properties and rules you learned like color and
font-family can apply to any HTML element containing text. By contrast,
some of the CSS shown here is used only to style lists, tables, and forms.

Styling lists
In Chapter 5 you learned how to create ordered lists, which start with mark-
ers like letters or numbers, and unordered lists, which start with markers like
bullet points. By default, list items in an ordered list use numbers (for exam-
ple, 1, 2, 3), whereas list items in unordered lists use a solid-black-circle (⦁).

These defaults may not be appropriate for all circumstances. In fact, the two
most common tasks when styling a list include:

 ✓ Changing the marker used to create a list: For unordered lists, like this
one, you can use a solid disc, empty circle, or square bullet point. For
ordered lists, you can use numbers, roman numerals (upper or lower
case), or case letters (upper or lower).

 ✓ Specifying an image to use as the bullet point: You can create your
own marker for ordered and unordered lists instead of using the default
option. For example, if you created an unordered bulleted list for a
burger restaurant, instead of using a solid circle as a bullet point you
could use a color hamburger icon image.

You can accomplish either of these tasks by using the properties in Table 7-1
with an ol or ul selector to modify the list type.

 CSS selectors using properties and rules modify HTML elements by the same
name. For example, Figure 7-1 has HTML tags that are referred to in CSS
with the ul selector, and styled using the properties and rules in Table 7-1.

Table 7-1 Common CSS Properties and Values for Styling Lists
Property Name Possible Values Description
list-style-
type

(unordered list)

disc

circle

square

none

Sets the markers used to create
list items in an unordered list to
disc (⦁), circle (⚬), square (◾), or
none.

99 Chapter 7: Next Steps with CSS

Property Name Possible Values Description
list-style-
type

(ordered list)

decimal

upper-roman

lower-roman

upper-alpha

lower-alpha

Sets the markers used to create
list items in an ordered list to
decimal (1, 2, 3), uppercase roman
numerals (I, II, III), lowercase
roman numerals (i, ii, iii), upper-
case letters (A, B, C), or lower-
case letters (a, b, c).

list-style-
image

url(“URL”) When URL is replaced with the
image link sets an image as the
marker used to create a list item.

 Many text website navigation bars are created using unordered bulleted lists
with the marker set to none. You can see an example in the Codecademy CSS
Positioning course starting with exercise 21.

CSS properties and values apply to a CSS selector and modify an HTML ele-
ment. In the following example, embedded CSS (between the opening and
closing <style> tags) and in-line CSS (defined with the style attribute in
the HTML) is used to:

 ✓ Change the marker in an unordered list to a square using
list-style-type

 ✓ Change the marker in an ordered list to uppercase roman numerals
again using list-style-type

 ✓ Set a custom marker to an icon using list-style-image

The code for this is shown below and in Figure 7-1. Figure 7-2 shows this code
rendered in the browser.

<html>
<head>
<title>Figure 7-1: Lists</title>
<style>
ul {
 list-style-type: square;
}

ol {
 list-style-type: upper-roman;
}

li {
 font-size: 27px;
}

100 Part II: Building the Silent and Interactive Web Page

</style>
</head>
<body>

<h1>Ridesharing startups</h1>

 Hailo: book a taxi on your phone
 Lyft: request a peer to peer ride
 <li style="list-style-image: url('car.png');">Uber: hire a driver

<h1>Food startups</h1>

 Grubhub: order takeout food online
 <li style="list-style-image: url('burger.png');">Blue Apron: subscribe to

weekly meal delivery
 Instacart: request groceries delivered the same day

</body>
</html>

Figure 7-1: Embedded and in-line CSS.

 If the custom image for your marker is larger than the text, your text may not
align vertically with the marker. To fix this, you can either increase the font
size of each list item using font-size, as shown in the example, increase
the margin between each list item using margin, or set list-style-type
to none and set a background image on the ul element using
background-image.

101 Chapter 7: Next Steps with CSS

 There are three ways to apply CSS — inline CSS using the style attribute,
embedded CSS using an opening and closing <style> tag, and in a separate
CSS style sheet.

Figure 7-2: Ordered and unordered lists modified to change
the marker type.

Designing tables
In Chapter 5, you found out how to create basic tables. By default, the width
of these tables expands to fit content inside the table, content in individual
cells is left aligned, and no borders are displayed.

These defaults may not be appropriate for all circumstances. Deprecated
(unsupported) HTML attributes can modify these defaults, but at any time
browsers could stop recognizing these attributes, and any tables created
with these attributes would display incorrectly. As a safer alternative, CSS
can style tables with greater control. Three common tasks CSS can perform
for tables include the following:

 ✓ Setting the width of a table, table row, or individual table cell with the
width property.

 ✓ Aligning text within the table with the text-align property.

 ✓ Displaying borders within the table with the border property. (See
Table 7-2.)

102 Part II: Building the Silent and Interactive Web Page

Table 7-2 Common CSS Properties and Values for Styling Tables
Property
Name

Possible
Values

Description

width pixels (#px)

%

Width of table measured either in pixels
on-screen or as a percentage of the browser
window or container tag.

text-
align

left

right

center

justify

Position of text relative to the table according to
the value of the attribute. For example, text-
align=“center” positions the text in the
center of the table cell.

border width

style

color

Defines three properties in one — border-
width, border-style, and border-
color. The values must be specified in this
order: Width (pixel), style (none, dotted, dashed,
solid), and color (name, hexadecimal code, RBG
value). For example, border: 1px solid red.

In the following example, the table is wider than the text in any cell, the text
in each cell is centered, and the table border is applied to header cells:

<html>
<head>
<title>Figure 7-2: Tables</title>
<style>
 table {
 width: 700px;
 }

 table, td {
 text-align: center;
 border: 1px solid black;
 border-collapse: collapse;
 }

</style>
</head>
<body>
 <table>
 <caption>Desktop browser market share (August 2014)</caption>
 <tr>
 <th>Source</th>
 <th>Chrome</th>
 <th>IE</th>
 <th>Firefox</th>
 <th>Safari</th>

103 Chapter 7: Next Steps with CSS

 <th>Other</th>
 </tr>
 <tr>
 <td>StatCounter</td>
 <td>50%</td>
 <td>22%</td>
 <td>19%</td>
 <td>5%</td>
 <td>4%</td>
 </tr>
 <tr>
 <td>W3Counter</td>
 <td>38%</td>
 <td>21%</td>
 <td>16%</td>
 <td>16%</td>
 <td>9%</td>
 </tr>
 </table>
</body>
</html>

 The HTML tag <caption> and the CSS property border-collapse further
style the table below. The <caption> tag adds a title to the table. Although
you can create a similar effect using the <h1> tag, <caption> associates the
title with the table. The CSS border-collapse property can have a value of
separate or collapse. The separate value renders each border sepa-
rately (refer to Figure 5-9), whereas collapse draws a single border when
possible (see Figure 7-3).

Figure 7-3: Table with width, text alignment, and border
modified using CSS.

Selecting Elements to Style
Currently, the CSS you have seen styles every HTML element that matches
the CSS selector. For example, in Figure 7-3 the table and td selectors have
a text-align property that centered text in every table cell. Depending on
the content, you may want to only center text in the header row, but left-align
text in subsequent rows. Two ways to accomplish this include:

104 Part II: Building the Silent and Interactive Web Page

 ✓ Styling specific HTML elements based on position to other elements.

 ✓ Naming HTML elements, and only styling elements by name.

Styling specific elements
When styling specific elements, it is helpful to visualize the HTML code
as a family tree with parents, children, and siblings. In the following code
example (also shown in Figure 7-4), the tree starts with the html element,
which has two children head and body. The head has a child element called
title. The body has h1, ul, and p elements as children. Finally, the ul ele-
ment has li elements as children, and the p element has a elements as chil-
dren. Figure 7-5 shows how the following code appears in the browser, and
Figure 7-6 shows a depiction of the following code using the tree metaphor.
Note that Figure 7-6 shows each relationship once. For example, in the code
below there is an a element inside each of three li elements, and Figure 7-6
shows this ul li a relationship once.

<html>
<head>
 <title>Figure 7-3: DOM</title>
</head>
<body>

<h1>Parody Tech Twitter Accounts</h1>

 Bored Elon Musk

 Vinod Coleslaw

 horse ebooks

<h1>Parody Non-Tech Twitter Accounts</h1>
<p>Modern Seinfeld</p>
<p>Lord_Voldemort7</p>

</body>
</html>

 Bored Elon Musk is a parody of Elon Musk, the founder of PayPal, Tesla, and
SpaceX. Vinod Coleslaw is a parody of Vinod Khosla, the Sun Microsystems
co-founder and venture capitalist. Horse ebooks is a spambot that became an
Internet phenomenon.

105 Chapter 7: Next Steps with CSS

Figure 7-4: Styling a family tree of elements.

Figure 7-5: Parody Tech and Non-Tech Twitter accounts
(browser view).

Figure 7-6: Parody Tech and Non-Tech Twitter account
(HTML tree or Document Object Model view).

106 Part II: Building the Silent and Interactive Web Page

 The HTML tree is called the DOM or document object model.

Child selector
The Parody Non-Tech Twitter account anchor tags are immediate children of
the paragraph tags. If you wanted to style just the Parody Non-Tech Twitter
accounts, you can use the child selector, which selects the immediate chil-
dren of a specified element. A child selector is created by first listing the
parent selector, then a greater-than sign (>), and finally the child selector.

In the following example, the anchor tags that are immediate children of the
paragraph tags are selected, and those hyperlinks are styled with a red font
color and without any underline. The Parody Tech Twitter accounts are not
styled because they are direct children of the list item tag. (See Figure 7-7.)

p > a {
 color: red;
 text-decoration: none;
}

Figure 7-7: Child selector used to style the Parody
Non-Tech Twitter accounts.

 If you use just the a selector here, all the links on the page would be styled
instead of just a selection.

Descendant selector
The Parody Tech Twitter account anchor tags are descendants, or located
within, the unordered list. If you wanted to style just the Parody Tech Twitter
accounts, you can use the descendant selector, which selects not just imme-
diate children of a specified element but all elements nested within the

107 Chapter 7: Next Steps with CSS

specified element. A descendant selector is created by first listing the parent
selector, a space, and finally the descendant selector you want to target.

In the following example, as shown in Figure 7-8, the anchor tags which are
descendants of the unordered list are selected, and those hyperlinks are
styled with a blue font color and are crossed out. The Parody Non-Tech
Twitter accounts are not styled because they are not descendants of an unor-
dered list.

ul a {
 color: blue;
 text-decoration: line-through;
}

Figure 7-8: Child selector used to style the Parody Tech
Twitter accounts.

 Interested in styling just the first anchor tag within a list, like the Modern
Seinfeld Twitter account, or the second list item, like the Vinod Coleslaw
Twitter account? Go to w3schools.com and read more about the first-
child (www.w3schools.com/cssref/sel_firstchild.asp), and nth-
child selectors (www.w3schools.com/cssref/sel_nth-child.asp).

Naming HTML elements
The other way of styling specific elements in CSS is to name your HTML ele-
ments. You name your code by using either the id or class attribute, and
then style your code by referring to the id or class selector.

http://www.w3schools.com/cssref/sel_firstchild.asp
http://www.w3schools.com/cssref/sel_nth-child.asp

108 Part II: Building the Silent and Interactive Web Page

Naming your code using the id attribute
Use the id attribute to style one specific element on your web page. The id attri-
bute can name any HTML element, and is always placed in the opening HTML tag.
Additionally, each element can have only one id attribute value, and the attribute
value must appear only once within the HTML file. After you define the attribute
in the HTML file, you refer to the HTML element in your CSS by writing a hashtag
(#) followed by the attribute value. Using the id attribute, the following code
styles the Modern Seinfeld Twitter link the color red with a yellow background:

HTML:

<p>Modern Seinfeld</p>

CSS:

#jerry {
 color: red;
 background-color: yellow;
}

Naming your code using the class attribute
Use the class attribute to style multiple elements on your web page. The
class attribute can name any HTML element, and is always placed in the
opening HTML tag. The attribute value need not be unique within the HTML
file. After you define the attribute in the HTML file, you refer to the HTML ele-
ment by writing a period (.) followed by the attribute value. Using the class
attribute, the following code styles all the Parody Tech Twitter account links
the color red with no underline:

HTML:

 Bored Elon Musk

 Vinod Coleslaw

 Horse ebooks

CSS:

.tech {
 color: red;
 text-decoration: none;
}

109 Chapter 7: Next Steps with CSS

 Proactively use a search engine, such as Google, to search for additional CSS
effects. For example, if you wanted to increase the spacing between each list
item, open your browser and search for list item line spacing css. Links
appearing in the top ten results should include:

 ✓ www.w3schools.com: A beginner tutorial site.

 ✓ www.stackoverflow.com: A discussion board for experienced
developers.

 ✓ www.mozilla.org: A reference guide initially created by the founda-
tion that maintains the Firefox browser, and now maintained by a com-
munity of developers.

Each of these sites is a good first place to start, and you should look for
answers that include example code.

Aligning and Laying Out Your Elements
CSS not only allows control over the formatting of HTML elements, it also
allows control over the placement of these elements on the page, known
as page layout. Historically, developers used HTML tables to create page
layouts. HTML table page layouts were tedious to create, and required that
developers write a great deal of code to ensure consistency across browsers.
CSS eliminated the need to use tables to create layouts, helped reduce code
bloat, and increased control of page layouts.

Organizing data on the page
Before diving in to any code, let’s review in Figure 7-9 some of the basic ways
we can structure the page and the content on it. Layouts have evolved over
time, with some layouts working well on desktop computers but not display-
ing optimally on tablet or mobile devices.

 Always ask yourself how your intended layout will appear on desktop, tablet,
and mobile devices.

Hundreds of different layouts exist, and a few selected page layouts appear
here along with example websites:

 Left and right navigation toolbars are not usually seen on mobile devices. Top
navigation toolbars are used both on desktop and mobile devices, and
bottom navigation toolbars are most common on mobile devices.

http://www.w3schools.com
http://www.stackoverflow.com
http://www.mozilla.org

110 Part II: Building the Silent and Interactive Web Page

Figure 7-9: Vertical and horizontal navigation layouts.

The examples in Figure 7-10 show real websites with these layouts:

Figure 7-10: Use of left and right navigation toolbar on w3schools.com (left) and
hunterwalk.com (right).

111 Chapter 7: Next Steps with CSS

Vertical navigation aids reader understanding when hierarchy or relationship
exists between navigational topics. In the w3schools.com example, HTML,
JavaScript, Server Side, and XML relate to one another, and underneath each
topic heading are related sub-topics.

Horizontal or menu navigation, as shown in Figure 7-11, helps reader naviga-
tion with weak or disparate relationships between navigational topics. In the
eBay example, the Motors, Fashion, and Electronics menu items have differ-
ent products and appeal to different audiences.

Figure 7-11: Use of top and bottom navigation toolbar on ebay.com
(left) and moma.org (right).

 Don’t spend too much time worrying about what layout to pick. You can
always pick one, observe whether your visitors can navigate your website
quickly and easily, and change the layout if necessary.

Shaping the div
The page layouts above are collections of elements grouped together. These
elements are grouped together using rectangular containers created with an
opening and closing <div> tag, and all of the layouts above can be created
with these <div> tags. By itself, the <div> tag does not render anything
on the screen, but instead serves as a container for content of any type like
HTML headings, lists, tables, or images. To see the <div> tag in action, take a
look at the Codecademy.com home page in Figure 7-12.

Notice how the page can be divided into three parts — the navigation header,
the middle video testimonial, and then additional text user testimonials. <div>
tags are used to outline these major content areas, and additional nested
<div> tags within each part are used to group content like images and text.

112 Part II: Building the Silent and Interactive Web Page

Figure 7-12: Codecademy.com homepage with visible
borders for the <div> tags.

In the following example, as shown in Figure 7-13, HTML code is used to
create two containers using <div> tags, the id attribute names each div,
and CSS sizes and colors the div:

HTML:

<div id="first"></div>
<div id="second"></div>

CSS:

div {
 height: 100px;
 width: 100px;
 border: 2px solid purple;
}

#first {
 background-color: red;
}

#second {
 background-color: blue;
}

113 Chapter 7: Next Steps with CSS

Figure 7-13: Two boxes created with HTML <div> tag
and styled using CSS.

Understanding the box model
Just as we created boxes with the <div> tags above, CSS creates a box
around each and every single element on the page, even text. Figure 7-14
shows the box model for an image that says “This is an element.” These
boxes may not always be visible, but are comprised of four parts:

 ✓ content: HTML tag that is rendered in the browser

 ✓ padding: Optional spacing between content and the border

 ✓ border: Marks the edge of the padding, and varies in width and
visibility

 ✓ margin: Transparent optional spacing surrounding the border

114 Part II: Building the Silent and Interactive Web Page

Figure 7-14: Box model for img element.

 Using the Chrome browser, navigate to your favorite news website, then
right-click an image and in the context menu choose Inspect Element. On the
right side of the screen you see three tabs; click the Computed tab. The box
model is displayed for the image you right-clicked, showing the content
dimensions, and then dimensions for the padding, border, and margin.

The padding, border, and margin are CSS properties, and the value is usually
expressed in pixels. In the following code, shown in Figure 7-15, padding and
margins are added to separate each div.

div {
 height: 100px;
 width: 100px;
 border: 1px solid black;
 padding: 10px;
 margin: 10px;
}

Positioning the boxes
Now that you understand how to group elements using HTML, and how CSS
views elements, the final piece is to position these elements on the page. Various
techniques can be used for page layouts, and a comprehensive overview of each
technique is out of the scope of this book. However, one technique to create
the layouts shown in Figure 7-16 is to use the float and clear properties (as
described in Table 7-3).

115 Chapter 7: Next Steps with CSS

Figure 7-15: Padding and margin added to separate each div.

Table 7-3 Select CSS Properties and Values for Page Layouts
Property
Name

Possible
Values

Description

float left
right
none

Sends an element to the left or right of the
container it is in. The none value specifies the
element should not float.

clear left
right
both
none

Specifies which side of an element to not have
other floating elements.

If the width of an element is specified, the float property allows elements
that would normally appear on separate lines to appear next to each other,
such as navigation toolbars and a main content window. The clear property
is used to prevent any other elements from floating on one or both sides of
current element, and the property is commonly set to both to place web page
footers below other elements.

116 Part II: Building the Silent and Interactive Web Page

The following example code uses <div> tags, float, and clear to create
a simple left navigation layout. (See Figure 7-16.) Typically, after grouping
your content using <div> tags, you name each <div> tag using class or id
attributes, and then style the div in CSS. There is a lot of code below, so let’s
break it down into pieces:

 ✓ The CSS is embedded between the opening and closing <style> tag,
and the HTML is between the opening and closing <body> tags.

 ✓ Between the opening and closing <body> tag, using <div> tags, the
page is divided into four parts with header, navigation bar, content, and
footer.

 ✓ The navigation menu is created with an unordered list, which is left-
aligned, with no marker.

 ✓ CSS styles size, color, and align each <div> tag.

 ✓ CSS properties, float, and clear, are used to place the left navigation
layout to the left, and the footer below the other elements.

<!DOCTYPE html>
<html>
<head>
 <title>Figure 7-14: Layout</title>
 <style>
 #header{
 background-color: #FF8C8C;
 border: 1px solid black;
 padding: 5px;
 margin: 5px;
 text-align: center;
 }

 #navbar {
 background-color: #00E0FF;
 height: 200px;
 width: 100px;
 float: left;
 border: 1px solid black;
 padding: 5px;
 margin: 5px;
 text-align: left;
 }

117 Chapter 7: Next Steps with CSS

 #content {
 background-color: #EEEEEE;
 height: 200px;
 width: 412px;
 float: left;
 border: 1px solid black;
 padding: 5px;
 margin: 5px;
 text-align: center;
 }

 #footer{
 background-color: #FFBD47;
 clear: both;
 text-align: center;
 border: 1px solid black;
 padding: 5px;
 margin: 5px;
 }

 ul {
 list-style-type: none;
 line-height: 25px;
 padding: 0px;
 }

 </style>
</head>
<body>
<div id="header"><h1>Nik's Tapas Restaurant</h1></div>

<div id="navbar">

 About us
 Reservations
 Menus
 Gallery
 Events
 Catering
 Press

</div>

<div id="content"></div>

<div id="footer">Copyright © Nik's Tapas</div>
</body>
</html>

118 Part II: Building the Silent and Interactive Web Page

Figure 7-16: Left navigation web page layout created
using <div> tags.

Writing More Advanced CSS
Practice your CSS online using the Codecademy website. Codecademy is a
free website created in 2011 to allow anyone to learn how to code right in the
browser, without installing or downloading any software. Practice all of the
tags (and a few more) that you learned in this chapter by following these steps:

 1. Open your browser, go to www.dummies.com/go/codingfd, and
click on the Codecademy link.

 2. Sign in to your Codecademy account.

 Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

 3. Navigate to and click on CSS: An Overview, CSS Selectors, and CSS
Positioning to practice CSS styling and positioning.

 4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the site.

 5. Complete the instructions in the main coding window. As you type, a
live preview of your code is generated.

 6. After you have finished completing the instructions, click the Save
and Submit Code button.

 If you have followed the instructions correctly, a green checkmark
appears, and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

http://www.dummies.com/go/codingfd

8
Working Faster with Twitter

Bootstrap
In This Chapter
▶ Understanding what Twitter Bootstrap does

▶ Viewing layouts created with Twitter Bootstrap

▶ Creating web page elements using Twitter Bootstrap

Speed, it seems to me, provides the one genuinely modern pleasure.

—Aldous Huxley

T
witter Bootstrap is a free toolkit that allows users to create web pages
quickly and with great consistency. In 2011, two Twitter developers,

Mark Otto and Jacob Thornton, created the toolkit for internal use at Twitter,
and soon after released it to the general public. Before Bootstrap, develop-
ers would create common web page features over and over again and each
time slightly differently, leading to increased time spent on maintenance.
Bootstrap has become one of the most popular tools used in creating web-
sites, and is used by NASA and Newsweek for their websites. With a basic
understanding of HTML and CSS, you can use and customize Bootstrap lay-
outs and elements for your own projects.

In this chapter, you discover what Bootstrap does and how to use it. You also
discover the various layouts and elements that you can quickly and easily
create when using Bootstrap.

Figuring Out What Bootstrap Does
Imagine you are the online layout developer for The Washington Post, respon-
sible for coding the front page of the print newspaper (see Figure 8-1) into a
digital website version. The newspaper consistently uses the same font size

120 Part II: Building the Silent and Interactive Web Page

and typeface for the main headline, captions, and bylines. Similarly, there are
a set number of layouts to choose from, usually with the main headline at the
top of the page accompanied by a photo.

Figure 8-1: The front page of The Washington Post (June 7, 2013).

Every day you could write your CSS code from scratch, defining font type-
face, sizes, paragraph layouts, and the like. However, given that the newspa-
per follows a largely defined format, it would be easier to define this styling
ahead of time in your CSS file with class names, and when necessary refer to
the styling you want by name. At its core, this is how Bootstrap functions.

Bootstrap is a collection of standardized prewritten HTML, CSS, and
JavaScript code that you can reference using class names (for a refresher, see
Chapter 7) and then further customize. Bootstrap allows you to create and
gives you:

 ✓ Layouts: Define your web page content and elements in a grid pattern.

 ✓ Components: Use existing buttons, menus, and icons that have been
tested on hundreds of millions of users.

121 Chapter 8: Working Faster with Twitter Bootstrap

 ✓ Responsiveness: A fancy word for whether your site will work on mobile
phones and tablets in addition to desktop computers. Ordinarily, you
would write additional code so your website appears properly on these
different screen sizes, but Bootstrap code is already optimized to do this
for you, as shown in Figure 8-2.

 ✓ Cross-browser compatibility: Chrome, Firefox, Safari, Internet Explorer,
and other browsers all vary in the way they render certain HTML ele-
ments and CSS properties. Bootstrap code is optimized so your web
page appears consistently no matter the browser used.

Figure 8-2: The Angry Birds Star Wars page optimized for desktop, tablet, and mobile using
Bootstrap.

Installing Bootstrap
Install and add Bootstrap to your HTML file by following these two steps:

 1. Include this line of code between your opening and closing <head> tag:

<link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/
bootstrap/3.2.0/css/bootstrap.min.css">

 The <link> tag refers to version 3.2.0 of the Bootstrap CSS file hosted on the
Internet, so you must be connected to the Internet for this method to work.

 2. Include both these lines of code immediately before your closing
HTML </body> tag.

<!--jQuery (needed for Bootstrap's JavaScript plugins) -->
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.

js"></script>
<!--Bootstrap Javascript plugin file -->
<script src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.

min.js"></script>

122 Part II: Building the Silent and Interactive Web Page

 The first <script> tag references a JavaScript library called jQuery.
JavaScript is covered in Chapter 9. Although jQuery is not covered
in this book, at a high level, jQuery simplifies tasks performed using
JavaScript. The second <script> tag references Bootstrap JavaScript
plugins, including animated effects such as drop-down menus. If your
website does not use any animated effects or Bootstrap JavaScript
plugins, you don’t need to include this file.

 Bootstrap is free to use for personal and commercial purposes, but does
require including the Bootstrap license and copyright notice.

If you will not have reliable access to an Internet connection, you can also down-
load and locally host the Bootstrap CSS and JavaScript files. To do this, after
unzipping the Bootstrap file, use the <link> and <script> tags to link to the
local version of your file. Visit www.getbootstrap.com/getting-started/
to download the files, and to access additional instructions and examples.

Understanding the Layout Options
Bootstrap allows you to quickly and easily lay out content on the page using
a grid system. You have three options when using this grid system:

 ✓ Code yourself: After you learn how the grid is organized, you can write
code to create any layout you wish.

 ✓ Code with a Bootstrap editor: Instead of writing code in a text editor,
drag and drop components and elements to generate Bootstrap code.
You can then download and use this code.

 ✓ Code with a prebuilt theme: Download free Bootstrap themes or buy a
theme where the website has already been created, and you fill in your
own content.

Lining up on the grid system
Bootstrap divides the screen into a grid system of 12 equally-sized columns.
These columns follow a few rules:

 ✓ Columns must sum to a width of 12 columns. You can use one column
that is 12 columns wide, 12 columns that are each one column wide, or
anything in between.

 ✓ Columns can contain content or spaces. For example, you could have a
4-column-wide column, a space of 4 columns, and another 4-column-wide
column.

 ✓ Unless you specify otherwise, these columns will automatically stack
into a single column on smaller browser sizes or screens like mobile
devices, and expand horizontally on larger browser sizes or screens
like laptop and desktop screens. See Figure 8-3.

http://www.getbootstrap.com/getting-started/

123 Chapter 8: Working Faster with Twitter Bootstrap

Figure 8-3: Sample Bootstrap layouts.

Now that you have a sense for how these layouts appear on the screen, let
us take a look at example code used to generate these layouts. To create any
layout, follow these steps:

 1. Create a <div> tag with the attribute class="container".

 2. Inside the first <div> tag, create another nested <div> tag with the
attribute class="row".

 3. For each row you want to create, create another <div> tag with the
attribute class="col-md-X". Set X equal to the number of columns
you want the row to span.

 For example, to have a row span 4 columns, write <div class=
"col-md-4">. The md targets the column width for desktops, and I
show you how to target other devices later in this section.

 You must include <div class="container"> at the beginning of your page,
and have a closing </div> tag or your page will not render properly.

The following code, as shown in Figure 8-4, creates a simple three-column
centered layout:

<div class="container">
 <!-- Example row of columns -->
 <div class="row">
 <div class="col-md-4">
 <h2>Heading</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

 </p>
 </div>
 <div class="col-md-4">
 <h2>Heading</h2>

124 Part II: Building the Silent and Interactive Web Page

 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

 </p>
 </div>
 <div class="col-md-4">
 <h2>Heading</h2>
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

 </p>
 </div>
 </div>
</div>

Figure 8-4: Bootstrap three-column layout with desktop (left) and mobile (right) versions.

To see another example, go to the Codecademy site, and resize the browser
window. You will notice that as you make the browser window smaller, the
columns will automatically stack on top on one another to be readable. Also,
the columns are automatically centered. Without Bootstrap, you would need
more code to achieve these same effects.

 The Lorem ipsum text you see above is commonly used to create filler text.
Although the words don’t mean anything, the quotation originates from a
first-century BC Latin text by Cicero. You can generate filler text when
creating your own websites by using www.lipsum.org or www.
socialgoodipsum.com.

Dragging and dropping to a website
After looking at the code above, you may want an even easier way to gener-
ate the code without having to type it yourself. Bootstrap editors allow you
to drag and drop components to create a layout, and after which the editor
will generate Bootstrap code for your use.

http://www.lipsum.org
http://www.socialgoodipsum.com
http://www.socialgoodipsum.com

125 Chapter 8: Working Faster with Twitter Bootstrap

Bootstrap editors you can use include the following:

 ✓ Layoutit.com: Free online Bootstrap editor (as shown in Figure 8-5) that
allows you to drag and drop components and then download the source
code.

 ✓ Jetstrap.com: Paid online drag and drop Bootstrap editor.

 ✓ Pingendo.com: Free downloadable drag and drop Bootstrap editor.

 ✓ Bootply.com: Free online Bootstrap editor with built-in templates to modify.

 These sites are free, and may stop working without notice. You can find addi-
tional options by using any search engine to search for Bootstrap editors.

Figure 8-5: Layoutit.com interface with drag and drop Bootstrap components.

Using predefined templates
Sites exist with ready-to-use Bootstrap themes; all you need to do is add your
own content. Of course, you can also modify the theme if you wish. Some of
these Bootstrap theme websites are:

 ✓ Blacktie.co: Free Bootstrap themes (shown in Figure 8-6), all created
by one designer.

 ✓ Bootstrapzero.com: Collection of free, open-source Bootstrap templates.

 ✓ Bootswatch.com and bootsnipp.com: Includes pre-built Bootstrap
components that you can assemble for your own site.

 ✓ Wrapbootstrap.com: Bootstrap templates available for purchase.

http://www.blacktie.co
http://www.bootstrapzero.com
http://www.bootswatch.com
http://www.bootsnipp.com
http://www.wrapbootstrap.com

126 Part II: Building the Silent and Interactive Web Page

 Bootstrap themes may be available for free, but follow the licensing terms.
The author may require attribution, email registration, or a tweet.

Figure 8-6: One page Bootstrap template from blacktie.co.

Adapting layout for mobile, tablet, and desktop
On smaller screens Bootstrap will automatically stack the columns you create
for your website. However, you can exercise more control than just relying on
the default behavior over how these columns appear. There are four device
screen sizes you can target – phones, tablets, desktops, and large desktops. As
shown in Table 8-1, Bootstrap uses a different class prefix to target each device.

Table 8-1 Bootstrap Code for Various Screen Sizes
Phones
(<768 px)

Tablets
(≥768px)

Desktops
(≥992px)

Large
desktops
(≥1200 px)

Class prefix col-sx- col-sm- col-md- col-lg-

Max con-
tainer width

None
(auto)

750px 970px 1170px

Max column
width

Auto ~62px ~81px ~97px

127 Chapter 8: Working Faster with Twitter Bootstrap

Based on Table 8-1, if you wanted your website to have two equal sized col-
umns on tablets, desktops, and large desktops you would use the col-sm-
class name as follows:

<div class="container">
 <div class="row">
 <div class="col-sm-6">Column 1</div>
 <div class="col-sm-6">Column 2</div>
</div>
</div>

After viewing your code on all three devices, you decide that on desktops
you prefer unequal instead of equal columns such that the left column
is half the size of the right column. You target desktop devices using
the col-md- class name and add it to the class name immediately after
col-sm-:

<div class="container">
 <div class="row">
 <div class="col-sm-6 col-md-4">Column 1</div>
 <div class="col-sm-6 col-md-8">Column 2</div>
</div>
</div>

 Some elements, such as the <div> tag above, can have multiple classes. This
allows you to add multiple effects, such as changing the way a column is dis-
played, to the element. To define multiple classes, use the class attribute
and set it equal to each class; separate each class with a space. For an exam-
ple, refer to the preceding code: The third <div> element has two classes,
col-sm-6 and col-md-4.

Finally, you decide that on large desktop screens you want the left column to
be two columns wide. You target large desktop screens using the col-lg-
class name, as shown in Figure 8-7, and add to your existing class attribute
values:

<div class="container">
 <div class="row">
 <div class="col-sm-6 col-md-4 col-lg-2">Column 1</div>
 <div class="col-sm-6 col-md-8 col-lg-10">Column 2</div>
</div>
</div>

128 Part II: Building the Silent and Interactive Web Page

Figure 8-7: A two-column site displayed on tablet, desktop,
and large desktop.

Coding Basic Web Page Elements
In addition to pure layouts, Bootstrap can also create web page components
found on almost every website. The thought here is the same as when work-
ing with layouts — instead of recreating the wheel every time by designing
your own button or toolbar, it would be better to use pre-built code, which
has already been tested across multiple browsers and devices.

The following examples show how to quickly create common web
components.

Designing buttons
Buttons are a basic element on many web pages, but usually can be difficult
to set up and style. As shown in Table 8-2, buttons can have various types
and sizes.

129 Chapter 8: Working Faster with Twitter Bootstrap

Table 8-2 Bootstrap Code for Creating Buttons
Attribute Class prefix Description
Button type btn-defaultbtn-

primarybtn-
successbtn-danger

Standard button type with
hover effect
Blue button with hover
effect
Green button with hover
effect
Red button with hover
effect

Button size btn-lgbtn-
defaultbtn-sm

Large button size
Default button size
Small button size

To create a button, write the following HTML:

 ✓ Begin with the button HTML element.

 ✓ In the opening <button> tag include type="button".

 ✓ Include the class attribute, with the btn class attribute value, and
add additional class prefixes based on the effect you want. To add addi-
tional styles, continue adding the class prefix name into the HTML class
attribute.

As shown in Figure 8-8, the following code combines both button type and
button size:

<p>
 <button type="button" class="btn btn-primary btn-lg">Large primary button</

button>
 <button type="button" class="btn btn-default btn-lg">Large default

button</button>
</p>
<p>
 <button type="button" class="btn btn-success">Default Success button</button>
 <button type="button" class="btn btn-default">Default default button</button>
</p>
<p>
 <button type="button" class="btn btn-danger btn-sm">Small danger

button</button>
 <button type="button" class="btn btn-default btn-sm">Small default

button</button>
</p>

130 Part II: Building the Silent and Interactive Web Page

 For additional button type, button size, and other button options see
http://getbootstrap.com/css/#buttons.

Figure 8-8: Bootstrap button types and sizes.

Navigating with toolbars
Web pages with multiple pages or views usually have one or more toolbars to
help users with navigation. Some toolbar options are shown in Table 8-3.

Table 8-3 Bootstrap Code for Creating Navigation Toolbars
Attribute Class Prefix Description
Toolbar type nav-tabs

nav-pills
Tabbed navigation toolbar
Pill, or solid button navigation
toolbar

Toolbar
button type

dropdown
caret
dropdown-menu

Marks button or tab as dropdown
menu
Down-arrow dropdown menu
icon
Dropdown menu items

To create a pill or solid button navigation toolbar, write the following HTML:

 ✓ Begin an unordered list using the ul element.

 ✓ In the opening tag, include class="nav nav-pills".

 ✓ Create buttons using the tag. Include class="active" in one
opening tag to designate which tab on the main toolbar should
appear as visually highlighted when the mouse hovers over the button.

http://getbootstrap.com/css/#buttons

131 Chapter 8: Working Faster with Twitter Bootstrap

 ✓ To create a drop-down menu, nest an unordered list. See the code next
to “More” with class prefixes "dropdown", "caret", and "dropdown-
menu". You can link to other web pages in your drop-down menu by
using the <a> tag.

The following code, as shown in Figure 8-9, creates a toolbar using Bootstrap:

<ul class="nav nav-pills">
 <li class="active">Timeline
 About
 Photos
 Friends
 <li class="dropdown">
 More

 <ul class="dropdown-menu">
 Places
 Sports
 Music

Figure 8-9: Bootstrap toolbar with drop-down menus.

 The dropdown-toggle class and the data-toggle="dropdown" attribute
and value work together to add drop down menus to elements like links. For
additional toolbar options, see http://getbootstrap.com/
components/#nav.

Adding icons
Icons are frequently used with buttons to help convey some type of action.
For example, your email program likely uses a button with a trash can icon to
delete emails. Icons quickly communicate a suggested action to users with-
out much explanation.

http://getbootstrap.com/components/#nav
http://getbootstrap.com/components/#nav

132 Part II: Building the Silent and Interactive Web Page

 These icons are called glyphs, and www.glyphicons.com provides the
glyphs used in Bootstrap.

Bootstrap supports more than 200 glyphs, which you can add to buttons or
toolbars using the tag. As shown in Figure 8-10, the example code
below creates three buttons with a star, paperclip, and trash can glyph.

<button type="button" class="btn btn-default">Star
 </star>
</button>
<button type="button" class="btn btn-default">Attach
 </star>
</button>
<button type="button" class="btn btn-default">Trash
 </star>
</button>

Figure 8-10: Bootstrap buttons with icons

 For the names of all the Bootstrap glyphs, see www.getbootstrap.com/
components/#glyphicons.

Build the Airbnb Home Page
Practice Bootstrap online using the Codecademy website. Codecademy is a
free website created in 2011 to allow anyone to learn how to code right in the
browser, without installing or downloading any software. Practice all of the
tags (and a few more) that you learned in this chapter by following these steps:

 1. Open your browser, go to www.dummies.com/go/codingfd, and
click on the link to Codecademy.

http://www.glyphicons.com
http://www.getbootstrap.com/components/#glyphicons
http://www.getbootstrap.com/components/#glyphicons
http://www.dummies.com/go/codingfd

133 Chapter 8: Working Faster with Twitter Bootstrap

 2. Sign in to your Codecademy account.

 Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

 3. Navigate to and click on Make a Website to practice Bootstrap.

 4. Background information is presented, and instructions are presented
on the site.

 5. Complete the instructions in the main coding window.

 6. After you have finished completing the instructions, click the Got It or
Save and Submit Code button.

 If you have followed the instructions correctly, a green checkmark
appears and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forum, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

134 Part II: Building the Silent and Interactive Web Page

9
Adding in JavaScript

In This Chapter
▶ Understanding JavaScript basics and structure

▶ Coding with variables, conditional statements, and functions

▶ Learning about API basics and structure

▶ Viewing an API request and response

The best teacher is very interactive.

—Bill Gates

J
avaScript, one of the most popular and versatile programming languages
on the Internet, adds interactivity to websites. You have probably seen

JavaScript in action and not even realized it, perhaps while clicking buttons
that change color, viewing image galleries with thumbnail previews, or ana-
lyzing charts that display customized data based on your input. These web-
site features and more can be created and customized using JavaScript.

JavaScript is an extremely powerful programming language, and this entire
book could have been devoted to the topic. In this chapter, you learn
JavaScript basics, including how to write JavaScript code to perform basic
tasks, access data using an API, and program faster using a framework.

What Does JavaScript Do?
JavaScript creates and modifies web page elements, and works with the exist-
ing web page HTML and CSS to achieve these effects. When you visit a web
page with JavaScript, your browser downloads the JavaScript code and runs
it client-side, on your machine. JavaScript can perform tasks to do any of the
following:

 ✓ Control web page appearance and layout by changing HTML attributes
and CSS styles.

136 Part II: Building the Silent and Interactive Web Page

 ✓ Easily create web page elements like date pickers, as shown in
Figure 9-1, and drop-down menus.

 ✓ Take user input in forms, and check for errors before submission.

 ✓ Display and visualize data using complex charts and graphs.

 ✓ Import and analyze data from other websites.

Figure 9-1: JavaScript can create the date picker found on every
travel website.

 JavaScript is different from another programming language called Java. In
1996, Brendan Eich, at the time a Netscape engineer, created JavaScript,
which was originally called LiveScript. As part of a marketing decision,
LiveScript was renamed to JavaScript to try and benefit from the reputation
of then-popular Java.

JavaScript was created almost 20 years ago, and the language has continued
to evolve since then. In the last decade, its most important innovation has
allowed developers to add content to web pages without requiring the user
to reload the page. This technique, called AJAX (asynchronous JavaScript),
probably sounds trivial, but has led to the creation of cutting-edge browser
experiences such as Gmail (shown in Figure 9-2).

Before AJAX, the browser would display new data on a web page only after
waiting for the entire web page to reload. However, this slowed down the
user experience, especially when viewing web pages which had frequent real
time updates like web pages with news stories, sports updates, and stock

137 Chapter 9: Adding in JavaScript

information. JavaScript, specifically AJAX, created a way for your browser to
communicate with a server in the background, and to update your current
web page with this new information.

Figure 9-2: Gmail uses AJAX, which lets users read new emails
without reloading the web page.

 Here is an easy way to think about AJAX: Imagine you are at a coffee shop,
and just ordered a coffee after waiting in a really long line. Before asynchro-
nous JavaScript, you had to wait patiently at the coffee bar until you received
your coffee before doing anything else. With asynchronous JavaScript, you
can read the newspaper, find a table, phone a friend, and do multiple other
tasks until the barista calls your name alerting you that your coffee is ready.

Understanding JavaScript Structure
JavaScript has a different structure and format from HTML and CSS.
JavaScript allows you to do more than position and style text on a web
page — with JavaScript, you can store numbers and text for later use, decide
what code to run based on conditions within your program, and even name
pieces of your code so you can easily reference them later. As with HTML
and CSS, JavaScript has special keywords and syntax that allow the com-
puter to recognize what you are trying to do. Unlike HTML and CSS, however,
JavaScript is intolerant of syntax mistakes. If you forget to close an HTML tag,

138 Part II: Building the Silent and Interactive Web Page

or to include a closing curly brace in CSS, your code may still run and your
browser will try its best to display your code. When coding in JavaScript, on
the other hand, forgetting a single quote or parenthesis can cause your entire
program to fail to run at all.

 HTML applies an effect between opening and closing tags — <h1>This is a
header. CSS uses the same HTML element and has properties and
values between opening and closing curly braces — h1 { color: red;}.

Using Semicolons, Quotes,
Parentheses, and Braces

The code below illustrates the common punctuation used in JavaScript —
semicolons, quotes, parentheses, and braces (also called curly brackets):

var age=22;
var planet="Earth";
if (age>=18)
{
 console.log("You are an adult");
 console.log("You are over 18");

}
else
{
 console.log("You are not an adult");
 console.log("You are not over 18");
}

General rules of thumb to know while programming in JavaScript include:

 ✓ Semicolons separate JavaScript statements.

 ✓ Quotes enclose text characters or strings (sequences of characters). Any
opening quote must have a closing quote.

 ✓ Parentheses are used to modify commands with additional informa-
tion called arguments. Any opening parenthesis must have a closing
parenthesis.

 ✓ Braces group JavaScript statements into blocks so they execute
together. Any opening brace must have a closing brace.

 These syntax rules can feel arbitrary, and may be difficult to remember ini-
tially. With some practice, however, these rules will feel like second nature
to you.

139 Chapter 9: Adding in JavaScript

Coding Common JavaScript Tasks
JavaScript can be used to perform many tasks, from simple variable assign-
ments to complex data visualizations. The following tasks, here explained
within a JavaScript context, are core programming concepts that haven’t
changed in the last twenty years and won’t change in the next twenty.
They’re applicable to any programming language. Finally, I’ve listed instruc-
tions on how to perform these tasks, but if you prefer you can also practice
these skills right away by jumping ahead to the “Writing Your First JavaScript
Program” section, later in this chapter.

Storing data with variables
Variables, like those in algebra, are keywords used to store data values for
later use. Though the data stored in a variable may change, the variable name
remains the same. Think of a variable like a gym locker — what you store in
the locker changes, but the locker number always stays the same. The vari-
able name usually starts with a letter, and Table 9-1 lists some types of data
JavaScript variables can store.

 For a list of rules on variable names see the “JavaScript Variables” section at
www.w3schools.com/js/js_variables.asp.

Table 9-1 Data Stored by a Variable
Data Type Description Examples
Numbers Positive or negative numbers with or without

decimals
156–101.96

Strings Printable characters Holly
NovakSeñor

Boolean Value can either be true or false. truefalse

The first time you use a variable name, you use the word var to declare the
variable name. Then, you can optionally assign a value to variable using
the equals sign. In the following code example, I declare three variables and
assign values to those variables:

var myName="Nik";
var pizzaCost=10;
var totalCost=pizzaCost * 2;

http://www.w3schools.com/js/js_variables.asp

140 Part II: Building the Silent and Interactive Web Page

 Programmers say you have declared a variable when you first define it using
the var keyword. “Declaring” a variable tells the computer to reserve space
in memory and to permanently store values using the variable name. View
these values by using the console.log statement. For example, after run-
ning the preceding example code, running statement console.
log(totalCost) returns the value 20.

After declaring a variable, you change its value by referring to just the vari-
able name and using the equals sign, as shown in the following examples:

myName="Steve";
pizzaCost=15;

 Variable names are case sensitive, so when referring to a variable in your pro-
gram remember that MyName is a different variable from myname. In general,
it’s a good idea to give your variable a name that describes the data being
stored.

Making decisions with if-else statements
After you have stored data in a variable, it is common to compare the vari-
able’s value to other variable values or to a fixed value, and then to make a
decision based on the outcome of the comparison. In JavaScript, these com-
parisons are done using a conditional statement. The if-else statement is a
type of conditional. Its general syntax is as follows:

if (condition) {
 statement1 to execute if condition is true
}
else {
 statement2 to execute if condition is false
}

In this statement, the if is followed by a space, and a condition enclosed
in parentheses evaluates to true or false. If the condition is true, then
statement1, located between the first set of curly brackets, is executed. If the
condition is false and if I include the else, which is optional, then state-
ment2, located between the second set of curly brackets, is executed. Note
that when the else is not included and the condition is false, the conditional
statement simply ends.

 Notice there are no parentheses after the else — the else line has no con-
dition. JavaScript executes the statement after else only when the preceding
conditions are false.

The condition in an if-else statement is a comparison of values using oper-
ators, and common operators are described in Table 9-2.

141 Chapter 9: Adding in JavaScript

Table 9-2 Common JavaScript Operators
Type Operator Description Example
Less than < Evaluates whether one value

is less than another value
(x < 55)

Greater than > Evaluates whether one value
is greater than another value

(x > 55)

Equality === Evaluates whether two values
are equal

(x === 55)

Less than or
equal to

<= Evaluates whether one
value is less than or equal to
another value

(x <= 55)

Greater than
or equal to

>= Evaluates whether one value
is greater than or equal to
another value

(x >= 55)

Inequality != Evaluates whether two values
are not equal

(x != 55)

Here is a simple if statement, without the else:

var carSpeed=70;
if (carSpeed > 55) {
 alert("You are over the speed limit!");
}

In this statement I declare a variable called carSpeed and set it equal to 70.
Then an if statement with a condition compares whether the value in the
variable carSpeed is greater than 55. If the condition is true, an alert, which
is a pop-up box, states “You are over the speed limit!” (See Figure 9-3.) In this
case, the value of carSpeed is 70, which is greater than 55, so the condition
is true and the alert is displayed. If the first line of code instead was var
carSpeed=40; then the condition is false because 40 is less than 55, and no
alert would be displayed.

Figure 9-3: The alert pop-up box.

142 Part II: Building the Silent and Interactive Web Page

Let us expand the if statement by adding else to create an if-else, as
shown in this code:

var carSpeed=40;
if (carSpeed > 55) {
 alert("You are over the speed limit!");
}
else {
 alert("You are under the speed limit!");
}

In addition to the else, I added an alert statement inside the curly brack-
ets following the else, and set carSpeed equal to 40. When this if-else
statement executes, carSpeed is equal to 40, which is less than 55, so the
condition is false, and because the else has been added, an alert appears
stating “You are under the speed limit!” If the first line of code instead was
var carSpeed=70; as before, then the condition is true, because 70 is
greater than 55, and the first alert would be displayed.

Our current if-else statement allows us to test for one condition, and to
show different results depending on whether the condition is true or false.
To test for two or more conditions, you can add one or more else if
statements after the original if statement. The general syntax for this is as
follows:

if (condition1) {
 statement1 to execute if condition1 is true
}
else if (condition2) {
 statement2 to execute if condition2 is true
}
else {
 statement3 to execute if all previous conditions are false
}

The if-else is written as before, and the else if is followed by a space,
and then a condition enclosed in parentheses that evaluates to either true
or false. If condition1 is true, then statement1, located between
the first set of curly brackets, is executed. If the condition1 is false,
then condition2 is evaluated and is found to be either true or false. If
condition2 is true, then statement2, located between the second set
of curly brackets, is executed. At this point, additional else if statements
could be added to test additional conditions. Only when all if and else if
conditions are false, and an else is included, is statement3 executed.
Only one statement is executed in a block of code, after which the remaining
statements are ignored and the next block of code is executed.

143 Chapter 9: Adding in JavaScript

 When writing the if-else, you must have one and only one if statement,
and, if you so choose, one and only one else statement. The else if is
optional, can be used multiple times within a single if-else statement, and
must come after the original if statement and before the else. You cannot
have an else if or an else by itself, without a preceding if statement.

Here is another example else if statement:

var carSpeed=40;
if (carSpeed > 55) {
 alert("You are over the speed limit!");
}
else if (carSpeed === 55) {
 alert("You are at the speed limit!");
}

When this if statement executes, carSpeed is equal to 40, which is less
than 55, so the condition is false, and then the else if condition is evalu-
ated. The value of carSpeed is not exactly equal to 55 so this condition is
also false, and no alert of any kind is shown, and the statement ends. If the
first line of code were instead var carSpeed=55; then the first condition
is false, because 55 is not greater than 55. Then the else if condition
is evaluated, and because 55 is exactly equal to 55, the second alert is dis-
played, stating “You are at the speed limit!”

 Look carefully at the code above —- when setting the value of a variable, one
equals sign is used, but when comparing whether two values are equal, then
three equals signs (===) are used.

As a final example, here is an if-else statement with an else if
statement:

var carSpeed=40;
if (carSpeed > 55) {
 alert("You are over the speed limit!");
}
else if (carSpeed === 55) {
 alert("You are at the speed limit!");
}
else {
 alert("You are under the speed limit!");
}

As the diagram in Figure 9-4 shows, two conditions, which appear in the figure
as diamonds, are evaluated in sequence. In this example, the carSpeed is
equal to 40, so the two conditions are false, and the statement after the else
is executed, showing an alert that says “You are under the speed limit!” Here
carSpeed is initially set to 40, but depending on the initial carSpeed variable
value, any one of the three alerts could be displayed.

144 Part II: Building the Silent and Interactive Web Page

Figure 9-4: If-else with an else if statement.

 The condition is always evaluated first, and every condition must either be
true or false. Independent from the condition is the statement that exe-
cutes if the condition is true.

Working with string and number methods
The most basic data types, usually stored in variables, are strings and num-
bers. Programmers often need to manipulate strings and numbers to perform
basic tasks such as the following:

 ✓ Determining the length of a string, as for a password.

 ✓ Selecting part (or substring) of a string, as when choosing the first name
in a string that includes the first and last name.

 ✓ Rounding a number to fixed numbers of decimal points, as when taking a
subtotal in an online shopping cart, calculating the tax, rounding the tax
to two decimal points, and adding the tax to the subtotal.

These tasks are so common that JavaScript includes shortcuts called meth-
ods (italicized above) that make performing tasks like these easier. The gen-
eral syntax to perform these tasks is to follow the affected variable’s name
or value with a period and the name of the method, as follows for values and
variables:

value.method;
variable.method;

Table 9-3 shows examples of JavaScript methods for the basic tasks dis-
cussed above. Examples include methods applied to values, such as strings,
and to variables.

145 Chapter 9: Adding in JavaScript

Table 9-3 Common JavaScript Methods
Method Description Example Result
.toFixed(n) Rounds a number to

n decimal places
var jenny=
8.675309;
jenny.
toFixed(2);

8.68

.length Represents the
number of characters
in a string

"Nik".
length;

3

.substring
(start, end)

Extracts portion of
the string beginning
from position start
to end. Position
refers to the loca-
tion between each
character, and starts
before the first char-
acter with zero.

var name=
"Inbox";name.
substring
(2,5);

box

 When using a string, or assigning a variable to a value that is a string, always
enclose the string in quotes.

The .toFixed and .length methods are relatively straightforward, but
the .substring method can be a little confusing. The starting and ending
positions used in .substring(start, end) do not reference actual char-
acters, but instead reference the space between each character. Figure 9-5
shows how the start and end position works. The statement "Inbox".
substring(2,5) starts at position 2, which is between "n" and "b", and
ends at position 5 which is after the "x".

Figure 9-5: The .substring method references positions
that are between characters in a string.

146 Part II: Building the Silent and Interactive Web Page

 For a list of additional string and number methods see W3Schools www.
w3schools.com/js/js_number_methods.asp and www.w3schools.
com/js/js_string_methods.asp.

Alerting users and prompting them for input
Displaying messages to the user and collecting input are the beginnings of
the interactivity that JavaScript provides. Although more sophisticated tech-
niques exist today, the alert() method and prompt() method are easy
ways to show a pop-up box with a message, and prompt the user for input.

The syntax for creating an alert or a prompt is to write the method with text
in quotes placed inside the parentheses like so:

alert("You have mail");
prompt("What do you want for dinner?");

Figure 9-6 shows the alert pop-up box created by the alert() method, and
the prompt for user input created by the prompt() method.

Figure 9-6: A JavaScript alert pop-up box and a user prompt.

Naming code with functions
Functions are a way of grouping JavaScript statements, and naming that
group of statements for easy reference with a function name. These state-
ments are typically grouped together because they achieve a specific coding
goal. You can use the statements repeatedly by just writing the function name
instead of having to write the statements over and over again. Functions pre-
vent repetition and make your code easier to maintain.

When I was younger every Saturday morning my mother would tell me to
brush my teeth, fold the laundry, vacuum my room, and mow the lawn.
Eventually, my mother tired of repeating the same list over and over again,
wrote the list of chores on paper, titled it “Saturday chores,” and put it on the
fridge. A function names a group of statements, just like “Saturday chores”
was the name for my list of chores.

http://www.w3schools.com/js/js_number_methods.asp
http://www.w3schools.com/js/js_number_methods.asp
http://www.w3schools.com/js/js_string_methods.asp
http://www.w3schools.com/js/js_string_methods.asp

147 Chapter 9: Adding in JavaScript

Functions are defined once using the word function, followed by a function
name, and then a set of statements inside curly brackets. This is called a func-
tion declaration. The statements in the function are executed only when the
function is called by name. In the following example, I have declared a func-
tion called greeting that asks for your name using the prompt() method,
returns the name you entered storing it in a variable called name, and dis-
plays a message with the name variable using the alert() method:

function greeting() {
 var name=prompt("What is your name?");
 alert("Welcome to this website " + name);
}

greeting();
greeting();

Beneath the function declaration, I have called the function twice, and so I
will trigger two prompts for my name, which are stored in the variable name,
and two messages welcoming the value in the variable name to this website.

 The “+” operator is used to concatenate (combine) strings with other strings,
values, or variables.

Functions can take inputs, called parameters, to help the function run, and
can return a value when the function is complete. After writing my list of
chores, each Saturday morning my mother would say “Nik, do the Saturday
chores,” and when my brother was old enough she would say “Neel, do
the Saturday chores.” If the list of chores is the function declaration, and
“Saturday chores” is the function name, then “Nik” and “Neel” are the param-
eters. Finally, after I was finished, I would let my mom know the chores were
complete, much as a function returns values.

In the following example, I have declared a function called amountdue, which
takes price and quantity as parameters. The function, when called, calcu-
lates the subtotal, adds the tax due, and then returns the total. The func-
tion amountdue(10,3) returns 31.5.

function amountdue(price, quantity) {
 var subtotal=price * quantity;
 var tax = 1.05;
 var total = subtotal * tax;
 return total;
}

alert("The amount due is $" + amountdue(10,3));

 Every opening parenthesis has a closing parenthesis, every opening curly
bracket has a closing curly bracket, and every opening double quote has a
closing double quote. Can you find all the opening and closing pairs in the
example above?

148 Part II: Building the Silent and Interactive Web Page

Adding JavaScript to the web page
The two ways to add JavaScript to the web page are:

 ✓ Embed JavaScript code in an HTML file using the script tag.

 ✓ Link to a separate JavaScript file from the HTML file using the script
tag.

To embed JavaScript code in an HTML file, use an opening and closing
<script> tag, and write your JavaScript statements between the two tags,
as shown in the following example:

<!DOCTYPE html>
<html>
 <head>
 <title>Embedded JavaScript</title>
 <script>
 alert("This is embedded JavaScript");
 </script>
 </head>
 <body>
 <h1>Example of embedded JavaScript</h1>
 </body>
</html>

 The <script> tag can be placed inside the opening and closing <head> tag,
as shown above, or inside the opening and closing <body> tag. There are some
performance advantages when choosing one approach over the other, and you
can read more at http://stackoverflow.com/questions/436411/
where-is-the-best-place-to-put-script-tags-in-html-markup.

The <script> tag is also used when linking to a separate JavaScript file,
which is the recommended approach. The <script> tag includes:

 ✓ A type attribute, which for JavaScript is always set equal to "text/
javascript"

 ✓ A src attribute, which is set equal to the location of the JavaScript file.

<!DOCTYPE html>
<html>
 <head>
 <title>Linking to a separate JavaScript file</title>
 <script type="text/javascript" src="script.js"></script>
 </head>
 <body>
 <h1>Linking to a separate JavaScript file</h1>
 </body>
</html>

http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup
http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup

149 Chapter 9: Adding in JavaScript

 The <script> tag has an opening and closing tag, whether the code is
embedded between the tags or linked to separate file using the src attribute.

Writing Your First JavaScript Program
Practice your JavaScript online using the Codecademy website. Codecademy
is a free website created in 2011 to allow anyone to learn how to code right in
the browser, without installing or downloading any software. Practice all of the
tags (and a few more) that you learned in this chapter by following these steps:

 1. Open your browser, go to www.dummies.com/go/codingfd, and
click on the link to Codecademy.

 2. Sign in to your Codecademy account.

 Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

 3. Navigate to and click on Getting Started with Programming.

 4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the
site.

 5. Complete the instructions in the main coding window.

 6. After you have finished completing the instructions, click the Save
and Submit Code button.

 If you have followed the instructions correctly, a green checkmark
appears and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

Working with APIs
Although APIs (application programming interfaces) have existed for decades,
the term has become popular over the last few years as we hear more con-
versation and promotion around their use. Use the Facebook API! Why doesn’t
Craigslist have an API? Stripe’s entire business is to allow developers to accept
payments online using its payments API.

Many people use the term API, but few understand its meaning. This section
will help clarify what APIs do and how they can be used.

http://www.dummies.com/go/codingfd

150 Part II: Building the Silent and Interactive Web Page

What do APIs do?
An API allows Program A to access select functions of another separate
Program B. Program B grants access by allowing Program A to make a
data request in a structured, predictable, documented way, and Program B
responds to this data request with a structured, predictable, documented
response, as follows (see Figure 9-7):

 ✓ It’s structured because the fields in the request and the data in the response
follow an easy-to-read standardized format. For example, the Yahoo
Weather API data response includes these selected structured data fields:

 "location": {
 "city": "New York",
 "region": "NY"
 },
 "units": {
 "temperature": "F"
 },
"forecast": {
 "date": "29 Oct 2014",
 "high": "68",
 "low": "48",
 "text": "PM Showers"
 }

 See the full Yahoo Weather API response by visiting http://
developer.yahoo.com/weather/.

 ✓ It’s predictable because the fields that must be included and can be
included in the request are pre-specified, and the response to a success-
ful request will always include the same field types.

 ✓ It’s documented because the API is explained in detail. Any changes usu-
ally are communicated through the website, social media, email, and
even after the API changes, there is often a period of backward compat-
ibility when the old API requests will receive a response. For example,
when Google Maps issued version 3 of their API, version 2 still operated
for a certain grace period.

Figure 9-7: An API allows two separate programs to talk
to each other.

151 Chapter 9: Adding in JavaScript

Above you saw a weather API response, so what would you include in a
request to a weather API? The following fields are likely important to include:

 ✓ Location, which can potentially be specified by using zip code, city and
state, current location in latitude and longitude coordinates, or IP address.

 ✓ Relevant time period, which could include the instant, daily, three day,
weekly, or 10-day forecast.

 ✓ Units for temperature (Fahrenheit or Celsius) and precipitation (inches
or centimeters).

 These fields in our request just specify the desired type and data format. The
actual weather data would be sent after the API knows your data preferences.

Can you think of any other factors to consider when making the request? Here
is one clue — imagine you work for Al Roker on NBC’s Today TV show, and you
are responsible for updating the weather on the show’s website for 1 million
visitors each morning. Meanwhile, I have a website, NikWeather, which aver-
ages 10 daily visitors who check the weather there. The Today website and my
website both make a request to the same weather API at the same time. Who
should receive their data first? It seems intuitive that the needs of 1 million
visitors on the Today website should outweigh the needs of my website’s 10
visitors. An API can prioritize which request to serve first, when the request
includes an API key. An API key is a unique value, usually a long alpha-numeric
string, which identifies the requestor and is included in the API request.
Depending on your agreement with the API provider, your API key can entitle
you to receive prioritized responses, additional data, or extra support.

Can you think of any other factors to consider when making the request? Here
is another clue — is there any difference in working with weather data versus
financial data? The other factor to keep in mind is frequency of data requests
and updates. APIs will generally limit the number of times you can request
data. In the case of a weather API, maybe the request limit is once every
minute. Related to how often you can request the data is how often the data
is refreshed. There are two considerations — how often the underlying data
changes, and how often the API provider updates the data. For example, except
in extreme circumstances the weather generally changes every 15 minutes. Our
specific weather API provider may update its weather data every 30 minutes.
Therefore, you would only send an API request once every 30 minutes, because
sending more frequent requests wouldn’t result in updated data. By contrast,
financial data such as stock prices and many public APIs, which change mul-
tiple times per second, allow one request per second.

Scraping data without an API
In the absence of an API, those who want data from a third-party website
create processes to browse the website, search and copy data, and store it
for later use. This method of data retrieval is commonly referred to as screen

152 Part II: Building the Silent and Interactive Web Page

scraping or web scraping. These processes, which vary in sophistication from
simple to complex, include:

 ✓ People manually copying and pasting data from websites into a data-
base: Crowdsourced websites, such as www.retailmenot.com recently
listed on the NASDAQ stock exchange, obtain some data in this way.

 ✓ Code snippets written to find and copy data that match pre-set pat-
terns: The pre-set patterns are also called regular expressions, which
match character and string combinations, and can be written using web
languages like JavaScript or Python.

 ✓ Automated software tools which allow you to point and click the fields
you want to retrieve from a website: For example, www.kimonolabs.
com is one point-and-click solution, and when FIFA World Cup 2014
lacked a structured API, kimonolabs.com extracted data, such as
scores, and made it easily accessible.

The advantage of screen scraping is that the data is likely to be available
and with less restrictions because it is content that regular users see. If an
API fails, it may go unnoticed and depending on the site take time to fix. By
contrast, the main website failing is usually a top priority item, and fixed
as soon as possible. Additionally, companies may enforce limits on data
retrieved from the API that are rarely seen and harder to enforce when
screen scraping.

The disadvantage of screen scraping is that the code written to capture data
from a website must be precise and can break easily. For example, a stock
price is on a web page in the second paragraph, on the third line, and is the
fourth word. The screen scraping code is programmed to extract the stock
price from that location, but unexpectedly the website changes its layout
so the stock price is now in the fifth paragraph. Suddenly, the data is inac-
curate. Additionally, there may be legal concerns with extracting data in this
way, especially if the website terms and conditions prohibit screen scraping.
In one example, Craigslist terms and conditions prohibited data extraction
through screen scraping, and after litigation a court banned a company
which accessed Craigslist data using this technique.

Researching and choosing an API
For any particular data task there may be multiple APIs that can provide you
with the data you seek. The following are some factors to consider when
selecting an API for use in your programs:

 ✓ Data availability: Make a wish list of fields you want to use with the API,
and compare it to fields actually offered by various API providers.

 ✓ Data quality: Benchmark how various API providers gather data, and
the frequency with which the data is refreshed.

http://www.retailmenot.com
http://www.kimonolabs.com
http://www.kimonolabs.com
http://www.kimonolabs.com

153 Chapter 9: Adding in JavaScript

 ✓ Site reliability: Measure site uptime because regardless of how good the
data may be, the website needs to stay online to provide API data. Site
reliability is a major factor in industries like finance and healthcare.

 ✓ Documentation: Review the API documentation for reading ease and
detail so you can easily understand the API features and limitations
before you begin.

 ✓ Support: Call support to see response times and customer support
knowledgeability. Something will go wrong and when it does you want to
be well supported to quickly diagnose and solve any issues.

 ✓ Cost: Many APIs provide free access below a certain request threshold.
Investigate cost structures if you exceed those levels so you can prop-
erly budget for access to your API.

Using JavaScript Libraries
A JavaScript library is pre-written JavaScript code that makes the develop-
ment process easier. The library includes code for common tasks that has
already been tested and implemented by others. To use the code for these
common tasks, you only need to call the function or method as defined in the
library. Two of the most popular JavaScript libraries are jQuery and D3.js.

jQuery
jQuery uses JavaScript code to animate web pages by modifying CSS on the
page, and to provide a library of commonly used functions. Although you
could write JavaScript code to accomplish any jQuery effect, jQuery’s biggest
advantage is completing tasks by writing fewer lines of code. As the most
popular JavaScript library today, jQuery is used on the majority of top 10,000
most visited websites. Figure 9-8 shows a photo gallery with jQuery transi-
tion image effects.

D3.js
D3.js is a JavaScript library for visualizing data. Just like with jQuery, similar
effects could be achieved using JavaScript, but only after writing many more
lines of code. The library is particularly adept at showing data across mul-
tiple dimensions, and creating interactive visualizations of datasets. The cre-
ator of D3.js is currently employed at The New York Times, which extensively
uses D3.js to create charts and graphs for online articles. Figure 9-9 is an
interactive chart showing technology company IPO value and performance
over time.

154 Part II: Building the Silent and Interactive Web Page

Figure 9-8: Photo gallery with jQuery transition image effects triggered
by navigation arrows.

Figure 9-9: An IPO chart showing the valuation of the Facebook IPO
relative to other technology IPOs.

155 Chapter 9: Adding in JavaScript

Searching for Videos with YouTube’s API
Practice accessing APIs using the Codecademy website. Codecademy is a
free website created in 2011 to allow anyone to learn how to code right in the
browser, without installing or downloading any software. Practice all of the
tags (and a few more) that you learned in this chapter by following these steps:

 1. Open your browser, go to www.dummies.com/go/codingfd, and
click on the link to Codecademy.

 2. Sign in to your Codecademy account.

 Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

 3. Navigate to and click on How to use APIs with JavaScript, and then
Searching for YouTube Videos.

 4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the
site.

 5. Complete the instructions in the main coding window.

 6. After you have finished completing the instructions, click the Save
and Submit Code button.

 If you have followed the instructions correctly, a green checkmark
appears and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

http://www.dummies.com/go/codingfd

156 Part II: Building the Silent and Interactive Web Page

Part III
Putting Together a

Web Application

 To see how to build your own app using geolocation, check out www.dummies.
com/extras/coding.

http://www.dummies.com/extras/coding
http://www.dummies.com/extras/coding

In this part . . .
 ✓ Plan to bring your first web application to life.

 ✓ Meet the people who help build web applications.

 ✓ Research each component of your first web application.

 ✓ Build your web application with offers based on location.

 ✓ Debug the errors in your first web application.

10
Building Your Own App

In This Chapter
▶ Completing a case study using an app

▶ Understanding the process of creating an app to solve a problem

▶ Discovering the various people that help create an app

If you have a dream, you can spend a lifetime . . . getting ready for it. What
you should be doing is getting started.

—Drew Houston

I
f you have read (or skimmed) the previous chapters you now have enough
HTML, CSS, and JavaScript knowledge to write your own web application.

To review, HTML puts content on the web page, CSS styles that content, and
JavaScript allows for interaction with that content.

You may feel like you don’t have enough coding knowledge to create an app,
but I promise that you do. Besides, the only way to know for certain is to get
started and try. In this chapter, you come to better understand the app you are
going to build, and the basic steps to create that app. Developers often begin
with just the information presented in this chapter and are expected to create
a prototype. After reading this chapter think about how you would build the
app, and then refer to chapters that follow for more details on each step.

Building a Location-Based Offer App
Technology can provide developers (like you) one of the most valuable
pieces of information about your users — their current location. With mobile
devices, such as cell phones and tablets, you can even find a user’s location
when they are on-the-go. Although you likely have used an app to retrieve

160 Part III: Putting Together a Web Application

the time, weather, or even driving directions, you may never have received
an offer on your phone to come into a store while walking down the street or
driving in a car. Imagine passing by a Mexican restaurant during lunch time
and receiving an offer for a free taco. I’m hungry, so let’s get started!

Understanding the situation
The following is a fictitious case study. Any resemblance to real companies or
events is coincidental.

The McDuck’s Corporation is one of the largest fast food restaurants in the
world, specializing in selling hamburgers in a restaurant called McDuck’s.
The company has 35,000 of these restaurants which serve 6.5 million burg-
ers every day to 70 million people in over 100 countries. In September 2014,
McDuck’s experienced its worst sales decline in over a decade. After many
meetings, the executive team decided that the key to improving sales would
be increasing restaurant foot traffic. “Our restaurant experience, with burger
visuals and french-fry aromas, is the best in the industry — once a customer
comes in it is a guaranteed sale,” says McDuck’s CEO Duck Corleone. To
promote restaurant visits, McDuck’s wants a web application so customers
can check-in to their favorite store, and receive an offer or coupon if they are
close to a restaurant. “Giving customers who are 5 or 10 minutes away from a
restaurant an extra nudge may result in a visit. Even if customers use this app
while at the restaurant, this will allow us to maintain a relationship with them
long after they have left,” says Corleone.

The McDuck Corporation wants to run a pilot to better understand whether
location based offers will increase sales. Your task is to:

 ✓ Create an app that will prove whether location based offers are effective.

 ✓ Limit the app to work on just one McDuck’s store of your choice.

 ✓ Obtain the location of customers using the app.

 ✓ Show offers to those customers who are five or ten minutes from the store.

McDuck’s currently has a website and a mobile app, but both only show
menu and store location information. If this pilot is successful, McDuck’s will
incorporate your code into its website and mobile app.

Plotting your next steps
Now that you understand McDuck’s request, you likely have many questions:

 ✓ What will the app look like?

 ✓ What programming languages will I use to create the app?

161 Chapter 10: Building Your Own App

 ✓ How will I write code to locate a user’s present location?

 ✓ What offer will I show to a user who is 5 to 10 minutes away?

These are natural questions to ask, and to make sure you are asking all the
necessary questions upfront in an organized way you will follow a standard
development process.

Following an App Development Process
Building an app can take as little time as an hour or as long as decades. For
most startups, the development processes for the initial product prototype
averages one or two months to complete, whereas enterprise development
processes for commercial grade software takes six months to a few years to
complete, depending on the industry and the project’s complexity. A brief
overview of the entire process is described here, and then each step is cov-
ered in additional detail as you build the app for McDuck’s.

 An app can be a software program that runs on desktop or mobile devices.

The four steps you will follow when building your app are:

 ✓ Planning and discovery of app requirements

 ✓ Researching of technology needed to build the app, and designing the
app look and feel

 ✓ Coding your app using a programming language

 ✓ Debugging and testing your code when it behaves differently than you
intended

In total, you should plan to spend between two to five hours building this
app. As shown in Figure 10-1, planning and research alone will take more than
half your time, especially if this is the first time you are building an app. You
might be surprised to learn that actually writing code will take a relatively
small amount of time, with the rest of your time spent debugging your code
to correct syntax and logic errors.

 App development processes have different names, and the two biggest pro-
cesses are called waterfall and agile. Waterfall is a set of sequential steps fol-
lowed to create a program, whereas agile is a set of iterative steps followed to
create a program. Additional discussion can be found in Chapter 3.

162 Part III: Putting Together a Web Application

Figure 10-1: Time allocated to complete the four
steps in the app development process.

Planning Your First Web Application
You or your client has a web app idea, and planning is the process of put-
ting those ideas down on paper. Documenting all the features that will go
into the app is so important, because as the cartoon in Figure 10-2 shows
for web development, and in computer science generally, it can be difficult
to understand upfront what features are technically easy versus difficult to
implement.

The planning phase also facilitates an upfront conversation around time,
project scope, and budget, where a common saying is to “pick two out of the
three.” In some situations, such as with projects for finance companies, time-
lines and project scope may be legally mandated or tied to a big client, and
cannot be changed, and so additional budget may need to set aside to meet
both. In other situations, such as projects for small startups, resources are
scarce so it’s more common to adjust the project scope or extend the time-
line than to increase the project’s budget. Before writing any code, it will be
helpful to understand which dimensions can be flexed and which are fixed.

Finally, although you will likely play multiple roles in the creation of this web
app, in real life teams of people help bring to life the web apps you use every
day. You will see the roles people play, and how everyone works together.

163 Chapter 10: Building Your Own App

Figure 10-2: It can be difficult to separate technically
easy and difficult projects.

Exploring the Overall Process
The purpose of the planning phase is to:

 ✓ Understand the client goals: Some clients may want to be the first to
enter an industry with an app, even if it means sacrificing quality. Other
clients may require the highest standards of quality, reliability, and sta-
bility. Similarly, some others may prioritize retaining existing customers,
while others want to attract new customers. All these motivations affect
the product design and implementation in big and small ways.

 If you are a developer in a large company, your client is usually not the
end user but whoever in your internal team must greenlight the app
before it is released to the public. At many companies, such as Google,
Yahoo, and Facebook, most projects do not pass internal review and are
never released to the public.

164 Part III: Putting Together a Web Application

 ✓ Document product and feature requests: Clients usually have an overall
product vision, a list of tasks the user must be able to complete with the
app. Often, clients have features in mind that would help accomplish
those tasks.

 ✓ Agree on deliverables and a timeline: Almost every client will imagine
a much bigger product than you have time to build. For a developer, it is
extremely important to understand what features are absolutely neces-
sary and must be built, and what features are “nice to have” if there is
time remaining at the end of the project. If every feature is a “must have”
you need to either push the client to prioritize something, or make sure
you have given yourself enough time.

 Estimating the time to complete software projects is one of the most dif-
ficult project management tasks. There is greater variability and uncer-
tainty than physical construction projects, like building a house, or
intellectual projects, like writing a memo. The most experienced devel-
opers at the world’s best software companies routinely miss estimates,
so don’t feel bad if completion takes longer than you think. Your estima-
tion skill will improve with time and practice.

 After separating the necessary features from the “nice to have,” you
should decide which features are easy and which are complex. Without
previous experience this might seem difficult, but think about whether
other applications have similar functionality. You should also try searching
the web for forum posts, or products that have the feature. If no product
implements the feature, and all online discussion portray the task as dif-
ficult it would be worthwhile agreeing up-front on an alternative.

 ✓ Discuss tools and software you will use to complete the project, and
your users will use to consume the project: Take the time to understand
your client and user’s workflow to avoid surprises from incompatible
software. Web software usually works across a variety of devices, but
older operating systems and browsers can cause problems. Defining at
the start of the project exactly which browser versions you will support
(such as Internet Explorer 9 and later), and which devices (such as desk-
top and iPhone only) will save development and testing time. Usually,
these decisions are based on how many existing users are on those plat-
forms, and many organizations will support a browser version if used by
a substantial amount of the user base — usually at least five percent.

 Browser incompatibilities are decreasing as the latest desktop and mobile
browsers updates themselves, and are now easier to keep up-to-date.

165 Chapter 10: Building Your Own App

Meeting the People Who Bring a Web App to Life
You will be able to complete the app in this book by yourself, but the apps
you build at work or use every day, like Google Maps or Instagram, are cre-
ated by teams of people. Teams for a single product can vary in size, reaching
upwards of 50 people, and each person plays a specific role across areas like
design, development, product management, and testing. In smaller compa-
nies, the same person may perform multiple roles, while at larger companies
the roles become more specialized and individual people perform each role.

Creating with designers
Before any code has been written, designers work to create the site look
and feel through layout, visuals, and interactions. Designers answer simple
questions like “should the navigational menu be at the top of the page or
the bottom?” to more complex questions like “how can we convey a sense
of simplicity, creativity, and playfulness?” In general, designers answer these
types of questions by interviewing users, creating many designs of the same
product idea, and then making a final decision by choosing one design. Good
design can greatly increase adoption of a product or use of site, and products
like Apple’s iPhone and Airbnb.com. (See Figure 10-3.)

When building a website or app, you may decide you need a designer, but
keep in mind within design there are multiple roles that designers play. The
following roles are complementary, and may all be done by one person or by
separate people:

 ✓ User interface (UI) and user experience (UX) designers deal primarily
with “look and feel” and with layout. When you browse a website, for
example Amazon, you may notice that across all pages the navigation
menus, and content are in the same place, and use identical or very simi-
lar font, buttons, input boxes, and images. The UI/UX designer thinks
about the order in which screens are displayed to the user, along with
where and how the user clicks, enters text, and otherwise interacts with
the website. If you eavesdropped on UI/UX designers, you may hear con-
versation like, “his page is too busy with too many call to actions. Our
users don’t make this many decisions anywhere else on the site. Let’s
simplify the layout by having just a single Buy button so anyone can
order in just one click.”

 ✓ Visual designers deal primarily with creating the final graphics used on
a website, and is the role most closely associated with “designer”. The
visual designer creates final versions of icons, logos, buttons, typogra-
phy, images. For example, look at your Internet browser — the browser
icon, the Back, Reload, and Bookmark buttons are all created by a visual

166 Part III: Putting Together a Web Application

designer, and anyone using the browser for the first time will know what
the icons mean without explanation. If you eavesdropped on visual
designers, you may hear conversation like, “The color contrast on these
icons is too light to be readable, and if including text with the icon, let’s
center-align the text below the icon instead of above it.”

 ✓ Interaction designers deal primarily with interactions and animations
based on user input and situation. Initially, interaction design were lim-
ited to keyboard and mouse interactions, but today touch sensors on
mobile devices have created many more potential user interactions. The
interaction designer thinks about how to use the best interaction so the
user is able to complete a task as easily as possible. For example, think
about how you check your email on your mobile phone. For many years,
the traditional interaction was to see a list of messages, click on a mes-
sage, and then click on a button to reply, flag, folder, or delete the mes-
sage. In 2013, interaction designers rethought the email app interaction,
and created an interaction so users could swipe their finger left or right
to delete or reply to email messages instead of having to click through
multiple menus. If you eavesdropped on interaction designers, you may
hear conversation like, “While users are navigating with our maps app,
instead of letting us know they are lost by clicking or swiping, maybe
they can shake the phone and we instantly have a location specialist call
them.”

Figure 10-3: Jonathan Ive, SVP of Design at Apple,
is credited for Apple’s design successes.

167 Chapter 10: Building Your Own App

 If creating an app was like making a movie, designers would be screenwriters.

Coding with front- and back-end developers
After the design is complete, the front-end and back-end developers make
those designs a reality. Front-end developers, such as Mark Otto and Jacob
Thornton (see Figure 10-4), code in HTML, CSS, and JavaScript, and convert
the design into a user interface. These developers write the same code that
you have been learning throughout this book, and ensure the website looks
consistent across devices (desktop, laptop, and mobile), browsers (Chrome,
Firefox, Safari, and so on), and operating systems (Windows, Mac, and so on).
All these factors, especially increased adoption of mobile device, result in
thousands of combinations that must be coded for and tested because every
device, browser, and operating system renders HTML and CSS differently.

Figure 10-4: Mark Otto and Jacob Thornton created
Bootstrap, the most popular front-end framework.

 If creating an app was like making a movie, front-end developers would be the
starring actors.

Back-end developers such as Yukihiro Matsumoto (see Figure 10-5) add func-
tionality to the user interface created by the front-end developers. Back-end
developers ensure everything that’s not visible to the user and behind the
scenes is in place for the product to work as expected. Back-end developers
use server-side languages like Python, PHP, and Ruby to add logic around
what content to show, when, and to whom. In addition, they use databases to
store user data, and create servers to serve all of this code to the users.

168 Part III: Putting Together a Web Application

 If creating an app was like making a movie, back-end developers would be the
cinematographers, stunt coordinators, makeup artists, and set designers.

Figure 10-5: Yukihiro Matsumoto created Ruby,
a popular server-side language used to create
websites.

Managing with product managers
Product managers help define the product to be built, and manage the prod-
uct development process. When engineering teams are small (such as fifteen
people or less) communication, roles, and accountability are easily managed
internally without much formal oversight. As engineering teams grows, the
overhead of everyone communicating with each other also grows, and with-
out some process can become unmanageable, leading to miscommunication
and missed deadlines. Product managers serve to lessen the communication
overhead, and when issues arise as products are being built decide whether
to extend timelines, cut scope, or add more resources to the team. Product
managers are often former engineers, who have a natural advantage in help-
ing solve technical challenges that arise, but non-technical people are also
assuming the role with success. Usually, no engineers report to the product
manager, causing some to comment that product managers have “all of the
responsibility, and none of the authority.” One product manager wielding
great responsibility and authority is Sundar Pichai, who originally was a prod-
uct manager for the Google toolbar, and recently was appointed to oversee
many of Google’s products, including search, Android, Chrome, maps, ads,
and Google+. (See Figure 10-6.)

169 Chapter 10: Building Your Own App

Figure 10-6: Sundar Pichai oversees almost
every major Google product.

Testing with quality assurance
Testing is the final step of the journey after an app or website has been built.
As a result of the many hands that helped with production, the newly created
product will inevitably have bugs. Lists are made of all the core app user
tasks and flows, and human testers along with automated programs go
through the list over and over again on different browsers, devices, and oper-
ating systems to find errors. Testers compile the newly discovered bugs, and
send them back to the developers, who prioritize which bugs to squash first.
Trade-offs are always made between how many users are affected by a bug,
the time it takes to fix the bug, and the time left until the product must be
released. The most important bugs are fixed immediately, and minor bugs are
scheduled to be fixed with updates or later released. Today, companies also
rely on feedback systems and collect error reports from users, with feedback
forms and in some cases through automated reporting.

170 Part III: Putting Together a Web Application

11
Researching Your First

Web Application
In This Chapter
▶ Dividing an app into smaller pieces, or steps

▶ Using code from various sources to perform those steps

▶ Creating app designs by reviewing and improving upon existing solutions

If we knew what it was we were doing, it would not be called research.

—Albert Einstein

W
ith the basic requirements defined, the next step is researching how
to build the application. Apps consist of two main parts: functionality

and form (design). For each of these parts, you must:

 ✓ Divide the app into steps: Although it’s good practice to divide anything
you are going to build into steps, diving apps into manageable pieces
is an absolute necessity for large software projects with many people
working across multiple teams.

 ✓ Research each step: When doing your research, the first question to ask
is whether you must build a solution yourself or use an existing solution
built by someone else. Building your own solution usually is the best
way to directly address your need, but it takes time, whereas implement-
ing someone else’s solution is fast but may only meet part of your needs.

 ✓ Choose a solution for each step: You should have all the solutions
selected before writing any code. For each step, decide whether you
are writing your own code, or using pre-built code. If you are not writ-
ing the code yourself, compare a few options so you can pick one with
confidence.

172 Part III: Putting Together a Web Application

Dividing the App into Steps
The biggest challenge with dividing an app into steps is knowing how big or
small to make each step. The key is to make sure each step is discrete and
independent. To test whether you have the right number of steps, ask yourself
if someone else could solve and complete the step with minimal guidance.

Finding your app’s functionality
Recall that McDuck’s wants to promote restaurant visits by using a web appli-
cation that sends customers an offer or coupon if they’re close to a restau-
rant. To make this job easier, you are to create the app for customers visiting
just one store.

Your first move is to break down this app into steps needed for the app to
function. These steps should not be too specific: Think of them in broad
terms, as if you were explaining the process to a kindergartner. With a pen
and paper, write down these steps in order. Don’t worry about whether each
step is correct, as your skill will improve with practice and time. To help you
start, here are some clues:

 ✓ Assume the McDuck’s app activates when the customer presses a button
in the app to check-in to a store.

 ✓ When the button is pressed, what are the two locations that the app
must be aware of?

 ✓ When the app is aware of these two locations, what calculation involving
these two locations must the computer make?

 ✓ After computing this calculation, what effect will the computer show?

Fill out your list now, and don’t continue reading until you’ve completed it.

Finding your app’s functionality: My version
The following is my version of the steps needed to make the app function
according to McDuck’s specifications. My steps may differ from yours, of
course, and this variation is completely fine. The important lesson here is that
you understand why each of these steps is necessary for the app to work:

 1. The customer presses a button on the app.

 The instructions above said to initiate the app with the press of a button.
That being said, there are two other options for launching the app:

 • Executing the steps continuously in the background, regularly check-
ing the customer’s location. Currently, this technique places a heavy
drain on the battery, and is not usually recommended.

 • Executing the steps only when the customer opens the app.

173 Chapter 11: Researching Your First Web Application

 2. After the button is pressed, find the customer’s current location.

 The customer’s location is one of the two locations you need to identify.
The customer’s current location is not fixed, and it changes, for exam-
ple, when the customer is walking or driving.

 3. Find the fixed location of a McDuck’s store.

 The McDuck’s restaurant location is the other location you need to
identify. Because this is a pilot, you only need to identify the location
for one McDuck’s restaurant, a fixed location that will not change.
Hypothetically, assuming that the pilot is successful and that McDuck’s
wants to implement this app for users visiting all 35,000 restaurants,
you’d have to track many more restaurant locations. Additionally, in a
larger rollout the locations would need to be updated regularly, as new
restaurants open, and as existing restaurants move or close.

 4. Calculate the distance between the customer’s current location and
the McDuck’s restaurant, and name this distance Customer Distance.

 This step calculates how far away the customer is from the McDuck’s
restaurant. One complexity to be aware of — but not to worry about
right now — is the direction in which the customer is moving. Although
McDuck’s did not specify whether they want to display offers to custom-
ers heading both toward and away from their store, this may be a ques-
tion worth asking anyway.

 5. Convert five to ten minutes of customer travel into a distance called
Threshold Distance.

 McDuck’s CEO Duck Corleone wants to target customers who are five
to ten minutes away from the store. Distance, in this sense, can be mea-
sured in both time and in units of distance such as miles. For consis-
tency, however, plan to convert time into distance — translate those five
to ten minutes into miles. The number of miles traveled in this time will
vary by common mode of transportation and by location, because five
to ten minutes of travel in New York City won’t get you as far as five to
ten minutes of travel in Houston, Texas.

 6. If the Customer Distance is less than the Threshold Distance, then
show an offer to the customer.

 Following McDuck’s specifications, the app should attract customers to
come to the store, and so the app only shows offers to customers who
are close to the restaurant. Another complexity to be aware of — but
not to worry about right now — is that the Customer Distance can
change quickly. Customers traveling by car could easily be outside the
Threshold Distance one minute and inside it the next. Figure 11-1 shows
the customers we want to target, relative to a fixed restaurant location.

174 Part III: Putting Together a Web Application

Figure 11-1: Customers we want to target based on a fixed
restaurant location.

 Many software logic mistakes happen at this stage, because the programmer
forgets to include a step. Take your time reviewing these steps and under-
standing why each step is essential, and why this list of steps is the minimum
necessary to operate the app.

Finding your app’s form
After you settle on what the app will do, you must find the best way to pres-
ent this functionality to users. There are many ways that users can interact
with your app’s functionality, so picking out the right approach can be tricky.
Designing an app can be fun and rewarding, but it’s hard work. After the first
iteration of an app’s design, developers are often disappointed: Users will
rarely use the product as intended and will find many parts of the app con-
fusing. This is natural — especially because at this stage you’re often creating
something or having the user do something that hasn’t been done before.
Your only choice is to keep trying, to keep testing, modifying, and creating
new designs until your app is easy for everyone to use. Although the iPod
is a hardware product, the approach Apple took to perfect it is basically
the same. Figure 11-2 shows how the design can change over time, with the
button layout changing from the original click-wheel to individual horizontal
buttons, and finally back to the click-wheel again.

175 Chapter 11: Researching Your First Web Application

Figure 11-2: Apple’s iPod design changes over multiple product releases.

The following list describes a basic design process to create the look and feel
of your app:

 1. Define the main goals of your app.

 If you were at a party, and you had to explain what your app did in one
sentence, what would it be? Some apps help you hail a taxi, reserve a
table at a restaurant, or book a flight. Famously, the goal for the iPod
was 1,000 songs in your pocket accessible within three clicks, which
helped create an easy to use user interface. An explicitly defined goal
will serve as your north star, helping you to resolve questions and forc-
ing you to keep trying.

 2. Break these goals into tasks.

 Each goal is the sum of many tasks, and listing them will help you design
the shortest path to completing each task and ultimately the goal. For
instance, if your app’s goal is for a user to book a flight, then the app will
likely need to record desired flying times and destinations, search and
select flights departing during those times, record personal and payment
information, present seats for selection, and confirm payment of the flight.
Sometimes designers will segment tasks by user persona, another name

176 Part III: Putting Together a Web Application

for the person completing the task. For example, this app may be used
by business and leisure travelers. Leisure travelers may need to do heavy
searching and pick flights based on price, while business travelers mostly
rebook completed flights and pick flights based on schedule.

 3. Research the flows and interactions necessary to accomplish these tasks.

 For example, our flight app requires the user to select dates and times.
One immediate question is whether the date and time should be two sepa-
rate fields or one field, and on a different or same screen as the destina-
tion. Try to sketch what feels intuitive for you, and research how others
have solved this problem. You can use Google to find other travel apps,
list all the various designs, and either pick or improve upon the design
you like best. Figure 11-3 shows two different approaches to flight search.
Similarly, you can also use design-centric sites, such as www.dribbble.
com, to search designer portfolios for features and commentary.

Figure 11-3: Different designs for flight reservation from Hipmunk.com and United Airlines.

 4. Create basic designs, called wireframes, and collect feedback.

 Wireframes, as shown in Figure 11-4, are low fidelity website drawings which
show structurally how site content and interface interact. Wireframes are
simple to create, but should have enough detail to elicit feedback from
others. Many wireframe tools use a simple almost pencil-like drawing to
help anyone providing comments to focus on the structural and bigger
picture design, instead of smaller details like button colors or border
thicknesses. Feedback at this stage to refine design is so important
because the first wireframe likely does not address users’ main concerns
and overcomplicates the tasks a user needs to do.

http://www.dribbble.com
http://www.dribbble.com

177 Chapter 11: Researching Your First Web Application

 With mobile devices increasing in popularity relative to desktop devices,
remember to create mobile and desktop versions of your wireframes.

Figure 11-4: A wireframe for an email client.

 5. Create mock-ups and collect more feedback. (See Figure 11-5.)

 After you have finished talking to your client and to users, it is time
to create mock-ups, which are high fidelity website previews. These
designs have all the details a developer needs to create the website
including final layout, colors, images, logos, and sequences of screens
to show when the user interacts with the web page. After creating a
mock-up, plan to collect more feedback.

Figure 11-5: A mock-up for an email client.

 Collecting feedback at every stage of the design process might seem
unnecessary, but it is much easier to explore different designs and make
changes before any code has been written.

178 Part III: Putting Together a Web Application

 6. Send the final file to the developers.

 After the mock-up has been created and approved, you typically send a
final image file to the developer. Although this file could be in any image
file format like PNG or JPG, the most popular file format used by design-
ers is PSD, created using Adobe Photoshop.

Finding your app’s form: The McDuck’s
Offer App design
In this section you follow the design process described in the previous sec-
tion to create a simple design for the McDuck’s Offer app. As part of the
design, you should do the following things:

 1. Define the main goals of your app.

 The main goal for McDuck’s is to use offers to attract customers to
restaurants.

 2. Break these goals into tasks.

 Customers need to view the offer, navigate to the store, and use the offer.

 3. Research the flows and interactions needed to accomplish these tasks.

 Because this is the first iteration of the app, let’s focus on just allowing
the customer to view the offer.

 One function that McDuck’s did not specify is the ability to save single-
use coupons and to share general-use coupons. However, when looking
at other apps, like the ones in Figure 11-6, the need for this becomes
more obvious. Also, some similar apps allow the customer to spend
money to buy coupons — maybe this functionality should be added as
well. These questions would be great to present to McDuck’s later.

Figure 11-6: Example flow from deals and offer apps currently in the market.

 The apps in Figure 11-6 also all display various “call to action” buttons to
the user before displaying the deal. Some apps ask the user to check-in
to a location, other apps ask the user to purchase the coupon, and still
others show a collection of new or trending coupons today.

179 Chapter 11: Researching Your First Web Application

 For now, and to keep things simple, let’s assume that our McDuck’s
app has a button that allows customers to check-in to their favorite
McDuck’s location, and when clicked within the target distance the app
displays a general-use coupon that customers receive for free.

 4. Create basic designs, called wireframes, and collect feedback.

 A sample design for the app, based on the look and feel of other apps,
appears in Figure 11-7.

Figure 11-7: A sample wireframe for the
McDuck’s offer app.

 5. Create mock-ups and collect more feedback.

 Ordinarily, you would create mock-ups, which are more polished designs
with real images, from the wireframes and present them to customers
for feedback. In this case, however, the app is simple enough that you
can just start coding.

Identifying Research Sources
Now that you know what your app will do, you can focus on how your app
will do it. After breaking down your app into steps, you go over each step to
determine how to accomplish it. For more complicated apps, developers first
decide which of these two methods is the best way to complete each step:

180 Part III: Putting Together a Web Application

 ✓ Building code from scratch: This is the best option if the functionality in
a particular step is unique or strategically important, an area of strength
for the app, and existing solutions are expensive or non-existent. With this
option, you and developers within the company write the code.

 ✓ Buying or using a pre-existing solution: This is the best option if the
functionality in a particular step is common, non-core technical area
for the app, and existing solutions are competitively priced. With this
option, you and developers working on the app use code written by
external third party developers.

One company that recently made this decision — publicly and painfully — is
Apple with its Maps product. In 2012, after years of using Google Maps on its
mobile devices, Apple decided to introduce its own maps application that it
had been developing for two years. Although the Maps product Apple built
internally turned out to initially be a failure, Apple decided to build its own
mapping application because it viewed mapping capabilities as strategically
important and because turn-by-turn navigation solutions were not available
in the solution provided by Google.

Whether you’re building or buying, research is your next step. Here are some
sources to consider when researching:

 ✓ Search engines: Use Google.com or another search engine to type in
what you are trying to accomplish with each step. One challenge can
be discovering how the task you’re trying to achieve is referred to by
programmers. For instance, if I want to find my current location, I might
enter show my location in an app into a search engine, but this results in
a list of location-sharing apps. After reading a few of the top ten results,
I see that location-tracking is also referred to as geolocation. When I
search again for geolocation the top results include many examples of
code that shows my current location.

 For more generic searches for code examples, try including the name of
the computer language and the word syntax. For example, if you want to
insert an image on a web page, search for image html syntax to find code
examples.

 ✓ Prior commercial and open-source apps: Examining how others built
their apps can give you ideas on how to improve upon what already
exists, and insight into pushing existing technology to the limit to achieve
an interesting effect. For instance, say you wanted to build a mobile app
that recognized TV ads from the “audio fingerprint” of those ads and
directed viewers to a product page on a mobile device. To create this
app, you could build your own audio fingerprinting technology, which
would likely take months or longer to build, or you could partner with
Shazam, a commercial application, or Echoprint, an open-source music
fingerprinting service. Either app can record a 10 to 20-second audio
sample, create a digital fingerprint after overcoming background noise

181 Chapter 11: Researching Your First Web Application

and poor microphone quality, compare the fingerprint to large audio
database, and then return identification information for the audio sample.

 ✓ Industry news and blogs: Traditional newspapers, like the Wall Street
Journal, and tech blogs, like TechCrunch.com, report on the latest inno-
vations in technology. Regularly reading or searching through these sites
is a good way to find others who have launched apps in your space.

 ✓ API directories: You can easily search thousands of APIs for the func-
tionality you need to implement. For example, if you were creating an
app that used face recognition instead of a password, you could search
for face detection APIs and use an API you find instead of trying to build
a face detection algorithm from scratch. Popular API directories include
www.programmableweb.com and www.mashape.com.

 As discussed in Chapter 9, APIs are a way for you to request and receive
data from other programs in a structured, predictable, documented way.

 ✓ User-generated coding websites: Developers in different companies
frequently face the same questions on how to implement functional-
ity for features. Communities of developers online talk about shared
problems and contribute code so anyone can see how these problems
have been solved in the past. You can participate in developer conver-
sation and see the code other developers have written by using www.
stackoverflow.com and www.github.com.

Researching the Steps in the McDuck’s Offer App
To implement the functionality in the McDuck’s Offer app, you broke down
the app into six steps using plain English. Now, research how you can convert
those steps into code using the resources listed in the previous section. Your
app will require HTML to put content on the page, CSS to style that content,
and JavaScript for the more interactive effects. Do your best to research each
of the steps on your own, write down the answers, and then look over the
suggested code in the next section:

 ✓ “The customer presses a button on the app”: This code creates a
button that triggers every subsequent step. Creating a button on a web
page is a very common task, so to narrow down the results search for
html button tag. Review some of the links in the top 10 search results,
and then write down the HTML tag syntax to create a button that says
“McDuck’s Check-in.”

 In your search results, sites like w3schools.com are designed for begin-
ners, and will include example code and simple explanations.

 ✓ “After the button is pressed, find the customer’s current location:” In
web lingo, finding a user’s location is called geolocation. I will provide
you with JavaScript geolocation code, along with an explanation for how

http://www.programmableweb.com
http://www.mashape.com
http://www.stackoverflow.com
http://www.stackoverflow.com
http://www.github.com

182 Part III: Putting Together a Web Application

it works and where I found it. To trigger this JavaScript code, you need
to add an attribute to the HTML button tag to call a JavaScript function
named getlocation().

 As described in Chapter 4, HTML attributes are inserted in the opening
HTML tag.

 Search for html button javascript button on click to find out how to insert
the onclick attribute to your button HTML code. Review the search
results, and then write down the HTML syntax for your button code.

 ✓ “Find the fixed location of a McDuck’s store:” You’ll need a real-world
address to serve as the McDuck’s store. Use a mapping application like
maps.google.com to find the street address of a burger restaurant near
you. Computers typically represent physical addresses using latitude and
longitude numbers instead of street addresses. You can search for web-
sites that convert street addresses into latitude and longitude numbers,
or if you’re using Google Maps, you can find the numbers in the URL,
as shown in Figure 11-8. The first number after the @ sign and up to the
comma is the latitude, and the second number between the two commas
is the longitude. Figure 11-8 shows a McDonald’s store in New York City,
and the latitude is 40.7410344, and the longitude is –73.9880763.

Figure 11-8: Latitude and longitude of a McDonald’s in New York City.

http://maps.google.com

183 Chapter 11: Researching Your First Web Application

 Track down the latitude and longitude numbers for the burger restau-
rant of your choice, up to seven decimal places, and write them down on
a piece of paper.

 Include a negative sign if you see one, and all seven decimal places for
the greatest accuracy.

 ✓ “Calculate the distance between the customer’s current location
and the McDuck’s restaurant, and name this distance Customer
Distance”: Latitude and longitude are coordinates that represent a loca-
tion on a sphere. The distance along the surface of the sphere between
two sets of latitude and longitude coordinates is calculated using the
Haversine formula. You can find a JavaScript version of the formula at
stackoverflow.com/questions/27928/how-do-i-calculate-
distance-between-two-latitude-longitude-points. This is the
formula you will use to calculate distance when creating the McDuck’s
app, and I will include this code for you.

 Don’t get bogged down in the details of how the Haversine formula
works. Abstraction is an important concept to remember when program-
ming, and this basically means that as long as you understand the inputs
to a system, and the outputs, you don’t really need to understand the
system itself, much as you don’t need to understand the mechanics of
the internal combustion engine in order to drive a car.

 ✓ “Convert five to ten minutes of customer travel into a distance called
Threshold Distance”: Using the most common method of transporta-
tion in your current city, write down the number of miles you could you
travel, on average, in five to ten minutes.

 ✓ “If the Customer Distance is less than the Threshold Distance then
show an offer to the customer”: The two pieces to research for this step
are the conditional statement that decides when to show the offer to the
consumer, and the actual offer:

 • The conditional statement: This is written in JavaScript using an
if-else statement. If the customer is within the threshold distance,
then it shows the offer; otherwise (else) it shows another message. To
review the if-else syntax, search Google or another search engine for
JavaScript if-else statement syntax (or refer to Chapter 9 to review the
coverage of the if-else statement syntax there).

 • The offer to show to the consumer: The easiest way to show an offer
is to use the JavaScript alert(). Search for JavaScript alert syntax.

 After you’ve conducted your searches, write down your if-else state-
ment with a text alert() for a free burger if the customer is within the
Threshold Distance, and a text alert() notifying the customer they
have checked in.

http://stackoverflow.com/questions/27928/how-do-i-calculate-distance-between-two-latitude-longitude-points
http://stackoverflow.com/questions/27928/how-do-i-calculate-distance-between-two-latitude-longitude-points

184 Part III: Putting Together a Web Application

 When you have the if-else statement working, you can replace the
text alert() with an image. Search http://images.google.com for
a burger coupon image. After you find the image, left-click on it from the
image grid in the search results, and left-click again on View Image
button. When the image loads the direct link to the image will be in the
URL address bar in the browser. The code to insert the image is shown
in Chapter 4.

Choosing a Solution for Each Step
With your research finished, it’s time to find the best solution. If multiple
solutions exist for each step, you now need to choose one. To help you
choose, weigh each of your multiple solutions across a variety of factors,
such as these:

 ✓ Functionality: Will the code you write or pre-built solution you found do
everything you need?

 ✓ Documentation: Is there documentation for the pre-built solution, like
instructions or a manual, that is well written with examples?

 ✓ Community and support: If something goes wrong while writing your
code, is there a community you can turn to for help? Similarly, does the
pre-built solution have support options you can turn to if needed?

 ✓ Ease of implementation: Is implementation as simple as copying a few
lines of code? Or is a more complex setup or an installation of other sup-
porting software necessary?

 ✓ Price: Every solution has a price, whether it is the time spent coding
your own solution or the money paid for someone else’s pre-built code.
Think carefully about whether your time or money is more important to
you at this stage.

The following are suggested solutions for the previous McDuck’s Offer app
research questions. Your answers may vary, so review each answer to see
where your code differs from mine:

 ✓ “The customer presses a button on the app”: The HTML tag syntax to
create a button that says “McDuck’s Check-in” is:

<button>McDuck's Check-in</button>

 The syntax for an HTML button is available here www.w3schools.com/
tags/tag_button.asp.

http://images.google.com
http://www.w3schools.com/tags/tag_button.asp
http://www.w3schools.com/tags/tag_button.asp

185 Chapter 11: Researching Your First Web Application

 ✓ “After the button is pressed, find the customer’s current location”:
The HTML syntax for your button code is:

<button onclick="getLocation()">McDuck's Check-in</button>

 The syntax for calling a JavaScript function by pressing a button is avail-
able here www.w3schools.com/jsref/event_onclick.asp.

 ✓ “Find the fixed location of a McDuck’s store”: I picked a McDonald’s
store in New York City near Madison Square Park whose latitude is
40.7410344 and longitude is –73.9880763. The latitude and longitude for
your restaurant, of course, will likely differ.

 ✓ “Calculate the distance between the customer’s current location and
the McDuck’s restaurant, and name this distance Customer Distance”:
The following is the actual code for the Haversine formula, used to
calculate the distance between two location coordinates, found on
Stackoverflow at stackoverflow.com/questions/27928/how-do-
i-calculate-distance-between-two-latitude-longitude-
points, I modified this code slightly so that it returned miles instead of
kilometers:

function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
 var R = 6371; // Radius of the earth in km
 var dLat = deg2rad(lat2-lat1); // deg2rad below
 var dLon = deg2rad(lon2-lon1);
 var a =
 Math.sin(dLat/2) * Math.sin(dLat/2) +
 Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
 Math.sin(dLon/2) * Math.sin(dLon/2)
 ;
 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
 var d = R * c * 0.621371; // Distance in miles
 return d;
}

function deg2rad(deg) {
 return deg * (Math.PI/180);
}

 An explanation of how this formula works is outside the scope of this
book, but make sure you understand the formula’s inputs (latitude and
longitude) and the output (distance between two points in miles).

 ✓ “Convert five to ten minutes of customer travel into a distance called
Threshold Distance”: In New York City, people usually walk, so trav-
eling for five to ten minutes would take you 0.5 miles, which is my
Threshold Distance.

http://www.w3schools.com/jsref/event_onclick.asp
http://stackoverflow.com/questions/27928/how-do-i-calculate-distance-between-two-latitude-longitude-points
http://stackoverflow.com/questions/27928/how-do-i-calculate-distance-between-two-latitude-longitude-points
http://stackoverflow.com/questions/27928/how-do-i-calculate-distance-between-two-latitude-longitude-points

186 Part III: Putting Together a Web Application

 ✓ “If the Customer Distance is less than the Threshold Distance, then
display an offer to the customer”: The syntax for the if-else state-
ment with the two text alert() methods is:

If (distance < 0.5) {
 alert("You get a free burger");
}
else {
 alert("Thanks for checking in!");
}

 The syntax for a JavaScript if-else statement is available at www.
w3schools.com/js/js_if_else.asp.

http://www.w3schools.com/js/js_if_else.asp
http://www.w3schools.com/js/js_if_else.asp

12
Coding and Debugging Your First

Web Application
In This Chapter
▶ Reviewing code to see pre-existing functionality

▶ Writing code by following steps to create your app

▶ Debugging your code by looking for common syntax errors

Talk is cheap. Show me the code.

—Linus Torvalds

I
t may not feel like it, but you’ve already done the majority of work toward
creating your first web application. You painfully broke down your app

into steps, and researched each step to determine functionality and design.
As Linus Torvalds, creator of the Linux operator system, said, “Talk is cheap.”
So let’s start actually coding.

Getting Ready to Code
Before you start coding, do a few housekeeping items. First, ensure that you
are doing all of the following:

 ✓ Using the Chome browser: Download and install the latest version of
Chome, as it offers the most support for the latest HTML standards, and
is available for download at www.google.com/chrome/browser.

 ✓ Working on a desktop or laptop computer: Although it is possible to
code on a mobile device, it can be more difficult and all layouts may not
appear properly.

http://www.google.com/chrome/browser

188 Part III: Putting Together a Web Application

 ✓ Remembering to indent your code to make it easier to read: One main
source of mistakes is forgetting to close a tag or curly brace, and indent-
ing your code will make spotting these errors easier.

 ✓ Remembering to enable location services on your browser and com-
puter: To enable location services within Chrome, click on the settings
icon (3 horizontal lines on the top right of the browser), and click on
Settings. Then click on the Settings tab, and at the bottom of the screen
click on “Show Advanced settings . . . ” Under the Privacy menu head-
ing, click on “Content settings . . . ” and scroll down to Location and
make sure that “Ask when a site tries to track your physical location”
is selected. You can read more here support.google.com/chrome/
answer/142065.

 To enable location services on a PC no additional setting is necessary,
but on a Mac using OS X Mountain Lion or later, from the Apple menu
choose System Preferences, then click on the Security & Privacy icon,
and click the Privacy tab. Click the padlock icon on the lower left, and
select Location Services, and check Enable Location Services. You can
read more here support.apple.com/en-us/ht5403.

Finally, you need to set up your development environment. To emulate a
development environment without instructional content use Codepen.io.
Codepen.io offers a free stand-alone development environment, and makes
it easy to share your code. Open this URL in in your browser: codepen.io/
nabraham/pen/ExnsA.

Coding Your First Web Application
With the Codepen.io URL loaded, let us review the development environment,
the pre-written code, and the coding steps for you to follow.

Development environment
The Codepen.io development environment, as shown in Figure 12-1, has three
coding panels, one each for HTML, CSS, and JavaScript. There is also a pre-
view pane to see the live results of your code. Using the button at the bottom
of the screen, you can hide any coding panel you aren’t using, and the layout
of the coding panels can be changed.

Signing up for a Codepen.io account is completely optional, and allows you to
fork or save the code you have written, and share it with others.

http://support.google.com/chrome/answer/142065
http://support.google.com/chrome/answer/142065
http://support.apple.com/en-us/ht5403
http://codepen.io/nabraham/pen/ExnsA
http://codepen.io/nabraham/pen/ExnsA

189 Chapter 12: Coding and Debugging Your First Web Application

Figure 12-1: The Codepen.io development environment.

Pre-written code
The Codepen.io development environment includes some pre-written
HTML, CSS, and JavaScript code for the McDuck’s app. The pre-written code
includes code you have seen in previous chapters, and new code that is
explained below:

 ✓ HTML: The HTML code for the McDuck’s app is below, and includes

 • Two sections: an opening and closing <head> tag, and an opening
and closing <body> tag.

 • Inside the <body> tags are <h1> tags to create a heading and
<div> tags.

 • Additional <div> tags to display messages created in the
JavaScript file. The <div> tag is a container that can hold content
of any type. The first <div> tag is used to display your current lon-
gitude and latitude. The second <div> tag can be used to display
additional content to the user.

 • Instructions to insert the HTML button and onclick attribute
code, which you researched in previous chapters.

190 Part III: Putting Together a Web Application

 Here’s the HTML code:

<!DOCTYPE html>
<html>
<head>
 <title>McDuck's App</title>
</head>
<body>
 <h1> McDuck's Local Offers</h1>
<!--1. Create a HTML button that when clicked calls the JavaScript

getLocation() function -->

<!--Two containers, called divs, used to show messages to user -->

 <div id="geodisplay"></div>
 <div id="effect"></div>

</body>
</html>

 ✓ CSS: The CSS code for the McDuck’s app is below, and includes:

 • Selectors for the body, heading, and paragraph tags.

 • Properties and values that set the text alignment, background
color, font family, font color, and font size.

 Once your app is functioning, style the app by adding a McDuck’s color
scheme and background image logo.

 Here’s the CSS:

body {
 text-align: center;
 background: white;
}

h1, h2, h3, p {
 font-family: Sans-Serif;
 color: black;
}

p {
 font-size: 1em;
}

 ✓ JavaScript: The JavaScript code for the McDuck’s app is below. This pre-
written code is a little complex, because it calculates the current loca-
tion of the user using the HTML Geolocation API. In this section I review
the code at a high level so you can understand how it works and where
it came from.

191 Chapter 12: Coding and Debugging Your First Web Application

 The Geolocation API is the product of billions of dollars of research
and is available to you for free. The most recent browsers support
geolocation, though some older browsers do not. At a basic level, code
is written to ask whether the browser supports the Geolocation API,
and, if yes, to return the current location of the user. When called, the
Geolocation API balances a number of data inputs to determine the
user’s current location. These data inputs include GPS, wireless network
connection strength, cell tower and signal strength, and IP address.

 With this in mind, let’s look at the JavaScript code. The JavaScript code
includes two functions, as follows:

 • The getLocation() function:This function determines whether
the browser supports geolocation. It does this by using an if
statement and navigator.geolocation, which is recognized
by the browser as part of the Geolocation API and which returns a
true value if geolocation is supported.

 Here is the getLocation() function:

function getLocation() {
 if (navigator.geolocation){
 navigator.geolocation.getCurrentPosition(showLocation);
 }
}

 • The showLocation() function: When the browser supports geolo-
cation, the next step is to call the showlocation function, which
calculates and displays the user’s location.

 And here is the showLocation() function:

function showLocation(position){
// 2. Hardcode your store location on line 12 and 13, and update the

comment to reflect your McDuck's restaurant address
// Nik's apt @ Perry & W 4th St (change to your restaurant location)

var mcduckslat=40.735383;
var mcduckslon=-74.002994;

// current location
var currentpositionlat=position.coords.latitude;
var currentpositionlon=position.coords.longitude;

// calculate the distance between current location and McDuck's location
var distance=getDistanceFromLatLonInMiles(mcduckslat, mcduckslon,currentpos

itionlat,currentpositionlon);

// Displays the location using .innerHTML property and the lat & long

coordinates for your current location

192 Part III: Putting Together a Web Application

document.getElementById("geodisplay").innerHTML="Latitude: " +
currentpositionlat + "
Longitude: " + currentpositionlon;

}

// haversine distance formula
The rest omitted for brevity because it's shown in a previous chapter

 The showLocation() function performs the following tasks:

 • Assigns the McDuck longitude and latitude to mduckslat and
mcduckslon (Lines 12 and 13 of the code).

 • Assigns the longitude and latitude of the customer’s current loca-
tion to currentpositionlat and currentpositionlon (Lines
16 and 17 of the code).

 • Calculates the distance in miles between those two points and
assigns that distance to a variable called distance (Line 20 of the
code). The Haversine formula calculates the distance between two
points on a sphere, in this case the earth, and the code is shown
online but omitted here for brevity.

 • After the button is clicked, the getElementByID and
.innerHTML methods display the customer’s current longitude
and latitude in an HTML tag named "geodisplay" using the id
attribute.

 JavaScript functions are case-sensitive, so getLocation() differs from
getlocation(). The letter L is uppercase in the first function, and low-
ercase in the second function. Similarly, showLocation() differs from
showlocation() for the same reason.

Coding steps for you to follow
With some of the code already written, and with research in the previous
chapter, follow these steps to insert the code:

 1. Insert the HTML button code below with onclick attribute calling
the getLocation() function after line 8 in the HTML file.

<button onclick="getLocation()">McDuck's Check-in</button>

 After you insert this code, press the button. If your location settings are
enabled and you inserted the code properly, you will see a dialog box
asking for your permission to share your computer’s location. As shown
in Figure 12-2, look at the top of your browser window and click Allow.

193 Chapter 12: Coding and Debugging Your First Web Application

Figure 12-2: The browser asks for your permission before sharing your location.

 2. Update lines 12 and 13 in the JavaScript file with the latitude and lon-
gitude of the restaurant near you serving as the McDuck’s store.

 After you have updated the location, make sure to change the com-
ment in line 10 to reflect the address of your restaurant (instead of my
apartment).

 3. Add an alert that displays the distance between your location and the
restaurant.

 The distance variable stores the miles from your current location to
the restaurant. Make a rough estimate — or use a map for greater preci-
sion — of your current distance from the restaurant you picked. Then
using an alert, show the distance by inserting this code below in line 23.

alert(distance);

 If the distance in the alert is larger or smaller than you expected, you
likely entered in incorrect values for the latitude or longitude. If the dis-
tance matches your estimate, insert two slashes ("//") before the alert
and comment it out.

194 Part III: Putting Together a Web Application

 4. Write an if-else statement on line 26 to show an alert if you are
within your threshold distance to the restaurant.

 My code, based on a half-mile threshold distance, is displayed below —
yours may vary depending on your alert text and threshold distance.
(See Figure 12-3.)

if (distance < 0.5) {
 alert("You get a free burger");
}
else {
 alert("Thanks for checking in!");
}

Figure 12-3: The McDuck’s app displaying an offer to come to the store.

 When your app logic is working, you can change alert("You get a
free burger"); to an actual picture of a coupon or burger. To do so,
replace the entire line the alert is on with the following code:

document.getElementById("effect").innerHTML="<img src='http://www.image.
com/image.jpg'>";

 Replace the URL after src and within the single quotes to your own
image URL. Be sure to keep the double quotation marks after the first
equals sign and before the semi-colon, and the single quotation marks
after the second equals sign and before the right angle bracket.

195 Chapter 12: Coding and Debugging Your First Web Application

 5. (Optional) When the app is working, change the text colors and insert
background images to make the app look more professional.

 Use hex-values or color names, as discussed in Chapter 6, to change the
text and background colors. Additionally, you can insert a background
image, as you did in the Codecademy About You exercise, using the fol-
lowing code (see Figure 12-4):

background-image: url("http://www.image.com/image.jpg");

Figure 12-4: The completed McDuck’s app with styled content
displaying an image to the user.

Debugging Your App
When coding your app, you will almost inevitably write code that does not
behave as you intended. HTML and CSS are relatively forgiving, with the
browser even going so far as to insert tags so the page renders properly.
However, JavaScript isn’t so forgiving, and the smallest error, such as a miss-
ing quotation mark, can cause the page to not render properly.

Errors in web applications can consist of syntax errors, logic errors, and dis-
play errors. Given that we worked through the logic together, the most likely
culprit causing errors in your code will be syntax related. Here are some
common errors to check when debugging your code:

196 Part III: Putting Together a Web Application

 ✓ Opening and closing tags: In HTML, every opening tag has a closing tag,
and you always close the most recently opened tag first.

 ✓ Right and left angle brackets: In HTML, every left angle bracket < has a
right angle bracket >.

 ✓ Right and left curly brackets: In CSS and JavaScript, every left curly
bracket must have a right curly bracket. It can be easy to accidentally
delete it or forget to include it.

 ✓ Indentation: Indent your code and use plenty of tabs and returns to
make your code as readable as possible. Proper indentation will make
it easier for you to identify missing tags, angle brackets, and curly
brackets.

 ✓ Misspelled statements: Tags in any language can be misspelled, or
spelled correctly but not part of the specification. For example, in HTML,
 is incorrect because scr should really be
src for the image to render properly. Similarly, in CSS font-color
looks like it is spelled correctly but no such property exists. The correct
property to set font color is just color.

Keep these errors in mind when debugging — they may not solve all your
problems, but they should solve many of them. If you have tried the steps
above and still cannot debug your code, tweet me at @nikhilgabraham and
include the #codingFD hashtag and your Codepen.io URL in your tweet.

Part IV
Developing Your Coding

Skills Further

 See how to program in Ruby and Python at www.dummies.com/extras/
coding.

http://www.dummies.com/extras/coding
http://www.dummies.com/extras/coding

In this part . . .
 ✓ Learn basic programming tasks in Ruby.

 ✓ Use Ruby write a simple program to format text.

 ✓ Review Python philosophy and basic commands.

 ✓ Use Python write a simple program to calculate tips.

13
Getting Familiar with Ruby

In This Chapter
▶ Understanding Ruby principles and style

▶ Assigning variables and using if statements

▶ Manipulating strings for consistency and formatting

I hope Ruby helps every programmer be productive, enjoy programming,
and be happy. That is the primary purpose of Ruby language.

—Yukihiro Matsumoto, creator of Ruby

R
uby is a server-side language created by Yukihiro “Matz” Matsumoto,
a developer who was looking for an easy-to-use scripting language.

Matsumoto had experience programming in other languages like Perl and
Python, and, unsatisfied with both, created Ruby. When designing Ruby,
Matsumoto’s explicit goal was to “make programmers happy”, and he cre-
ated the language so programmers could easily learn it and use it. It worked.
Today Ruby, and particularly Ruby working with a Ruby framework called
Rails, is the most popular way for startups and companies to quickly create
prototypes and launch websites on the Internet.

In this chapter, you learn Ruby basics, including its design philosophy; how
to write Ruby code to perform basic tasks; and steps to create your first
Ruby program.

What Does Ruby Do?
Ruby is a general purpose programming language typically used for web
development. Until now, the HTML, CSS, and JavaScript you have learned
in the previous chapters has not allowed for storing data after the user has
navigated away from the page or closed the browser. Ruby makes it easy to

200 Part IV: Developing Your Coding Skills Further

store this data, and create, update, store, and retrieve it in a database. For
example, imagine I wanted to create a social networking website like Twitter.
The content I write in a tweet is stored in a central database. I can exit my
browser, and turn off my computer, but if I come back to the website later my
tweets are still accessible to me. Additionally, if others search for me or key-
words in the tweets I have written, this same central database is queried, and
any matches are displayed. Ruby developers frequently perform tasks like
storing information in a database, and a Ruby framework called Rails speeds
up development by including pre-built code, templates, and easy ways to per-
form these tasks. For these reasons, websites frequently use Ruby and Rails
together.

 A website using the Rails framework is referred to as being built with Rails or
“Ruby on Rails”.

Twitter’s website was one of the most trafficked websites to use Ruby on
Rails, and until 2010 used Ruby code for its search and messaging products.
Other websites currently using Ruby on Rails include:

 ✓ E-commerce websites such as those on the www.shopify.com plat-
form, including The Chivery and Black Milk Clothing.

 ✓ Music websites such as www.soundcloud.com.

 ✓ Social networking sites such as www.yammer.com.

 ✓ News websites such as www.bloomberg.com.

As shown above, Ruby and Rails can create a variety of websites. While Rails
emphasizes productivity, allowing developers to quickly write code and test
prototypes, some developers criticize Ruby and Rails for not being scalable,
and use as evidence Twitter rewriting their code to stop using Rails for many
core features. While I cannot resolve the productivity-scalability debate for
you here, I can say that Rails can adequately handle millions of visitors per
month, and no matter the language used, significant work must be done to
scale a website to properly handle tens or hundreds of millions of visitors a
month.

 Confirm the programming language used by these or any major website with
BuiltWith available at www.builtwith.com. After entering the website
address in the search bar, look under the Frameworks section for Ruby on
Rails.

Defining Ruby Structure
Ruby has its own set of design principles that guide how the rest of the lan-
guage is structured. All the languages you have learned so far have their own
conventions, like the curly braces in JavaScript or opening and closing tags in

http://www.shopify.com
http://www.soundcloud.com
http://www.yammer.com
http://www.bloomberg.com
http://www.builtwith.com

201 Chapter 13: Getting Familiar with Ruby

HTML, and Ruby is no different with conventions of its own. The design prin-
ciples in Ruby explain how Ruby tries to be different from the programming
languages that came before it. With these design principles in mind you will
then see what Ruby code looks like, understand Ruby’s style, and learn the
special keywords and syntax that allow the computer to recognize what you
are trying to do. Unlike HTML and CSS, and similar to JavaScript, Ruby can be
particular about syntax and misspelling a keyword or forgetting a necessary
character will result in the program not running.

Understanding the principles of Ruby
Ruby has a few design principles to make programming in the language less
stressful and more fun for programmers of other programming languages.
These design principles are:

 ✓ Principle of conciseness: In general, short and concise code is needed
to create programs. The initial set of steps to run a program written in
English is often referred to as pseudo-code. Ruby is designed so as little
additional effort is needed to translate pseudo-code into actual code.
Even existing Ruby commands can be made more concise. For example,
Ruby’s if statement can be written in three lines or just one.

 ✓ Principle of consistency: A small set of rules governs the entire language.
Sometimes this principle in referred to as the principle of least astonish-
ment or principle of least surprise. In general, if you are familiar with
another programming language, the way Ruby behaves should feel intui-
tive for you. For example, in JavaScript when working with string meth-
ods, you can chain them together like so

"alphabet".toUpperCase().concat("Soup")

 This JavaScript statement returns “ALPHABETSoup” by first making the
string “alphabet” uppercase using the .toUpperCase() method, and
then concatenating “soup” to “ALPHABET”. Similarly, the Ruby state-
ment below chains together methods just as you would expect, also
returning “ALPHABETSoup”.

"alphabet".upcase.concat("Soup")

 ✓ Principle of flexibility: There are multiple ways to accomplish the same
thing, and even built-in commands can be changed. For example, when
writing an if-else statement you can use the words if and else, but
you can also accomplish the task with a single “?”. The following code
both perform the same task.

202 Part IV: Developing Your Coding Skills Further

 Version 1:

if 3>4
 puts "the condition is true"
else
 puts "the condition is false"
end

 Version 2:

puts 3>4 ? "the condition is false" : "the condition is true"

Styling and spacing
Ruby generally uses less punctuation than other programming languages you
may have previously tried. Some sample code is included below.

print "What's your first name?"
first_name = gets.chomp
first_name.upcase!

if first_name=="NIK"
 print "You may enter!"
else
 print "Nothing to see here."
end

If you ran this code it would do the following:

 ✓ Print a line asking for your first name.

 ✓ Take user input (gets.chomp) and save it to the first_name variable.

 ✓ Test the user input. If it equals “NIK” then print “You may enter!” other-
wise print “Nothing to see here.”

Each of these statement types is covered in more detail later in this chapter.
For now, as you look at the code, notice some of its styling characteristics

 ✓ Less punctuation: unlike JavaScript there are no curly braces, and unlike
HTML there are no angle brackets.

 ✓ Spaces, tabs, and indentation are ignored: unless within a text string
whitespace characters do not matter.

 ✓ Newlines indicate the end of statements: although you can use semi-
colons to put more than one statement on a line, the preferred and more
common method is to put each statement on its own line.

203 Chapter 13: Getting Familiar with Ruby

 ✓ Dot-notation is frequently used: the period (as in .chomp or .upcase)
signals the use of a method, which is common in Ruby. A method is a
set of instructions that carry out a particular task. In this code example,
.chomp removes carriage returns from the user input, and .upcase
transforms the user input into all upper case.

 ✓ Exclamation points signal danger: methods applied to variables, like
first_name.upcase, by default do not change the variable’s value and
only transform a copy of the variable’s value. Exclamation points signal
a permanent change, so first_name.upcase! permanently changes
the value of the variable first_name.

Coding Common Ruby Tasks and Commands
Ruby can perform many tasks from simple text manipulation to complex login
and password user authentication. The following basic tasks, while explained
within a Ruby context, are core programming concepts applicable to any pro-
gramming language. If you have read about another programming language
in this book, the following will look familiar. These tasks all take place in the
Ruby shell, which looks like a command line interface. Ruby can also gener-
ate HTML to create interactive web pages, but that is slightly more complex
and not covered here.

Instructions on how to do these basic tasks are below, but you can also prac-
tice these skills right away by jumping ahead to the “Building a Simple Form-
Text Formatter Using Ruby” section, later in this chapter.

 Programming languages can do the same set of tasks, and understanding the
set of tasks in one language makes it easier to understand the next language.

Defining data types and variables
Variables, like in algebra, are keywords used to store data values for later
use. Though the data stored in a variable may change, the variable name will
always be the same. Think of a variable like a gym locker — what you store in
the locker changes, but the locker number always stays the same.

Variables in Ruby are named using alphanumeric characters and the under-
score (_) character, and cannot begin with a number or capital letter.
Table 13-1 lists some of the data types that Ruby can store.

204 Part IV: Developing Your Coding Skills Further

Table 13-1 Data Stored by a Variable
Data Type Description Example
Numbers Positive or negative numbers with or

without decimals
156–101.96

Strings Printable characters Holly
NovakSeñor

Boolean Value can either be true or false truefalse

To initially set or change a variable’s value, write the variable name and use
one equals sign, as shown in the following example:

myName = "Nik"
pizzaCost = 10
totalCost = pizzaCost * 2

 Unlike JavaScript, Ruby does not require you to use the var keyword to
declare a variable, or to set its value the first time.

Variable names are case sensitive, so when referring to a variable in your pro-
gram remember that MyName is a different variable from myname. In general,
give your variable a name that describes the data being stored.

Computing simple and advanced math
After you create variables, you may want to do some math on the numerical
values stored in those variables. Simple math like addition, subtraction, mul-
tiplication, and division is done using operators you already know. One dif-
ference is exponentiation (such as, for example, 2 to the power of 3) is done
using two asterisks. Examples are shown below, and in Table 13-2.

sum1 = 1+1 (equals 2)
sum1 = 5-1 (equals 4)
sum1 = 3*4 (equals 12)
sum1 = 9/3 (equals 3)
sum1 = 2**3 (equals 8)

Advanced math like absolute value, rounding to the nearest decimal, round-
ing up, or rounding down can be performed using number methods, which
are shortcuts to make performing certain tasks easier. The general syntax
is to follow the variable name or value with a period, and the name of the
method as follows for values and variables

value.method
variable.method

205 Chapter 13: Getting Familiar with Ruby

 The values and variables that methods act upon are called objects. If you
compared Ruby to the English language, think of objects like nouns and meth-
ods like verbs.

Table 13-2 Common Ruby Number Methods
Method Name Description Example Result
.abs Returns the abso-

lute value of a
number

-99.abs 99

.round(ndigits) Rounds a number
to n digits

3.1415.
round(2)

3.14

.floor Rounds down
to the nearest
integer

4.7.floor 4

.ceil Rounds up to the
nearest integer

7.3.ceil 8

Using strings and special characters
Along with numbers, variables in Ruby can also store strings. To assign a
value to a string use single or double quotation marks.

firstname = "Jack"
lastname = 'Dorsey'

To display these variable values, you can puts or print the variable value
to the screen. The difference between the two is puts adds a newline (ie.,
carriage return) after displaying the value, while print does not.

 Variables can also store numbers as strings instead of numbers. Even though
the string looks like a number, Ruby will not be able to perform any opera-
tions on it. For example, Ruby cannot evaluate this code as is amountdue =
"18" + 24.

One issue arises with strings and variables — what if your string itself
includes a single or double quote? For example, if I want to store a string
with the value ‘I’m on my way home’ or “Carrie said she was leaving for “just
a minute””. As is, the double or single quotes within the string would cause
problems with variable assignment. The solution is to use special characters
called escape sequences to indicate when you want to use characters like
quotation marks, which normally signal the beginning or end of a string, or
other non-printable characters like tabs. Table 13-3 shows some examples of
escape sequences.

206 Part IV: Developing Your Coding Skills Further

Table 13-3 Common Ruby Escape Sequences
Special
character

Description Example Result

\’ or \" Quotation
marks

print "You
had me at
\"Hello\""

You had me at
"Hello"

\t Tab print "Item\
tUnits \tPrice"

Item Units
Price

\n Newline print
"Anheuser?\
nBusch?\n
Bueller?
Bueller?"

Anheuser?

Busch?

Bueller?
Bueller?

 Escape sequences are interpreted only for strings with double quotation
marks. For a full list of escape sequences, see http://en.wikibooks.org/
wiki/Ruby_Programming/Strings.

Deciding with conditionals: If, elsif, else
With data stored in a variable, one common task is to compare the variable’s
value to a fixed value or another variable’s value, and then make a decision
based on the comparison. If you previously read the JavaScript chapter, you
may recall much of the same discussion, and the concept is exactly the same.
The general syntax for an if-elsif-else statement is as follows:

if conditional1
 statement1 to execute if conditional1 is true
elsif conditional2
 statement2 to execute if conditional2 is true
else
 statement3 to run if all previous conditionals are false
end

 Notice there is only one ‘e’ in elsif statement.

The if is followed by a conditional, which evaluates to true or false. If
the condition is true, then the statement is executed. This is the minimum
necessary syntax needed for an if-statement, and the elseif and else
are optional. If present, the elsif tests for an additional condition when the
first conditional is false. You can test for as many conditions as you like

http://en.wikibooks.org/wiki/Ruby_Programming/Strings
http://en.wikibooks.org/wiki/Ruby_Programming/Strings

207 Chapter 13: Getting Familiar with Ruby

using elsif. Specifying every condition to test for can become tedious, so it
is useful to have a “catch-all”. If present, the else serves this function, and
executes when all previous conditionals are false.

 You cannot have an elsif or an else by itself, without a preceding if state-
ment. You can include many elsif statements, but one and only one else
statement.

The conditional in an if statement compares values using comparison oper-
ators, and common comparison operators are described in Table 13-4.

Table 13-4 Common Ruby Comparison Operators
Type Operator Description Example
Less than < Evaluates whether one value

is less than another value
x < 55

Greater than > Evaluates whether one value
is greater than another value

x > 55

Equality == Evaluates whether two values
are equal

x == 55

Less than or
equal to

<= Evaluates whether one
value is less than or equal to
another value

x <= 55

Greater than
or equal to

>= Evaluates whether one value
is greater than or equal to
another value

x >= 55

Inequality != Evaluates whether two values
are not equal

x != 55

Here is an example if statement.

carSpeed=40
if carSpeed > 55
 print "You are over the speed limit!"
elsif carSpeed == 55
 print "You are at the speed limit!"
else
 print "You are under the speed limit!"
end

208 Part IV: Developing Your Coding Skills Further

Figure 13-1: An if-else statement with an elsif.

As the diagram in Figure 13-1 shows, there are two conditions, each signaled
by the diamond, which are evaluated in sequence. In this example, carSpeed
is equal to 40, so the first condition (carSpeed > 55) is false, and then
the second conditional (carSpeed==55) is also false. With both conditionals
false, the else executes and prints to the screen “You are under the speed
limit!”

Input and output
As you have seen in this chapter, Ruby allows you to collect input from and
display output to the user. To collect user input use the gets method, which
stores the user input as a string. In the following example, the user enters his
first name which is stored in a variable called full_name:

print "What's your full name?"
full_name = gets

 gets might sound like an odd keyword to collect user input. Ruby is influ-
enced by the C programming language, which also has a gets function to col-
lect user input.

Imagine the user entered his name, “Satya Nadella.” As the code is currently
written, if you display the value of the variable full_name you would see
this

Satya Nadella\n

The \n escape sequence appears after the name because after asking for
input the user pressed the “Enter” key, which Ruby stores as \n. To remove
the \n add the chomp method to the string, and it will remove the \n and \r
escape sequences.

209 Chapter 13: Getting Familiar with Ruby

print "What's your full name?"
full_name = gets.chomp

Now when you display the full_name variable you would only see “Satya
Nadella”.

To display output to the user you can either use print or puts, short for
“put string”. The difference between the two is that puts adds a newline
after executing, while print does not. The following code shows the difference
when print and puts is executed.

Print code:

print "The mission has "
print "great tacos"

Result:

The mission has great tacos

Puts code:

puts "The mission has "
puts "great tacos"

Result:

The mission has
great tacos

Shaping Your Strings
Manipulating strings is one of the most common tasks for a programmer.
Sample tasks in this category include:

 ✓ Standardizing strings to have consistent upper- and lowercase.

 ✓ Removing white space from user input.

 ✓ Inserting variables values in strings displayed to the user.

Ruby shines when it comes to dealing with strings, and includes many built-in
methods that make processing strings easier in Ruby than in other languages.

210 Part IV: Developing Your Coding Skills Further

String methods: upcase, downcase, strip
Standardizing user input to have proper case and remove extra white space
characters is often necessary to easily search the data later. For example,
imagine you are designing a website for the New York Department of Motor
Vehicles, and one page is for driver license application and renewals. Both
the application and renewal forms ask for current address, which includes a
field for two letter state abbreviation. After reviewing completed paper forms,
and previous electronic data you see that drivers enter the state in several
ways including “NY”, “ny”, “Ny”, “ ny “, “nY”, and other similar variants. If
“NY” was the desired result you could use upcase and strip to make this
input consistent. Table 13-5 further describes these string methods.

Table 13-5 Select Ruby String Methods
Method name Description Example Result
upcase Returns all uppercase

characters
"nY".upcase "NY"

downcase Returns all lowercase
characters

"Hi".
downcase

"hi"

capitalize Capitalizes first letter,
lowercases remaining
letters

"wake UP".
capitalize

"Wake
up"

strip Removes leading and
trailing whitespaces

" Ny ".strip "Ny"

Inserting variables in strings with #
To insert variable values into strings shown to the user, you can use the
hashtag sequence #{...}. The code between the open and closing curly
braces is evaluated and inserted into the string. Like with escape sequences,
the variable value is inserted only into strings created with double quotation
marks. See the example code and result below.

Code:

yearofbirth = 1990
pplinroom = 20
puts "Your year of birth is #{yearofbirth}. Is this correct?"
puts 'Your year of birth is #{yearofbirth}. Is this correct?'
puts "There are #{pplinroom / 2} women in the room with the same birth year."

211 Chapter 13: Getting Familiar with Ruby

Result:

Your year of birth is 1990. Is this correct?
Your year of birth is #{yearofbirth}. Is this correct?
There are 10 women in the room with the same birth year.

The first string used double quotes and the variable was inserted into the
string and displayed to the user. The second string used single quotes so
the code inside the curly braces was not evaluated, the variable value was
not inserted, and instead #{yearofbirth} was displayed. The third string
shows that any code can be evaluated and inserted into the string.

 This method of inserting variable values into strings is called string
interpolation.

Building a Simple Form-Text
Formatter Using Ruby

Practice your Ruby online using the Codecademy website. Codecademy is
a free website created in 2011 to allow anyone to learn how to code right in
the browser, without installing or downloading any software. Practice all of
the tags (and a few more) that you learned in this chapter by following these
steps:

 1. Open your browser, go to www.dummies.com/go/codingfd, and
click on the link to Codecademy.

 2. Sign in to your Codecademy account.

 Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

 3. Navigate to and click on Introduction to Ruby to practice some basic
Ruby commands.

 4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the
site.

 5. Complete the instructions in the main coding window.

 6. After you have finished completing the instructions, click the Save
and Submit Code button.

 If you have followed the instructions correctly, a green checkmark
appears, and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

http://www.dummies.com/go/codingfd

212 Part IV: Developing Your Coding Skills Further

14
Wrapping Your Head

around Python
In This Chapter
▶ Understanding Python principles and style

▶ Practicing Python code like assigning variables and using if statements

▶ Doing a simple Python project

I chose Python as a working title for the project, being in a slightly
irreverent mood (and a big fan of Monty Python’s Flying Circus).

—Guido van Rossum, creator of Python

P
ython is a server-side language created by Guido van Rossum, a devel-
oper who was bored during the winter of 1989 and looking for a project

to do. At the time, Van Rossum had already helped create one language,
called ABC, and the experience had given him many ideas that he thought
would appeal to programmers. He executed upon these ideas when he cre-
ated Python. Although ABC never achieved popularity with programmers,
Python was a runaway success. Python is one of the world’s most popular
programming languages, used by beginners just starting out and profession-
als building heavy-duty applications.

In this chapter, you learn Python basics, including the design philosophy
behind Python, how to write Python code to perform basic tasks, and steps
to create your first Python program.

What Does Python Do?
Python is a general purpose programming language typically used for web
development. This may sound similar to the description used for Ruby in
the previous chapter, and really both languages are more similar than they

214 Part IV: Developing Your Coding Skills Further

are different. Python, like Ruby, allows for storing data after the user has
navigated away from the page or closed the browser, unlike HTML, CSS,
and JavaScript. Using Python commands you can create, update, store, and
retrieve this data in a database. For example, imagine I wanted to create
a local search and ratings site like Yelp.com. The reviews users write are
stored in a central database. Any review author can exit the browser, turn
off the computer, and come back to the website later to find their reviews.
Additionally, when others search for venues, this same central database is
queried, and the same review is displayed. Storing data in a database is a
common task for Python developers, and existing Python libraries include
pre-built code to easily create and query databases.

 SQLite is one free lightweight database commonly used by Python program-
mers to store data.

Many highly trafficked websites, such as YouTube, are created using Python.
Other websites currently using Python include:

 ✓ Quora for its community question and answer site.

 ✓ Spotify for internal data analysis.

 ✓ Dropbox for its desktop client software.

 ✓ Reddit for generating crowd-sourced news.

 ✓ Industrial Light & Magic and Disney Animation for creating film special
effects.

From websites to software to special effects, Python is an extremely versatile
language, powerful enough to support a range of applications. In addition, to
help spread Python code, Python programmers create libraries, which are
stand-alone pre-written code that do certain tasks, and make them publicly
available for others to use and improve. For example, a library called Scrapy
performs web scaping, while another library called SciPy performs math func-
tions used by scientists and mathematicians. The Python community maintains
thousands of libraries like these, and most are free and open-source software.

 You can generally confirm the front-end programming language used by any
major website with BuiltWith available at www.builtwith.com. After enter-
ing the website address in the search bar, look under the Frameworks section
for Python. Note that websites may use Python for backend services not visi-
ble to BuiltWith.

Defining Python Structure
Python has its own set of design principles that guide how the rest of the
language is structured. To implement these principles, every language has
its own conventions, like curly braces in JavaScript or opening and closing

http://www.builtwith.com

215 Chapter 14: Wrapping Your Head around Python

tags in HTML. Python is no different, and we will cover both design principles
and conventions so you can understand what Python code looks like, under-
stand Python’s style, and learn the special keywords and syntax that allow
the computer to recognize what you are trying to do. Python, like Ruby and
JavaScript, can be very particular about syntax, and misspelling a keyword or
forgetting a necessary character will result in the program not running.

Understanding the Zen of Python
There are nineteen design principles that describe how the Python language
is organized. Some of the most important principles include

 ✓ Readability counts: This is possibly Python’s most important design
principle. Python code looks almost like English, and even enforces
certain formatting, such as indenting, to make the code easier to read.
Highly readable code means that six months from now when you revisit
your code to fix a bug or add a feature, you will be able to jump in
without trying too hard to remember what you did. Readable code also
means others can use your code or help debug your code with ease.

 Reddit.com is a top-10-most-visited website in the US, and a top-50-most-
visited website in the world. Its co-founder, Steve Huffman, initially
coded the website in Lisp and switched to Python because Python is
“extremely readable, and extremely writeable”.

 ✓ There should be one — and preferably only one — obvious way to do
it: This principle is directly opposite to Perl’s motto, “There’s more than
one way to do it.” In Python, two different programmers may approach
the same problem and write two different programs, but the ideal is
that the code will be similar and easy to read, adopt, and understand.
Although Python does allow multiple ways to do a task — as, for exam-
ple, when combining two strings — if an obvious and common option
exists, it should be used.

 ✓ If the implementation is hard to explain, it’s a bad idea: Historically,
programmers were known to write esoteric code to increase perfor-
mance. However, Python was designed not to be the fastest language,
and this principle reminds programmers that easy-to-understand imple-
mentations are preferable over faster but harder-to-explain ones.

 Access the full list by design principles, which is in the form of a poem, by
typing import this; into any Python interpreter, or by visiting https://
www.python.org/dev/peps/pep-0020. These principles, written by Tim
Peters, a Python community member, were meant to describe the intentions
of Python’s creator, Van Rossum, who is also referred to as the Benevolent
Dictator for Life (BDFL).

https://www.python.org/dev/peps/pep-0020
https://www.python.org/dev/peps/pep-0020

216 Part IV: Developing Your Coding Skills Further

Styling and spacing
Python generally uses less punctuation than other programming languages
you may have previously tried. Some sample code is included here:

first_name=raw_input("What's your first name?")
first_name=first_name.upper()

if first_name=="NIK":
 print "You may enter!"
else:
 print "Nothing to see here."

 The examples in this book are written for Python 2.7. There are two popular
version of Python currently in use — Python 2.7 and Python 3. Python 3 is
the latest version of the language but it is not backwards-compatible, so code
written using Python 2.7 syntax does not work when using a Python 3 inter-
preter. Initially, Python 2.7 had more external libraries and support than
Python 3, but this is changing. For more about the differences between ver-
sions see https://wiki.python.org/moin/Python2orPython3.

If you ran this code it would do the following:

 ✓ Print a line asking for your first name.

 ✓ Take user input (raw_input(What’s your first name?)) and save
it to the first_name variable.

 ✓ Transform any inputted text into uppercase.

 ✓ Test the user input. If it equals “NIK,” then it will print “You may enter!”
Otherwise it will print “Nothing to see here.”

Each of these statement types is covered in more detail later in this chapter.
For now, as you look at the code, notice some of its styling characteristics:

 ✓ Less punctuation: Unlike JavaScript, Python has no curly braces, and
unlike HTML, no angle brackets.

 ✓ Whitespace matters: Statements indented to the same level are grouped
together. In the example above, notice how the if and else align, and
the print statements underneath each are indented the same amount.
You can decide the amount of indentation, and whether to use tabs or
spaces as long as you are consistent. Generally, four spaces from the left
margin is considered the style norm.

 See Python style suggestions on indentation, whitespaces, and com-
menting by visiting https://www.python.org/dev/peps/
pep-0008.

https://wiki.python.org/moin/Python2orPython3
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

217 Chapter 14: Wrapping Your Head around Python

 ✓ Newlines indicate the end of statements: Although you can use semi-
colons to put more than one statement on a line, the preferred and more
common method is to put each statement on its own line.

 ✓ Colons separate code blocks: New Python programmers sometimes
ask why using colons to indicate code blocks, like the one at the end of
the if statement, is necessary when newlines would suffice. Early user
testing with and without the colons showed that beginner programmers
better understood the code with the colon.

Coding Common Python Tasks
and Commands

Python, as with other programming languages like Ruby, can do everything
from simple text manipulation to designing complex graphics in games. The
following basic tasks are explained within a Python context, but they’re
foundational in understanding any programming language. Even experienced
developers learning a new language, like Apple’s recently released Swift pro-
gramming language, start by learning these foundational tasks. If you have
already read the chapter on Ruby, the code to perform these tasks will look
similar.

Start learning some basic Python below, or practice these skills right away
by jumping ahead to the “Building a Simple Tip Calculator Using Python” sec-
tion, later in this chapter.

 Millions of people have learned Python before you, so it’s easy to find
answers to questions that might arise while learning simply by conducting an
Internet search. The odds are in your favor that someone has asked your
question before.

Defining data types and variables
Variables, like the ones in algebra, are keywords used to store data values for
later use. Though the data stored in a variable may change, the variable name
will always be the same. Think of a variable as a gym locker — what you store
in the locker changes, but the locker number always stays the same.

Variables in Python are named using alphanumeric characters and the
underscore (_) character, and they must start with a letter or an underscore.
Table 14-1 lists some of the data types that Python can store.

218 Part IV: Developing Your Coding Skills Further

Table 14-1 Data Stored by a Variable
Data Type Description Example
Numbers Positive or negative numbers with or without

decimals
156–101.96

Strings Printable characters Holly
NovakSeñor

Boolean Value can either be true or false truefalse

To initially set or change a variable’s value, write the variable name, a single
equals sign, and the variable value, as shown in the following example:

myName = "Nik"
pizzaCost = 10
totalCost = pizzaCost * 2

 Avoid starting your variable names with the number one (1), a lowercase “L”
(l), or uppercase i (I). Depending on the font used these characters can all
look the same, causing confusion for you or others later!

Variable names are case sensitive, so when referring to a variable in your pro-
gram remember that MyName is a different variable from myname. In general,
give your variable a name that describes the data being stored.

Computing simple and advanced math
After you create variables, you may want to do some math on the numeri-
cal values stored in those variables. Simple math like addition, subtrac-
tion, multiplication, and division is done using operators you already know.
Exponentiation (such as, for example, 2 to the power of 3) is done differently in
Python than in JavaScript, and uses two asterisks. Examples are shown here:

num1 = 1+1 #equals 2
num2 = 5-1 #equals 4
num3 = 3*4 #equals 12
num4 = 9/3 #equals 3
num5 = 2**3 #equals 8

 The # symbol indicates a comment in Python.

 Don’t just read these commands, try them! Go to http://repl.it/
languages/Python for a lightweight in-browser Python interpreter that you
can use right in your browser without downloading or installing any software.

http://repl.it/languages/Python
http://repl.it/languages/Python

219 Chapter 14: Wrapping Your Head around Python

Advanced math like absolute value, rounding to the nearest decimal, round-
ing up, or rounding down can be performed using math functions. Python has
some functions which are built-in pre-written code that can be referenced to
make performing certain tasks easier. The general syntax to use Python math
functions is to list the function name, followed by the variable name or value
as an argument, as follows:

method(value)
method(variable)

The math functions for absolute value and rounding follow the syntax above,
but some math functions, like rounding up or rounding down are stored in a
separate math module. To use these math functions you must:

 ✓ Write the statement import math just once in your code before using
the math functions in the math module.

 ✓ Reference the math module, as follows: math.method(value) or
math.method(variable).

See these math functions with examples in Table 14-2.

 Modules are separate files that contain Python code, and the module must be
referenced or imported before any code from the module can be used.

Table 14-2 Common Python Math Functions
Function
name

Description Example Result

abs(n) Return the absolute value of
a number (n)

abs(-99) 99

round
(n, d)

Round a number (n) to a
number of decimal points (d)

round
(3.1415, 2)

3.14

math.
floor(n)

Round down to the nearest
integer

math.
floor(4.7)

4.0

math.
ceil(n)

Round up to the nearest
integer

math.
ceil(7.3)

8.0

 See all the function in the math module by visiting https://docs.python.
org/2/library/math.html.

https://docs.python.org/2/library/math.html
https://docs.python.org/2/library/math.html

220 Part IV: Developing Your Coding Skills Further

Using strings and special characters
Along with numbers, variables in Python can also store strings. To assign a
value to a string you can use single or double quotation marks, as follows:

firstname = "Travis"
lastname = 'Kalanick'

 Variables can also store numbers as strings instead of numbers. However,
even though the string looks like a number, Python will not be able to add,
subtract, or divide strings and numbers. For example, consider amountdue
= "18" + 24 — running this code as is would result in an error. Python
does multiply strings but in an interesting way — print ‘Ha’ * 3 results in
‘HaHaHa’.

Including a single or double quote in your string can be problematic because
the quotes inside your string will terminate the string definition prematurely.
For example, if I want to store a string with the value ‘I’m on my way home’
Python will assume the ‘ after the first letter I is the end of the variable
assignment, and the remaining characters will cause an error. The solution
is to use special characters called escape sequences to indicate when you
want to use characters like quotation marks, which normally signal the begin-
ning or end of a string, or other non-printable characters like tabs. Table 14-3
shows some examples of escape sequences.

Table 14-3 Common Python Escape Sequences
Special
character

Description Example Result

\’ or \" Quotation
marks

print "You
had me at
\"Hello\""

You had me at
"Hello"

\t Tab print "Item\
tUnits \
tPrice"

Item Units
Price

\n Newline print
"Anheuser?\
nBusch? \
nBueller?
Bueller?"

Anheuser?

Busch?

Bueller?
Bueller?

221 Chapter 14: Wrapping Your Head around Python

 Escape sequences are interpreted only for strings with double quotation
marks. For a full list of escape sequences see the table under Section 2.4
"Literals" at http://docs.python.org/2/reference/lexical_
analysis.html.

Deciding with conditionals: If, elif, else
With data stored in a variable, one common task is to compare the variable’s
value to a fixed value or another variable’s value, and then make a decision
based on the comparison. If you previously read the chapters on JavaScript
or Ruby, the discussion and concepts here are very similar. The general
syntax for an if-elif-else statement is as follows:

if conditional1:
 statement1 to execute if conditional1 is true
elif conditional2:
 statement2 to execute if conditional2 is true
else:
 statement3 to run if all previous conditional are false

 Notice there are no curly brackets or semi-colons, but don’t forget the colons
and to indent your statements!

The initial if statement will evaluate to true or false. When
conditional1 is true, then statement1 is executed. This is the minimum
necessary syntax needed for an if-statement, and the elif and else
are optional. When present, the elif tests for an additional condition when
conditional1 is false. You can test for as many conditions as you like
using elif. Specifying every condition to test for can become tedious, so
having a "catch-all" is useful. When present, the else serves as the "catch-
all", and executes when all previous conditionals are false.

 You cannot have an elif or an else by itself, without a preceding if state-
ment. You can include many elif statements, but one and only one else
statement.

The conditional in an if statement compares values using comparison oper-
ators, and common comparison operators are described in Table 14-4.

http://docs.python.org/2/reference/lexical_analysis.html
http://docs.python.org/2/reference/lexical_analysis.html

222 Part IV: Developing Your Coding Skills Further

Table 14-4 Common Python Comparison Operators
Type Operator Description Example
Less than < Evaluates whether one value is

less than another value
x < 55

Greater than > Evaluates whether one value is
greater than another value

x > 55

Equality == Evaluates whether two values
are equal

x == 55

Less than or
equal to

<= Evaluates whether one value
is less than or equal to another
value

x <= 55

Greater than
or equal to

>= Evaluates whether one value
is greater than or equal to
another value

x >= 55

Inequality != Evaluates whether two values
are not equal

x != 55

Here is an example if statement.

carSpeed=55
if carSpeed > 55:
 print "You are over the speed limit!"
elif carSpeed == 55:
 print "You are at the speed limit!"
else:
 print "You are under the speed limit!"

As the diagram in Figure 14-1 shows, there are two conditions, each signaled
by the diamond, which are evaluated in sequence. In this example, carSpeed
is equal to 55, so the first condition (carSpeed > 55) is false, and then
the second conditional (carSpeed==55) is true and the statement executes
printing “You are at the speed limit!” When a conditional is true, the if
statement stops executing, and the else is never reached.

Input and output
Python can collect input from the user, and display output to the user. To
collect user input use the raw_input(“Prompt”) method, which stores
the user input as a string. In the example below, the user enters his full name
which is stored in a variable called full_name.

full_name = raw_input("What's your full name?")

223 Chapter 14: Wrapping Your Head around Python

Figure 14-1: An if-else statement with an elif.

Imagine the user entered his name, “Jeff Bezos.” You can display the value of
the variable using print full_name and you would see this

Jeff Bezos

 Python, unlike Ruby, does not store the newline \n escape sequence after
user input.

At this point, you may feel like printing variables and values in a Python
interpreter console window is very different from dynamically creating web
pages with variables created in Python. Integrating Python into a web page
to respond to user requests and generate HTML pages is typically done with
a Python web framework, like Django or Flask, which have pre-written code
to make the process easier. These frameworks typically require some instal-
lation and set-up work, and generally separate the data being displayed from
templates used to display the page to the user.

Shaping Your Strings
Whenever you collect input from users, you need to clean the input to
remove errors and inconsistencies. Here are some common data cleaning
tasks:

 ✓ Standardizing strings to have consistent upper and lower case

 ✓ Removing white space from user input

 ✓ Inserting a variable’s value in strings displayed to the user

Python includes many built-in methods that make processing strings easy.

224 Part IV: Developing Your Coding Skills Further

Dot notation with upper(), lower(),
capitalize(), and strip()
Standardizing user input to have proper case and remove extra white space
characters is often necessary to easily sort the data later. For example,
imagine you are designing a website for the New York Knicks so fans can
meet players after the game. The page asks for fans to enter their name, so
that team security can later check fan names against this list before entry.
Reviewing past fan entries you see that fans enter the same name several
ways like “Mark”, “mark”, “ marK “ and other similar variants that cause
issues when the list is sorted alphabetically. To make the input and these
names consistent you could use the string functions described in Table 14-5.

Table 14-5 Select Python String Functions
Function name Description Example Result
string.
upper()

Returns all upper-
case characters

"nY".upper() "NY"

string.
lower()

Returns all lower-
case characters

"Hi".lower() "hi"

string.
capitalize()

Capitalizes first
letter, lowercases
remaining letters

"wake UP".
capitalize()

"Wake
up"

string.
strip()

Removes lead-
ing and trailing
whitespaces

" Ny ".strip() "Ny"

String formatting with %
To insert variable values into strings shown to the user, you can use the
string format operator %. Inserted into the string definition, %d is used to
specify integers, %s is used to specify strings, and the variables to format
(mapping key) are specified in parenthesis after the string is defined. See the
example code and result below:

Code:

yearofbirth = 1990
pplinroom = 20
name = "Mary"
print "Your year of birth is %d. Is this correct?" % (yearofbirth)
print 'Your year of birth is %d. Is this correct?' % (yearofbirth)
print "There are %d women in the room born in %d and %s is one of them." %

(pplinroom/2, yearofbirth, name)

225 Chapter 14: Wrapping Your Head around Python

Result:

Your year of birth is 1990. Is this correct?
Your year of birth is 1990. Is this correct?
There are 10 women in the room born in 1990 and Mary is one of them.

The first string used double quotes and the variable was inserted into the
string and displayed to the user. The second string behaved just like the first
string, because unlike in Ruby, defining strings with single quotes does not
affect the string formatting. The third string shows that code can be evalu-
ated (pplinroom / 2) and inserted into the string.

 The string.format() method is another way to format strings in Python.

Building a Simple Tip Calculator Using Python
Practice your Python online using the Codecademy website. Codecademy is
a free website created in 2011 to allow anyone to learn how to code right in
the browser, without installing or downloading any software. Practice all of
the tags (and a few more) that you learned in this chapter by following these
steps:

 1. Open your browser, go to www.dummies.com/go/codingfd, and
click on the link to Codecademy.

 2. Sign in to your Codecademy account.

 Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

 3. Navigate to and click on Python Syntax to practice some basic Python
commands.

 4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the
site.

 5. Complete the instructions in the main coding window.

 6. After you have finished completing the instructions, click the Save
and Submit Code button.

 If you have followed the instructions correctly, a green checkmark
appears and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forum, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

http://www.dummies.com/go/codingfd

226 Part IV: Developing Your Coding Skills Further

Part V
The Part of Tens

 See additional resources to help you program at www.dummies.com/extras/
coding.

http://www.dummies.com/extras/coding
http://www.dummies.com/extras/coding

In this part . . .
 ✓ Continue to learn how to code with online resources.

 ✓ Stay up to date with industry news and community
discussion.

 ✓ Solve coding bugs with online and offline resources.

 ✓ Keep in mind ten tips as you learn how to code.

15
Ten Free Resources for

Coding and Coders

T
he technology world is constantly evolving. New technologies are
invented, developers build new products using these technologies, and

new markets emerge from people using these products. In the time it took
me to write these chapters and for this book to find its way into your hands,
much has already changed. The following resources help you continue learn-
ing, answer questions, and stay abreast of these changes.

The resources listed below are all completely free. Many of these resources
stay free by depending on community members like you to contribute, so
don’t be shy about participating!

Learning-to-Code Websites
Learning to code is a constant journey that never ends for even the most
experienced programmers. New languages and frameworks appear every
day, and the only way to stay current is to keep learning. Although you may
not be an experienced developer just yet, the following resources appeal to
beginners with different learning styles. You can learn general introductory
computer science topics or specific web development techniques by reading
text or watching video lectures, and do it at your own pace or in a scheduled
class. Let’s get started!

Codecademy
www.codecademy.com

Codecademy, created for people with no previous programming experience,
is the easiest way to learn how to code online. Many chapters in this book
use lessons from the site. You can use the site to

http://www.codecademy.com

230 Part V: The Part of Tens

 ✓ Learn front-end languages like HTML, CSS, and JavaScript

 ✓ Try back-end languages like Ruby, Python, and PHP

 ✓ Build real pages from websites like AirBnb, Flipboard, and Etsy

 Front-end languages address website appearance, whereas back-end lan-
guages add website logic, such as what to show users and when. See
Chapter 2 for more detail.

You don’t need to download or install anything to start coding at
Codecademy — just sign up or sign in and start learning.

 If you get stuck, check for a hint at the bottom of the instructions, or click the
Q&A Forum link to ask a question or to see if someone has already posted a
solution to your problem.

Coursera and Udacity
www.coursera.org

www.udacity.com

MOOCs, or massive open online courses, are classes or courses that are taught
via the Internet to a virtually unlimited number of students. These courses
encourage the use of online forums and interactivity to create a sense of com-
munity. Coursera and Udacity, two of the biggest MOOCs, have a variety of
coding-related courses. Each course is taught through a series of video lec-
tures by a university faculty member or an industry expert. (See Figure 15-1.)
After watching video lectures, your homework assignments and projects help
reinforce what you’ve learned. Each site offers optional paid features, such
as certificates of completion or individual support, but you don’t have to pay
anything to access the base material. The strength of these sites is their hun-
dreds of hours of video dedicated to technology topics such as front-end web
development, mobile web development, data science, or general computer
science theory.

 Before you start a course at either website, make sure you can set aside time
for study each week. You can expect to devote 5 to 10 hours per week for 7 to
10 weeks for any of these courses.

Hackdesign.org
www.hackdesign.org

http://www.coursera.org
http://www.udacity.com
http://www.hackdesign.org

231 Chapter 15: Ten Free Resources for Coding and Coders

Figure 15-1: Intro to Computer Science, taught by University of Virginia
Professor David Evans on Udacity.

The other half of coding is designing. Good visual design is often the differ-
ence between having hundreds of people use and share your website and
having millions of people do so. Hack Design has 50 design lessons created
by top designers from around the world, including designers from Facebook,
Dropbox, and Google. Each lesson is emailed to you weekly, and includes
articles to read, and design tasks to complete based on what you have just
learned. Topics covered include typography, product design, user interac-
tions, and rapid prototyping tools.

 Many of the expert designers have public portfolio websites at which you can
see past designs and projects. In addition, many post their creative work on
Dribble, available at www.dribbble.com (note the three b’s in the URL).

Code.org
www.code.org

In December 2013, Code.org made history when over 15 million U.S.
school students participated in a learn-to-code event called Hour of Code.
Throughout 2014, an additional 25 million students would practice their pro-
gramming skills for one hour. Code.org hosts its own content for students

http://www.dribbble.com
http://www.code.org

232 Part V: The Part of Tens

from kindergarten to eighth grade. It also provides links to other learn-to-
code resources, which are targeted for a range of ages, and topics include

 ✓ Tutorials that teach HTML, JavaScript, Python, and other languages

 ✓ Visual programming tools that help elementary and middle school
 students drag-and-drop their way to learning how to code

 ✓ Instructions to make your own Angry Birds, Flappy Bird, and Lost in
Space apps

 Code.org also has offline learn-to-code materials, so you can keep learning
even if you don’t have reliable access to an Internet connection.

Coding-Reference Websites
As you learn to code, either by reading this book or from some of the websites
discussed previously, you will get stuck. Your code just won’t behave as you
intended. This happens to every programmer — it’s an inevitable part of the
process of turning human logic and fuzzy thoughts into rigid code a computer
can understand. The important thing is to have a plan, and to have some
resources to help debug your code and solve your problem. The following
resources include reference texts, which help you check your coding syntax,
and community user groups, which help you check your program logic.

W3Schools
www.w3schools.com

W3Schools is one of the best resources for beginners who are just starting to
learn. The website includes reference material and basic tutorials for HTML,
CSS, JavaScript, PHP, and other programming languages, libraries, and stan-
dards. (See Figure 15-2.) In addition, the reference pages include many coding
examples, which you can view and modify in your browser, along with a list
of attributes or properties that can be used. If you know you can insert an
image using HTML, change the text color using CSS, or show an alert to the
user using JavaScript, but you cannot remember the exact syntax to do so,
try starting with W3Schools.

 Although it’s a great resource, W3Schools has no affiliation with or endorse-
ment from the W3C, which is the governing body that creates the standards
browsers follow when rendering HTML, CSS, and other languages and
formats.

http://www.w3schools.com

233 Chapter 15: Ten Free Resources for Coding and Coders

Figure 15-2: HTML, CSS, and JavaScript tutorials and reference
pages on W3Schools.

Mozilla Developer Network
http://developer.mozilla.org

Mozilla Developer Network (MDN) is a wiki-style reference and tutorial web-
site that covers HTML, CSS, JavaScript, and various APIs. The website is
maintained by the developer community, so anyone can contribute — even
you! Although not as beginner-friendly as W3Schools, MDN is one of the
most complete and accurate sources of documentation for web languages.
Developers frequently use MDN to reference syntax, and also to see desktop
and mobile browser compatibility for specific tags and commands. You can
also check out tutorials on MDN hosted by the Mozilla Foundation, a non-
profit organization that helps support and maintain the Firefox browser.

Stack Overflow
www.stackoverflow.com

Stack Overflow is relatively young, founded in 2008, but has quickly become
the best place for developers to ask and answer questions about coding.
Anyone can ask a question, individual programmers provide answers, and
the website community votes up or down the answers to show agreement or

http://developer.mozilla.org
http://www.stackoverflow.com

234 Part V: The Part of Tens

disagreement. The site includes topics that cover all major web programming
languages, and the most popular topics include JavaScript, Ruby, and Python.

 Before asking a question, search the website and see if an answer to your
question has already been posted. One of the website rules of etiquette is
showing you have done some research before posting a question.

Tech News and Community Websites
There are people coding all over the world, and someone in Shanghai can
make an app you use every day just as easily as someone in San Francisco. A
number of resources are available for developers to better understand what
others are working on, both at big companies and at startups. In addition
to what people are working on right now, if you have a website you want to
build, it can be helpful to see what has been built in the past, so you can iden-
tify areas for improvement.

Beyond being informative, these resources offer communities of people with
goals similar to yours. These communities are among the most valuable
resources available to you. Whether you are learning to code or an expert
developer soliciting feedback on a website, working with others is better than
working alone.

The following resources help you stay informed on what is happening in
the tech community, and interact with other people interested in tech in
your city.

TechCrunch
www.techcrunch.com

TechCrunch is a popular blog that covers technology startups and major
technology companies. In 2006, the website cemented its reputation when it
broke the story of Google acquiring YouTube for $1.6 billion. Along with its
online reporting, TechCrunch has conferences throughout the year, such as
Disrupt, which hosts conversations with industry veterans and highlights
new tech startups.

 TechCrunch also operates CrunchBase (www.crunchbase.com), a crowd-
sourced database of 650,000 people and companies. Crunchbase is one of the
most accurate and complete sources of information on startups, past and
present, and their founders.

http://www.techcrunch.com
http://www.crunchbase.com

235 Chapter 15: Ten Free Resources for Coding and Coders

Hacker News
http://news.ycombinator.com

HackerNews (HN) is a discussion website hosted by YCombinator, a startup
incubator in California. The website homepage is a collection of hyperlinks,
often to startup websites and news articles, that individual users have sub-
mitted. (See Figure 15-3.) After a submission is made, the entire community
can upvote the submission, and the top-ranked submissions are listed first
on the homepage. Also, the community can comment on individual submis-
sions, and each comment can also be upvoted, with the top-ranked comment
appearing first on each submission page. In this way, the community curates
the best news, which appears on the front page, and the best comments,
which appear on each submission page. The community is made up of hun-
dreds of thousands of users, including AirBnB co-founder Brian Chesky,
Dropbox co-founder Drew Houston, Netscape co-founder and now venture
capitalist Marc Andreessen, and venture capitalist Fred Wilson.

Figure 15-3: The community-curated news and discussions at HackerNews homepage.

http://news.ycombinator.com

236 Part V: The Part of Tens

 Submission titles that begin with “Show HN” are a request to the community
to comment on a startup website that has just launched. Submission titles
that begin with “Ask HN” are a request to the community to answer or com-
ment on a question.

Meetup
www.meetup.com

Meetup is a website that organizes face-to-face local meetings based on inter-
ests or activities. Meetup organizers, who are volunteer community mem-
bers, host meetings by posting information on the website. Then, community
members search, join, and RSVP for meetings through the website.

To use the website, go to www.meetup.com and then follow these steps:

 1. Enter your city and how far you are willing to travel.

 2. In the search field, enter coding or web development. If you have a
specific language you want to learn, like Ruby or JavaScript, enter the
language name.

 3. Review the Meetup groups, and look for ones with a good number
of members. You can join a group and receive notifications of future
events, or RSVP for a specific upcoming event. Some events may have
a fee to cover expenses.

Although you can learn alone, finding other people learning to code is a great
way to stay motivated and keep up your momentum. The people you meet
may be learning to code for the same reasons you are, such as to build a web-
site, improve skills for an existing job, or find a new tech-related job.

http://www.meetup.com
http://www.meetup.com

16
Ten Tips for Novice Coders

L
earning to code is more popular today than ever before. It seems like
everyone has a website or an app idea, and as soon as your friends,

family, or coworkers discover your new coding abilities, many will ask for
advice and help. No matter whether you’re dabbling at it after work, or
attending an intensive ten-week coding boot camp, learning to code can be
a challenging journey. It can pay to pick up a few pointers from some of the
people who crossed the finish line ahead of you. Keep the following tips in
mind, especially when starting your coding journey.

Pick a Language, Any Language
As a novice coder, you may not be sure where to start. Should you learn C++,
Python, Java, Ruby, PHP, JavaScript all at the same time, sequentially, or just
pick a few? If you have never programmed before, I recommend learning a
language used to create web pages, because with these languages it’s easy to
get started and publish work for others to see. Within this set of languages, I
recommend starting with HTML and CSS. Both are markup languages, which
are the easiest to learn, and let you put content on a web page with HTML,
and style that content with CSS. After you understand some of the basics of
presenting content, you can then learn a programming language to manipu-
late that content. Keep in mind that you don’t need to learn every program-
ming language — JavaScript, which adds interactivity to the web page, is
a common starting point for beginners, along with either Ruby or Python,
which adds more advanced features like user accounts and logins.

Learning to code is similar to learning to drive a car. When you first learned
to drive, you probably didn’t worry too much about the type of car you were
driving. After passing the driving test, you could operate just about any car,
even one you hadn’t driven before, because you knew to look for the ignition,
accelerator, and brake. Learning a programming language works the same
way: After you learn one language, you know what to look for, and learn-
ing and using another language becomes easier. In other words, just start
somewhere!

238 Part V: The Part of Tens

Define a Goal
When you start learning to code, picking a goal can help you stay motivated.
You can pick any goal you like, but make sure it’s something you would be
really excited to accomplish. Good goals for beginners include

 ✓ Creating a small website — consisting of one to four different
pages — for yourself, a business, or a group.

 ✓ Building your coding vocabulary so you can understand what develop-
ers or designers say in meetings at work.

 ✓ Creating a prototype, or a basic version, of a website or app idea — for
example, an app that tells you when the next bus is arriving to your cur-
rent location.

At first, practice doing very small coding tasks — the equivalent of chop-
ping vegetables in culinary school. These tasks, such as bolding a headline,
may leave you feeling disconnected from your ultimate goal. But as you keep
learning, you will start to piece together individual coding skills and see a
path to accomplish your goal.

 Pick a simple goal at first to build your confidence and technical skills. As
you gain confidence, you can build more professional-looking websites and
apps.

Break Down Your Goal into Bite-Sized Steps
After defining a goal, break it down into small steps. This helps you

 ✓ See all the steps needed to complete the goal

 ✓ Research how to do each specific step

 ✓ Ask others for help easily when you’re stuck on a step

For example, if you want to build an app that tells you when you can expect
the next bus to arrive closest to your current location, you can list the steps
as follows:

 1. Find your current location.

 2. Find the bus station closest to your current location.

 3. Identify the specific bus that travels to the closest bus station.

 4. Determine the location of that bus traveling to the bus station.

 5. Calculate the distance from the bus’s current location to the bus station.

239 Chapter 16: Ten Tips for Novice Coders

 6. Assuming an average speed for the bus, convert the distance into time
using the equation distance = speed × time.

 7. Display the time to the user.

This level of detail is specific enough to start researching individual steps,
such as how to find your current location using code, and it gives you a com-
plete list of steps from start to finish for the intended goal.

 At first, the steps you create may be broad or incomplete, but with time you
will improve your ability to detail these steps, which are sometimes called
specifications.

Distinguish Cupcake from Frosting
Whether you’re at home creating your first app, or at work on a team build-
ing a website, your projects will tend to include too many features to build by
a specific deadline. This leads inevitably to one of three results: The project
launches on time but is buggy; the project launches late; or your team works
overtime to launch the project on time. The only other choices for a project
behind schedule are to extend the deadline, which usually does not happen,
or to add additional programmers, which usually is not helpful because of the
time needed to get the new programmers up-to-speed.

A better strategy is to decide upfront which features are the cupcake — that
is, which are essential — and which are the unessential frosting, the ones
that are nice to have but optional. This shows you where your priorities are.
If your project is running over on time or budget, you can build the optional
features later or not at all.

When building your own apps make sure you distinguish the essential from
the optional features before you actually start coding. In the bus app example
above, determining my current location could be optional. Instead, I could
select one specific bus stop, and first complete steps 3 through 7. Then, if
time allows, I can make the app more flexible by finding my current location,
and then finding the closest bus stop.

 The phrase minimum viable product is used by developers to refer to the set
of features essential to the proper functioning of the product.

Google Is a Developer’s Best Friend
Developers constantly use the Google search engine to research either gen-
eral questions on how to code a feature, or specific questions on syntax for
a command or tag. For example, imagine that a few months from now, after

240 Part V: The Part of Tens

reading this book, you need to add an image to a website. You remember that
HTML has a tag to insert images on a website, but you don’t recall the exact
syntax. To quickly and efficiently find the answer, you could follow these
steps:

 1. Go to www.google.com.

 2. Search for HTML image syntax.

 The programming language, the intended command, and the word syntax
should be sufficient to find a good set of resources.

 3. For syntax questions in HTML and CSS, you will likely see these
domains names in the top 10 search results, and you should read their
content as a next step:

 • w3schools.com is one of the best resources for beginners to find
basic information.

 • developer.mozilla.org is a crowdsourced documentation and
tutorial site. Its documentation is very accurate, although some
content is not beginner-friendly.

 • stackexchange.com and stackoverflow.com are crowd-
sourced discussion sites where developers can ask and answer
questions.

 • w3.org is the governing body that creates HTML and CSS stan-
dards. Its documentation is the most accurate, but it’s dry and not
beginner-friendly.

You can use this same process to research questions in other coding lan-
guages, or to find code examples from other developers who are building
features similar to yours.

Zap Those Bugs
While you’re doing all this coding you will inevitably create errors, commonly
referred to as bugs. There are three types of errors:

 ✓ Syntax errors occur when you write invalid code the computer
doesn’t understand. For example, in CSS, you’d write color: blue;
to change the color of an element. If you wrote font-color: blue;
instead, you’d generate a syntax error because font-color is an
invalid property.

http://www.google.com

241 Chapter 16: Ten Tips for Novice Coders

 ✓ Semantic errors occur when you write valid code that has an unin-
tended effect. For example, trying to divide a number by zero is a seman-
tic error in JavaScript.

 ✓ Logic or design errors occur when you write valid code that has the
intended effect, but the code produces the wrong result. For example, in
JavaScript, converting miles to feet using var miles = 4000 * feet
is a logic error. Although the code is written correctly and does what the
programmer wants it to do, it still produces the wrong answer — there
are actually 5,280 feet in a mile, not 4,000.

Your browser will do its best to display your HTML or CSS code as you
intended, even in the presence of syntax errors. However, with other pro-
gramming languages, such as JavaScript, code with syntax errors won’t run at
all. The best way to find and eliminate bugs is to first check your code syntax,
and then the logic. Review your code line by line, and if you still cannot find
the error, ask another person to take a look at your code, or post it on an
online community forum like stackoverflow.com.

 Developers use specialized tools in the browser to diagnose and debug
errors. You can learn more about these developer tools in the Chrome
browser by going to www.codeschool.com/courses/
discover-devtools.

Just Ship It
Reid Hoffman, the founder of LinkedIn, famously said, “If you are not embar-
rassed by the first version of your product, you’ve launched too late.” When
you start coding, you will likely be reluctant to show others your creations,
whether it’s your first basic website or something more complex. Hoffman
was commenting on this desire to keep trying to perfect what you have built,
and says instead to release (or “ship”) your code to public view even if you
feel embarrassed. Regardless of the size of your website or app, it is better to
receive feedback early and learn from your mistakes, then to continue head-
ing in the wrong direction.

Also, remember that the highly trafficked, highly polished websites you use
today started initially from humble beginning and very simple prototypes.
Google’s first homepage, for example, had only a fraction of the functionality
or style of its homepage today. (See Figure 16-1.)

http://www.codeschool.com/courses/discover-devtools
http://www.codeschool.com/courses/discover-devtools

242 Part V: The Part of Tens

Figure 16-1: Google’s original homepage in 1998.

Collect Feedback
After you finish coding the first version of your website or app, collect feed-
back on your code and on the final product. Even if everything is working and
your website looks great, that doesn’t mean your code was written correctly
or that your site does everything it could. For example, YouTube initially
started as a video-dating site, but changed to a general video-sharing website
based on user feedback.

The best way to obtain this information is to collect quantitative and quali-
tative data on your code and the product. Measuring the places where visi-
tors click and how long they stay on each web page gives you quantitative
information, which helps you diagnose and improve low-performing pages.
You can collect qualitative information by surveying users, either by email-
ing them survey questions or by watching people in-person use your website
and then asking questions. Often this data will surprise you — users may
find confusing the features you thought were obvious and easily understood,
and vice-versa. Similarly, if possible, have someone examine your code, in a
process called a code review, to ensure that you didn’t overlook any major
problems.

Iterate on Your Code
After you’ve collected feedback, the next step is to “iterate” on that feedback:
Keep coding until the major issues in your feedback have been addressed,
and until you have improved both the code and the product. Keep in mind
that it’s usually best to confirm the usefulness of your product first, before
spending time improving the code.

243 Chapter 16: Ten Tips for Novice Coders

This process — building a product with a minimum set of essential features,
collecting feedback on the product, and then iterating on that feedback — is
sometimes referred to as the Lean Startup methodology. In the past, manu-
facturing processes, once set, were extremely difficult to change, but these
days, changing software is as simple as modifying a few lines of code. This
contrasts with the way products used to be coded, which involved longer
development cycles and less upfront feedback.

 Just like with document drafts, save the old versions of your code in case you
realize an older version was better, or in the event you find bugs in the cur-
rent version of your code and you have to use an older version of the code to
debug it.

Share Your Success and Failure
While coding you may have come across documentation on a website you
found confusing or just plain wrong. Maybe you found a great resource or a
tool that worked especially well for a product you were building. Or perhaps
the opposite happened — no one used the features you built with code, and
you had to give up the project.

In all these situations, the best thing you can do for yourself and the larger
community is to blog about your successes and failures. Blogging benefits
you because it shows others the issues you’re thinking about and trying
to solve. Similarly, blogging benefits others who will use Google to search
for and read about your experiences, just as you used Google to search for
ideas and solve problems. Many non-technical entrepreneurs, such as Dennis
Crowley of Foursquare and Kevin Systrom of Instagram, taught themselves
enough coding to build small working prototypes, built successful products,
and then shared that journey with others.

 You can blog for free and share your experiences using blogging sites like
Wordpress (www.wordpress.com), Blogger (www.blogger.com), or Tumblr
(www.tumblr.com).

http://www.wordpress.com
http://www.blogger.com
http://www.tumblr.com

244 Part V: The Part of Tens

• Symbols •
<> (angle brackets), 45–46, 195
* (asterisk), 204
: (colon), 78, 217
{} (curly brackets), 78, 195
“ (double quotes), 205–206, 220
= (equal sign), 48, 78
=== (equality) operator, 141, 143, 207, 222
/ (forward slash), 45
> (greater than) operator, 106, 141, 207, 222
>= (greater than or equal to) operator, 141,

207, 222
!= (inequality) operator, 141, 207, 222
< (less than) operator, 141, 207, 222
<= (less than or equal to) operator, 141,

207, 222
%, formatting strings with, 224
. (period), 108
+ operator, 147
symbol, 210–211, 218
‘ (single quotes), 205–206, 220
// (two slashes), 193
_ (underscore) character, 203, 217

• A •
a (anchor element), 86
A/B testing, 61
Abraham, Nik (author), contact

information for, 2, 40, 58, 74, 95, 118,
133, 149, 155, 196, 211, 225

abs() function, 219
.abs method, 205
action attribute, 73
active, 86
ad blocker, 24
adding

background images, 88–92
icons, 131–132

images, 54
JavaScript, 135–155, 148–149
logic with Python, Ruby, and PHP, 26–27

advanced math, computing, 204–205,
218–219

advertising, coding for, 12
agile process, 33–34, 161
Airbnb, 11, 132–133
AJAX (asynchronous JavaScript), 136–137
alert() method, 146, 183–184
alert statement, 142
alerting users, 146
align attribute, 67–70
aligning

elements, 109–117
tables and cells, 67–70

anchor element (a), 86
anchor tag, 53
Andreesen, Marc (software designer), 10
angle brackets (<>), 45–46, 195
Angry Birds app, 9
API directories, 181
APIs (application programming interfaces),

working with, 149–153
appearance, of web pages, 24
application programming interfaces (APIs),

working with, 149–153
apps

building, 159–169
coding, 37
debugging, 195–196
designing, 36–37
development process, 161–162
dividing into steps, 172–179
form for, 174–179
functionality of, 172–174, 184
location-based, 159–161
open-source, 180–181

arguments, 138
asterisk (*), 204

Index

246 Coding For Dummies

asynchronous JavaScript (AJAX), 136–137
attributes

about, 46–48
action, 73
align, 67–70
border, 67–70, 113
class, 108–109, 129
colspan, 67
form, 71–72
height, 69
hidden, 46–47
href, 53, 93
lang, 47–48
method, 72
onclick, 182, 189–190
rel, 93
src, 148
style, 99, 101
title, 46–48, 104
type, 71, 93, 148
valign, 69
value, 71
width, 67–70

availability, of data, 152

• B •
backend, 24–25
back-end developers, 167
background images, adding, 88–92
background-attachment, setting, 91–92
background-attachment property, 89,

91–92
background-color property, 89
background-image, setting, 89
background-image property, 88–89
background-position, setting, 90
background-position property, 88, 90
background-repeat, setting, 90–91
background-repeat property, 89–91
background-size, setting, 89–90
background-size property, 88–90
Balsamiq, 37
BDFL (Benevolent Dictator for Life), 215
Benevolent Dictator for Life (BDFL), 215
Berners-Lee, Tim (computer engineer), 58
Blacktie.co (website), 125

Blogger (website), 243
body element, 48–49, 104
<body> tag, 148, 189–190
bold, highlighting with, 55–56
Boolean data type, 139, 204, 218
Bootply.com (website), 125
bootsnipp.com (website), 125
Bootstrap

about, 119
building Airbnb home page, 132–133
coding basic web page elements, 128–132
installing, 121–122
layout options, 122–128
themes, 125–126
what it does, 119–121

Bootstrapzero.com (website), 125
Bootswatch.com (website), 125
border attribute, 67–70, 113
border property, 101–102
border-collapse property, 103
box model, 113–114
boxes, positioning, 114–117

 tag, 52
braces, JavaScript, 138
breaking down goals, 238–239
browsers

defined, 19
incompatibilities with, 164

bugs, 240–241
building

Airbnb home page, 132–133
apps, 159–169
basic forms, 72–73
filler text, 124
location-based offer apps, 159–161
mobile web apps, 29
native mobile apps, 30–31
ordered lists, 62
simple form-text formatter using Ruby, 211
tip calculators using Python, 225
unordered lists, 62
web pages, 94–95
websites with HTML, 57–58

BuiltWith (website), 200, 214
bullet points, specifying images to use as, 98
<button> tag, 129
buttons, designing, 128–130

247 Index

• C •
C++, 16, 31
capitalise method, 210
capitalize() function, 223–224
<caption> tag, 103
Cascading Style Sheets (CSS)

about, 26, 75, 97
adding to HTML, 92–94
aligning elements, 109–117
code for, 190
hacking websites with, 79–81
laying out elements, 109–117
naming code using class attribute,

108–109
selecting elements to style, 103–109
structure of, 77–81
styling, 92–93
styling elements on pages, 98–103
tasks and selectors, 81–92
uses for, 75–77
writing advanced, 118

case-sensitivity
for JavaScript functions, 192
in Python, 218
in Ruby, 204
of variables, 204

.ceil method, 205
cells, aligning with tables, 67–70
changing

layout for mobile, tablet, and desktop,
126–128

markers, 98
Cheat Sheet (website), 3
child selector, 106
chomp method, 208–209
choosing

APIs, 152–153
elements to style, 77–78, 103–109
programming languages, 237
solutions, 184–186
tools for programming, 38–40

Chrome, 39, 187
class attribute, 108–109, 129
classes, 131
clear property, 115
client goals, for apps, 163

closing tags, 45, 195
COBOL, 16
code

about, 8–9
debugging, 38
indenting, 188, 196
iterating, 242–243
naming using class attribute, 108–109
naming using id attribute, 108
naming with functions, 146–147
pre-written, 189–192
web apps built with, 16–18
writing with Angry Birds app, 9

Codecademy
about, 229–230
building web pages, 94–95
building websites with HTML, 57–58
HTML, 73–74
website, 1–2
working online with, 39–40

Code.org, 231–232
Codepen.io (website), 188
coders

resources for, 229–236
tips for, 237–243

code-writing process, 33–38
coding

about, 7–9
apps, 37
basic web page elements, 128–132
common tasks and commands in Python,

217–223
common tasks and commands in Ruby,

203–209
common tasks in JavaScript, 139–149
on the job, 12
mobile applications, 27–31
preparing for, 187–188
resources for, 229–236
steps for, 192–195
uses for, 10–13
web applications, 16–18, 26–27, 187–196
web apps built with code, 16–18

coding-reference websites, 232–234
Coffitivity, 13
collecting feedback, 242
colons (:), 78, 217

248 Coding For Dummies

color, setting, 83–84
color picker, 84
color property, 79–80, 82–84, 86
colspan attribute, 67
columns, table, 66–67
commands

Python, 217–223
Ruby, 203–209

community, for apps, 184
community websites, 234–236
comparing

compiled code and interpreted code, 16
low-level and high-level programming

languages, 15
compiled code, compared with interpreted

code, 16
components, in Bootstrap, 120
Computer Science Education Week, 9
computing simple and advanced math,

204–205, 218–219
concatenate, 147
conciseness, principle of, 201
conditional statement, 140
conditionals

in Python, 221–222
in Ruby, 206–208

consistency, principle of, 201
console.log statement, 140
content, 113
content, organizing on web pages, 59–61
cost, API, 153
Coursera, 230
creating

Airbnb home page, 132–133
apps, 159–169
basic forms, 72–73
filler text, 124
location-based offer apps, 159–161
mobile web apps, 29
native mobile apps, 30–31
ordered lists, 62
simple form-text formatter using Ruby, 211
tip calculators using Python, 225
unordered lists, 62
web pages, 94–95
websites with HTML, 57–58

cross-browser compatibility, in
Bootstrap, 121

CrunchBase (website), 234
CSS (Cascading Style Sheets)

about, 26, 75, 97
adding to HTML, 92–94
aligning elements, 109–117
code for, 190
hacking websites with, 79–81
laying out elements, 109–117
naming code using class attribute,

108–109
selecting elements to style, 103–109
structure of, 77–81
styling, 92–93
styling elements on pages, 98–103
tasks and selectors, 81–92
uses for, 75–77
writing advanced, 118

curly brackets ({}), 78, 195
cursive, 85
customizing links, 86

• D •
D3.js, 153–154
data

listing, 61–64
organizing on pages, 109–111
putting in tables, 64–70
scraping without APIs, 151–152
storing with variables, 139–140

data types
Boolean, 139, 204, 218
Python, 217–218
Ruby, 203–204
strings, 139

debugging
about, 240–241
apps, 195–196
code, 38
web apps, 187–196

declaration block, 78–79
defining goals, 238
del element, 55
deliverables, agreeing on, 164

249 Index

descendant selector, 106–107
design errors, 241
design/designing

apps, 36–37
buttons, 128–130
coding for, 12
tables, 101–103

designers, 165–167
desktops

adapting layout for, 126–128
displaying web pages on, 19–26

development environment, 161–162,
188–189

Disney Animation, 214
display errors, 38
displaying web pages on desktops and

mobile devices, 19–26
<div> tag, 111–113, 115, 123, 127, 189–190
dividing apps into steps, 172–179
!DOCTYPE html element, 48–49
documentation

API, 150, 153
for apps, 184
product and feature requests, 164

dot-notation
in Python, 223–224
in Ruby, 203

double quotes (“), 205–206, 220
downcase method, 210
dragging and dropping, to websites,

124–125
Dribble (website), 176, 231
Drive, 39
Dropbox, 214
dropdown-toggle class, 131
Dummies (website), 3

• E •
ease of implementation, for apps, 184
e-commerce websites, using Ruby, 200
Editor, 38–39
Eich, Brendan (Netscape engineer), 136
elements

aligning, 109–117
body, 48–49, 104

choosing to style, 77–78
coding basic web page, 128–132
del, 55
!DOCTYPE html, 48–49
em, 55
head, 48–49, 104
hl, 104
html, 48–49, 104
identifying in HTML, 45–46
laying out, 109–117
li, 104
naming in HTML, 107–109
ol, 62
p, 104
selecting to style, 103–109
strong, 55
styling on pages with CSS, 98–103
sub, 56
sup, 56
table, 67–70
title, 48–49
tr, 69
u, 55
ul, 62, 104

elif statement, in Python, 221–222
else statement

in Python, 216, 221–222
in Ruby, 206–208

elsif statement, in Ruby, 206–208
em element, 55
embedded CSS, 93
enabling location services, 188
equal sign (=), 48, 78
equality (===) operator, 141, 143, 207, 222
errors, 38
escape sequences, 206, 221
Evans, David (professor), 231
exclamation points, in Ruby, 203

• F •
face detection APIs, 181
failures, sharing, 243
fantasy, 85
features, distinguishing, 239
feedback, collecting, 242

250 Coding For Dummies

filler text, generating, 124
first-child selectors, 107
flexibility, principle of, 201
Flickr (website), 54
float property, 115
.floor method, 205
following

app development process, 161–162
instructions, 8–9

font-family, setting, 84–85
font-family property, 82, 84–85
font-size, setting, 83
font-size property, 79, 82–83, 100
font-style, setting, 84
font-style property, 82, 84
font-weight, setting, 84
font-weight property, 82, 84
foreground images, styling, 88–92
fork, 188
form, for apps, 174–179
formatting strings with %, 224
forms, HTML, 70–73
form-text formatter, building using

Ruby, 211
FORTRAN, 31
forward slash (/), 45
framework, 27
frontend, 24–25
front-end developers, 167
full stack developer, 24, 37
function declaration, 146–147
functionality

across languages, when comparing
programming and spoken
languages, 14

of apps, 172–174, 184
functions
abs(), 219
capitalize(), 223–224
getLocation(), 182, 191, 192
lower(), 223–224
math.ceil(), 219
math.floor(), 219
naming code with, 146–147
round(), 219
showLocation(), 191–192

string.capitalize(), 224
string.lower(), 224
string.strip(), 224
string.upper(), 224
strip(), 223–224
upper(), 223–224

• G •
geolocation, 182
Geolocation API, 190–192
getElementByID, 192
getLocation() function, 182, 191–192
glyphs, 132
goals

breaking down, 238–239
defining, 238

Google, 239–240
Google Chrome, 20
Google Images (website), 54
Google Maps, 150–151, 180
Google Voice app, 28
greater than (>) operator, 106, 141, 207, 222
greater than or equal to (>=) operator, 141,

207, 222
grid system, lining up, 122–124
Groupon, 11

• H •
<h1> tag, 64, 103, 138, 189–190
h1...h6 headings, 51
Hackdesign.org, 230–231
Hacker News, 235
hacking

news websites, 20–22
websites with CSS, 79–81

head element, 48–49, 104
<head> tag, 148, 189–190
headlines, writing, 51
height attribute, 69
hex code, 84
hidden attribute, 46–47
high-level programming languages,

compared with low-level programming
languages, 15

251 Index

highlighting with bold, italics, underline,
and strikethrough, 55–56

hl element, 104
Hoffman, Reid (founder of LinkedIn), 241
Hood Model, 13
Horse ebooks, 104
hotlinking, 54, 89
Hotmail (website), 10
hover, 86
href attribute, 53, 93
HTML (HyperText Markup Language)

about, 26, 43, 59
adding CSS to, 92–94
building websites with, 57–58
forms, 70–73
history of, 58
listing data, 61–64
naming code using class attribute, 108
naming elements, 107–109
organizing content on pages, 59–61
practicing with, 73–74
structure of, 44–49
style, 55–56
tables, 64–70
tasks and tags, 49–54
uses for, 43–44

HTML code, 189–190
html element, 48–49, 104
Huffington Post (website), 20
hyperlinks, 52–53
HyperText Markup Language (HTML)

about, 26, 43, 59
adding CSS to, 92–94
building websites with, 57–58
forms, 70–73
history of, 58
listing data, 61–64
naming code using class attribute, 108
naming elements, 107–109
organizing content on pages, 59–61
practicing with, 73–74
structure of, 44–49
style, 55–56
tables, 64–70
tasks and tags, 49–54
uses for, 43–44

• I •
icons

adding, 131–132
explained, 3

id attribute, naming code using, 108
identifying research sources, 179–181
if statement

about, 141, 143
example of, 207–208, 222
in Python, 216, 221–222
in Ruby, 206–208

if-else statements, 140–144,
183–185

images, adding, 54, 88–92
 tag, 54
indenting

code, 188, 196
in Ruby, 202

Industrial Light & Magic, 214
industry news/blogs, 181
inequality (!=) operator, 141, 207, 222
infrastructure, of web pages, 24
in-line CSS, 92–93
.innerHTML methods, 192
input

in Python, 222–223
in Ruby, 208–209

inserting variables in strings with #,
210–211

installing Bootstrap, 121–122
instructions, following, 8–9
interaction designer, 166
Internet broadband connectivity, software

for, 10
Internet protocol address (IP address), 23
Internet resources

API directories, 181
Blacktie.co, 125
Blogger, 243
Bootply.com, 125
bootsnipp.com, 125
Bootstrapzero.com, 125
Bootswatch.com, 125
building with HTML, 57–58

252 Coding For Dummies

BuiltWith, 200, 214
buttons, 130
Cheat Sheet, 3
Chrome, 39, 187
Codecademy, 1, 2, 229
Code.org, 231–232
Codepen.io, 188
coding-reference, 232–234
color picker, 84
community websites, 234–236
Coursera, 230
CrunchBase, 234
developer tools, 241
dragging and dropping to, 124–125
Dribble, 176, 231
Drive, 39
Dummies, 3
escape sequences, 206
first-child selectors, 107
Flickr, 54
glyphs, 132
Google Chrome, 20
Google Images, 54
Hackdesign.org, 230
Hacker News, 235
hacking with CSS, 79–81
Hood Model, 13
Hotmail, 10
HTML button syntax, 184
Huffington Post, 20
Jetstrap.com, 125
Kimono Labs, 152
Layoutit.com, 125
learning-to-code, 229–232
Lorem ipsum text, 124
Meetup, 236
Mozilla, 109, 240
Mozilla Developer Network, 233
Notepad++, 39, 57
nth-child selectors, 107
Pingendo.com, 125
Python, 216
Python functions, 219
Python interpreter, 215, 218
retailmenot, 152

Sequoia, 13
Sites, 39
Stack Exchange, 240
Stack Overflow, 109, 233, 240–241
tech news, 234–236
TechCrunch, 234
TextMate, 57
TextMate 2.0, 39
toolbar options, 131
Tumblr, 243
Udacity, 230
user-generated coding, 181
w3.org, 240
W3Schools, 109, 139, 184–185, 232, 240
Weebly, 39
Wix, 39
Wordpress, 243
Wrapbootstrap.com, 125
Yahoo Weather API, 150

interpreted code, compared with compiled
code, 16

IP address (Internet protocol address), 23
italics, highlighting with, 55–56
iterating code, 242–243
iterative steps, 33
Ive, Jonathan (designer), 166

• J •
Java, 31
JavaScript

about, 16, 26
adding, 135–155, 148–149
APIs, 149–153
braces, 138
case-sensitivity in, 192
code for, 190–192
coding common tasks, 139–149
libraries, 153–154
parentheses, 138
quotes, 138
searching for videos, 154–155
semicolons, 138
structure of, 137–138
what it does, 135–137
writing programs in, 149

Internet resources (continued)

253 Index

Jetstrap.com (website), 125
job, coding on the, 12
jQuery, 153

• K •
Kimono Labs (website), 152

• L •
lang attribute, 47–48
layers, 37
laying out elements, 109–117
Layoutit.com (website), 125
layouts

adapting for mobile, tablet, and desktop,
126–128

in Bootstrap, 120, 122–128
learning-to-code websites, 229–232
left angle brackets, 195
left curly brackets, 195
length, of strings, 144
.length method, 145
less than (<) operator, 141, 207, 222
less than or equal to (<=) operator, 141,

207, 222
li element, 104
 tag, 63, 130
libraries, JavaScript, 153–154
lining up grid system, 122–124
<link> tag, 86, 121
links, customizing, 86
listing data, 61–64
lists

nesting, 63–64
styling, 98–101

list-style-image property, 99
list-style-type property, 98–99
LiveScript. See JavaScript
location services, enabling, 188
location-based offer apps, building, 159–161
logic

adding with Python, Ruby, and PHP, 26–27
of web pages, 24

logic errors, 38, 241
Lorem ipsum text, 124

lower() function, 223–224
lowering text with subscript, 56
low-level programming languages,

compared with high-level
programming languages, 15

• M •
margin, 113
markers, changing, 98
marketing, coding for, 12
massive open online course (MOOCs), 230
math.ceil() function, 219
math.floor() function, 219
Meetup, 236
method attribute, 72
methods

about, 144
.abs, 205
alert(), 146, 183–184
capitalise, 210
.ceil, 205
chomp, 208–209
downcase, 210
.floor, 205
.innerHTML, 192
.length, 145
prompt(), 146, 147
.round, 205
string.format(), 224
strip, 210
.substring, 145
.toFixed, 145
upcase, 210

Meyer, Rebecca (brain cancer patient), 83
minimum viable product, 37, 239
misspelled statements, 196
mobile devices

adapting layout for, 126–128
displaying web pages on, 19–26
software for, 10

mobile web applications
building, 29
coding, 27–31
defined, 25
native, 25–26, 30–31

254 Coding For Dummies

mockups, 36–37
Modern Seinfeld Twitter account, 107
modules, 219
monospace, 85
MOOCs (massive open online course), 230
Mozilla (website), 109, 240
Mozilla Developer Network, 233
music websites, using Ruby, 200
Musk, Elon (founder of PayPal), 104

• N •
\n character, 206, 220
\n escape sequence, 208–209, 223
naming

code using class attribute, 108–109
code using id attribute, 108
code with functions, 146–147
HTML elements, 107–109

native mobile applications
building, 30–31
defined, 25–26

natural lifespan, when comparing
programming and spoken
languages, 14

navigating, with toolbars, 130–131
nesting lists, 63–64
Netscape Navigator, 10
newlines

in Python, 217
in Ruby, 202

news websites
hacking, 20–22
using Ruby, 200

Notepad, 39
Notepad++, 39, 57
nth-child selectors, 107
number data type, 204
number methods, 144–146
numbers data type, 139, 218

• O •
offline, working, 38–39
ol element, 62
onclick attribute, 182, 189–190

‘one creator,’ when comparing
programming and spoken
languages, 14

online, working, 39–40
opening tags, 45, 195
open-source apps, 180–181
operations, coding for, 12
ordered lists, creating, 62
organizing

content on web pages, 59–61
data on pages, 109–111
text in paragraphs, 52

Otto, Mark (Twitter developer), 119, 167
output

in Python, 222–223
in Ruby, 208–209

• P •
p element, 104
padding, 113
pages, web

adding JavaScript to, 148–149
building, 94–95
coding basic elements, 128–132
displaying on desktops and mobile

devices, 19–26
organizing content on, 59–61
organizing data on, 109–111
styling elements on with CSS, 98–103

paragraphs, organizing text in, 52
parameters, 147
parentheses, 138, 147
Parody Tech Twitter accounts, 106–107
percent (%), formatting strings with, 224
period (.), 108
Peters, Tim (Python community

member), 215
Photoshop, 37
PHP, adding logic with, 26–27
Pichai, Sundar (product manager), 168–169
Pingendo.com (website), 125
planning web apps, 162–164
plus (+) operator, 147
positioning boxes, 114–117
pound (#) symbol, 210–211, 218

255 Index

predefined templates, Bootstrap, 125–126
predictability, of APIs, 150
preparing for coding, 187–188
pre-written code, 189–192
price, of apps, 184
principle of conciseness, 201
principle of consistency, 201
principle of flexibility, 201
print statement, in Python, 216
prior commercial apps, 180–181
product managers, 168
programmer, becoming a, 33–40
programming

about, 33
code-writing process, 33–38
tools, 38–40
for the web, 16, 19–31

programming languages
about, 31
selecting, 237
types of, 13–16

prompt() method, 146–147
prompting users for input, 146
properties

about, 77–78
background-attachment, 89, 91–92
background-color, 89
background-image, 88–89
background-position, 88, 90
background-repeat, 89–91
background-size, 88–90
border, 101–102
border-collapse, 103
clear, 115
color, 79–80, 82–84, 86
float, 115
font-family, 82, 84–85
font-size, 79, 82–83, 100
font-style, 82, 84
font-weight, 82, 84
list-style-image, 99
list-style-type, 98–99
text-align, 101–103
text-decoration, 82, 85–86
values, 78–79
width, 101–102

pseudo-class selectors, 87
public relations, coding for, 12
punctuation

in Python, 216
in Ruby, 202

Python
about, 16, 213
adding logic with, 26–27
building tip calculators using, 225
case-sensitivity in, 218
coding common tasks and commands,

217–223
conditionals in, 221–222
data types, 217–218
input in, 222–223
output in, 222–223
shaping strings, 223–224
spacing in, 216–217
special characters, 220–221
strings, 220–221
structure of, 214–217
styling in, 216–217
variables, 217–218
what it does, 213–214

Python interpreter, 215, 218

• Q •
quality, of data, 152
quality assurance, 169
Quora, 214
quotes, JavaScript, 138

• R •
r escape sequence, 208–209
Rails, 200. See also Ruby
raising text with superscript, 56
readability, of Python, 215
Reddit, 214
regular expressions, 152
rel attribute, 93
reliability, of data, 153
Remember icon, 3

256 Coding For Dummies

researching
APIs, 152–153
identifying sources, 179–181
web apps, 171–186
what to build, 35–36

resources, for coding and coders, 229–236
responsiveness, in Bootstrap, 121
retailmenot (website), 152
RGB value, 84
right angle brackets, 195
right curly brackets, 195
round() function, 219
.round method, 205
rows, table, 66–67
Ruby

about, 16, 199
adding logic with, 26–27
building simple form-text formatter

using, 211
case-sensitivity in, 204
coding common tasks and commands,

203–209
conditionals in, 206–208
principles of, 201–202
shaping strings, 209–211
spacing in, 202–203
structure of, 200–203
styling in, 202–203
what it does, 199–200

“Ruby on Rails,” 200. See also Ruby

• S •
sales, coding for, 12
sans-serif, 85
SciPy library, 214
scraping data without APIs, 151–152
Scrapy library, 214
screen scraping, 151–152
<script> tag, 122, 148–149
search engines, 180
searching for videos with YouTube’s API,

154–155
selecting

APIs, 152–153
elements to style, 77–78, 103–109

programming languages, 237
solutions, 184–186
tools for programming, 38–40

selectors
about, 77–78
CSS, 81–92

semantic errors, 241
semicolons, JavaScript, 138
sequential steps, 33
Sequoia, 13
serif, 85
setting

background-attachment, 91–92
background-image, 89
background-position, 90
background-repeat, 90–91
background-size, 89–90
color, 83–84
font-family, 84–85
font-size, 83
font-style, 84
font-weight, 84
text-decoration, 85

shaping
<div> tags, 111–113
strings, 209–211, 223–224

sharing successes and failures, 243
showLocation() function, 191–192
simple math, computing, 204–205,

218–219
single quotes (‘), 205–206, 220
Sites, 39
social networking sites, using Ruby, 200
software, 10–11, 164
solid-black-circle, 98
solutions, choosing, 184–186
spaces, 49, 202
spacing

in Python, 216–217
in Ruby, 202–203

 tag, 132
special characters

in Python, 220–221
in Ruby, 205–206

specifications, 239

257 Index

spoken languages, compared with
programming languages, 14–15

Spotify, 214
SQLite, 214
src attribute, 148
Stack Exchange (website), 240
Stack Overflow, 109, 233–234, 240–241
statements
alert, 142
conditional, 140
console.log, 140
elif, 221–222
else, 206–208, 216, 221–222
elsif, 206–208
if, 141, 143, 206–208, 216,

221–222
if-else, 140–144, 183–185
misspelled, 196
print, 216

storing
data with variables, 139–140
web pages, 24

strikethrough, highlighting with, 55–56
string data type, 204, 218
string methods, 144–146, 210
string.capitalize() function, 224
string.format() method, 224
string.lower() function, 224
strings

about, 138
formatting with %, 224
inserting variables in with #, 210–211
in Python, 220–221
in Ruby, 205–206
shaping, 209–211, 223–224

strings data type, 139
string.strip() function, 224
string.upper() function, 224
strip() function, 223–224
strip method, 210
strong element, 55
 tag, 67
structure

of APIs, 150
of Cascading Style Sheets (CSS), 77–81

of HyperText Markup Language (HTML),
44–49

of JavaScript, 137–138
of Python, 214–217
of Ruby, 200–203
of tables, 65–66
when comparing programming and

spoken languages, 14
style

choosing elements to, 77–78
HyperText Markup Language (HTML),

55–56
selecting elements to, 103–109

style attribute, 99, 101
style sheets, 93
<style> tag, 99, 101
styling

Cascading Style Sheets (CSS), 92–93
elements on pages with CSS, 98–103
foreground images, 88–92
lists, 98–101
in Python, 216–217
in Ruby, 202–203

sub element, 56
subscript, lowering text with, 56
.substring method, 145
successes, sharing, 243
sup element, 56
superscript, raising text with, 56
support

API, 153
for apps, 184

syntax, 14, 180
syntax errors, 38, 240

• T •
t character, 206, 220
table element, 67–70
<table> tag, 65–66
tables

aligning with cells, 67–70
designing, 101–103
putting data in, 64–70
structure of, 65–66

258 Coding For Dummies

tablets, adapting layout for, 126–128
tags

anchor, 53
<body>, 148, 189–190

, 52
<button>, 129
<caption>, 103
closing, 45, 195
defined, 45
<div>, 111–113, 115, 123, 127, 189–190
<h1>, 64, 103, 138, 189–190
<head>, 148, 189–190
HyperText Markup Language (HTML),

49–54
, 54
, 63, 130
<link>, 86, 121
opening, 45, 195
in Ruby, 202
<script>, 122, 148–149
, 132
, 67
<style>, 99, 101
<table>, 65–66
<td>, 65–66
<tr>, 65–66
, 98, 130

tasks
CSS, 81–92
HyperText Markup Language (HTML),

49–54
JavaScript, 139–149
Python, 217–223
Ruby, 203–209

<td> tag, 65–66
tech news websites, 234–236
TechCrunch, 234
Technical Stuff icon, 3
text

lowering with subscript, 56
organizing in paragraphs, 52
raising with superscript, 56

text-align property, 101–103
text-decoration, setting, 85
text-decoration property, 82, 85–86

TextEdit, 39
TextMate, 39, 57
themes, Bootstrap, 125–126
Thornton, Jacob (Twitter developer),

119, 167
timeline, agreeing on, 164
tip calculators, building using Python, 225
Tip icon, 3
title attribute, 46–48, 104
title element, 48–49
.toFixed method, 145
toolbars, navigating with, 130–131
tools

discussing, 164
selecting for programming, 38–40

tr element, 69
<tr> tag, 65–66
Tumblr (website), 243
Twitter Bootstrap. See Bootstrap
two slashes (//), 193
type attribute, 71, 93, 148
types

of programming languages, 13–16
of visual design, 36–37

• U •
u element, 55
Uber, 11
Udacity, 230
UI (user interface) designer, 165
ul element, 62, 104
 tag, 98, 130
underline, highlighting with, 55–56
underscore (_) character, 203, 217
unordered lists, creating, 62
upcase method, 210
upper() function, 223–224
user experience (UX) designer, 165
user interface (UI) designer, 165
user-generated coding websites, 181
users

alerting, 146
prompting for input, 146

UX (user experience) designer, 165

259 Index

• V •
valign attribute, 69
value attribute, 71
values

about, 77–78
of properties, 78–79

van Rossum, Guido (developer), 213, 215
var keyword, 139–140
variables

case-sensitivity of, 204
inserting in strings with #, 210–211
in Python, 217–218
in Ruby, 203–204
storing data with, 139–140

videos, searching for with YouTube’s API,
154–155

Vinod Coleslaw Twitter account, 107
visited, 86
Visual Basic, 16
visual design, types of, 36–37
visual designer, 165–166

• W •
W3Schools, 109, 139, 232–233, 240
Warning! icon, 3
waterfall process, 33–34, 161
web

how it works, 22–24
programming for the, 16, 19–31

web applications
built with code, 16–18
coding, 16–18, 26–27, 187–196
debugging, 187–196
defined, 25
planning, 162–163
researching, 171–186

web pages
adding JavaScript to, 148–149
building, 94–95
coding basic elements, 128–132
displaying on desktops and mobile

devices, 19–26
organizing content on, 59–61

organizing data on, 109–111
styling elements on with CSS, 98–103

web scraping, 151–152
web-based software, 10
websites

API directories, 181
Blacktie.co, 125
Blogger, 243
Bootply.com, 125
bootsnipp.com, 125
Bootstrapzero.com, 125
Bootswatch.com, 125
building with HTML, 57–58
BuiltWith, 200, 214
buttons, 130
Cheat Sheet, 3
Chrome, 39, 187
Codecademy, 1, 2, 229
Code.org, 231–232
Codepen.io, 188
coding-reference, 232–234
color picker, 84
community websites, 234–236
Coursera, 230
CrunchBase, 234
developer tools, 241
dragging and dropping to, 124–125
Dribble, 176, 231
Drive, 39
Dummies, 3
escape sequences, 206
first-child selectors, 107
Flickr, 54
glyphs, 132
Google Chrome, 20
Google Images, 54
Hackdesign.org, 230
Hacker News, 235
hacking with CSS, 79–81
Hood Model, 13
Hotmail, 10
HTML button syntax, 184
Huffington Post, 20
Jetstrap.com, 125
Kimono Labs, 152
Layoutit.com, 125

260 Coding For Dummies

learning-to-code, 229–232
Lorem ipsum text, 124
Meetup, 236
Mozilla, 109, 240
Mozilla Developer Network, 233
Notepad++, 39, 57
nth-child selectors, 107
Pingendo.com, 125
Python, 216
Python functions, 219
Python interpreter, 215, 218
retailmenot, 152
Sequoia, 13
Sites, 39
Stack Exchange, 240
Stack Overflow, 109, 233, 240–241
tech news, 234–236
TechCrunch, 234
TextMate, 57
TextMate 2.0, 39
toolbar options, 131
Tumblr, 243
Udacity, 230
user-generated coding, 181
w3.org, 240
W3Schools, 109, 139, 184–185, 232, 240
Weebly, 39
Wix, 39

Wordpress, 243
Wrapbootstrap.com, 125
Yahoo Weather API, 150

Weebly, 39
whitespace, in Python, 216
width attribute, 67–70
width property, 101–102
wireframes, 36–37
Wix, 39
Wordpress (website), 243
Wrapbootstrap.com (website), 125
writing

advanced CSS, 118
code with Angry Birds app, 9
headlines, 51
JavaScript programs, 149
programs in JavaScript, 149

written in English, when comparing
programming and spoken
languages, 15

• Y •
Yahoo Weather API (website), 150
Yelp, 16–18
YouTube API, searching for videos with,

154–155
Yukihiro Matsumoto (developer), 167–168

websites (continued)

Notes

Notes

Notes

Notes

About the Author
Nikhil Abraham has worked at Codecademy.com for the last two years. At
Codecademy, he helps technology, finance, media, and advertising companies
teach their employees how to code. With his help, thousands of marketing,
sales, and recruiting professionals have written their first lines of code and
built functional applications. In addition to teaching, he manages partner-
ships and business development for Codecademy, and has helped bring
coding to schools in the United States, Brazil, Argentina, France, and the
United Kingdom.

Prior to Codecademy, Nikhil worked in a variety of fields, including manage-
ment consulting, investment banking, and law, and founded a Y-Combinator–
backed technology education startup. He received a JD and MBA from
the University of Chicago, and a BA in quantitative economics from Tufts
University.

Nikhil lives in Manhattan, New York.

Dedication
This book is dedicated to Molly Grovak.

Author’s Acknowledgments
This book was possible with help from a number of people.

Thanks to all the people at Wiley, including Steven Hayes, for keeping an
open mind to as many ideas as can fit in one phone call, and Christopher
Morris for edits and helpful advice. Also, thank you to all the technical edito-
rial, layout, and graphics folks for turning text of variable quality into text of
outstanding quality.

Thanks to those of you who helped shape the content in this book and
online. For everyone at Codecademy, including Zach and Ryan, thank you
for the feedback on the chapters and for answering my questions. Thanks
to Douglas Rushkoff, for starting a national conversation on whether we as
a society should program or be programmed, and for bringing this message
to schools, universities, and non-profits. Thanks to Susan Kish, for being the
only executive I can find who has spoken publicly about her journey learning
how to code (check out her TED Talk!), and for seeing the future of coding
in corporations. Thanks to Alia Shafir and Joshua Slusarz for all the coding
sessions you helped organize, leaders you wrangled, rooms you reserved,
and laptops you rebooted. Thanks to Melissa Frescholtz and her leadership
team for supporting a culture of code, and bringing code education even
to places where it’s used every day. Thanks to alumni at Cornell University,
Northwestern University, University of Virginia, and Yale University for
testing early versions of content, and helping make it better. Thanks to the
people at Donorschoose.org, including Charles Best and Ali Austerlitz, and at
Google.org for shining a bright light on coding for women and girls. Thanks to
Code.org for making coding accessible and cool for tens of millions of kids in
the United States and abroad.

Finally, thanks to Molly, who ordered more take-out, brewed more tea, and
cleaned the apartment more times than I can count.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes

Senior Project Editor: Christopher Morris

Copy Editor: Christopher Morris

Technical Editor: Travis Faas

Editorial Assistant: Claire Johnson

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Melissa Cossell

Cover Image: ©iStock.com/blackred

http://www.facebook.com/fordummies
http://www.twitter.com/fordummies

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with Coding
	Chapter 1: What Is Coding?
	Defining What Code Is
	Following instructions
	Writing code with some Angry Birds

	Understanding What Coding Can Do for You
	Eating the world with software
	Coding on the job
	Scratching your own itch (and becoming rich and famous)

	Surveying the Types of Programming Languages
	Comparing low-level and high-level programming languages
	Contrasting compiled code and interpreted code
	Programming for the web

	Taking a Tour of a Web App Built with Code
	Defining the app’s purpose and scope
	Standing on the shoulders of giants

	Chapter 2: Programming for the Web
	Displaying Web Pages on Your Desktop and Mobile Device
	Hacking your favorite news website
	Understanding how the World Wide Web works
	Watching out for your front end and back end
	Defining web and mobile applications

	Coding Web Applications
	Starting with HTML, CSS, and JavaScript
	Adding logic with Python, Ruby, or PHP

	Coding Mobile Applications
	Building mobile web apps
	Building native mobile apps

	Chapter 3: Becoming a Programmer
	Writing Code Using a Process
	Researching what you want to build
	Designing your app
	Coding your app
	Debugging your code

	Picking Tools for the Job
	Working offline
	Working online with Codecademy.com

	Part II: Building the Silent and Interactive Web Page
	Chapter 4: Exploring Basic HTML
	What Does HTML Do?
	Understanding HTML Structure
	Identifying elements
	Featuring your best attribute
	Standing head, title, and body above the rest

	Getting Familiar with Common HTML Tasks and Tags
	Writing headlines
	Organizing text in paragraphs
	Linking to your (heart’s) content
	Adding images

	Styling Me Pretty
	Highlighting with bold, italics, underline, and strikethrough
	Raising and lowering text with superscript and subscript

	Building Your First Website Using HTML

	Chapter 5: Getting More Out of HTML
	Organizing Content on the Page
	Listing Data
	Creating ordered and unordered lists
	Nesting lists

	Putting Data in Tables
	Basic table structuring
	Stretching table columns and rows
	Aligning tables and cells

	Filling Out Forms
	Understanding how forms work
	Creating basic forms

	Practicing More with HTML

	Chapter 6: Getting Stylish with CSS
	What Does CSS Do?
	CSS Structure
	Choosing the element to style
	My property has value
	Hacking the CSS on your favorite website

	Common CSS Tasks and Selectors
	Font gymnastics: size, color, style, family, and decoration
	Customizing links
	Adding background images and styling foreground images

	Styling Me Pretty
	Adding CSS to your HTML
	Building your first web page

	Chapter 7: Next Steps with CSS
	Styling (More) Elements on Your Page
	Styling lists
	Designing tables

	Selecting Elements to Style
	Styling specific elements
	Naming HTML elements

	Aligning and Laying Out Your Elements
	Organizing data on the page
	Shaping the div
	Understanding the box model
	Positioning the boxes

	Writing More Advanced CSS

	Chapter 8: Working Faster with Twitter Bootstrap
	Figuring Out What Bootstrap Does
	Installing Bootstrap
	Understanding the Layout Options
	Lining up on the grid system
	Dragging and dropping to a website
	Using predefined templates
	Adapting layout for mobile, tablet, and desktop

	Coding Basic Web Page Elements
	Designing buttons
	Navigating with toolbars
	Adding icons

	Build the Airbnb Home Page

	Chapter 9: Adding in JavaScript
	What Does JavaScript Do?
	Understanding JavaScript Structure
	Using Semicolons, Quotes, Parentheses, and Braces
	Coding Common JavaScript Tasks
	Storing data with variables
	Making decisions with if-else statements
	Working with string and number methods
	Alerting users and prompting them for input
	Naming code with functions
	Adding JavaScript to the web page

	Writing Your First JavaScript Program
	Working with APIs
	What do APIs do?
	Scraping data without an API
	Researching and choosing an API

	Using JavaScript Libraries
	jQuery
	D3.js

	Searching for Videos with YouTube’s API

	Part III: Putting Together a Web Application
	Chapter 10: Building Your Own App
	Building a Location-Based Offer App
	Understanding the situation
	Plotting your next steps

	Following an App Development Process
	Planning Your First Web Application
	Exploring the Overall Process
	Meeting the People Who Bring a Web App to Life
	Creating with designers
	Coding with front- and back-end developers
	Managing with product managers
	Testing with quality assurance

	Chapter 11: Researching Your First Web Application
	Dividing the App into Steps
	Finding your app’s functionality
	Finding your app’s functionality: My version
	Finding your app’s form
	Finding your app’s form: The McDuck’s Offer App design

	Identifying Research Sources
	Researching the Steps in the McDuck’s Offer App
	Choosing a Solution for Each Step

	Chapter 12: Coding and Debugging Your First Web Application
	Getting Ready to Code
	Coding Your First Web Application
	Development environment
	Pre-written code
	Coding steps for you to follow

	Debugging Your App

	Part IV: Developing Your Coding Skills Further
	Chapter 13: Getting Familiar with Ruby
	What Does Ruby Do?
	Defining Ruby Structure
	Understanding the principles of Ruby
	Styling and spacing

	Coding Common Ruby Tasks and Commands
	Defining data types and variables
	Computing simple and advanced math
	Using strings and special characters
	Deciding with conditionals: If, elsif, else
	Input and output

	Shaping Your Strings
	String methods: upcase, downcase, strip
	Inserting variables in strings with #

	Building a Simple Form-Text Formatter Using Ruby

	Chapter 14: Wrapping Your Head around Python
	What Does Python Do?
	Defining Python Structure
	Understanding the Zen of Python
	Styling and spacing

	Coding Common Python Tasks and Commands
	Defining data types and variables
	Computing simple and advanced math
	Using strings and special characters
	Deciding with conditionals: If, elif, else
	Input and output

	Shaping Your Strings
	Dot notation with upper(), lower(), capitalize(), and strip()
	String formatting with %

	Building a Simple Tip Calculator Using Python

	Part V: The Part of Tens
	Chapter 15: Ten Free Resources for Coding and Coders
	Learning-to-Code Websites
	Codecademy
	Coursera and Udacity
	Hackdesign.org
	Code.org

	Coding-Reference Websites
	W3Schools
	Mozilla Developer Network
	Stack Overflow

	Tech News and Community Websites
	TechCrunch
	Hacker News
	Meetup

	Chapter 16: Ten Tips for Novice Coders
	Pick a Language, Any Language
	Define a Goal
	Break Down Your Goal into Bite-Sized Steps
	Distinguish Cupcake from Frosting
	Google Is a Developer’s Best Friend
	Zap Those Bugs
	Just Ship It
	Collect Feedback
	Iterate on Your Code
	Share Your Success and Failure

	Index
	About the Author
	Wiley End User License Agreement

