Practice coding oh’ne at

Coding

FOR

DU MIES

A Wiley Brand

=7/ 7

Learn to: S

- Write your first lines of code
and see immediate results

- Work with five different coding
languages to choose which is
best for you

- Create a working application
using basic coding skills

IN FULL COLOR!

Nikhil Abraham

Get More and Do More at Dummies.com®

Start with FREE Cheat Sheets
() .
C\Ne x } Cheat Sheetsinclude
"\«QQ « Checklists
« Charts

« Common Instructions
- And Other Good Stuff!

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/coding

2 .

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s

of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
«Videos
« lllustrated Articles
« Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
« Digital Photography
« Microsoft Windows & Office
« Personal Finance & Investing
+ Health & Wellness
« Computing, iPods & Cell Phones
- eBay
* Internet
- Food, Home & Garden

Find out “THOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

http://www.dummies.com/cheatsheet/coding

Coding

FOR

DUMMIED

by Nikhil Abraham

DUMMIES

Coding For Dummies®
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey
Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http: //booksupport .wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2014954659

ISBN 978-1-118-95130-9 (pbk); ISBN 978-1-118-95130-9 (ebk); ISBN 978-1-118-97091-1 (ebk)
Manufactured in the United States of America

109 87654321

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance

JAEEOAUCTIONeeeeeeeeeaeaaaaaaeeeaaaaeaaaaeeeeeeeeeeeeennnnnnnnn 1
Part I: Getting Started with Coding...........cccueeeeeeeeeeeanne. 5
Chapter 1: What IS COAING?c.coouieiieiieieeieeeeeteceesee sttt veeaesae et saeesaeeaesseenes 7
Chapter 2: Programming for the Webccooviivininieeeececeeeeeeeeeens 19
Chapter 3: Becoming a PrOgrammercoccoevierienieneenenienienieniteseeseeseesaeeseeesees 33

Part 11: Building the Silent and
Interactive Web Page.................cccccueeeeeeeeeeeeeeeeennnnnnass &1

Chapter 4: Exploring Basic HTML..........cccceoiiirrenieninieeeeeeeseseeeee e eeenens 43
Chapter 5: Getting More Out of HTML..........cceveiiiiinieeeieeeeeeeeeee e 59
Chapter 6: Getting Stylish with CSS......cccooiiiiiiiieeeeeeee 75
Chapter 7: Next Steps With CSS......ccuooiiiiieieceeeteteeee et 97
Chapter 8: Working Faster with Twitter Bootstrap........c.ccocceeeveverinceeceeceeene, 119
Chapter 9: Adding in JAVASCIIPL....cccevviiriirieiienietcteeee sttt 135
Part 111: Putting Together a Web Application 157
Chapter 10: Building Your OWN APDcccooeiiiiiieieieineeeeteeee et 159
Chapter 11: Researching Your First Web Applicationccceceeeievcienienieneenieene 171
Chapter 12: Coding and Debugging Your First Web Application...........cc.cccceueueueee. 187
Part IU: Developing Your Coding Skills Further........... 197
Chapter 13: Getting Familiar with RUDYccccooviiniiniiiiiiiieceeee 199
Chapter 14: Wrapping Your Head around Python..........ccccocoiiiininnniinininenee. 213
Part U: The Part of Tensccccceeeeeeeeeeeeeeeeeeeeeeennnnn 227
Chapter 15: Ten Free Resources for Coding and Coders..........cccoceveveeeeneesieneennnnne. 229
Chapter 16: Ten Tips for Novice COAErS.........cevvrrirreriiniriirieiereneseeeeeeeeeesee e 237

Table of Contents

JNtrOdUCHIONeeeeeeeeeeeeeeeaeeneeacenncenceacencenncenceaceaneanee |

ADOUL THiS BOOKcvvviiiiiiiiiiceiee ettt et ceaan e ens 2
Foolish ASSUMPLIONS.......cccciiiiiieiieeeceeeee et 2
Icons Used in This BOOKoooviiiiiiiiiieiiicceeeceereee e 3
Beyond the BOOKooouiiiiieeeee et 3
Where t0 GO from HETE.......ooouviiiiiiiieiieeeeeeeeeee et 4

Part I: Getting Started with Coding.............ccccceeeeeeeeccccc 5

Chapter 1: What Is Coding?ccoiviiiiiiiiiinnnn.. 7
Defining What Code IS.......ooiiiiiiiiiiieniiietetceeeeteeee et 8
Following inStructions..........cccueeciiecieeiiiceieccee e 8
Writing code with some Angry Birdsccccoeeveevieevienienieneeceeieee, 9
Understanding What Coding Can Do for YOucccecceeveecieecieeceeneeneenen. 10
Eating the world with software........c.cccoecvevviiniinieniecineceeeeee 10
Coding on the JOD.....cociiiiiiiieie e 12
Scratching your own itch (and becoming rich and famous).......... 13
Surveying the Types of Programming Languagesc.cccceevevvveevenneennen. 13
Comparing low-level and high-level programming languages 15
Contrasting compiled code and interpreted code........................... 16
Programming for the webcccocvvviriiiiniee, 16
Taking a Tour of a Web App Built with Code...........cccceevvevciinviniiniienen. 16
Defining the app’s purpose and SCOPE€.........ccoceevverreerveeriierreesieeneenne 17
Standing on the shoulders of giants............ccccceeeveviecieciecieeieeene, 17
Chapter 2: Programming forthe Web............................ 19
Displaying Web Pages on Your Desktop and Mobile Device.................... 19
Hacking your favorite news websiteccccceeevecieciiciieciecieene, 20
Understanding how the World Wide Web works.............cccccuveunen.e. 22
Watching out for your front end and back end............cccccevueeuennnens 24
Defining web and mobile applications.........ccccceeveeververvirvieniiennenne. 25
Coding Web ApPLICAtiONScooiiiiiiiiiriiiieeieeieeeetee ettt 26
Starting with HTML, CSS, and JavaScript........cccccceeveevieviievienreennnne. 26
Adding logic with Python, Ruby, or PHPcccccocoiiiiniiiii, 26
Coding Mobile ApPlCAtionscccccverieriieciieieeieeteere et 27
Building mobile Web apPs.......ccccvvviiriiriierierieneeeeeeeee e 29

Building native mobile apps.......cccccocevvieriiniinieniccceeee e 30

(/ll[Coding For Dummies

Chapter 3: Becoming a Programmer. 33
Writing Code USiNg @ PrOCESS.......cceevieiiiiieieeiectceeeeie ettt 33
Researching what you want to build.........c.ccceeeeriininiiniinienienene, 35

DeSigning YOUT QPP ...ccvvirtieriiriieienierieniteeeesiteseeseeseeeseseessesasesasesns 36

COAING YOUT @PP..ccuririiirienieniienitenteneenie et et esseestestestestesasesasesasesaes 37
Debugging your COdE.........cuivcuiieriieeiieieeeieeeiee e eeeeee e seee e 38

Picking Tools for the JODccoociviriiiiiiii e 38
WOrking offlineccoecveeiiiienieiieieecteeieee et 38

Working online with Codecademy.comc.ccceceevveneeneenennuennenns 39

Part 1: Building the Silent and Interactive Web Page...... 41

Chapter 4: ExploringBasicHTML................................ 43
What Does HTML DOocioiiiiieieieeeeeeteteteie ettt 43
Understanding HTML StrucCturecccoccveeeeveenieeciiesieeieeieeee e 44

Identifying €lementscccceveiueeieeeierieeee e 45
Featuring your best attribute.........ccccocevciiniiininniiiiiiiieeeee, 46
Standing head, title, and body above the restcccccceevueriennnnne. 48
Getting Familiar with Common HTML Tasks and Tagsccccceeveveenne. 49
Writing headliNes..........ccveeieeiiiiiieiieeeiece et 51
Organizing text in paragraphs.......cccceveiieiieieeneccececeeeeee e 52
Linking to your (heart’s) contentccccoeceeveeneeneeniensiensieneeneenes 52
AddiNg IMAZEScveveiieeeeieteietese ettt sre e eseeneas 54
SEYHNG MeE Pretty ..occveeveeeieieieeeecee ettt 55
Highlighting with bold, italics, underline, and strikethrough........ 55
Raising and lowering text with superscript and subscript 56
Building Your First Website Using HTML...........cccccooeinieiecieniceeeeeeennn 57

Chapter 5: Getting More Qutof HTML. 59
Organizing Content on the Page.........cccooeeviieviiiviicciiciececcceeeeeeeeen 59
LiStiNg Data.....cccveeiiriiriieiieieiieeieeieeteste st sreete e steeteste s e s e e aaenaeeneees 61

Creating ordered and unordered lists..........cocevvuervierviiriiincienceeneenne. 62
NESHING LISES .eevuiiriiiriieieeeteeee ettt 63
Putting Data in Tables...........cocoeiiiiiiieeeeceeece e 64
Basic table Structuring.........cccecceeciiecieecieeiecieseeceee e 65
Stretching table columns and rOWS..........cccceevereereecieecieeieeieeeene 66
Aligning tables and CellScocveviirvieeieniieeieeeeeeeeeeee e 67
Filling Out FOIMSoooiiiiiiiiiiiiieeeteseteeee ettt 70
Understanding how forms workcccecevvievinniinennenninnienieneene 71
Creating basic fOrms..........ccoccvevierieniecieceeeeeeeee e 72

Practicing More with HTMLcocoiiiiiinieeeeececeeceee e 73

Table of Contents
Chapter 6: Getting StylishwithCSS 75
What D0es CSS DO? ...ttt st 75
CSS STIUCTUTE ..ottt 77
Choosing the element to style........ccccooceviiviiininiiiciineeeeee, 77
My property has valueccocoviiniiniiiinniieece e 78
Hacking the CSS on your favorite website..........ccccoeeevieciiecreerennnnnee. 79
Common CSS Tasks and Selectorsccoceeievieienenenenieerereseeeeeeene 81
Font gymnastics: size, color, style, family, and decoration 82
Customizing lNKS.......ceecveriiiriiniinieneesccieccee e 86
Adding background images and styling foreground images.......... 88
Styling Me Pretty ...oc.oooiiiiiiiiieieeeeteeetetetee ettt st 92
Adding CSS to your HTMLccooiiiiiieiieieceeeeeteeeeeie e 92
Building your first web page.........cccccovevieeieniiniiceeeeeeeeee 94
Chapter 7: Next Steps withCSSt 97
Styling (More) Elements on Your Page...........ccccooevenininieneneneneeceenee. 98
SYING LSS cuiieiiiieeiieieitesteeete ettt ettt aeeees 98
Designing tablescoiiiieiiiriiiiiciecieeeeeeee e 101
Selecting Elements t0 Styleccooeeieeiiniiniiniiiecececece e 103
Styling specific elements.........cccccocerviiriieniiiniieniiniceeeeeen 104
Naming HTML elements..........cccccceeeviiiniieecieeee e 107
Aligning and Laying Out Your Elements..........c.cccceveveninincnnienenenenen. 109
Organizing data on the page.........ccoeceeeieiieiieieececceee e 109
Shaping the diV......c.ccoeciiiiiiiirieiec e 111
Understanding the box model..........cccocoeiiniiniiniiniiniiniinieniene 113
Positioning the DOXes..........ccocevviriiiiiiiniieniieteceeeeeeeeee 114
Writing More Advanced CSScoooiivieieecienieeeceeeee et 118
Chapter 8: Working Faster with Twitter Bootstrap 119
Figuring Out What Bootstrap DOESccceevvevueeciieiiieieeieeieceeceeeeeeieene 119
Installing BOOtStIaDccceeeiieiiiiiicieciecteeeee ettt sae e 121
Understanding the Layout Options..........ccccceveeviieiienieecienieeieeeeseeneenne 122
Lining up on the grid system........c.ccccovvuiriiiniiinienienecceeeeeeeeene 122
Dragging and dropping to a websiteccccoevvvvieveniinieniieniennne 124
Using predefined templates........c.ccocevvierienieninnennenienienieseeneens 125
Adapting layout for mobile, tablet, and desktop............ccceuuen..e.. 126
Coding Basic Web page Elementscccoeceririeiienenenenieieeeeeceeee 128
Designing DULtONScc.cocviiriiiiiieciecieeieeeeeeee et 128
Navigating with toolbars.........cccccecivviirviinienieniieceeeeceeee e 130
AddING ICONS ...oiuiiiiiieierteteeee ettt 131

Build the Airbnb Home Page.........ccocoviiniiniiniiiiiceeceeceeteeeeee 132

ix

X

Coding For Dummies

Chapter 9: Adding inJavaScriptccciiiiiinnn, 135
What Does JavaScript DO?.........ooeeviieviiiiiieieeieceeeeseee et 135
Understanding JavaScript Structure..........coccoeceeveeiieneecieniienieneeseeneenne 137
Using Semicolons, Quotes, Parentheses, and Braces.........c.ccceccevvenene 138
Coding Common JavaScript Taskscoceeverviiriiiniiiniienienieneeneeseeeee 139

Storing data with variables...........c.cccceevveeienienieceecece e 139
Making decisions with if-else statementsccccccoecvvecieecieeeennn. 140
Working with string and number methods..........c.cccccccvevuverurennnee. 144
Alerting users and prompting them for input.........ccccceevrveenennee. 146
Naming code with functions...........cccceevierienviiniineininineeeee 146
Adding JavaScript to the webpageccccoevivieniiniininniieeeee, 148
Writing Your First JavaScript Program.........c.ccccocvevievieceeciiecieeieeieeeene 149
Working With APIScc.oooiiiiiiieieece ettt 149
What do APIS dO?.....cc.ooieiiiiieieieieeee et e 150
Scraping data without an API............cccccoeirvieiecienieeceeeee e 151
Researching and choosing an APL...........cccocoviiniininiinniniienienen, 152
Using JavaScript LiDraries.......ccccocceeviervienienieneniieneeeeieseeseeseeseesieenee 153
JQUETY .ttt ettt a e s b e s re e be e be e baebeesaeennas 153
D38 tuteuieteietee ettt ettt ettt b et ae st et st et neesenes 153
Searching for Videos with YouTube’s APlL..........cccccceveeviercienienieneeneenne 155

Part 111: Putting Together a Web Application.............. 157

Chapter 10: Building Your OwnApp............ccoviiniiinn.. 159
Building a Location-Based Offer Appccccceeveviieiiieieeciecieeieceeeeeeene 159
Understanding the situation...........cocceeveeienieninncnninieneeeeeeeene 160

Plotting your next StEPS.......cccvevieciiicieeieeieceeseeseee e 160

Following an App Development Process..........cccccevvvveevienviencienieenceenennns 161
Planning Your First Web Application.........ccccoeceeveevinneniienienienieneeneenne 162
Exploring the Overall ProCesscoccovviiriiniineiiiiiienieeieeeeseeeteseeseene 163
Meeting the People Who Bring a Web App to Lifeccccceevieeeeienens 165
Creating with designerscocoveverinennenieneeeee e 165

Coding with front- and back-end developers...........cccccueeveerennenn. 167

Managing with product managersccccceeeeveevieevienciencrenireneennens 168

Testing with quality assurance..........cccoeceevvienieneenennensenienieeene 169

Chapter 11: Researching Your First Web Application............. m
Dividing the App iNtO StEPS.....ccciviieriiirieieteeeeeeese e 172
Finding your app’s functionality........c..cceccevvieniiniinieniiniiniienienene 172

Finding your app’s functionality: My version............cccccecvererennene 172

Finding your app’s fOrm.........ccecoeieiiinininineeeeeeeeeeeee e 174

Finding your app’s form: The McDuck’s Offer App design........... 178

Table of Contents

Identifying Research SOUrCes..........ccceeveiieiieneecieeeeeeeeee e 179
Researching the Steps in the McDuck’s Offer App.....cccocceceeievenenennenne 181
Choosing a Solution for Each Stepccceeeieviiciiniiciieciecieceeceeeeeee 184

Chapter 12: Coding and Debugging Your First Web Application. . . .187

Getting Ready t0 COAEuoviiniiniiiiiieiieiecieeie ettt 187
Coding Your First Web Applicationccccceecevviirnieniieniienienieseeseeneene 188
Development environmentccccveeeieeeciieeiiecneeesieeereeevee e 188
Pre-written code........ooiiiiiiiiiiiiieetc e 189
Coding steps for you to fOlloWcccecueeciieiiieiiieciieciecieeeeee e 192
DebUZZING YOUT APD .uvviivieiiiiieiieieeieeiesteeee e esteesteesteeaesaesseesaesseenseenes 195

Part IU: Developing Your Coding Skills Further 197

Chapter 13: Getting FamiliarwithRuby 199
What Does RUDY DO? ..ottt 199
Defining RUDY STrUCUYE........ccoiiiieiecieeceeeeee e 200

Understanding the principles of Rubyc.cccccoovniniiiiiinininene 201
Styling and SPACING........ccceveeriieriieriiiieeieeeere et ese et ae e 202
Coding Common Ruby Tasks and Commands.........c.cccecuerevereeneeneenennne 203
Defining data types and variables..........c.ccceceviineinenvinnennienienens 203
Computing simple and advanced mathcccoeeviinniniennnncn. 204
Using strings and special characterscccocceevvverveeciecenenenenne 205
Deciding with conditionals: If, elsif, else.........ccccceevireircrircrecrennnnne 206
Input and OULPULcocviiiieiieeeceee et 208
Shaping YOUr StriNgS......cccccciviiriiiriieniienienientere et esre e see st seesaeesaeenes 209
String methods: upcase, downcase, Strip.....c..ccoceevveevervieriienieennnen. 210
Inserting variables in strings with #.........cccccoooiniiiinininiieee 210
Building a Simple Form-Text Formatter Using Ruby.........c..cccccveevenens 211

Chapter 14: Wrapping Your Head around Python................. 213
What Does Python DO? ..ot 213
Defining Python Structure...........coooeiiiiiiienineeeeeeeeeee 214

Understanding the Zen of Python..........ccccocceviiniiiiniiniiniccie, 215
Styling and SPACING.......ccceeveerieeriiriiirierieeeereese et ereeae s 216
Coding Common Python Tasks and Commandsc.ccceceevvereeneenenns 217
Defining data types and variables..........c.cccoceviineinienninneniienieneene 217
Computing simple and advanced mathccccoooeeiecinnenennnnne. 218
Using strings and special characterscccccoeceevnvinninncnncncn. 220
Deciding with conditionals: If, elif, else.........c.cceceevervircincieneennnnne 221

Input and OULPULcooiiiiiiiieeceee e 222

xi

X’l‘l‘ Coding For Dummies

Shaping YOUT StriNgS......ccccieciieciieiieeieeie ettt ae e se e e aeesae e 223
Dot notation with upper(), lower(), capitalize(), and strip()..... 224
String formatting wWith %ccccoeviiiiiriiiniieeeee 224

Building a Simple Tip Calculator Using Python...........ccccecivviiniinnnenns 225

Part U: The Part of Tenscccccceceacaaaccnnneeeeeeeeeeeeees 227

Chapter 15: Ten Free Resources for Coding and Coders............ 229
Learning-to-Code WeDbSItesccoceeiiieniinieninieieeeeeee e 229
COAECAACINYoccuvieiieeiieiieeieeeecte ettt esteesteesteesaeesaeebesareesaesanessnans 229
Coursera and UdaCity......c.ccoeceevienieneeniennieenieeieeieeie e sre e s senens 230
Hackdesi@n.org......couoviiiiiiiiieeieeieneetetestet et 230
COAR.OTG ..ttt ettt ettt sttt st st st st e saee s 231
Coding-Reference Websites..........cccoouveiiieiiecieciiciecieeeeeec e 232
W3SCROOLS ..ttt 232
Mozilla Developer NetWorkccccceeeiecieniienieeiecieeieeeeveceeeenn 233
StACK OVETTIOW ...cueiiiiiiiiiiiiinieeeeteteee ettt 233
Tech News and Community Websitesccoceevernirieniienneniienieneeneene 234
TeChCrUNCh ...ooiiii e 234
HACKEr NEWS ...ttt 235
IMEELUD ..ecuvieeieeieeie ettt ettt et e te e ve e te e be e beesaeeaeeaeessesasasssassaenseans 236
Chapter 16: Ten Tips for Novice Coders......................... 237
Pick a Language, Any Language..........ccccooeveviieirieenienieneneeceeeeeee e 237
Define @ GOAlcoouiiiiiiiiiiieieeeee et 238
Break Down Your Goal into Bite-Sized Stepscccccoeeevierviirciiniieneenenns 238
Distinguish Cupcake from Frosting........c..cceccevvevirninneniienienienienceneene 239
Google Is a Developer’s Best Friend..........ccccocevviinviiniiniiiniinieniiccens 239
ZaP ThOSE BULS ...eevieieeeeee ettt et ettt e e aae s 240
JUSE SHIP Tt oo 241
Collect FEedbacK.......c.coiriiiiiiieieeieeteeeee ettt 242
[terate on YOUY COe......cocoeieiiniininiiieieieienieeeeeeeete et 242
Share Your Success and Failureccoceevieniiniiniinneniienienieneeseeneene 243

LT (3 RIS’ T,

Introduction

Fe ability to read, write, and understand code has never been more
important, useful, or lucrative as it is today. Computer code has forever
changed our lives. Some people can’t even make it through the day without
interacting with something built with code. Even so, for many people, the
world of coding seems complex and inaccessible. Maybe you participated in
a tech-related business meeting and did not fully understand the conversa-
tion. Perhaps you tried to build a web page for your family and friends, but
ran into problems displaying pictures or aligning text. Maybe you’re even
intimidated by the unrecognizable words on the covers of books about
coding: words such as HTML, CSS, JavaScript, Python, or Ruby:.

If you've previously been in these situations, then Coding For Dummies is

for you. This book explains basic concepts so you can participate in techni-
cal conversations, and ask the right questions. Don’t worry — in this book
I've assumed you are starting with little to no previous coding knowledge,
and I haven’t tried to cram every possible coding concept into these pages.
Additionally, I encourage you here to learn by doing, and by actually creating
your own programs. Instead of a website, imagine that you wanted to build a
house. You could spend eight years studying to be an architect, or you could
start today by learning a little bit about foundations and framing. This book
kickstarts your coding journey today.

The importance of coding is ever increasing. As author and technologist
Douglas Rushkoff famously said, “program or be programmed.” When
humans invented languages and then the alphabet, people learned to listen
and speak, and then read and write. In our increasingly digital world, it is
important to learn not just how to use programs, but how to make them as
well. For example, observe this transition in music. For over a century, music
labels decided what songs the public could listen to and purchase. In 2005,
three coders created YouTube, which allowed anyone to release songs. Today
more songs have been uploaded to YouTube than have been released by all
the record labels in the last century combined.

Accompanying this book are examples at www . codecademy . com, whose
exercises are one of the easiest ways to learn how to code without install-
ing or downloading anything. The Codecademy companion site includes
examples and exercises from this book, along with projects and examples
for additional practice.

http://www.codecademy.com

Coding For Dummies

About This Book

This book is designed for readers with little to no coding experience, and
gives an overview of programming to non-programmers. In plain English, you
learn how code is used to create web programs, who makes those programs,
and the processes they use. The topics covered include:

1~ Explaining what coding is and answering the common questions related
to code.

+~ Building basic websites using the three most common languages: HTML,
CSS, and JavaScript.

1 Surveying other programming languages such as Ruby and Python.

+~ Building an application using everything you learn in the book.
As you read this book, keep the following in mind:

1 The book can be read from beginning to end, but feel free to skip around
if you like. If any topic interests you, start there. You can always return
to the previous chapter, if necessary.

1~ At some point you will get stuck, and code you write will not work as
intended. Do not fear! There are many resources to help you including sup-
port forums, others on the Internet, and me! Using Twitter, you can send
me a public message at @nikhilgabraham with the hashtag #codingFD.

1 Code in the book will appear in a monospaced font like this: <h1>Hi
therel</hls.

Foolish Assumptions

I do not make many assumptions about you, the reader, but I do make a few:

[assume you don’t have previous programming experience. To follow along,
then, you only need to be able to read, type, and follow directions. I try to
explain as many concepts as possible using examples and analogies you
already know.

[assume you have a computer running the latest version of Google Chrome.
The examples in the book have been tested and optimized for the Chrome
browser, which is available for free from Google. Even so, the examples may
also work in the latest version of Firefox. Using Internet Explorer for the
examples in this book, however, is discouraged.

[assume you have access to an Internet connection. Some of the examples in
the book can be done without an Internet connection, but most require one
so you can access and complete the exercises on www.codecademy . com.

http://www.codecademy.com

Introduction

lcons Used in This Book

Here are the icons used in the book to flag text that should be given extra
attention or can be skipped.

3

This icon flags useful information or explains a shortcut to help you under-
stand a concept.

This icon explains technical details about the concept being explained. The
details might be informative or interesting, but are not essential to your
understanding of the concept at this stage.

Try not to forget the material marked with this icon. It signals an important
concept or process that you should keep in mind.

Watch out! This icon flags common mistakes and problems that can be
avoided if you heed the warning.

Beyond the Book

Alot of extra content that you won't find in this book is available at www .
dummies . com. Go online to find the following:

1~ The source code for the examples in this book and a link to the
Codecademy exercises: You can find these at

www . dummies.com/go/codingfd

The source code is organized by chapter. The best way to work with a
chapter is to download all the source code for it at one time.

1~ Cheat Sheet: You can find a list of common HTML, CSS, and JavaScript
commands, among other useful information, at

www . dummies.com/cheatsheet/coding

v~ Extras: Additional articles with extra content are posted for roughly
each section of the book. You can access these additional materials at

www.dummies.com/extras/coding

1~ Updates: Code and specifications are constantly changing, so the com-
mands and syntax that work today may not work tomorrow. You can find
any updates or corrections by visiting

www .dummies.com/extras/coding

3

http://www.dummies.com
http://www.dummies.com
http://www.dummies.com/go/codingfd
http://www.dummies.com/cheatsheet/coding
http://www.dummies.com/extras/coding
http://www.dummies.com/extras/coding

Coding For Dummies

Where to Go from Here

All right, now that all of the administrative stuff is out of the way;, it’s time to
get started. You can totally do this. Congratulations on taking your first step
into the world of coding!

Part|
Getting Started with Coding

getting started
with

Coding

http://www.dummies.com

v

P

|7 d

In this part . . .

Understand what code is and what you can build with it.
Review programming languages used to write code.

Code for the web using front-end and back-end programming
languages.

Follow the process programmers use to create code.

Write your first program using code.

What Is Coding?

In This Chapter
Seeing what code is and what it can do
Touring your first program using code
Understanding programming languages used to write code

“A million dollars isn’t cool, you know what’s cool? A billion dollars.”

—Sean Parker, The Social Network

E/ery week the newspapers report on another technology company that
has raised capital or sold for millions of dollars. Sometimes, in the case
of companies like Instagram, WhatsApp, and Uber, the amount in the head-
line is for billions of dollars. These articles may pique your curiosity, and

you may want to see how code is used to build the applications that experi-
ence these financial outcomes. Alternatively, your interests may lie closer

to work. Perhaps you work in an industry in decline, like print media, or in a
function that technology is rapidly changing, like marketing. Whether you are
thinking about switching to a new career or improving your current career,
understanding computer programming or “coding” can help with your profes-
sional development. Finally, your interest may be more personal — perhaps
you have an idea, a burning desire to create something, a website or an app,
to solve a problem you have experienced, and you know reading and writing
code is the first step to building your solution. Whatever your motivation, this
book will shed light on coding and programmers, and help you think of both
not as mysterious and complex but approachable and something you can do
yourself.

In this chapter, you will understand what code is, what industries are affected
by computer software, the different types of programming languages used to
write code, and take a tour of a web app built with code.

8

Part I: Getting Started with Coding

Defining What Code Is

Computer code is not a cryptic activity reserved for geniuses and oracles.

In fact, in a few minutes you will be writing some computer code yourself!
Most computer code performs a range of tasks in our lives from the mundane
to the extraordinary. Code runs our traffic lights and pedestrian signals, the
elevators in our buildings, the cell phone towers that transmit our phone sig-
nals, and the space ships headed for outer space. We also interact with code
on a more personal level, on our phones and computers, and usually to check
email or the weather.

Following instructions

Computer code is a set of statements, like sentences in English, and each
statement directs the computer to perform a single step or instruction. Each
of these steps is very precise, and followed to the letter. For example, if you
are in a restaurant and ask a waiter to direct you to the restroom, he might
say, “head to the back, and try the middle door.” To a computer, these direc-
tions are so vague as to be unusable. Instead, if the waiter gave instructions
to you as if you were a computer program he might say, “From this table,
walk northeast for 40 paces. Then turn right 90 degrees, walk 5 paces, turn
left 90 degrees, and walk 5 paces. Open the door directly in front of you, and
enter the restroom.” Figure 1-1 shows lines of code from the popular game,
Pong. Do not worry about trying to understand what every single line does,
or feel intimated. You will soon be reading and writing your own code.

1- launchPong{function

Figure 1-1: Computer code from the game Pong.

One rough way to measure a program’s complexity is to count its statements
or lines of code. Basic applications like the Pong game have 5,000 lines of
code, while more complex applications like Facebook currently have over

Chapter 1: What Is Coding?

A\

A\

10 million lines of code. Whether few or many lines of code, the computer
follows each instruction exactly and effortlessly, never tiring like the waiter
might when asked for the 100th time for the location of the restroom.

Be careful of only using lines of code as a measure for a program’s complex-
ity. Just like when writing in English, 100 well written lines of code can per-
form the same functionality as 1,000 poorly written lines of code.

Writing code with some Angry Birds

If you have never written code before, now is your chance to try! Go to
http://csedweek.org/learn and under the heading “Tutorials for
Beginners” click the “Write Your First Computer Program” link with the Angry
Birds icon, as shown in Figure 1-2. This tutorial is meant for those with no
previous computer programming experience, and introduces the basic build-
ing blocks used by all computer programs. The most important take-away
from the tutorial is to understand that computer programs use code to liter-
ally and exactly tell the computer to execute a set of instructions.

Leam

Tutorials for Beginners

Write your first computer
program
Cacsirs)

Tutorials that teach Javascript

LY P An introduction to
w (Y JavaScript
[

06006

Figure 1-2: Write your first computer program with a game-like tutorial
using Angry Birds.

Computer Science Education Week is an annual program dedicated to elevat-
ing the profile of computer science during one week in December. In the past,
President Obama, Bill Gates, basketball player Chris Bosh, and singer Shakira,
among others, have supported and encouraged people from the US and
around the world to participate.

http://csedweek.org/learn

’ 0 Part I: Getting Started with Coding

Understanding What Coding Can Do for You

Coding can be used to perform tasks and solve problems that you experience
every day. The “everyday” situations in which programs or apps can provide
assistance continues to grow at an exponential pace, but this was not always
the case. The rise of web applications, internet connectivity, and mobile
phones have inserted software programs into daily life, and lowered the bar-
rier for you to become a creator, solving personal and professional problems
with code.

Eating the world with software

In 2011, Marc Andreessen, creator of Netscape Navigator and now venture
capitalist, noted that “software is eating the world.” He predicted that
software companies would disrupt existing companies at a rapid pace.
Traditionally, code powered software used on desktops and laptops. The
software had to first be installed, and then you had to supply data to the
program. Three trends have dramatically increased the use of code in
everyday life:

1~ Web-based software: This software operates in the browser without
requiring installation. For example, if you wanted to check your email,
you previously had to install an email client either by downloading the
software or from a CD-ROM. Sometimes, issues arose when the software
was not available for your operating system, or conflicted with your
operating system version. Hotmail, a web-based email client, rose to
popularity, in part, because it allowed users visiting www . hotmail.
com to instantly check their email without worrying about installation or
software compatibility. Web applications increased consumer appetite
to try more applications, and developers in turn were incentivized to
write more applications.

+~ Internet broadband connectivity: Broadband connectivity has
increased, providing a fast Internet connection to more people in the
last few years than in the previous decade. Today, more than two bil-
lion people can access web-based software, up from approximately
50 million only a decade ago.

~ Mobile phones: Today’s smartphones bring programs with you wher-
ever you go, and help supply data to programs. Many software programs
became more useful when accessed on-the-go than when limited to
a desktop computer. For instance, use of maps applications greatly
increased thanks to mobile phones because users need directions the
most when lost, not just when planning a trip at home on the computer.
In addition, mobile phones are equipped with sensors that measure
and supply data to programs like orientation, acceleration, and current

http://www.hotmail.com
http://www.hotmail.com

Chapter 1: What Is Coding?

location through GPS. Now instead of having to input all the data to pro-
grams yourself, mobile devices can help. For instance, a fitness applica-

tion like RunKeeper does not require you to input start and end times to
keep track of your runs. You can press start at the beginning of your run,
and the phone will automatically track your distance, speed, and time.

The combination of these trends have created software companies that have
upended incumbents in almost every industry, especially ones typically
immune to technology. Some notable examples include:

v~ Airbnb: Airbnb is a peer-to-peer lodging company that owns no rooms,
yet books more nights than the Hilton and Intercontinental, the largest
hotel chains in the world. (See Figure 1-3.)

NIGHTS
BOOKED

ANIGHI e .

ﬁﬁv i MIN{HE msc. zsmz

' IN FACT, IN THE TIME IT TOOK YOU TO READ THIS, SOMEONE JUST BOOKED A WEEK'S VACATION.

5 MILLION
JANUARY 26, 2012

Figure 1-3: Airbnb booked 5 million nights after 3.5 years, and its next
5 million nights 6 months later.

1~ Uber: Uber is a car transportation company that owns no vehicles,
books more trips, and has more drivers in the largest 200 cities than any
other car or taxi service.

v Groupon: Groupon, the daily deals company, generated almost $1 billion
after just two years in business, growing faster than any other company
in history, let alone any other traditional direct marketing company.

11

12

Part I: Getting Started with Coding

A\

Coding on the job

Coding can be useful in the workplace as well. Outside the technology sector,
coding in the workplace is common for some professions like financial trad-
ers, economists, and scientists. However, for most professionals outside the
technology sector, coding is just beginning to penetrate the workplace, and
gradually starting to increase in relevance. Here are areas where coding is
playing a larger role on the job:

1~ Advertising: Spend is shifting from print and TV to digital campaigns,
and search engine advertising and optimization relies on keywords to
bring visitors to websites. Advertisers who understand code see suc-
cessful keywords used by competitors, and use that data to create more
effective campaigns.

1 Marketing: When promoting products, personalizing communication is
one strategy that often increases results. Marketers who code can query
customer databases and create personalized communications that
include customer names and products tailored to specific interests.

1~ Sales: The sales process always starts with leads. Salespeople who code
retrieve their own leads from web pages and directories, and then sort
and quality those leads.

Retrieving information by copying text on web pages and in directories
is referred to as scraping.

1~ Design: After creating a web page or a digital design, designers must
persuade other designers and eventually developers to actually program
their drawings into the product. Designers who code can more easily
bring their designs to life, and can more effectively advocate for specific
designs by creating working prototypes that others can interact with.

~ Public relations: Companies constantly measure how customers and
the public react to announcements and news. For instance, if a celeb-
rity spokesperson for a company does or says something offensive,
should the company dump the celebrity? Public relations people who
code query social media networks like Twitter or Facebook, and analyze
hundreds of thousands of individual messages to understand market
sentiment.

1~ Operations: Additional profit can be generated, in part, by analyzing a
company’s costs. Operations people who code write programs to try
millions of combinations to optimize packaging methods, loading
routines, and delivery routes.

Chapter 1: What Is Coding?

Scratching your own itch (and becoming
rich and famous)

Using code built by others and coding in the workplace may cause you to
think of problems you personally face that you could solve with code of your
own. You may have an idea for a social network website, a better fitness

app, or something new altogether. The path from idea to functioning proto-
type used by others involves a good amount of time and work, but might be
more achievable than you think. For example, take Coffitivity, a productivity
website that streams ambient coffee shop sounds to create white noise. The
website was created by two people who had just learned how to program a
few months prior. Shortly after Coffitivity launched, Time Magazine named
the website one of 50 Best Websites of 2013, and the Wall Street Journal also
reviewed the website. While not every startup or app will initially receive this
much media coverage, it can be helpful to know what is possible when a solu-
tion really solves a problem.

Having a goal, like a website or app you want to build, is one of the best
ways to learn how to code. When facing a difficult bug or a hard concept, the
idea of bringing your website to life will provide the motivation you need to
keep going. Just as important, do not learn how to code to become rich and
famous, as the probability of your website or app becoming successful is
largely due to factors out of your control.

P The characteristics that make a website or app addictive are described using
the Hook Model here http://techcrunch.com/2012/03/04 /how-to-
manufacture-desire. Products are usually made by companies, and the
characteristics of an enduring company are described here http://www.
sequoiacap.com/grove/posts/yal6/elements-of-enduring-
companies, based on a review of companies funded by Sequoia, one of the
most successful venture capital firms in the world and early investors in
Apple, Google, and PayPal.

Surveying the Types of Programming
Languages

Code comes in different flavors called programming languages. Some popular
programing languages are shown in Figure 1-4.

http://techcrunch.com/2012/03/04/how-to-manufacture-desire
http://techcrunch.com/2012/03/04/how-to-manufacture-desire
http://www.sequoiacap.com/grove/posts/yal6/elements-of-enduring-companies
http://www.sequoiacap.com/grove/posts/yal6/elements-of-enduring-companies
http://www.sequoiacap.com/grove/posts/yal6/elements-of-enduring-companies

’4 Part I: Getting Started with Coding

@ python

€

HTML [C55
=

«——= JavaScript

Java

Figure 1-4: Some popular programming languages.

You can think of programming languages just like spoken languages, as they
both share many of the same characteristics, such as:

1 Functionality across languages: Programming languages can all create
the same functionality similar to how spoken languages can all express
the same objects, phrases, and emotions.

1~ Syntax and structure: Commands in programming languages can over-
lap just like words in spoken languages overlap. To output text to screen
in Python or Ruby you use the print command, just like imprimer and
imprimir are the verbs for “print” in French and Spanish.

1~ Natural lifespan: Programming languages are born when a program-
mer thinks of a new or easier way to express a computational concept.
If other programmers agree, they adopt the language for their own
programs and the programming language spreads. However, just like
Latin or Aramaic, if the programming language is not adopted by other
programmers or a better language comes along, then the programming
language slowly dies from lack of use.

Despite these similarities, programming languages also differ from spoken
languages in a few key ways:

* One creator: Unlike spoken languages, programming languages can
be created by one person in a short period of time, sometimes in just
a few days. Popular languages with a single creator include JavaScript
(Brendan Eich), Python (Guido van Rossum), and Ruby (Yukihiro
Matsumoto).

Chapter 1: What Is Coding?

1 Written in English: Unlike spoken languages (except, of course, English),
almost all programming languages are written in English. Whether
they’re programming in HTML, JavaScript, Python, or Ruby, Brazilian,
French, or Chinese programmers all use the same English keywords and
syntax in their code. Some non-English programming languages exist,
such as languages in Hindi or Arabic, but none of these languages are
widespread or mainstream.

Comparing low-level and high-level

programming Ianquages

One way to classify programming languages is either as low-level languages
or high-level languages. Low-level languages interact directly with the com-
puter processor or CPU, are capable of performing very basic commands,
and are generally hard to read. Machine code, one example of a low-level
language, uses code that consists of just two numbers — 0 and 1. Figure 1-5
shows an example of machine code. Assembly language, another low-level
language, uses keywords to perform basic commands like read data, move
data, and store data.

01101010011010100010110110010010101100101010101001010101
01111000101011110001101110111000101010010101001101010100
01010100010010010110101000101001011100011001010100100110
00110101010111101011011110100100100010110101010100000101
00110101001101010001011011001001010110010101010100101010
10111100010101111000110111011100010101001010100110101010
00101010001001001011010100010100101110001100101010010011
00011010101011110101101111010010010001011010101010000010
00110101001101010001011011001001010110010101010100101010
10111100010101111000110111011100010101001010100110101010
00101010001001001011010100010100101110001100101010010011
00011010101011110101101111010010010001011010101010000010
00110101001101010001011011001001010110010101010100101010
10111100010101111000110111011100010101001010100110101010
00101010001001001011010100010100101110001100101010010011
00011010101011110101101111010010010001011010101010000010
00110101001101010001011011001001010110010101010100101010
10111100010101111000110111011100010101001010100110101010
00101010001001001011010100010100101110001100101010010011
00011010101011110101101111010010010001011010101010000010
00110101001101010001011011001001010110010101010100101010
10111100010101111000110111011100010101001010100110101010

Figure 1-5: Machine code consists of Os and 1s.

By contrast, high-level languages use natural language so it is easier for
people to read and write. Once code is written in a high-level language, like
C++, Python, or Ruby, an interpreter or compiler translates this high-level lan-
guage into low-level code a computer can understand.

15

10

Part I: Getting Started with Coding

Contrasting compiled code and interpreted code

High-level programming languages must be converted to low-level program-
ming languages using an interpreter or compiler, depending on the language.
Interpreted languages are considered more portable than compiled lan-
guages, while compiled languages execute faster than interpreted languages.
However, the speed advantage compiled languages have is starting to fade
in importance as improving processor speeds make performance differences
between interpreted and compiled languages negligible.

High-level programming languages like JavaScript, Python, and Ruby are
interpreted. For these languages the interpreter executes the program
directly, translating each statement one line at a time into machine code.
High-level programming languages like C++, COBOL, and Visual Basic are
compiled. For these languages, after the code is written a compiler translates
all the code into machine code, and an executable file is created. This execut-
able file is then distributed via the internet, CD-ROMs, or other media and
run. Software you install on your computer, like Microsoft Windows or Mac
0OS X, are coded using compiled languages, usually C or C++.

Programming for the web

Software accessible on websites is gradually starting to take over installed
software. Think of the last time you downloaded and installed software

for your computer — you may not even remember! Installed software like
Windows Media Player and Winamp that play music and movies have
been replaced with websites like YouTube and Netflix. Traditional installed
word processor and spreadsheet software like Microsoft Word and Excel
are starting to see competition from web software like Google Docs and
Sheets. Google is even selling laptops called Chromebooks that contain no
installed software, and instead rely exclusively on web software to provide
functionality.

The remainder of this book will focus on developing and creating web soft-
ware, not just because web software is growing rapidly, but also because
programs for the web are easier to learn and launch than traditional installed
software.

Taking a Tour of a Web App Built with Code

With all this talk of programming, let us actually take a look at a web applica-
tion built with code. Yelp.comis a website that allows you to search and
find crowd-sourced reviews for local businesses like restaurants, nightlife,
and shopping. As shown in Figure 1-6, Yelp did not always look as polished as
it does today, but its purpose has stayed relatively constant over the years.

Chapter 1: What Is Coding?

Figure 1-6: Yelp's website in 2004 and in 2014.

Defining the app’s purpose and scope
Once you understand an app’s purpose, you can identify a few actionable

tasks a user should be able to perform to achieve that purpose. Regardless of
design, the Yelp’s website has always allowed users to

1 Search local listings based on venue type and location.

~ Browse listing results for address, hours, reviews, photos, and location
on a map.

Successful web applications generally allow for completing only a few key
tasks when using the app. Adding too many features to an app is called scope
creep, dilutes the strength of the existing features, and so is avoided by most
developers. For example, it took Yelp, which has 30,000 restaurant reviews,
exactly one decade after its founding to allow users to make reservations at
those restaurants directly on its website. Whether you are using or building
an app, have a clear sense of the app’s purpose.

Standing on the shoulders of giants

Developers make strategic choices and decide which parts of the app to
code themselves, and which parts of the app to use code built by others.
Developers often turn to 3rd party providers for functionality that is either
not core to the business or not an area of strength. In this way, apps stand on
the shoulders of others, and benefit from others who have come before and
solved challenging problems.

Yelp, for instance, displays local listing reviews and places every listing on a
map. While Yelp solicits the reviews, and writes the code to display basic list-
ing data, it is Google, as shown in Figure 1-7, which develops the maps used
on Yelp’s website. By using Google’s map application instead of building its
own, Yelp created the first version of the app with fewer engineers than
otherwise would have been required.

17

18

Part I: Getting Started with Coding

€ = C [T vmryslpcomisearcind_desce s 2 ¢ 5= adii2a =

Browse Gategory: gt

Figure 1-7: Google maps used for the Yelp web application.

Programming for the Web

In This Chapter
Seeing the code powering websites you use every day
Understanding the languages used to make websites
Learning how applications are created for mobile devices

To think you can start something in your college dorm room . . . and build
something a billion people use is crazy to think about. It’s amazing.

—Mark Zuckerberg

programming for the web allows you to reach massive audiences around
the world faster than ever before. Four years after its 2004 launch,
Facebook had 100 million users, and by 2012 it had over a billion. By con-
trast, it took desktop software years to reach even 1 million people. These
days, mobile phones are increasing the reach of web applications. Although
roughly 300 million desktop computers are sold every year, almost 2 billion
mobile phones are sold in that time — and the number is steadily increasing.

In this chapter you learn how websites are displayed on your computer or
mobile device. I introduce the languages used to program websites, and show
you how mobile-device applications are made.

Displaying Web Pages on Vour
Desktop and Mobile Device

On desktop computers and mobile devices, web pages are displayed by
applications called browsers. The most popular web browsers include Google
Chrome, Mozilla Firefox (formerly Netscape Navigator), Microsoft Internet
Explorer, and Apple Safari. Until now, you have likely interacted with websites
you visit as an obedient user, and followed the rules the website has created
by pointing and clicking when allowed. The first step to becoming a producer
and programmer of websites is to peel back the web page, and see and play
with the code underneath it all.

20

Part I: Getting Started with Coding

A\

\\J

Hacking your favorite news website

What’s your favorite news website? By following a few steps, you can see and
even modify the code used to create that website. (No need to worry, you
won’t be breaking any rules by following these instructions.)

Although you can use almost any modern browser to inspect a website’s
code, these instructions assume you’re using the Google Chrome browser.
Install the latest version by going to www.google.com/chrome/browser.

To “hack” your favorite news website, follow these steps:
1. Open your favorite news website using the Chrome browser. (In this

example, I use www.huffingtonpost.com.)

2. Place your mouse cursor over any static fixed headline and right-click
once, which opens a contextual menu. Then, left-click once on the
Inspect Element menu choice. (See Figure 2-1.)

TE Breaking News and Opini x

& = € [wwwhuffingtonpostcom % =

L Bkiuism Life Lessons Smarter Ideas i0Sapp Android app More.

October 21,204

oo s, T ——— I] wrotew S o [z
FRONT PAGE POLITICS BUSINESS ENTERTAINMENT TECH MEDIA WORLDPOST ~HEALTHY LIVING COMEDY HUFFPOST LIVE ALL SECTIONS
Black Voices « Gay Voices « Sports « Crime « Science « Religian « Celebrity « Green « Style « Horoscopes « Third Metric « OWN « Dr Phil « GPS forthe Soul

B WATCH LIV rd Forumith @loshZeppe | 7 WECHESDAY i SkerJtony Wi VG CONNG U W =

TABLES TURNED: ™ 5m2 ™"
SCREENS U.S. FLIERS

Y o v o000

Figure 2-1: Right-click on a headline and select Inspect Element from
the menu.

If using a Macintosh computer, you can right-click by holding down the
Control key and clicking once.

The Developer Tools panel opens at the bottom of your browser. This
panel shows you the code used to create this web page! Highlighted in
blue is the specific code used to create the headline where you originally
put your mouse cursor. (See Figure 2-2.)

http://www.google.com/chrome/browser
http://www.huffingtonpost.com

Chapter 2: Programming for the Web

[Breaking News and Opir
& = € [wwwhuffingtonpostcom

% =

{2 iuism Life Lessons Smarter ldeas i0Sapp Android app More Login Create Account

THE HUFFINGTON POST

Edion: U5, ~ Searh The Huftngton P ot [{an | wrotow & relow | 31w

FRONT PAGE POLITICS BUSINESS ENTERTAINMENT TECH MEDIA WORLDPOST HEALTHY LIVING COMEDY HUFFPOSTLIVE ALL SECTIONS

Black Voices - Gay Voices - Sports - Crime - Science - Religion - Celebrity - Green - Style - Horoscopes - Third Metric - OWN - Dr Phil - GPS for the Soul

L] anmvmh@lnmlaws |
TABLES TURNED: RWANDA

PECAC 11 & FlLiIiEPpco END EpNl A =
Q [|Elements| Network Sources Timeline Profiles Resources Audits Console 10 $0,x
| [Styes | Computed Event Listeners >
elenent.style { +
Fontsize: S2p
color: M#000000 !inportart ;

/e FontFanily: Arial, Helvetica

T e . Heue', Helvetica, sans -serif !important;
¥ <a href="rttp://ww. hufFingt onpost. con/2014 /10214 ruanda -us - Lineoeiur 1 0ns
cbola_n 6022032, tmL" 5. </ 2> i
<ah 7w, huFFingt onpost. con /2014 /10/21ruanda -us~ . .
cbola n 6022032, html" style="Fort -size: 52p% color: #0000 ifmportant; fomt- || netis='screen’ . huFFingt onpost. con/
Fanily: Arial,’Helvetica eue',Helvetica, sans-serif tinportant; line-height: css. php?u=14139. 01 di2Fstvle.: 3
1.05; "5TABLES TURNED: RWANDA SCREENS U1.S. FLTERS FOR EBOLAc/a> #featured_content 1 &, #Featured content h2
</hl> a, #featured_content h a, #eatured content
<y 1d="splash_hdr_spacer” class="splash_hdr_spacer></diu hd 2, #featured_contert hS a,
> cdiv style="text -align:center'>.</div> #featured_content 6 a {
+Mesaais

<Jspan>

o worser i Wi e Wrestrectcoter_#to estrsst news ety s022032_s_waphs iock_na JB

Figure 2-2: The blue highlighted code is used to create the web page
headline.
3
Look at the left edge of the highlighted code. If you see a right arrow,
left-click once on the arrow to expand the code.

3. Scan the highlighted code carefully for the text of your headline.
When you find it, double-click on the headline text. This allows you to
edit the headline. (See Figure 2-3.)

Be careful not to click on anything that begins with ht tp, which is the
headline link. Clicking on a headline link will open a new window or tab
and load the link.

[Breaking News and Opini

& = C [wwwhuffingtonpost.com

{2 ds LifeLessons Smarterldeas i0S app Android app More Login Create Account

THE HUFFINGTON POST

FRONT PAGE POLITICS BUSINESS ENTERTAINMENT TECH MEDIA WORLDPOST HEALTHY LIVING COMEDY HUFFPOSTLIVE ALL SECTIONS

Black Voices - Gay Voices - Sports - Crime - Stience - Relgion - Celebiity + Green - Siyle - Horoscopes - Third Metic - OWN + Dr Phil + GPS for the Soul

L] anmvmh@lnmlaws |
TABLES TURNED: RWANDA

ARCECEAIC LIS FlLiIEnce EAD EDAL A -
1%

@ [|Elements| Network Souwces Timeline Profiles Resources Audits Console = & 0, x

| [Stpes | Cormputed EventListeners >
elenent. style { + W
ot -size: 52p;
color: M#000000 timportant;

e Font—Fanily: Arial, Heluetica
v ans) feue!, Heluetica, sans serit timportant;
> <o Hre=" ity /s, huFFingt onpost . con/2014 /10,21 rwards -us - IRt siras
etola_n 622032, html "5, </2> K
<a Are="ttp: /s, HuFFingt onpost . con/2014/10421/riarda-us - : :
ehola n 6022032, html® style="fort Size: S2pr color: $000000 Hmpartants font || redia='screcn’ s ruFFingtonpost con/
Fanily: Arisl,'Heluetica leue', elvetica, sans -serif |isportant; Line-hedght: 5. php2=14139, o] di2Fstyle. ;3
: TSR PR SO 01 . RS RO B £ #reatured content AL a, fresiured comtent 12
3, #featured content 3 a, #featured content

ass="splash_hdr_spacer"></div> h4 a, #Featured_contert hS a,
ext -align: center”>.</divs #Featured_content hé a {
_headline_preview’ style-"word-uraps bresk-word; "> cotorMitatatar

<Tspan>
. _ewrspper s Wing wrpper_atsted cotert_#iop festured ews_sertay 02203215 _espnsh boce_r [

Figure 2-3: Double-click the headline text to edit it with your own headline.

22 Part I: Getting Started with Coding

4. Insert your name in the headline and press Enter.

Your name now appears on the actual web page. (See Figure 2-4.) Enjoy
your newfound fame!

E0 Breaking News and Opini. %
& - € [wwwhuffingtonpostcom % =
L la Lifelessons Smarterldeas iOSapp Androidapp Mo ~— login CreateAccount
Aol.
October 21, 2014
S T (3.1)| 3 rolew 3

FRONTPAGE POLITICS BUSINESS ~ENTERTAINI

TECH MEDIA WORLDPOST HEALTHY LIVING COMEDY HUFFPOST LIVE ALL SECTIONS
een - Style - H

Third Metric -~ OWN - Dr Phil - GPS forthe Saul

= e UPWEONESD A Top Stes b =3
TABLES TURNED: NIK SCREENS
U.S. FLIERS FOR VISAS

ot

Figure 2-4: You successfully changed the headline of a major news
website.

wwwww comi

QP If you were unable to edit the headline after following these steps, visit
http://goggles.webmaker.org for an easier, more guided tutorial.
It’s a foolproof guided version to edit code on a page. It’s a teaching aid
that shows that any code on the Internet can be modified. On that page,
click the yellow Activate X-Ray Goggles to see and edit the code on the
webmaker.org web page. Try again to hack your favorite news website
by following the “Remix Any Webpage” instructions.

If you successfully completed the steps above and changed the original
headline, it’s time for your 15 minutes of fame to come to an end. Reload the
web page and the original headline reappears. What just happened? Did your
changes appear to everyone visiting the web page? And why did your edited
headline disappear?

To answer these questions, you first need to understand how the Internet
delivers web pages to your computer.

Understanding how the World Wide Web works

After you type a URL, such as huffingtonpost.com, into your browser, the
following steps happen behind the scenes in the seconds before your page
loads (see Figure 2-5):

http://goggles.webmaker.org

Chapter 2: Programming for the Web

1. Your computer sends your request for the web page to a router. The
router distributes Internet access throughout your home or workplace.

2. The router passes your request onto your Internet service provider
(ISP). In the United States, your ISP is a company like Comcast, Time
Warner, AT&T, or Verizon.

3. Your ISP then converts the words and characters in your URL — “huff-
ingtonpost.com,” in my example — into a numerical address called the
Internet protocol address (or, more commonly, IP address). An IP address
is a set of four numbers separated by periods (such as, for example,
192.168.1.1). Just like your physical address, this number is unique, and
every computer has one. Your ISP has a digital phone book, similar to a
physical phonebook, called a domain name server that’s used to convert
text URLs into IP addresses.

4. With the IP address located, your ISP knows which server on the
Internet to forward your request to, and your personal IP address is
included in this request.

5. The website server receives your request, and sends a copy of the web
page code to your computer for your browser to display.

6. Your web browser renders the code onto the screen.

Og ==

Router =

B E @
: NHN:RNG
YouTube | Twitter Facebook
server | server server

Figure 2-5: Steps followed to deliver a website to your browser.

When you edited the website code using the Developer Tools, you modi-

fied only the copy of the website code that exists on your computer, so only
you could see the change. When you reloaded the page, you started steps 1
through 6 again, and retrieved a fresh copy of the code from the server, over-
writing any changes you made on your computer.

23

24

Part I: Getting Started with Coding

3

You may have heard of a software tool called an ad blocker. Ad blockers work
by editing the local copy of website code, just as you did above, to remove
website advertisements. Ad blockers are controversial because websites use
advertising revenue to pay for operating costs. If ad blockers continue rising
in popularity, ad revenue could dry up, and websites would have to demand
that readers pay to see their content.

Watching out for your front end and back end

Now that you know how your browser accesses websites, let us dive deeper
into the way the actual website is constructed. As shown in Figure 2-6, the
code for websites, and for programs in general, can be divided into four
categories, according to the code’s function:

1~ Appearance: Appearance is the visible part of the website, including
content layout and any applied styling, such font size, font typeface, and
image size. This category is called the front end and is created using lan-
guages like HTML, CSS, and JavaScript.

1~ Logic: Logic determines what content to show and when. For example,
a New Yorker accessing a news website should see New York weather,
whereas Chicagoans accessing the same site should see Chicago
weather. This category is part of the group called the back end and is
created using languages like Ruby, Python, and PHP. These back end
languages can modify the HTML, CSS, and JavaScript that is displayed to
the user.

1~ Storage: Storage saves any data generated by the site and its users.
User-generated content, preferences, and profile data must be stored for
retrieval later. This category is part of the back end and is stored in data-
bases like MongoDB and MySQL.

~ Infrastructure: Infrastructure delivers the website from the server to
you, the client machine. When the infrastructure is properly configured,
no one notices it, but it can become noticeable when a website becomes
unavailable due to high traffic from events like presidential elections,
the Super Bowl, and natural disasters.

Usually, website developers specialize in one or at most two of these cat-
egories. For example, an engineer might really understand the front end and
logic languages, or specialize in only databases. Website developers have
strengths and specializations, and outside of these areas their expertise is
limited, much in the same way that Jerry Seinfeld, a terrific comedy writer,
would likely make a terrible romance novelist.

The rare website developer proficient in all four of these categories is referred
to as a full stack developer. Usually, smaller companies hire full stack develop-
ers, whereas larger companies require the expertise that comes with
specialization.

Chapter 2: Programming for the Web

APPEARANCE LOGIC
HTML Ruby on Rails
CSS Python
JavaScript PHP
INFRASTRUCTURE STORAGE
Apache MySaL
Nginx MongoDB

|:| Front end |:| Back end

Figure 2-6: Every website is made up of four different parts.

Defining web and mobile applications

Web applications are websites you visit using a web browser on any device.
Websites optimized for use on a mobile device, like a phone or tablet, are
called mobile web applications. By contrast, native mobile applications cannot
be viewed using a web browser. Instead, native mobile applications are
downloaded from an app store like the Apple App Store or Google Play, and
designed to run on a specific device such as an iPhone or an Android tablet.
Historically, desktop computers outnumbered and outsold mobile devices,
but recently two major trends in mobile usage have occurred:

~ In 2014, people with mobile devices outnumbered people with desktop com-
puters. This gap is projected to continue increasing, as shown in Figure 2-7.

1~ Mobile-device users spend 80 percent of their time using native mobile
applications, and 20 percent of their time browsing mobile websites.

" Number of Global Users (Millions) { Apps Continue to Dominate the Mohile Weh

2,000 100%

1,800 —— . 14%

1,600 / 80%
1,400 //

% Mnhlll Web
1,200 //’ Percentage ggo,

1,000 of time spent m

=—Desktop 50%
ggg // —Mobile 0% 80% 86%
~
0%
a0

200

2007 2008 2000 2010 2011 2012 2013 2014 2015 0%
2013 2014

() comScore R) (S S ey s @ FLunay

Figure 2-7: Mobile devices have increased at a faster pace than desktops.

26

Part I: Getting Started with Coding

The increase in mobile devices has happened so quickly over the last 10
years that many companies are becoming “mobile first,” designing and devel-
oping the mobile version of their applications before the desktop version.
WhatsApp and Instagram, two popular mobile applications, first built mobile
applications, which continue to have more functionality then their regular
websites.

Coding Web Applications

Web applications are easier to build than mobile applications, require little

to no additional software to develop and test, and run on all devices, includ-
ing desktop, laptops, and mobile. Although mobile applications can perform
many common web-application tasks, such as email, some tasks are still
easier to perform using web applications. For example, booking travel is
easier using web applications, especially since the steps necessary — review-
ing flights, hotels, and rental cars, and then purchasing all three — are best
achieved with multiple windows, access to a calendar, and the entry of sub-
stantial personal and payment information.

The programming languages used to code basic web applications, fur-

ther defined in the following sections, include HTML (Hypertext Markup
Language), CSS (Cascading Style Sheets), and JavaScript. Additional features
can be added to these websites using languages like Python, Ruby, or PHP.

Starting with HTML, CSS, and JavaScript

Simple websites, such as the one shown in Figure 2-8, are coded using HTML,
CSS, and JavaScript. HTML is used to place text on the page, CSS is used

to style that text, and JavaScript is used to add interactive effects like the
Twitter or Facebook Share button that allows you to share content on social
networks and updates the number of other people who have also shared the
same content. Websites conveying mainly static, unchanging information are
often coded only in these three languages. You will learn about each of these
languages in later chapters.

Adding logic with Python, Ruby, or PHP

Websites with more advanced functionality, such as user accounts, file
uploads, and e-commerce, typically require a programming language to
implement these features. Although Python, Ruby, and PHP are not the only
programming languages these sites can use, they are among the most popu-
lar. This popularity means there are large online communities of developers
who program in these languages, freely post code that you can copy to build
common features, and host public online discussions that you can read for
solutions to common issues.

Chapter 2: Programming for the Web 2 7

& C' [lindaliukas fi

My blog Hello Ruby Twitter

Say hello! (contact)

O

Figure 2-8: The lindaliukas.fi website, built using HTML, CSS, and
JavaScript.

Each of these languages also has popular and well documented frameworks.
A framework is a collection of generic components, such as user accounts
and authentication schemes that are reused frequently, allowing developers
to build, test, and launch websites more quickly. You can think of a frame-
work as similar to the collection of templates that comes with a word proces-
sor. You can design your resume, greeting card, or calendar from scratch, but
using the built-in template for each of these document types helps you create
your document faster and with greater consistency. Popular frameworks for
these languages include

 Django and Flask for Python

v~ Rails and Sinatra for Ruby
1 Zend and Laravel for PHP

Coding Mobile Applications

Mobile applications are hot topics today, in part because mobile apps such
as WhatsApp and Instagram were acquired for billions of dollars, and mobile
app companies like Rovio, makers of Angry Birds, and King Digital, makers of
Candy Crush, generate annual revenues of hundreds of millions to billions of
dollars.

28

Part I: Getting Started with Coding

When coding mobile applications, developers can either build

1 Mobile web applications, using HTML, CSS, and JavaScript.

1~ Native mobile applications using a specific language. For example, Apple
devices are programmed using Objective-C or Swift, and Android devices
are programmed using Java.

The choice between these two options may seem simple, but there are a few
factors at play. Consider the following:

1 Companies developing mobile web applications must make sure the
mobile version works across different browsers, different screen sizes,
and even different manufacturers, such as Apple, Samsung, RIM, and
Microsoft. This results in thousands of possible phone combinations,
which can greatly increase the complexity of testing needed before
launch. Native mobile apps run only on one phone platform, so there is
less variation to account for.

~ Despite running on only one platform, native mobile apps are more
expensive and take longer to build than mobile web apps.

* Some developers have reported that mobile web applications have
more performance issues and load more slowly than native mobile
applications.

1~ As mentioned before, users are spending more time using native mobile
applications and less time using browser-based mobile web apps.

1~ Native mobile apps are distributed through an app store, which may
require approval from the app store owner, whereas mobile web apps
are accessible from any web browser. For example, Apple has a strict
approval policy and takes up to six days to approve an app for inclusion
in the Apple App Store, while Google has a more relaxed approval policy
and takes two hours to approve an app.

In one famous example of an app rejected from an app store, Apple blocked
Google from launching the Google Voice app in the Apple App Store because
it overlapped with Apple’s own phone functionality. Google responded by
creating a mobile web app accessible from any browser, and Apple could do
nothing to block it.

If you're making this choice, consider the complexity of your application.
Simple applications, like schedules or menus, can likely be cheaply devel-
oped with a mobile web app, whereas more complex applications, like
messaging and social networking, may benefit from having a native mobile
app. Even well-established technology companies struggle with this choice.
Initially, Facebook and LinkedIn created mobile web applications, but both
have since shifted to primarily promoting and supporting native mobile apps.
The companies cited better speed, memory management, and developer
tools as some of the reasons for making the switch.

Chapter 2: Programming for the Web

Building mobile web apps

Although any website can be viewed with a mobile browser, those websites
not optimized for mobile devices look a little weird, as if the regular website
font size and image dimensions were decreased to fit on a mobile screen. (See
Figure 2-9.) By contrast, websites optimized for mobile devices have fonts
that are readable, images that scale to the mobile device screen, and a verti-
cal layout suitable for a mobile phone.

Building mobile web apps is done using HTML, CSS, and JavaScript. CSS controls
the website appearance across devices based on the screen width. Screens

with a small width, such as those on phones, are assigned one vertically-based
layout, whereas screens with a larger width, like those on tablets, are assigned
another, horizontally-based layout. Because mobile web apps are accessed from
the browser, and are not installed on the user’s device, these web apps can’t
send push notifications (alerts) to your phone, run in the background while the
browser is minimized, or communicate with other apps.

Although you can write the HTML, CSS, and JavaScript for your mobile web
app from scratch, mobile web frameworks allow you to develop from a base
of pre-written code, much like the frameworks for programming languages

[mentioned earlier. These mobile web frameworks include a collection of
generic components that are reused frequently, and allow developers to
build, test, and launch websites more quickly. Twitter Bootstrap is one such
mobile web framework, which I introduce in Chapter 8.

GET YOUR FREE DRINK

uy sTaBucks
REWARDS «

Figure 2-9: Left: starbucks.com not optimized for mobile. Right:
starbucks.com optimized for mobile.

29

30

Part I: Getting Started with Coding

Building native mobile apps

Native mobile apps can be faster, more reliable, and look more polished than
mobile web apps, as shown in Figure 2-10. Built using Java for use on Android
devices, and Objective-C or Swift for use on Apple devices (i0S), native mobile
apps must be uploaded to an app store, which may require approvals. The
main benefit of an app store is its centralized distribution, and the app may be
featured in parts of the app store that can drive downloads. Also, since native
mobile applications are programs that are installed on the mobile device, they
can be used in more situations without an Internet connection. Finally, and
most importantly, users appear to prefer native mobile apps to mobile web
apps by a wide margin, one that continues to increase.

Native mobile apps can take advantage of features that run in the background
while the app is minimized, such as push notifications, and communicate with
other apps, and these features are not available when creating a mobile web
app. Additionally, native mobile apps perform better when handling graphics-
intensive applications, such as games. To be clear, native mobile apps offer
better performance and a greater number of features, but they require longer
development times and are more expensive to build than mobile web apps.

2:48 AM % #0000 ATET F 2:50 AM @ ¥ 43% W

Q. Dalai Lama a facebook.com (v}

Dalai Lama @

Public Figure

Palai Lama @

Public: Figure

About

&, Call +91 189 222 1343
His Holiness thy
leader of tf

nmitmen

Figure 2-10: Left: facebook.com native mobile app. Right:
facebook.com mobhile web app.

A\

Chapter 2: Programming for the Web

There is an alternative way to build a native mobile app — a hybrid approach
that involves building an app using HTML, CSS, and JavaScript, packaging that
code using a “wrapper,” and then running the code inside a native mobile app
container. The most popular “wrapper” is a product called PhoneGap, and it
recognizes specific JavaScript commands that allow access to device-level
functionality that’s normally inaccessible to mobile web applications. After one
version of the app is built, native mobile app containers can be launched for up
to nine platforms including Apple, Android, Blackberry, and Windows Phone.
The major advantage to using this hybrid approach is building your app once,
and then releasing it to so many platforms simultaneously.

Imagine you knew how to play the piano, but you wanted to also learn how to
play the violin. One way you could do this is to buy a violin and start learning
how to play. Another option is to buy a synthesizer keyboard, set the tone to

violin, and play the keyboard to sound like a violin. This is similar to the
hybrid approach, except, in this example, the piano is HTML, CSS, and
JavaScript, the violin is a native iOS app, and the synthesizer keyboard is a
wrapper like PhoneGap. Just like the synthesizer keyboard can be set to
violin, cello, or guitar, so too can PhoneGap create native apps for Apple,

Android, and other platforms.

What about all those other programming
languages? (C, Java, and so on)

You may wonder why so many languages exist,
and what they all do. Programming languages
are created when a developer sees a need not
addressed by the current languages. For exam-
ple, Apple recently created the Swift program-
ming language to make developing iPhone and
iPad apps easier than Objective-C, the current
programming language used. After they're cre-
ated, programming languages are very similar
to spoken languages, like English or Latin. If
developers code using the new language, then
it thrives and grows in popularity, like English
has over the last six centuries; otherwise, the
programming language suffers the same fate as
Latin, and becomes a dead language.

You may remember languages like C++, Java,
and FORTRAN. These languages still exist today,
and they're used in more places than you might

think. C++ is preferred when speed and per-
formance is extremely important, and is used
to program web browsers, such as Chrome,
Firefox, and Safari, along with games like Call
of Duty, and Counter Strike. Java is preferred
by many large-scale business, and is also the
language used to program apps for the Android
phone. Finally, FORTRAN is not as widespread
or popular as it once was, but it is popular within
the scientific community, and it powers some
functionality in the financial sector, especially
at some of the largest banks in the world, many
of which continue to have old code.

As long as programmers think of faster and
better ways to program, new programming lan-
guages will continue to be created, while older
languages fall out of favor.

31

32 Part I: Getting Started with Coding

Becoming a Programmer

In This Chapter
Learning the process programmers follow when coding
Seeing the different roles people play to create a program
Picking tools to starting coding offline or online

The way to get started is to quit talking and begin doing.
—Walt Disney

programming is a skill that can be learned by anyone. You might be a
student in college wondering how to start learning, or a professional
hoping to find a new job or improve your performance at your current job. In
just about every case, the best way to learn how to code is to

1~ Have a goal of what you would like to build.

1 Actually start coding.
In this chapter, you discover the process every programmer follows when
programming, and the different roles programmers play to create a program

(or, more commonly these days, an “app”). You also learn the tools to use
when coding either offline or online.

Writing Code Using a Process

Writing code is much like painting, furniture making, or cooking — it isn’t
always obvious how the end product was created. However, all programs,
even mysterious ones, are created using a process. Two of the most popular
processes used today are

1~ Waterfall: A set of sequential steps followed to create a program.

1~ Agile: A set of iterative steps followed to create a program. (See
Figure 3-1.)

34

Part I: Getting Started with Coding

Let me describe a specific scenario to explain how these two process work.
Imagine you want to build a restaurant app that does the following two things:

v~ It displays restaurant information, such as the hours of operation and
the menu.

1~ It allows users to make or cancel reservations.

Using the waterfall method, you’d define everything the app needs to do:
You'd design both the information-display and the reservation parts of

the app, code the entire app, and then release the app to users. By con-
trast, using the agile method, you would define, design, and code only the
information-display portion of the app, release it to users, and collect feed-
back. Based on the feedback collected, you would then redesign and make
changes to the information-display to address major concerns. When you
were satisfied with the information-display piece, you’d then define, design,
and build the reservation part of the app. Again, you would collect feedback
and refine the reservation feature to address major concerns.

Research

Code Feature #2

Coting
&Testing Research

Deb . “u
Waterfall Method o Agile Method

Figure 3-1: The waterfall and agile processes are two different ways of creating software.

The agile methodology stresses shorter development times, and has increased
in popularity as the pace of technological change has increased. The waterfall
approach, on the other hand, demands that the developer code and release
the entire app at once, but since completing a large project takes an enormous
amount of time, changes in technology may have occurred before the finished
product arrives. If you used the waterfall method to create our restaurant-

app example, the technology to take user reservations may have changed by
the time you get around to coding that portion of the app. Still, the waterfall
approach remains popular in certain contexts, such as with financial and gov-
ernment software, where requirements and approval are obtained at the begin-
ning of a project, and whose documentation of a project must be complete.

The healthcare.gov website, released in October 2013, was developed using a
waterfall style process. Testing of all the code occurred in September 2013,
when the entire system was assembled. Unfortunately, the tests occurred too
late and were not comprehensive, resulting in not enough time to fix errors
before launching the site publicly.

<MBER
@*

Chapter 3: Becoming a Programmer

Regardless of whether you pick the agile or waterfall methodology, coding an
app involves four steps:

1. Researching what you want to build
2. Designing your app

3. Coding your app

4. Debugging your code

On average, you will spend much more time researching, designing, and
debugging your app than doing the actual coding, which is the opposite of
what you may expect.

These steps are described in the sections that follow. You'll use this process
when you create your own app in Chapter 10.

Researching what you want to build

You have an idea for a web or mobile application, and usually it starts with
“Wouldn’t it be great if . . . ” Before writing any code, it helps to do some
investigating. Consider the possibilities in your project as you answer the fol-
lowing questions:

»* What similar website/app already exists? What technology was used to
build it?

* Which features should I include — and more importantly exclude — in
my app?

+* Which providers can help create these features? For example, compa-
nies like Google, Yahoo, Microsoft, or others may have software already
built that you could incorporate into your app.

To illustrate, consider the restaurant app I discussed earlier. When conduct-
ing market research and answering the three questions above, searching
using Google is usually the best resource. Searching for restaurant reservation
app shows existing restaurant apps that include OpenTable, SeatMe, and
Livebookings. OpenTable, for example, allows users to reserve a table from
restaurants displayed on a map using Google Maps.

In the restaurant app example, you’d want to research exactly what kinds

of restaurant information you’d need to provide, and how extensive the res-
ervation system portion of the app should be. In addition, for each of these
questions you must decide whether to build the feature from scratch or use
an existing provider. For example, when providing restaurant information do
you want to just show name, cuisine, address, telephone number, and hours
of operation, or do you also want to show restaurant menus? When showing

35

36

Part I: Getting Started with Coding

A\

restaurant data, do you prefer extensive coverage of a single geographical
area, or do you want national coverage even if that means you’d cover fewer
restaurants in any specific area?

Designing your app

Your app’s visual design incorporates all of your research and describes
exactly how your users will interact with every page and feature. Because
your users will be accessing your site from desktop, laptop, and mobile
devices, you’d want to make sure you create a responsive (multi-device)
design and carefully consider how your site will look on all these devices. At
this stage of the process, a general web designer, illustrator, or user interface
specialist will help create visual designs for the app.

Many responsive app designs and templates can be found on the Internet and
used freely. For specific examples, see Chapter 8, or search Google using the
query responsive website design examples.

There are two types of visual designs (see Figure 3-2):

1~ Wireframes: These are low fidelity website drawings that show structur-
ally the ways your content and your site’s interface interact.

1 Mockups: These are high fidelity website previews that include colors,
images, and logos.

Facebook Profile Name [T et |

Tinelie | About | Friends | Photo | Mare

PY]| [E5rene @ e e e

Figure 3-2: Wireframes (left) are simple site renderings, whereas mockups (right) show full site
previews.

A\

Chapter 3: Becoming a Programmer

Balsamiq is a popular tool used to create wireframes, and Photoshop is a
popular tool to create mockups. However, you can avoid paying for addi-
tional software by using PowerPoint (PC), Keynote (Mac), or the free and
open-source OpenOffice to create your app designs.

Professional designers create mockups with Adobe Photoshop and use layers,
which isolate individual site elements. A properly created layered Photoshop
file helps developers more easily write the code for those website elements.

In addition to visual design, complex apps will also have technical designs
and decisions to finalize. For example, if your app stores and retrieves user
data you will need a database to perform these tasks. Initial decisions here
will include the type of database to add, the specific database provider

to use, and the best way to integrate the database into the application.
Additionally, developers must design the database by choosing the fields

to store. The process is similar to the process of creating a spreadsheet to
model a company’s income — you first decide the number of columns to use,
and whether you’ll include fields as a percentage of revenue or a numerical
value, and so on. Similarly, other features like user logins or credit card pay-
ments all require you to make choices on how to implement these features.

Coding your app

With research and design done, you are now ready to code your application.
In everyday web development, you would begin by choosing which pages
and features to start coding. As you work through the projects in this book,
however, [will guide you on what to code first.

Knowing how much to code and when to stop can be tough. Developers call
the first iteration of an app the minimum viable product — meaning you’'ve
coded just enough to test your app with real users and receive feedback. If no
one likes your app or thinks it’s useful, it’s best to find out as soon as possible.

An app is the sum of its features, and for any individual feature it’s a good
idea to write the minimum code necessary and then add to it. For example,
your restaurant app may have a toolbar at the top of the page with drop-
down menus. Instead of trying to create the whole menu at once, it’s better to
just create the menu, and then later create the drop-down menu effect.

Projects can involve front-end developers, who'll code the appearance of the
app, and back-end developers, who'’ll code the logic and create databases. A
“full stack developer” is one who can do both front-end and back-end devel-
opment. On large projects it’s more common to see specialized front-end and
back-end developers, along with project managers who ensure everyone is
communicating with each other and adhering to the schedule so the project
finishes on time.

37

38

Part I: Getting Started with Coding

Debugging your code

Debugging is going to be a natural part of any application. The computer
always follows your instructions exactly and yet no program ever works as
you expect it to. Debugging can be frustrating. Three of the more common
mistakes to watch out for are

1~ Syntax errors: These are errors caused by misspelling words/com-
mands, by omitting characters, or by including extra characters. Some
languages, such as HTML and CSS, are forgiving of these errors and your
code will still work even with some syntax errors, whereas other lan-
guages, such as JavaScript, are more particular and your code won’t run
when any such error is present.

1~ Logic errors: These are harder to fix. With logic errors, your syntax is
correct but the program behaves differently than you expected, such as
when the prices of the items in the shopping cart of an e-commerce site
do not sum up to the correct total.

1~ Display errors: These are common mainly to web applications. With dis-
play errors, your program might run and work properly, but it won’t appear
properly. Web apps today run on many devices, browsers, and screen sizes,
so extensive testing is the only way to catch these types of errors.

The word debugging was popularized in the 1940s by Grace Hopper, who fixed
a computer error by literally removing a moth from a computer.

Picking Tools for the Job

Now you're ready to actually start coding. You can develop websites either
offline, by working with an editor, or online, with a web service such as
Codecademy.com. Especially if you have never done any coding before, I
would strongly recommend you code with access to an Internet connection
using the Codecademy.com platform because you do not have to download
and install any software to start coding, you do not have to find a web host
to serve your web pages, and you do not need to upload your web page to a
web host. As you code, the Codecademy.com platform will do these tasks for
you automatically.

Working offline

To code offline, you’ll need the following:

v~ Editor: This refers to the text editor you’ll use to write all the code you
learn in this book, including HTML, CSS, JavaScript, Ruby, Python, and
PHP. The editor you use will depend on the type of computer you have:

Chapter 3: Becoming a Programmer

e PC: Use the pre-installed Notepad, or install Notepad++, a free editor
available for download at http://notepad-plus-plus.org.

e Mac: Use the pre-installed TextEdit or install TextMate 2.0, an open-
source editor available for download at http://macromates.com.

1~ Browser: Many browsers exist, including Firefox, Safari, Internet
Explorer, and Opera; however, | recommend you use Chrome, because it
offers the most support for the latest HTML standards. It’s available for
download at www.google.com/chrome/browser.

1~ Web host: In order for your website code to be accessible to everyone
on the Internet, you need to host your website online. Freemium web
hosts include Weebly (www . weebly.com) and Wix (www.wix.com);
these sites offer basic hosting but charge for additional features like
additional storage or removing ads. Google provides free web hosting
through Sites (http://sites.google.com) and Drive (http://
drive.google.com).

Working online with Codecademy.com

Codecademy.com is the easiest way to start learning how to code online, and
lessons from the site form the basis of this book. The site doesn’t require you
to install a code editor or sign up for a web host before you start coding, and
it’s free to individual users like you.

The site can be accessed using any up-to-date modern browser, but Google
Chrome or Mozilla Firefox is recommended.

Touring the learning environment

After signing up or signing into the site, you will either see an interactive card
or the coding interface, depending on the content you learn. (See Figure 3-3.)

T
€ o C T wwcodecademy.com

[code]cademy

Introduction

Find a place to stay.

Bestfrom pacelin sver 400 cites o 192 ccoutics
Neighborhood Guides

bt

Figure 3-3: Codecademy.com interactive cards (left) and the coding interface (right).

http://notepad-plus-plus.org
http://macromates.com
http://www.google.com/chrome/browser
http://www.weebly.com
http://www.wix.com
http://sites.google.com
http://drive.google.com
http://drive.google.com

40 Part I: Getting Started with Coding

The interactive cards allow you to click toggle buttons to demonstrate effects
of pre-written code, whereas the coding interface has an coding editor and a
live preview window that shows you the effects of the code entered into the
coding editor.

The coding interface has four parts:
* Background information on the upper-left side of the screen tells you

about the coding task you are about to do.

1~ The lower-left side of the screen shows instructions to complete in the
coding window.

1 The coding window allows you to follow the exercise instructions and
write code. The coding window also includes a preview screen that
shows a live preview of your code as you type.

1~ After completing the coding instructions, press Save & Submit or Run. If
you successfully followed the instructions, you advance to the next exer-
cise; otherwise, the site will give you a helpful error message and a hint.

The interactive cards have three parts:

1 Background information about a coding concept.

1 A coding window to complete one simple coding task. A preview window
also shows a live preview of your code as you type.

v~ After completing the coding instructions, press the Got It button. You
can review any previous interactive cards by clicking the Go Back
button.

Receiving support from the community
If you run into a problem or have a bug you cannot fix, try the following steps

»* Click on the hint underneath the instructions.

1~ Use the Q&A Forums to post your problem or question, and review ques-
tions others have posted.

1 Tweet me at @nikhilgabraham with your question or problem, and
include the hashtag #codingFD at the end of your tweet.

Partll

Building the Silent and
Interactive Weh Page

Charlie CF

T VLTS -.I.'E

U and@hid

® Filmography @ Biography @ Products @ About @ Facebook @
Twitter

he chaplin collectisn {

maders s,
et

e -

The Gkl Collctin, ol 1

Hiatt, Brapls.

web Build webpages using HTML, CSS, and JavaScript at www . dummies . com/
-Y'Qir-d extras/coding.

http://www.dummies.com/extras/coding
http://www.dummies.com/extras/coding

\

A W W WY

In this part . . .

Place content on webpages with HTML, and styling content
with CSS.

Structure your website layout with HTML and CSS.
Create your first webpage — the Airbnb homepage.
Add interactivity to webpages with JavaScript.

Access real live data with APls.

Exploring Basic HTML

In This Chapter
Learning the purpose of HTML
Understanding basic HTML structure
Adding headlines, paragraphs, hyperlinks, and images
Formatting web page text
Creating a basic HTML website

You affect the world by what you browse.

— Tim Berners-Lee

H TML, or HyperText Markup Language, is used in every single web page
you browse on the Internet. Because the language is so foundational, a
good first step for you is to start learning HTML.

In this chapter, you learn HTML basics, including basic HTML structure and
how to make text appear in the browser. Next, you learn how to format text
and display images in a web browser. Finally, you create your own, and pos-
sibly first, HTML website. You may find that HTML without any additional styl-
ing appears to be very plain, and does not look like the websites you normally
visit on the Internet. After you code a basic website using HTML, you will use
additional languages in later chapters to add even more style to your websites.

What Does HTML Do?

HTML instructs the browser on how to display text and images in a web
page. Recall the last time you created a document with a word processor.
Whether you use Microsoft Word or Wordpad, Apple Pages, or another appli-
cation, your word processor has a main window in which you type text, and
a menu or toolbar with multiple options to structure and style that text (see

Part ll: Building the Silent and Interactive Web Page

Figure 4-1). Using your word processor, you can create headings, write in
paragraphs, insert pictures, or underline text. Similarly, you can use HTML to
structure and style text that appears on websites.

= + | Document - WordPad o= =S
Haome “iewn (7]
lj rial -l || A AT || EE EE 2 |

Paste BIHab«sxz)@Q'é'

.
Ed

il

L]

r
&

Clipboard Font Paragraph
B T T IR I A A A IPRE

8
|

< T 3

100% (=) { @

Figure 4-1: The layout of a word processor.

Markup language documents, like HTML documents, are just plain text files.
Unlike documents created with a word processor, you can view an HTML file
using any web browser on any type of computer.

HTML files are plain text files that will appear styled only when viewed with a
browser. By contrast, the rich text file format used by word processors add
unseen formatting commands to the file. As a result, HTML written in a rich
text file won’t render correctly in the browser.

NBER
\g&
&

Understanding HTML Structure

HTML follows a few rules to ensure that a website will always display in

the same way no matter which browser or computer is used. Once you
understand these rules, you’ll be better able to predict how the browser
will display your HTML pages, and to diagnose your mistakes when (not if!)
the browser displays your web page differently than you expected. Since its
creation, HTML has evolved to include more effects, but the following basic
structural elements remain unchanged.

You can use any browser to display your HTML files, though I strongly recom-
mend you download, install, and use Chrome or Firefox. Both of these browsers
are updated often, are generally fast, and support and consistently render the
widest variety of HTML tags.

3

Chapter 4: Exploring Basic HTML

SMBER

ldentifying elements

HTML uses special text keywords called elements to structure and style a
website. The browser recognizes an element and applies its effect if the
following three conditions exist:

1 The element is a letter, word, or phrase with special meaning. For example,
h1 is an element recognized by the browser to apply a header effect, with
bold text and an enlarged font size.

 The element is enclosed with a left-angle bracket (<) and right-angle
bracket (>). An element enclosed in this way is called a tag (such as, for
example, <h1>).

” An opening tag (<element>) is followed by a closing tag (</element>).
Note that the closing tag differs from the opening tag by the addition of a
forward slash after the first left bracket and before the element (such as,
for example, </h1>).

Some HTML tags are self-closing, and don’t need separate closing tags,
only a forward slash in the opening tag. For more about this, see the
section, “Getting Familiar with Common HTML Tasks and Tags,” later in
this chapter.

When all three conditions are met, the text between the opening and closing
tags is styled with the tag’s defined effect. If even one of these conditions is
not met, the browser just displays plain text.

For a better understanding of these three conditions, see the example code
below:

<h1>This is a big heading with all three conditions</hl>

hl This is text without the < and > sign surrounding the tag /hl

<rockstar>This is text with a tag that has no meaning to the browser</rockstars>
This is regular text

You can see how a browser would display this code in Figure 4-2.

[Figure 4-2: HTML syntax %

e (o =

This is a big heading with all three conditions

h1 This is text without the < and > sign surrcunding the tag /h1 This is text with a tag that has no
meaning to the browser This is regular text

Figure 4-2: The example code displayed in a browser.

b5

456

Part ll: Building the Silent and Interactive Web Page

3

gMBER
S

NG/
S

The browser applies a header effect to “This is a big heading with all three
conditions” because h1 is a header tag and all three conditions for a valid
HTML tag exist:

1 The browser recognizes the h1 element.
1 The h1 element is surrounded with a left (<) and right angle bracket (>).

1 The opening tag (<h1>) is followed by text and then a closing tag
(</h1>).

Notice how the h1l tag itself does not display in the heading. The browser will
never display the actual text of an element in a properly formatted HTML tag.

The remaining lines of code display as plain text because they each are missing
one of the conditions. On the second line of code, the <h1> tag is missing the
left and right brackets, which violates the second condition. The third line of
code violates the first condition because rockstar is not a recognized HTML
element. (Once you finish this chapter, however, you may feel like a rockstar!)
Finally, the fourth line of code displays as plain text because it has no opening
tag preceding the text, and no closing tag following the text, which violates the
third condition.

Every left angle-bracket must be followed after the element with a right angle-
bracket. In addition, every opening HTML tag must be followed with a closing
HTML tag.

Over 100 HTML elements exist, and we cover the most important elements
in the following sections. For now, don’t worry about memorizing individual
element names.

HTML is a forgiving language, and may properly apply an effect even if you're
missing pieces of code, like a closing tag. However, if you leave in too many
errors, your page won't display correctly.

Featuring your best attribute

Attributes provide additional ways to modify the behavior of an element or
specify additional information. Usually, but not always, you set an attribute
equal to a value enclosed in quotes. Here’s an example using the title attri-
bute and the hidden attribute:

<hl title="United States of America"s>USA</hl>
<hl hidden>New York City</hl>

Chapter 4: Exploring Basic HTML

The title attribute provides advisory information about the element that
appears when the mouse cursor hovers over the affected text (in other words,
a tooltip). In this example, the word USA is styled as a header using the <h1>
tag with a title attribute set equal to "United States of America".In
a browser, then, when you place your mouse cursor over the word USA, the
text United States of America displays as a tooltip. (See Figure 4-3.)

(=1 HE
Figure 4-3: HTML attribi >
e [a =
USA%

United States of America

Figure 4-3: A heading with t 1t 1e attribute has a tooltip.

The hidden attribute indicates that the element is not relevant, so the browser
won't render any elements with this attribute. In this example, the words New
York City never appear in the browser window because the hidden attribute
is in the opening <h1> tag. More practically, hidden attributes are often used
to hide fields from users so they can’t edit them. For example, an RSVP website
may want to include but hide from user view a date and time field.

The hidden attribute is new in HTML5, which means it may not work on
some older browsers.

You don’t have to use one attribute at a time. You can include multiple attri-
butes in the opening HTML tag, like this:

<hl title="United States of America" lang="en">USA</hl>
In this example, [used the title attribute, and the lang attribute, setting
it equal to "en" to specify that the content of the element is in the English

language.

When including multiple attributes, separate each attribute with one space.

b7

A& Partii: Building the Silent and Interactive Web Page

Keep the following rules in mind when using attributes:

v~ If using an attribute, always include the attribute in the opening HTML tag.

»~ Multiple attributes can modify a single element.

v~ If the attribute has a value, then use the equal sign (=) and enclose the
value in quotes.

Standing head, title, and body above the rest

HTML files are structured in a specific way so browsers can correctly inter-
pret the file’s information. Every HTML file has the same five elements: four
whose opening and closing tags appear once and only once, and one that
appears once and doesn’t need a closing tag. These are as follows:

»” IDOCTYPE html must appear first in your HTML file, and it appears
only once. This tag lets browsers know which version of HTML you are

using. In this case, it’s the latest version, HTML5. No closing tag is neces-
sary for this element.

For HTML4 websites, the first line in the HTML file would read
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

» html represents the root or beginning of an HTML document. The <html >
tag is followed by first an opening and closing <head> tag, and then an
opening and closing <body> tag.

1 head contains other elements, which specify general information about
the page, including the title.

1 title defines the title in the browser’s title bar or page tab. Search
engines like Google use title to rank websites in search results.

»” body contains the main content of an HTML document. Text, images,
and other content listed between the opening and closing body tag is
displayed by the browser.

Here is an example of a properly structured HTML file with these five tags
(see Figure 4-4):

<!DOCTYPE html>
<html>
<head>

<titles>Favorite Movie Quotes</titles
</head>
<body>

<h1>"I'm going to make him an offer he can't refuse"</hl>

3

Chapter 4: Exploring Basic HTML

<hl>"Houston, we have a problem"</hl>
<hl>"May the Force be with you"</hl>
<hl>"You talking to me?"</hl>

</body>

</html>

[Figure 4-4 Favorite Mawic %

- c a =

"I'm going to make him an offer he
can't refuse"

"Houston, we have a problem"”
"May the Force be with you"

"You talking to me?"

Figure 4-4: A web page created with basic HTML elements.

Using spaces to indent and separate your tags is highly recommended. It
helps you and others read and understand your code. These spaces are only
for you and any other human that reads the code, however. Your browser
won’t care. As far as your browser is concerned, you could run all your tags
together on one line. (Don’t do this, though. The next person that reads your
code will be most unhappy.) HTML does recognize and display the first
whitespace character in text between opening and closing HTML tags.

Our example had many h1l tags but only one opening and closing html, head,
title, and body tag.

Getting Familiar with Common
HTML Tasks and Tags

Your browser can interpret over a hundred HTML tags, but most websites

use just a few tags to do most of the work within the browser. To understand
this, let’s try a little exercise: Think of your favorite news website. Have one in
mind? Now connect to the Internet, open your browser, and type in the address
of that website. Bring this book with you, and take your time — I can wait!

In the event you can’t access the Internet right now, take a look at the article
from my favorite news website, The New York Times, found in Figure 4-5.

49

50 Part II: Building the Silent and Interactive Web Page

& The Code of Life - MYTirn x

« c |_iW\uwvnytimes.com;’2013;’12;’15ﬂopinionﬂsunday/the—code-of—life.htn{3 =

‘ HOME FAGE ‘ TODATS FAFER ‘ WIDED ‘ MOST FOFULAR ‘ U5, Editioh =

Ehe New fJork Times

SundayReview 1. opinion Pages

WORLD U.2. M.Y./REGION BUSINESZ TECHMNOLOGY SCIEMCE HEALTH SPORTZ | OFINION AR

The Code of Life Headline

By JULIET WATERS
Fublished: December 14, 2013

MONTREAL — AFTER almost 20 years as a working bock critic, I've FACEBOOK

come to aceept that my line of work iz basically a relic of another W TWITTER
age. Book buyers now prefer the collective “wisdom” of Amazon i coosLer . Hyperlinks
reviews; newspapers and magazines, struggling to survive, are
devoting less and less space to book matters; and writers are being B e
fofced by the economics of the Internet to give their opinions away B EmalL
foq little or nothing. SHARE
& PRINT

The realization carmne almost two years
<head> ago, at the start of 2012, and if ’'d had B RerrinTs
the option then of crawling into my
= dusty room of first editions and dying,
I might have. But as the single mother of an 11-year-old
boy, there was a life to build, and bills to pay. 5o I was
motivated when [came across a magazine article arguing

Frmtbon et 2 F e Ao U cee ? o tnd T oalenad aam

Paragraph Image

Figure 4-5: A New York Times article with headline, paragraphs, hyperlinks, and images.

Look closely at the news website on your screen (or look at mine). Four
HTML elements are used to create the majority of the page:

1~ Headlines: Headlines are displayed in bold and have a larger font size
than the surrounding text.

1~ Paragraphs: Each story is organized into paragraphs with white space
dividing each paragraph.

1~ Hyperlinks: The site’s homepage and article pages have links to other
stories, and links to share the story on social networks like Facebook,
Twitter, and Google+.

1~ Images: Writers place images throughout the story, but also look for site
images like icons and logos.

In the following sections I explain how to write code to create these common
HTML features.

Chapter 4: Exploring Basic HTML

<MBER
)

Writing headlines

Use headlines to describe a section of your page. HTML has six levels of
headings (see Figure 4-6):

»* h1, which is used for the most important headings

»* h2, which is used for subheadings

» h3 to hé6, which are used for less important headings
The browser renders h1 headings with a font size larger than h2’s, which in
turn is larger than h3’s. Headings start with an opening heading tag, the head-
ing text, and then the closing heading tag, as follows:

<hl>Heading text here</hl>

Here are some additional code examples showing various headings:

<hl>Heading 1: "I'm going to make him an offer he can't refuse"</hl>
<h2>Heading 2: "Houston, we have a problem"</h2>

<h3>Heading 3: "May the Force be with you"</h3>

<h4>Heading 4: "You talking to me?"</h4>

<h5>Heading 5: "I'll be back"</h5>

<h6>Heading 6: "My precious"</hé>

« > ¢ [q] =

Heading 1: "I'm going to make him
an offer he can't refuse”

Heading 2: "Houston, we have a problem"
Heading 3: "May the Force be with you"

Heading 4: "Y ou talking to me?"

Heading 5: "I'llbe back™

Heading &: "My precious"

Figure 4-6: Headings created using elements h1 through hé.

Always close what you open. With headings, remember to include a closing
heading tag, such as </h1>.

51

52 Part II: Building the Silent and Interactive Web Page

\

Organizing text in paragraphs

To display text in paragraphs you can use the p element: Place an opening
<p> tag before the paragraph, and a closing tag after it. The p element takes
text and inserts a line break after the closing tag.

To insert a single line break after any element, use the
 tag. The

tag is self-closing so no closing tag is needed, and </br> is not used.

Paragraphs start with an opening paragraph tag, the paragraph text, and then
the closing paragraph tag:

<p>Paragraph text here</p>
Some additional examples of coding a paragraph (see Figure 4-7):

<p>Armstrong: Okay. I'm going to step off the LM now.</p>

<p>Armstrong: That's one small step for man; one giant leap for mankind.</p>

<p>Armstrong: Yes, the surface is fine and powdery. I can kick it up loosely
with my toe. It does adhere in fine layers, like powdered
charcoal, to the sole and sides of my boots.</p>

[Figure 4-T: Paragraphs x

« > ¢ [q] =
Armstreng: Okay. I'm going to step off the L now

Armstrong: That's one small step for man; one giant leap for mankind.
Armstreng: Tes, the surface 18 fine and powdery. T can ek itup loosely

with my tee. It does adhere in fine layers, like powdered charcoal, to the sole
and sides of my boots

Figure 4-7: Text displayed in paragraphs using the p element.

Linking to your (heart’s) content

Hyperlinks are one of HTML’s most valuable features. Web pages that include
hyperlinked references to other sources allow the reader to access those
sources with just a click, a big advantage over printed pages.

Chapter 4: Exploring Basic HTML

Hyperlinks have two parts:
v~ Link destination: The web page the browser visits once the link is
clicked.

To define the link destination in HTML, start with an opening anchor tag
(<a>) that has an href attribute. Then, add the value of the href attri-
bute, which is the website the browser will go to once the link is clicked.

v~ Link description: The words used to describe the link.

To do this, add text to describe the link after the opening anchor tag,
and then add the closing anchor tag.

The resulting HTML should look something like this:
<a href="website url"sLink description
Three more examples of coding a hyperlink (see Figure 4-8):

Purchase anything
Rent a place to stay from a local host
Tech industry blog

[Figure 4-8: Hyperinks *

« c o =

Purchase anything Bent a place to stay from alocal host Tech industry blog

Figure 4-8: Three hyperlinks created using the a element.

When rendering hyperlinks, the browser, by default, will underline the link
and color the link blue. To change these default properties, see Chapter 6.

The <a> tag does not include a line break after the link.

Google’s search engine ranks web pages based on the words used to describe
a web page between the opening and closing <a> tags. This improved on
search results from previous methods, which relied primarily on analyzing
page content.

53

54 Part ll: Building the Silent and Interactive Web Page

A\

Adding images

Images spruce up otherwise plain HTML text pages. To include an image on your
web page — your own or someone else’s — you must obtain the image’s web
address. Websites like Google Images (images . google . com) and Flickr (www .
flickr.com) allow you to search for online images based on keywords. When
you find an image you like, right-click on the image, and select Copy Image URL.

Make sure you have permission to use an online image. Flickr has tools that
allow you to search for images with few to no license restrictions. Additionally,
websites pay to host images, and incur charges when a website directly links
to an image. For this reason, some websites do not allow hotlinking, or linking
directly from third-party websites (like you) to an image.

If you want to use an image that has not already been uploaded to the
Internet, you can use a site like www. imgur . com to upload the image. After
uploading, you will be able to copy the image URL and use it in your HTML.

To include an image, start with an opening image tag , define the
source of the image using the src attribute, and include a forward slash at
the end of the opening tag to close the tag (see Figure 4-9):

<img src="http://upload.wikimedia.org/wikipedia/commons/b/bd/ Dts_news bill
gates wikipedia.JPG"/>

) Figure 48 Images

€ o C [fileysCyUserssiik/Dropbosips = hapters/4/ehpt%204% 20-5 20htm|codsoasi

Figure 4-9: Images of Grace Hopper, a US Navy rear admiral, and
Bill Gates, the co-founder of Microsoft, rendered using .

The image tag is self-closing, which means a separate closing image
tag is not used. The image tag is one of the exceptions to the always-close-
what-you-open rule!

http://images.google.com/
http://www.flickr.com/
http://www.flickr.com/
http://www.imgur.com

Chapter 4: Exploring Basic HTML

Styling Me Pretty

WMBER
e@
&

Now that you know how to display basic text and images in a browser, you
should understand how to further customize and style them. HTML has basic
capabilities to style content, and later chapters show you how to use CSS to style
and position your content down to the last pixel. Here, however, | explain how to
do some basic text formatting in HTML, and then you'll build your first web page.

Highlighting with bold, italics, underline, and
strikethrough

HTML allows for basic text styling using the following elements:

1 strong marks important text, which the browser displays as bold.
1 em marks emphasized text, which the browser displays as italicized.
» u marks text as underlined.

1 del marks deleted text, which the browser displays as strikethrough.

The underline element is not typically used for text because it can lead to
confusion. Hyperlinks, after all, are underlined by default.

To use these elements, start with the element’s opening tag, followed by the
affected text, and then a closing tag, as follows:

<element namesAffected text</element names
Some examples (see Figure 4-10):

Grace Hopper, a US Navy rear admiral , popularized the term
"debugging."

Bill Gates co-founded a company called Microsoft</ems>.

Stuart Russell and Peter Norvig wrote a book called <u>Artificial Intelligence:
A Modern Approach</us.

Mark Zuckerberg created a website called <dels>Nosebook Facebook.

Steve Jobs co-founded a company called Peach Apple

|] Figure 4-10: Text formattr %

€ > Ca =

Grace Hopper, a US Navy rear admiral , popularized the term "debugging."

Bill Gates co-founded a company called Microsof

Stuart Russell and Peter Norvig wrote a book called Artificial Intelligence: A Modern Approach
Mark Zuckerberg created a website called Mesebeosk Facebook.

Steve Jobs co-founded a company called Peaeh Apple.

Figure 4-10: Sentences formatted using bold, italics, underline,
and strikethrough.

55

56

Part II: Building the Silent and Interactive Web Page

3

3

You can apply multiple effects to text by using multiple HTML tags. Always
close the most recently opened tag first and then the next most recently used
tag. For an example, look at the last line of code in Figure 4-10, and the tags
applied to the word Peach.

Raising and lowering text with
superscript and subscript

Reference works like Wikipedia, and technical papers often use superscript
for footnotes and subscript for chemical names. To apply these styles, use
the elements

v sup for text marked as superscript

1 sub for text marked as subscript

To use these elements, start with the element’s opening tag, followed by the
affected text, and then a closing tag as follows:

<element names>Affected text</element name>
Two examples (see Figure 4-11):

<p>The University of Pennsylvania announced to the public the first electronic
general-purpose computer, named ENIAC, on February 14,
1946.^{1l}</p>

<p>The Centers for Disease Control and Prevention recommends drinking several
glasses of H₂0 per day.</p>

When using the superscript element to mark footnotes, use an <a> anchor
tag to link directly to the footnote so the reader can view the footnote easily.

| Figure 4-10: Sub and Supe X

€ 2 ¢ =

The University of Pennsylvania announced to the public the first electronic general-purpose computer,
named ENIAC, on February 14, 1946.1

The Centers for Disease Control and Prevention recommends drinking several glasses of Hy0 per day

Figure 4-11: Text formatted to show superscript and
subscript effects.

Chapter 4: Exploring Basic HTML

Building Your First Website Using HTML

Now that you have learned the basics, you can put that knowledge to use.
You can practice directly on your computer by following these steps:

\

1.

Open any text editor, such as Notepad (on a PC) or TextEdit (on a Mac).

On a PC running Microsoft Windows, you can access Notepad by clicking
the Start button and selecting Run; in the search box, type Notepad. On

a Macintosh, select the Spotlight Search (hourglass icon on the top-right
corner of the toolbar), and type TextEdit.

. Enter into the text editor any of the code samples you have seen in

this chapter, or create your own combination of the code.

. Once you have finished, save the file and make sure to include

“.html” at the end of the filename.

4. Double-click on the file, which should open in your default browser.

You can download at no cost specialized text editors that have been created
specifically for writing code. For PCs, you can download Notepad++ at www .
notepad-plus-plus.org. For Mac computers, you can download TextMate
at http://macromates.com/download.

If you would like to practice your HTML online, you can use the Codecademy
website. Codecademy is a free website created in 2011 to allow anyone to
learn how to code right in the browser, without installing or downloading any
software. (See Figure 4-12.) Practice all of the tags (and a few more) that you
learned in this chapter by following these steps:

1.

Open your browser, go to www.dummies.com/go/coding and click
on the Codecademy link.

. Sign up for a Codecademy account or sign in if you already have an

account. Creating an account allows you to save your progress as you
work, but it’s optional.

3. Navigate to and click on HTML Basics.

4. Background information is presented in the upper-left portion of the

site, and instructions are presented in the lower-left portion of the
site.

. Complete the instructions in the main coding window. As you type, a

live preview of your code is generated.

57

http://www.notepad-plus-plus.org/
http://www.notepad-plus-plus.org/
http://macromates.com/download
http://www.dummies.com/go/coding

Part II: Building the Silent and Interactive Web Page

6. After you have finished completing the instructions, click the Save
and Submit Code button.

If you have followed the instructions correctly, a green checkmark
appears, and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at enikhilgabraham and include hashtag #codingFD.

B HTML Basics | Codecader x _}

HTML & css

< testheml
an Internet browser (e.g.
Chrome, Firefox, Internet
Explorer]. A browser's job is to
transform the code in test. heml
inta a recognizable webpage! It
knows how to lay out the page
by following the HTML syntax.

htmL

Inatructions

01.To the right, we have a
test.html file.

02. Change the text on line 2 [the
bit between and
 | to anything you like!

03. Hit Save & Submit Code, and
you'll see how the test.heml file
would look in a brovser. Did you
see that? The <strongs

tags made our text bold!

© stuck? Get a hint!

Save & Submit Code D Undo

QEAForum Glossary

€« C | [) www.codecademy.com/courses/web-beginner-en-HZA3b/0/17curriculurn_id=5057 9fb998b470000202dc8b

Feel free to change this text.

Feel free to change this text

=5 Full screen

Figure 4-12: Codecademy in-browser exercises.

A computer engineer, Tim Berners-Lee, wanted
academics to easily access academic papers
and collaborate with each other. To accom-
plish this goal, in 1989 Mr. Berners-Lee created
the first version of HTML, which had the same
hyperlink elements you learned in this chap-
ter, and hosted the first website in 1991. Unlike
most other computer software, Mr. Berners-Lee
made HTML available royalty-free, allowing
widespread adoption and use around the world.
Shortly after creating the first iteration of HTML,
Mr. Berners-Lee formed the W3C (“World Wide

History of HTML

Web Consortium”), which is a group of people
from academic institutions and corporations who
define and maintain the HTML language. The
W3C continues to develop the HTML language,
and has defined more than 100 HTML elements,
far more than the 18 Mr. Berners-Lee originally
created. The latest version of HTML is HTMLS5,
and it has considerable new functionality. In
addition to supporting elements from previous
HTML versions, HTML5 allows browsers to play
audio and video files, easily locate a user’s physi-
cal location, and build charts and graphs.

Getting More Out of HTML

In This Chapter
Organizing content in a web page
Writing HTML lists
Creating HTML tables
Filling out HTML forms

I'm controlling, and I want everything orderly, and I need lists.
— Sandra Bullock

E/en your best content needs structure to increase readability for your
users. This book is no exception. Consider the “In This Chapter” bulleted
list of items at the top of this page, or the table of contents at the beginning of
the book. Lists and tables make things easier for you to understand at a glance.
By mirroring the structure you find in a book or magazine, web elements let
you precisely define how content, such as text and images, appear on the web.

In this chapter, you learn how to use HTML elements such as lists, tables,
and forms, and how to know when these elements are appropriate for your
content.

Organizing Content on the Page

Readability is the most important principle for organizing and displaying
content on your web page. Your web page should allow visitors to easily read,
understand, and act on your content. The desired action you have in mind for
your visitors may be to click on and read additional content, share the content
with others, or perhaps make a purchase. Poorly organized content will lead
users to leave your website before engaging with your content for long enough
to complete the desired action.

60 Partii: Building the Silent and Interactive Web Page

3

Figures 5-1 and 5-2 show two examples of website readability. In Figure 5-1, [
searched Craigslist.org for an apartment in New York. The search results are
structured like a list, and you can limit the content displayed using the filters
and search forms. Each listing has multiple attributes, such as a description,
the number of bedrooms, the neighborhood, and, most importantly, the price.
Comparing similar attributes from different listings takes some effort — notice
the jagged line your eye must follow.

Figure 5-2 shows the results of a search I conducted at Hipmunk.com for flights
from New York to London. As with the Craigslist search results, you can limit
the content displayed using the filters and search forms. Additionally, each
flight listing has multiple attributes, including price, carrier, departure time,
landing time, and duration, which are similar to the attributes of the apartment
listings. Comparing similar attributes from different flights is much easier

with the Hipmunk layout, however. Notice how the content, in contrast to
Craigslist’s, has a layout that allows your eye to follow a straight line down the
page, so you can easily rank and compare different options.

@ rewyork iy alsparimer %

€ €[4 newyork.craigslistorg/aap/ v =
CL new york = all new york v | > all apartments [account] post
all apartments
| search | open house on: |- v |rent

0+BR v|[0+Ba v/ |any housing type v | (cats (dogs Cpic (title

(EF thumb gallery map 1-100 next »

posted sun sep 14

guarantors ok - good credit please - large apartment on east 84th st - $2200 (Upper East Side) map apts by owner
studio on the upper east side - doorman building - close to the park - $2345 / 550ft? - (Upper East Side) map apts by owner

GORGEOUS 1 BED IN LUXURY DOCRMAN BUILDING-PRIME BOERUM HILL-BY ALL TRATNS-CONDO - $2650 / Thr - 700ft2 -

(Boerum Hill map apts broker fee
3bef3ba $8,000.00 by owner - $8000 / 3br - 17502 - (Upper East Side) map apts by owner

3brf3ba §7,900.00 17502 - §7900 3br - 1750ft2- (Upper East Side) map apts by awner

~JZ LORIMER ~— High ceilings!l | LARGE BEDROOMI| ~STUDLO STYLE!! - §1650 / 1br - (WILLIAMSBURG) /- map apts by owner
$8,200.00 only 3BED/3B-4 Yorkville luzury - $6200 / 30r - 1800ft% - (Upper East Side) map apts by owner

H/H INCLUDED ___ NICE LOCATION ___ SPACIOUS ___ MOFEE___- $1800// 2b7 - (BUSHWICK) [map apis by awner

$2,300.00 doorman nice studio - $2300 (Upper East Side) apts by owner
4BEDS 2 BATHS 1 FAMILY RENTAL 2 OWNER - §1450 / 3br - (ROSEDALE) 1/ map apts by owner

READ Y FOR IMMED MOVE IN 2BR, BVHW INCL, ML TRATNS, NO FEE, NICE AREA - §1698 |/ 2br - (BUSHWICK) pic map apts by owner

PRIME LOCATICN PROSPECT HEIGHTS ~ 1BR CONDO ~ GYM * SAUNA-DOORMAN - 52695 / 1br - (PROSPECT HEIGHTS) hd

Figure 5-1: A Craigslist.org listing of apartments in New York (2014).

Don’t underestimate the power of simplicity when displaying content.
Although Craigslist’s content layout may look almost too simple, the site is
one of the top 50 most visited websites in the world. Reddit.com is another
example of a top 50 website with a simple layout.

Chapter 5: Getting More Out of HTML 6 7

T Cheap Flighs, Cheap Hot

& C | @ https://wwwhipmunk.com/flights/NYC-to-London-United-Kin gdom #!dates =ul02,Jul04&pax=1 e =

5 hi T =
"Iih|pmunk FUGHTS HOTELS BXPLORE MOBILE» DEALS» v EH

- NYCE>London, Jul 2-Jul 4
et search v

Select Departure
0 NYG> London Thy, Ju 02
.ncarmnnen Mpm Durdion Departure Amival | |1 (1) o TR nirports [C0S Enable Google Calendar
°
P e ey 5pm 10pm 3am gam Bom 1pm

Britich British*
US Aimays matketed
British British*
Amarian matketed
British British*
US Aimays matketed

S
American

\
S

American

B kY | tmoricn__| =

Figure 5-2: A Hipmunk.com listing of flights from New York to London (2014).

Before displaying your content, ask yourself a few questions first:

~ Does your content have one attribute with related data, or does it
follow sequential steps? If so, consider using lists.

 Does your content have multiple attributes suitable for comparison? If
so, consider using tables.

1 Do you need to collect input from the visitor? If so, consider using
forms.

<P Don'’t let these choices overwhelm you. Pick one, see how your visitors react,
and if necessary change how you display the content. The process of evaluat-
ing one version against another version of the same web page is called A/B
testing.

Listing Data

Websites have used lists for decades to convey related or hierarchical
information. In Figure 5-3, you can see an older version of Yahoo.com that
uses bulleted lists to display various categories and today’s Allrecipes.com
recipe page, which uses lists to display various ingredients.

62 Part II: Building the Silent and Interactive Web Page

D fg YAHoO! @@ «rewm | kitchenview: Baked Ziti 1 * » @ alledpes
T RGP s

L ngredients Directions Step-by-tep view
1 pound dry ziti pasta 1. Bring a large pot of lightly salted water toa
1 onion, chopped boil. Add ziti pasta, and cook until al dente,
1 pound lean ground beef

+ At nd Humaniies + News and Mediagon) about 8 minutes; drain.

. 2 (26 ounce) jars spaghetti 2. In a large skillet, brown onion and ground
: sauce beef over medium heat. Add spaghetti sauce,
6 ounces provolone cheese, and simmer 15 minutes.
sliced

3. Preheat the oven to 350 degrees F (175

11/2 cups sour cream degrees C). Butter a 9x13 inch baking dish.
S s i e 6 ounces mozzarella cheese, Layer as follows: 1/2 of the ziti, Provolone
ol — shredded cheese, sour cream, 1/2 sauce mixture,
e v aea 2 tablespoons grated remaining ziti, mozzarella cheese and
Parmesan cheese remaining sauce mixture. Top with grated
* Gommes * SacalScience Parmesan cheese
i . 4. Bake for 30 minutes In the preheated oven,
e e or until cheeses are melted.

M Yoo Y i K Yo e Yotao 5
Clasteds Toiafa Wittt Co- ot
[T w———y

Notbnal Yo Canst.Eoe Qeminy- s LK. &
Yabeo!Metrs Al Aan- Boso Chiogs- O EW- LA LY - .- et Gl

Figure 5-3: Yahoo's 1997 homepage using an unordered list (left) and
Allrecipes.com’s 2014 recipe using an ordered list (right).

Lists begin with a symbol, an indentation, and then the list item. The symbol
used can be a number, letter, bullet, or no symbol at all.

Creating ordered and unordered lists
The two most popular types of lists are:
1 Ordered: Ordered lists are numerical or alphabetical lists in which the
sequence of list items is important.
~ Unordered: These lists are usually bulleted lists in which the sequence

of list items has no importance.

You create lists by specifying the type of list as ordered or unordered, and
then adding each list item using the 11 tag, as shown in the following steps:

1. Specify the type of list.

Add opening and closing list tags that specify either an ordered (o1) or
unordered (ul) list, as follows:

* ol to specify the beginning and end of an ordered list.
¢ ul to specify the beginning and end of an unordered list.

2. Add an opening and closing tag (that is, <1i> and </1i>) for each
item in the list.

For example, here’s an ordered list:

 List item #1 </1i>
 List item #2 </1li>
 List item #3 </1i>

Chapter 5: Getting More Out of HTML

Nesting lists

Additionally, you can nest lists within lists. A list of any type can be nested
inside another list; to nest a list, replace the list item tag <1i> with a list type
tag, either or <uls.

The example code in Figure 5-4 shows various lists types including a nested
list. (See Figures 5-4 and 5-5.)

1 <lI--Ordinary list-->

2 <h1»Tasks for today</hl>

El <ol

4 <lir>Schedule a product meeting</lix
5 <li»Have lunch with Arun

3 <li»Draft client presentation
7 <Jol>

3

9 <l--Nested list-->
10 <h1>Tazks for tomorrowd/hl>

11

12 <lixSend sketches to London office</lix
13 <1i>File expense reports

14

15 <1i>Trip to San Francisco</lix

16 <1i>Trip to Los Angeles

17 <fol>

1

Figure 5-4: Coding an ordered list and a nested list.

[Figure 5-5: Mested lists %

AE =
Tasks for today

1. Schedule a product meeting
2. Have lunch with Arun
3. Draft client presentation

Tasks for tomorrow

o Send sketches to London office
» File expense reports

1. Trip to 3an Francisco

2. Trpto Los Angeles

Figure 5-5: The page produced by the code in Figure 5-4.

63

64 Part II: Building the Silent and Interactive Web Page

<\¥

The <h1> tag shown in this code sample is not necessary to create a list.
[use it here only to name each list.

Every opening list or list item tag must be followed with a closing list or list
item tag.

Putting Data in Tables

3

Tables help further organize text and tabular data on the page. (See Figure 5-6.)
The table format is especially appropriate when displaying pricing information,
comparing features across products, or in any situation where the columns or
rows share a common attribute. Tables act as containers, and can hold and dis-
play any type of content, including text, such as heading and lists, and images.
For example, the table in Figure 5-6 includes additional content and styling like
icons at the top of each column, gray background shading, and rounded but-
tons. This content and styling can make tables you see online differ from tables
you ordinarily see in books.

B Secure it Sharing Plans - %

el
m

C | @ httpsy//wwwibox.com/pricing/

lx)x Personal Business Industries 18777294269 Login SignUp

See Platform Pricing Plans »

Select a Plan

[e)e} —
= [h
Personal Starter Business Enterprise

110 GB secure storage Shared workspace for Cortert collaborationand ~ Secure and scalable
with 250 MB file upload yourtesmorprojed user manax germent content and managermert
size

Free $5

TUser 3-Max 10 Users Minimum 5 Users Customized
10-100 GB Siorage 100 GB Storage Unlimited Storage Unlimited Storage
250MB or 5 GB File 2 GBFile Size 5 GBFile Size 5 GBFile Size
Size

Mobile, d v v v v

lobile, Sync an
Share Capabiliies

Figure 5-6: Box.net uses tables to display pricing information.

Avoid using tables to create page layouts. In the past, developers created
multi-column layouts using tables, but today developers use CSS (see
Chapter 7) for layout-related tasks.

Chapter 5: Getting More Out of HTML 65

Basic table structuring

Tables are comprised of several parts, like the one shown in Figure 5-7.

[Figure 5-7: Tables x

c |a =
Tahble header 1 Tahle header 2
Row #], Cell #1 Fow #1, Cell #2 ROW
|
Row #2, Cell #1 Row #2, Cell #2 Ce”

Table

Figure 5-7: The different parts of a table.

You create a table by using the following basic steps:

1. Define a table with the table element.
To do this, add the opening and closing <table> tags.
2. Divide the table into rows with the tr element.

Between the opening and closing table tags, create opening <tr> tags
and closing </tr> tags for each row of your table.

3. Divide rows into cells using the td element.

Between the opening and closing tr tags, create opening and closing td
tags for each cell in the row.

4. Highlight cells that are headers using the th element.
Finally, specify any cells that are headers by replacing the td element
with a th element.

Your table will have only one opening and closing <table> tag; however, you
can have one or more table rows (tr) and cells (td).

66 Part II: Building the Silent and Interactive Web Page

The following example code shows the syntax for creating the table shown in
Figure 5-7.

<table>
<tr>
<th>Table header 1</th>
<th>Table header 2</th>
</tr>
<tr>
<td>Row #1, Cell #l</td>
<td>Row #1, Cell #2</td>
</tr>
<tr>
<td>Row #2, Cell #1</td>
<td>Row #2, Cell #2</td>
</tr>
</table>
A\ . .
After you've decided how many rows and columns your table will have, make
sure to use an opening and closing <t r> tag for each row, and an opening
and closing <td> tag for each cell in the row.

Stretching table columns and rows

Take a look at the table describing Facebook’s income statement in Figure 5-8.
Data for 2011, 2012, and 2013 appears in individual columns of equal-sized
width. Now look at Total Revenue, which appears in a cell that stretches or
spans across several columns.

W FB Income Statement | x \Nd Happy red cup leads 10 x ¥ =il
YAHOO! Sunin B Mail K}
PINARCE
Sy
::uannk Facebook, Inc. (FB) Follow Beat the market
ons s
5
P 77.48 +0.44(0.56%) seo 12, scopm o7 m— J
TS After Hours : 77,37 $0.11(0.4%) Sep 12, T:59PM EDT [P
ntoractive
Basie chrt Income Statement Got Income staterent far: 60
Basic Teoh. Analyso —
HEWS & INFO View: Annual Data | Quarterly Data A numbers in thousands.
Headines
Period Ending Dec 31,2013 Dec 31,2012 Dec 31,201
ProssReteases
c Tot Revenue Tar200 5.08.000 311000
ornpany Events
Cost of Revenue 1375000 30000 sen,000
e Gross Proft 5957000 5,725,000 25100
COMPANY Operating Expenses
Proie Research Developmert 1,415,000 1,398,000 3a5,000
Key Statistics Selling General and Administrative 1,778,000 1,788,000 707,000
SEC Filings Non Recurring - - -
Competors otrers
ndustey Totel Opera Exparess
Components
werating ncoms or Loss 250000 ETm 7000
anaLvST CovERAGE
Analyst Opinion Incame fram Caontinuing Operations.
Analyst Estimates. Total Other Income/Expenses Net 6,000 7,000 (19,000)
B Earings Betore Intrest And Tares 2510000 545000 1737000
owmcrsn nerest Expense 55,000 51.000 om0
lor flolders Income Before Tax 2,754,000 484,000 1,695,000
(5 oy Income Tox Expense 1254000 481,000 so6,000
O e Minority Interest (9,000) (21,000) (332,000)
FIHANCIALS Net Incorme From Continuing Ops 1,491,000 32000 668,000 -

Figure 5-8: An income statement in a table with columns of different
sizes.

Chapter 5: Getting More Out of HTML 6 7

Stretching a cell across columns or rows is called spanning.

The colspan attribute spans a column over subsequent vertical columns.
The value of the colspan attribute is set equal to the number of columns
you want to span. You always span a column from left to right. Similarly,
the rowspan attribute spans a row over subsequent horizontal rows. Set
rowspan equal to the number of rows you want to span.

The following code generates a part of the table shown in Figure 5-8. You can
see the colspan attribute spans the Total Revenue cell across two columns.
As described in Chapter 4, the tag is used to mark important text,
and is shown as bold by the browser.

<trs>
<td colspan="2">
Total Revenue
</td>
<td>
7,872,000
</td>
<td>
5,089,000
</td>
<td>
3,711,000
</td>
</tr>

<MBER
é"\&

If you set a column or row to span by more columns or rows than are actually
present in the table, the browser will insert additional columns or rows,
changing your table layout.

W CSS helps size individual columns and rows, as well as entire tables. See
Chapter 7.

Aligning tables and cells

QNG The latest version of HTML does not support the tags and attributes in this

Yy section. Although your browser may correctly render this code, there is no
guarantee your browser will correctly render it in the future. I include these
attributes because as of this writing, HTML code on the Internet, including
the Yahoo Finance site in the previous examples, still use these deprecated
(older) attributes in tables. This code is similar to expletives — recognize
them but try not to use them. Refer to Chapter 6 to see modern techniques
using Cascading Style Sheets (CSS) for achieving the identical effects.

The table element has three deprecated attributes to know — align,
width, and border. These attributes are described in Table 5-1.

68 Part II: Building the Silent and Interactive Web Page

Table 5-1 Table attributes replaced by CSS
Attribute name Possible values Description
align left Position of table relative to the con-

taining document according to the

value of the attribute. For example,

right align="right" positions the table
on the right side of the web page.

center

width pixels (#) Width of table measured either in pixels
on-screen or as a percentage of the
browser window or container tag.

)
]

border pixels (#) Width of table border in pixels.

The following example code shows the syntax for creating the table in
Figure 5-9 with align, width, and border attributes.

[Figure 5-9: Table attribu x

C a =

[The Social Network [Generation Like I
[[Tron [War Games I

Figure 5-9: A table with deprecated align, width, and border
attributes.

<table align="right" width=50% border=1>
<trs>
<td>The Social Network</tds>
<td>Generation Like</td>
</tr>
<tr>
<td>Tron</td>
<td>War Games</td>
</tr>
</table>

Chapter 5: Getting More Out of TML ~ O

<MBER
é‘,*

Always insert attributes inside the opening <html > tag, and enclose words in
quotes.

The tr element has two deprecated attributes to know — align, and
valign. These are described in Table 5-2.

Table 5-2 Table row attributes replaced by CSS
Attribute name Possible values Description
align left Horizontal alignment of a row's cell

contents according to the value

of the attribute. For example,

center align="right" positions a row's cell
contents on the right side of each cell.

right

justify
valign top Vertical alignment of a row’s cell
ntent rding to the val
niddle contents according to the value

of the attribute. For example,
bottom align="bottom" positions a row’s
cell contents on the bottom of each cell.

The td element has four deprecated attributes to know — align, valign,
width, and height. These are described in Table 5-3.

Table 5-3 Table cell attributes replaced by CSS
Attribute name Possible values Description
align left Horizontal alignment of a cell's

contents according to the value

of the attribute. For example,
center align="center" positions the
cell's contents in the center of the cell.

right

justify
valign top Vertical alignment of a cell's contents
, according to the value of the attribute.
middle

For example, align="middle"
bottom positions a cell’s contents in the
middle of the cell.

width pixels (#) Width of a cell measured either in
pixels on-screen or as a percentage
of the table width.

height pixels (#) Height of a cell measured either in
pixels on-screen or as a percentage
of the table width.

)
o

)
3

70 Part II: Building the Silent and Interactive Web Page

The following example code shows the syntax for creating the table in
Figure 5-10 with align, valign, width, and height attributes.

[Figure 5-10: Table attrib x

C =

Generation,
The Social Network Like

War
Games

Tron

Figure 5-10: A table with deprecated align, valign, width,
and height attributes.

<table align="right" width=50% border=1>
<tr align="right" valign="bottom">
<td height=100>The Social Network</td>
<td>Generation Like</td>
</tr>
<trs>
<td height=200 align="center" valign="middle">Tron</td>
<td align="center" valign="top" width=20%>War Games</td>
</tr>
V.Q‘“\NG! </table>
Remember, these attributes are no longer supported and should not be used
in your code.

Filling Out Forms

Forms allow you to capture input from your website visitors. Until now we
have displayed content as-is, but capturing input from visitors allows you to:

1~ Modify existing content on the page. For example, price and date filters
on airline websites allow for finding a desired flight more quickly.

1~ Store the input for later use. For example, a website may use a registra-
tion form to collect your email, username, and password information to
allow you to access it at a later date.

Chapter 5: Getting More Out of HTML

Understanding how forms work

Forms pass information entered by a user to a server by using the following
process:

1. The browser displays a form on the client machine.

2. The user completes the form and presses the submit button.

3. The browser submits the data collected from the form to a server.
4.

The server processes and stores the data and sends a response to the
client machine.

5. The browser displays the response, usually indicating whether the sub-
mission was successful.

See Chapter 2 for an additional discussion about the relationship between
the client and server.

A full description of how the server receives and stores data (Steps 3 to 5) is
beyond the scope of this book. For now, all you need to know is that server-
side programming languages such as Python, PHP, and Ruby are used to write
scripts that receive and store form submissions.

Forms are very flexible, and can record a variety of user inputs. Input fields
used in forms can include free text fields, radio buttons, checkboxes, drop-
down menus, range sliders, dates, phone numbers, and more. (See Table 5-4.)
Additionally, input fields can be set to initial default values without any user
input.

Table 5-4 Selected form attributes

Attribute Possible values Description

name

type checkbox Defines the type of input field

to display in the form. For

email example, text is used for

submit free text fields, and submit
is used to create a submit

text button.

password

radio

(a complete list of values has

been omitted here for brevity)

value text The initial value of the input

control.

/1

/2 Partii: Building the Silent and Interactive Web Page

<\¥

SMBER

é‘l@

3

View the entire list of form input types and example code at www.
w3schools.com/tags/att_input type.asp.

Creating basic forms

You create a basic form by

1. Defining a form with the form element.

Start by adding an opening <form> tag and closing </form> tag.

. Using the action attribute, specify in the form element where to send

form data.

Add an action attribute to your opening <form> tag and set it equal to
the URL of a script that will process and store the user input.

. Using the method attribute, specify in the form element how to send

form data.

Add a method attribute to your opening <form> tag and set it equal to
POST.

The method attribute is set equal to GET or POST. The technicalities of
each are beyond the scope of this book, but, in general, POST is used for
storing sensitive information (such as credit card numbers), whereas
GET is used to allow users to bookmark or share with others the results
of a submitted form (such as, for example, airline flight listings).

. Providing a way for users to input and submit responses with the

input element.

Between the opening <form> and closing </form> tags, create one
<input> tag.

Your form will have only one opening and closing <form> tag; however,
you will have at least two <input > tags to collect and submit user data.

. Specify input types using the type attribute in the input element.

For this example, set the type attribute equal to "text".

The <input > tag does not have a closing tag, which is an exception to
the “close every tag you open” rule. These tags are called self-closing
tags, and you can see more examples in Chapter 4.

. Finally, create another <input> tag and set the type attribute equal

to submit.

The following example code shows the syntax for creating the form shown in
Figure 5-11.

http://www.w3schools.com/tags/att_input_type.asp
http://www.w3schools.com/tags/att_input_type.asp

Chapter 5: Getting More Out of HTML 73

Figure 5-11; Forms x

c a =

Type a short message here Submit

Figure 5-11: A form with one user input and a submit button.

<form action="mailto:nikhil.abraham@gmail.com" method="POST">
<input type="text" value="Type a short message here"s
<input type="submit"s>

</form>

The action attribute in this form is set equal to mailto, which signals to
the browser to send an email using your default mail client (such as Outlook
or Gmail). If your browser is not configured to handle email links, then this
form won’t work. Ordinarily, forms are submitted to a server to process and
store the form’s contents, but in this example form the contents are submit-
ted to the user’s email application.

Practicing More with HTML

Practice your HTML online using the Codecademy website. Codecademy is
a free website created in 2011 to allow anyone to learn how to code right in
the browser, without installing or downloading any software. Practice all of
the tags (and a few more) that you learned in this chapter by following these
steps:

1. Open your browser, go to www.dummies.com/go/coding and click
on the link to Codecademy.
2. Sign in to your Codecademy account.

Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click on HTML Basics II to practice creating lists, and
HTML Basics III to practice creating tables.

http://www.dummies.com/go/coding

74 Part ll: Building the Silent and Interactive Web Page

4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the
site.

5. Complete the instructions in the main coding window. As you type, a
live preview of your code is generated.

6. After you have finished completing the instructions, click the Save
and Submit Code button.

If you have followed the instructions correctly, a green checkmark
appears, and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem
or a bug you cannot fix, click on the hint, use the Q&A Forum, or tweet
me at @nikhilgabraham and include hashtag #codingFD.

Getting Stylish with CSS

In This Chapter
Understanding CSS and its structure
Formatting text size, color, and style
Styling images
Using CSS in three different contexts

Create your own style . . . let it be unique for yourself and yet identifiable
for others.

—Anna Wintour

rle website code examples [have shown you in the preceding chapters
resemble websites you may have seen from a previous era. Websites
you browse today are different, and have a more polished look and feel.
Numerous factors enabled this change. Twenty years ago you might have
browsed the Internet with a dial-up modem, but today you likely use a very
fast Internet connection and a more powerful computer. Programmers have
used this extra bandwidth and speed to write code to further customize and
style websites.

In this chapter you learn modern techniques to style websites using
Cascading Style Sheets (CSS). First, I discuss basic CSS structure, and then
the CSS rules to style your content. Finally, I show you how to apply these
rules to your websites.

What Does CSS Do?

CSS styles HTML elements with greater control than just using HTML. Take a
look at Figure 6-1. On the left, Facebook appears as it currently exists; on the
right, however, the same Facebook page is shown without all the CSS styling.
Without the CSS, all the images and text appear left-justified, borders and
shading disappear, and text has minimal formatting.

76

gMBER

Part II: Building the Silent and Interactive Web Page

Sign Up
s freeand abrags il b

Connect with friends and the
world around you on Facebook.

Connect with friends and the
world around you on Facebook.

See photos and updates o ranc i ez Feed
Share what's new | yeur Ifeco your Tirsire.

Flnd more of what ourelocking for i Gragh S St | Dup o] Ve o] ettt mons

Sign Up

1t free and always will be.

mmmmm

Figure 6-1: Left: Facebook with CSS. Right: Facebook without CSS.

CSS can style almost any HTML tag that creates a visible element on the
page, including all the HTML tags used to create headings, paragraphs, links,
images, lists, and tables that [showed you in previous chapters. Specifically,
CSS allows you to style:

1~ Text size, color, style, typeface, and alignment
v Link color and style

1 Image size and alignment

v~ List bullet styles and indentation

v~ Table size, shading, borders, and alignment

CSS styles and positions the HTML elements that appear on a web page.
However, some HTML elements (such as, for example, <head>) are not visi-
ble on the page and are not styled using CSS.

You may wonder why creating a separate language like CSS to handle styling
was considered a better approach than expanding the capabilities of HTML.
There are three reasons:

1~ History: CSS was created four years after HTML as an experiment to see
whether developers and consumers wanted extra styling effects. At the
time, it was unclear whether CSS would be useful, and only some major
browsers supported it. As a result, CSS was created separately from
HTML to allow developers to build sites using just HTML.

1 Code management: Initially, some CSS functionality overlapped with
existing HTML functionality. However, specifying styling effects in HTML
results in cluttered and messy code. For example, specifying a particu-
lar font typeface in HTML requires that you include the font typeface

Chapter 6: Getting Stylish withCSS / /

attribute in every paragraph (<p>) tag. Styling a single paragraph this
way is easy, but applying the font to a series of paragraphs (or an entire
page or website) quickly becomes tedious. By contrast, CSS requires

the typeface to be specified only once, and it automatically applies to

all paragraphs. This feature makes it easier for developers to write and
maintain code. In addition, separating the styling of the content from the
actual content itself has allowed search engines and other automated
website agents to more easily process the content on web pages.

+~ Inertia: Currently millions of web pages use HTML and CSS separately,
and every day that number grows. CSS started as a separate language
for reasons stated above, and it remains a separate language because its
popularity continues to grow.

CSS Structure

3

CSS follows a set of rules to ensure that websites will be displayed in the
same way no matter the browser or computer used. Sometimes, because of
varying support of the CSS standard, browsers can and do display web pages
differently. Nevertheless, generally speaking, CSS ensures that users have a
consistent experience across all browsers.

You can use any browser to see CSS you write style your HTML files, though I
strongly recommend you download, install, and use Chrome or Firefox.

Choosing the element to style

CSS continues to evolve and support increased functionality, but the basic
syntax for defining CSS rules remains the same. CSS modifies HTML elements
with rules that apply to each element. These rules are written as follows:

selector {
property: value;

}
A CSS rule is comprised of three parts:

1~ Selector: The HTML element you want to style.

1~ Property: The feature of the HTML element you want to style, such as,
for example, font typeface, image height, or color.

+~ Value: The options for the property that the CSS rule sets. For example,
if color was the property, the value could be red.

78 Part II: Building the Silent and Interactive Web Page

\\J

a\\J

The selector identifies which HTML element you want to style. In HTML,

an element is surrounded by angle brackets, but in CSS the selector stands
alone. The selector is followed by a space, an opening left curly bracket ({),
property with a value, and then a closing right curly bracket (}). The line
break after the opening curly bracket, and before the closing curly bracket is
not required by CSS — in fact, you could put all your code on one line with no
line breaks or spaces. Using line breaks is convention followed by developers
to make CSS easier to modify and read.

You can find curly brackets on most keyboards to the right of the P key.

The following code shows you an example of CSS modifying a specific HTML ele-
ment. The CSS code appears first, followed by the HTML code that it modifies:

The CSS:

hi {
font-family: cursive;

}
And now the HTML.:

<hl>
Largest IPOs in US History
</hl>

<11>2014: Alibaba - $20B
<1i>2008: Visa - $18B

The CSS selector targets and styles the HTML element with the same name
(in this case, <h1> tags). For example, in Figure 6-2, the heading “Largest
IPOs in US History,” created using the opening and closing <h1> tag is styled
using the h1 selector, and the font - family property with cursive value.

CSS uses a colon instead of the equals sign (=) to set values against properties.

The font in Figure 6-2 likely does not appear to be cursive, as defined in the
code above, because cursive is the name of a generic font family, and not a
specific font. Generic font families are described later in this chapter.

My property has value

CSS syntax requires that a CSS property and its value appear within open-
ing and closing curly brackets. After each property is a colon, and after each
value is a semi-colon. This combination of property and value together is

3

Chapter 6: Getting Stylish with CSS

called a declaration, and a group of properties and values is called a declara-
tion block.

[Figure B2 CSS Select: x

c a E

Largest IPOs in US History

* 2014: Alibaba - §20B
* 2008: Visa - $18B

Figure 6-2: CSS targeting the heading h1 element.

Let us look at a specific example with multiple properties and values:

hi {
font-size: 15px;
color: blue;

}

In this example, CSS styles the h1 element, changing the font-size prop-
erty to 15px, and the color property to blue.

You can improve the readability of your code by putting each declaration
(each property/value combination) on its own line. Additionally, adding
spaces or tabs to indent the declarations also improves the readability.
Adding these line breaks and indentions doesn’t affect browser performance
in any way, but it will make it easier for you and others to read your code.

Hacking the CSS on your favorite website

In Chapter 2, you modified a news website’s HTML code. In this chapter, you
modify its CSS. Let’s take a look at some CSS rules in the wild. In this example,
you change the CSS on huffingtonpost.com (or your news website of choice)
using the Chrome browser. Just follow these steps:

1. Using a Chrome browser, navigate to your favorite news website, ide-
ally one with many headlines. (See Figure 6-3.)

79

80 Part II: Building the Silent and Interactive Web Page

\\s

2. Place your mouse pointer over a headline, right-click, and from the

menu that appears select Inspect Element.

A window opens at the bottom of your browser.

. Click the Style tab on the right side of this window to see the CSS

rules being applied to HTML elements. (See Figure 6-4.)

[Breaking Mews and Opi x __ [=TET o€]
& €' [1 wwhuffingtonpost corm/# &l =
Euope Smarterldeas LifeLessons i0S app Android o More Login Create Account
Septernber 15, 2014
THE HUFFINGTON POST
[Searon The ngon Pos G o] wroton & relow
FRONT PAGE POLITICS BUSINESS ENTERTAINMENT TECH MEDIA WORLDPOST HEALTHY LIVING COMEDY HUFFPOST LIVE ALL SECTIONS
Black Voices - Gay Voices - Sports - Crime - Science - Relgion - Celebrity - Green - Style - Horoscopes - Third Metric - TEDWeekends - Dr Phil - GPS for the Soul
HUFFPOSTLIVE cers Acceptance A WEC Rally Wiy Vou Canit ducige Woimen By Their Style WhyJobs Hiree Jusin Lo
MR. FOOTBALL GOES INTO HIDING

QUICKREAD

Figure 6-3: The Huffington Post website before modification.

. Change the color of the headline using CSS. To do this, first find the

color property in the element. style section; note the square color
box within that property that displays a sample of the current color.
Click on this box and change the value by selecting a new color from
the pop-up menu, and then press Enter.

Your headline now appears in the color you picked. (See Figure 6-5.)

If the element . style section is blank and no color property appears,
you can still add it manually. To do so, click once in the element . style
section, and when the blinking cursor appears, type color: purple.
The headline changes to purple.

As with HTML, you can modify any website’s CSS using Chrome’s Inspect
Element feature, also known as Developer Tools. Most modern browsers,
including Firefox, Safari, and Opera, have a similar feature.

<« C' [www huffingtonpost comi# 7 =

Europe Smarter ldeas LifeLessons i0Sapp Android app More -

Login Create Account

September 15, 2014

THE HUFFINGTON POST

Search The Huffngtan Post

Edtion: U.5. ~] Wrollow| 3 Folow

FRONT PAGE POLITICS BUSINESS ENTERTAINMENT TECH MEDIA WORLDPOST HEALTHY LIVING COMEDY HUFFPOST LIVE ALL SECTIONS
Black Voices - Gay Vaices - Sports - Crime - Science - Religion « Celetrity - Green - Siyle - Horoscopes - Third Metric - TEDWeekends - Dr Fhil - GPS for the Soul

HUFFPOSTLIVE Whats Uniing Siicon Valley & China Kiling merican | subscrive |

MR. FOOTBALL GOES INTO HIDING
’—‘

Open link in new tab

Open lnk in new window
Open link in incogito window
Save link o,

Copy link address

Figure 6-4: The CSS rules that style the Huffington Post website.

reaking News and Opi % e

€ 2 C [www.huffingtonpost.com# 7o

Europe LifeLessons Smarterideas i0S app Android app More

Login Create Account

Septerber 15, 2014

THE HUFFINGTON POST

S T I v (wraten] (& oo | o

FRONT PAGE POLITICS BUSINESS ENTERTAINMENT TECH MEDIA WORLDPOST HEALTHY LIVING COMEDY HUFFPOST LIVE ALL SECTIONS
Black Voices « Gay Vices - Sports - Crime - Scisnce - Relgion + Celetrity - Green - Siyle - Horoscopes « Third Metric - TEDWeekends - Dr Phil

Edfion: US.

+ GPS for the Soul

HUFFPOSTLIVE o= 9/i1 HowDrones Helped Solve & Burgary Cass Tanya Brown Taks RayRice HufP ost Cheers & =3

MR. FOOTBALL GOES INTO HIDING
comf2014/09/14ftoger-goodel-43ers-game-cancellation_n 5swananh

Q [|Elements| Network Sources Timeline Profiles Resources Audits Console

cancellat ion_n_S819060. html".</2> 2
= onpost. con/2014 /05 14/ roger -gande 11 49ers -gane-

htnl" styles'font-size: 52px; color: #000000
Linportant; Font -Fanily: Arial, Heluetica Neue',Helvetica, sans-serif

Linportant; line-height: 1.05;">MR. FOOTBALL GOES INTO HIDING i
</L> Heue', Helvetica, sans -serif Linportant;
Sl L rsplash o sacer” cLass*splash hur_spacer >/l Line heis 105

et

\wu erpues i
ot i s

b, headl)ne review” style="word-urap: break-word; "> : ;
gy = Y Pe media="screen” index
span>
css . php2u=14102, ol d2Fstyle.:3
#featured_content hl a, #featured content h2
a, #Featured_contert I3 a, #featured_content

<dly ide"tuitter_splash® clas
<

oty ptas.pir_spacer closs=splah_hr_spcer </t o et comert 16
s

. _div_arapper_inner _#top wiapper _#featurect contert _#top featursd news _#ertry 5819060 1S #splash_block mﬂ

Figure 6-5: Changing the CSS changes the color of the headline.

Common CSS Tasks and Selectors

Chapter 6: Getting Stylish with CSS

Although CSS includes over 150 properties, and many values for each prop-
erty, on modern websites a handful of CSS properties and values do the
majority of the work. In the previous section, when you “hacked” the CSS

81

82 Part II: Building the Silent and Interactive Web Page

on a live website, you changed the heading color — a common task in CSS.
Other common tasks performed with CSS include:

~ Changing font size, style, font family, and decoration

1 Customizing links including color, background color, and link state

1 Adding background images and formatting foreground images

Font gymnastics: size, color, style,
family, and decoration

CSS lets you control text in many HTML elements. The most common text-
related CSS properties and values are shown in Table 6-1. I describe these
properties and values more fully in the sections that follow.

Table 6-1 Common CSS Properties and Values for Styling Text
Property name Possible Description
values
font-size pixels Specifies the size of text measured
(#px) either in pixels, as a percentage of the
. containing element’s font size, or with
° an em value which is calculated by
em (#em) desired pixel value divided by contain-
ing element font size in pixels. Example:
font-size: 16px;
color name Changes the color of the text specified
using names (color: blue;), hexa-
hex code decimal code (color: #00O0OFF;),
rgb value or RGB (red, green, and blue) value
(color: rgb(0,0,255) ;).
font-style normal Sets font to appear in italics (or not).
italic
font-weight normal Sets font to appear as bold (or not).
bold

font-family

font name

Sets the font typeface. Example: font -
family: "serif";

text-
decoration

none
underline

line-
through

Sets font to have an underline or strik-
ethrough (or not).

Chapter 6: Getting Stylish with CSS

Setting the font-size

As in a word processor, you can set the size of the font you're using with
CSS’s font -size property. You have a few options for setting the font size,
and the most common is to use pixels, as in the following:

p {
font-size: 16px;

}

In this example, [used the p selector to size the paragraph text to 16 pixels.
One disadvantage of using pixels to size your font occurs when users who
prefer a large font size for readability have changed their browser settings to
a default font size value that’s larger than the one you specify on your site. In
these situations, the font size specified in the browser takes precedence, and
the fonts on your site will not scale to adjust to these preferences.

Percentage-sizing and em values, the other options to size your fonts, are con-
sidered more accessibility-friendly. The default browser font-size of normal text
is 16 pixels. With percentage-sizing and em values, fonts can be sized relative
to the user-specified default. For example, the CSS for percentage-sizing looks
like this:

p {
font-size: 150%;

}

In this example, I used the p selector to size the paragraph text to 150% of the
default size. If the browser’s default font size was set at 16 pixels, this para-
graph’s font would appear sized at 24 pixels (150% of 16).

A font-size equal to 1px is equivalent to one pixel on your monitor, so the
actual size of the text displayed varies according to the size of the monitor.
Accordingly, for a fixed font size in pixels, the text appears smaller as you
increase the screen resolution.

Setting the color
The color property sets the color in one of three ways:

1~ Name: 147 colors can be referenced by name. You can reference
common colors, such as black, blue, and red, along with uncommon
colors, such as burlywood, lemon chiffon, thistle, and rebeccapurple.

Rebecca Meyer, the daughter of prominent CSS standards author Eric
Meyer, passed away in 2014 from brain cancer at the age of six. In
response, the CSS standardization committee approved adding a shade of
purple called rebeccapurple to the CSS specification in Rebecca’s honor.
All major Internet browsers have implemented support for the color.

83

&4 Partii: Building the Silent and Interactive Weh Page

1~ Hex code: Colors can be defined by component parts of red, green, and
blue, and when using hexadecimal code over 16 million colors can be
referenced. In the code example, [set the h1 color equal to #FF0000.
After the hashtag, the first two digits (FF) refers to the red in the color,
the next two digits (00) refers to the green in the color, and the final two
digits (00) refers to the blue in the color.

+~ RGB value: Just like hex codes, RGB values specify the red, green, and
blue component parts for over 16 million colors. RGB values are the
decimal equivalent to hexadecimal values.

\J .
) Don’t worry about trying to remember hex codes or RGB values. You can

easily identify colors using an online color picker such as the one at
www .w3schools.com/tags/ref colorpicker.asp.

The following example shows all three types of color changes:

p {
color: red

}
h1 {
color: #FF0000

}
1i |
§‘&\\l\BEli color: rgb(255,0,0)
& }

1i is the element name for a list item in ordered or unordered lists.
All three colors in the code example above reference the same shade of

red. For the full list of colors that can be referenced by name see here:
www.w3.0org/TR/css3-color/#svg-color

3

Setting the font-style and font-weight

The font-style property can set text to italics, and the font-weight
property can set text to bold. For each of these properties, the default is
normal, which doesn’t need to be specified. In the example below, the para-
graph is styled so the font appears italicized and bold. Here’s an example of
each:

p {
font-style: italics;
font-weight: bold;

}

Setting the font-family
The font-family property sets the typeface used for text. The property is

set equal to one font, or to a list of fonts separated by commas. Your website
visitors will have a variety of different fonts installed on their computers, but

http://www.w3schools.com/tags/ref_colorpicker.asp
http://www.w3.org/TR/css3-color/#svg-color

Chapter 6: Getting Stylish with CSS

\\J

the font-family property displays your specified font only if that font is
already installed on their system.

The font-family property can be set equal to two types of values:

+~ Font name: Specific font names such as Times New Roman, Arial, and
Courier.

1~ Generic font family: Modern browsers usually define one installed font
for each generic font family. These five generic font families include

e serif (Times New Roman, Palantino)
* sans-serif (Helvetica, Verdana)

e monospace (Courier, Andale Mono)

e cursive (Comic Sans, Florence)

e fantasy (Impact, Oldtown)

When using font-family it’s best to define two or three specific fonts
followed by a generic font family as a fallback in case the fonts you specify
aren’t installed, as in the following example:

p {
font-family: "Times New Roman", Helvetica, serif;

}

In this example, the paragraph’s font family is defined as Times New Roman.

If Times New Roman isn’t installed on the user’s computer, the browser then

uses Helvetica. If Helvetica is not installed, the browser will use any available
font in the generic serif font family.

When using a font name with multiple words (such as Times New Roman)
enclose the font name in quotes.

Setting the text-decoration

The text-decoration property sets any font underlining or strikethrough.
By default, the property is equal to none, which does not have to be speci-
fied. In the following example, any text with an h1 heading is underlined
whereas any text inside a paragraph tag is made strikethrough:

hi {
text-decoration: underline;
}

p {
text-decoration: line-through;
}

85

86 Parti: Building the Silent and Interactive Web Page

Customizing links

In general, browsers display links as blue underlined text. Originally, this
default behavior minimized the confusion between content on the page and
an interactive link. Today, almost every website styles links in its own way.
Some websites don’t underline links; others retain the underlining but style
links in colors other than blue, and so on.

The HTML anchor element (a) is used to create links. The text between the
opening and closing anchor tag is the link description, and the URL set in the
href attribute is the address the browser visits when the link is clicked.

The anchor tag has evolved over time and today has four states:

» link: A link that a user has not clicked or visited.
1 visited: A link that a user has clicked or visited.

1 hover: A link that the user hovers the mouse cursor over without
clicking.

1 active: A link the user has begun to click but hasn’t yet released the
mouse button.

CSS can style each of these four states, most often by using the properties
and values shown in Table 6-2.

Table 6-2 Common CSS Properties and Values for Styling Links

Property name Possible values Description

color name Link color specified using
names (color: blue;),
hexadecimal code (color:
#0000FF;), or RGB value
(color: rgb(0,0,255) ;)

hex code

rgb value

text-decoration none Sets link to have an underline

or not).
underline ()

The following example styles links in a way that’s similar to the way they’re
styled in articles at Wikipedia, where links appear blue by default, underlined
on mouse hover, and orange when active. As shown in Figure 6-6, the first
link to Chief Technology Officer of the United States appears underlined as

it would if my mouse was hovering over it. Also, the link to Google appears
orange as it would if active and my mouse was clicking it.

Chapter 6: Getting Stylish with CSS 8 7

a:link{
color: rgb(6,69,173);
text-decoration: none;

}
a:visited {

color: rgb(11,0,128)
}

a:hover {
text-decoration: underline

a:active {

<MBER color: rgb(250,167,0)
S)

Remember to include the colon between the a selector and the link state.

Although explaining why is out of the scope of this book, CSS specifications
insist that you define the various link states in the order shown here — link,
visited, hover, and then active. However, it is acceptable to not define a link
state, as long as this order is preserved.

The various link states are known as pseudo-class selectors. Pseudo-class
selectors add a keyword to CSS selectors and allow you to style a special
state of the selected element.

W Megan Smith - Wikiped x | =T X

L C' B hitps:/ien wikipedia.orgiwikiMegan_Smith 2

Create account Log in

Adicle Talk Read Edit View history Q

WikipepiA Megan Smith

‘The Free Encyclopedia
From Wikipedia, the free encyclopedia

2?:.::(32 This articie is about @ technology executive. For the actress, see Meagan Smith,
Eoairedconiort Megan J. Smith (born October 1964){')is the Chief Technology Officer of the Megan Smith
Current events United States. She was previously a vice president of Google[x] at was
Random article vice president of business development at Google for nine years, and was
Donate to Wikipedia general manager of Google org?] and the former CEO of Planet Out P14 She
Wkimedisishop serves on the boards of MIT 1%l vital Voices, is a member of the USAID Advisary
Interaction Committee on Voluntary Aid®! and co-founded the Malala Fund 78] on

fielp) September 4, 2014, she was named as the third (and first female) Chief

(ST Technology Officer of the United States, succeeding Todd Park [SX10)

Community portal

Recent changes Contents [hide]

conactpags 1 Early life and education
Tools 2 Career

What links here 3 Recognition

Related changes

4 Personal life
5 References
6 Exteral links

Upload file
Special pages
Permanent link
Page information
Wikidata item

Megan Smith speaking atthe Menorca Tech

Cite this page Early life and education (e TSR
Printiexport Smith grew up in Buffalo, New York, and Fort Erie, Ontarip [¢tatian needed] ang 3rd Chief Technology Officer of the United
Create a hook spent many summers at the Chautaugua Institution in Chautaugua, New York, States
Download as PDF where her mather, Joan Aspell Smith, was director of the Chautaugua Incumbent
https:#/en.wikipedia.org/wiki/Chief_Technology_Offiicer_of_the_United_Statesfrom City Honors School in 1982112 Assumed office vl

Figure 6-6: Wikipedia.org page showing link, visited, hover, and active states.

& Partii: Building the Silent and Interactive Web Page

3

Adding background images and
styling foreground images

You can use CSS to add background images behind HTML elements. Most
commonly, the background-image property is used to add background

images to individual HTML elements such as div, table, and p, or (When
applied to the body element) to entire web pages.

Background images with smaller file sizes load more quickly than larger
images. This is especially important if your visitors commonly browse your
website using a mobile phone, which typically has a slower data connection.

The properties and values in Table 6-3 show the options for adding back-
ground images.

Table 6-3 CSS Properties and Values for Background Images

Property name Possible Description

values
background- url ("URL") Adds a background image from the
image image link specified at URL.
background- auto Sets background size according to the
size . value:

contain

auto (default value) displays the

cover image as originally sized.
width contain scales the image’s width
height and height so that it fits inside element.
(#px, %)
cover scales the image so element
background is not visible.
Background size can also be set by
specifying width and height in pixels or
as a percentage.
background- keywords Positions the background in element
position o using keywords or exact position.
position Keywords are comprised of horizontal
(#px, %)

keywords (1eft, right, center),
and vertical keywords (top, center,
and bottom). The placement of

the background can also be exactly
defined using pixels or a percentage
to describe the horizontal and vertical
position relative to the element.

ANG/
5>

Chapter 6: Getting Stylish with CSS 8 9

Property name Possible Description

values
background- repeat Sets the background image to tile, or
repeat repeat, as follows:

repeat-x

horizontally (repeat-x)
repeat-y

vertically (repeat-y)
no-repeat

horizontally and vertically (repeat)

don’t repeat at all (no-repeat).

background- scroll Sets the background to scroll with
attachment _ other content (scroll), or to remain
fixed fixed (fixed).

Setting the background-image

As shown in the following example, the background-image property can
set the background image for the entire web page or a specific element.

body {
background-image:
url ("http://upload.wikimedia.org/wikipedia/commons/e/e5/Chrysler Building
Midtown Manhattan New York City 1932.jpg ");

}

You can find background images at sites such as images.google. com,
www . flickr.com, or publicdomainarchive.com.

Check image copyright information to see if you have permission to use the

image, and comply with image’s licensing terms, which can include attribut-

ing or identifying the author. Additionally, directly linking to images on other
servers is called hotlinking. It is preferable to download the image, and host

and link to the image on your own server.

If you'd prefer a single-color background instead of an image, use the
background-color property. This property is defined in much the same
way as the background-image property. Just set it equal to a color name,
RGB value, or hex code, as I describe earlier in this chapter in the section
“Setting the color.”

Setting the background-size

By specifying exact dimensions using pixels or percentages, the
background-size property can scale background images to be smaller or
larger, as needed. In addition, this property has three dimensions commonly
used on web pages, as follows (see Figure 6-7):

http://images.google.com
http://www.flickr.com

90 Part II: Building the Silent and Interactive Web Page

1 auto: This value maintains the original dimensions of an image.

1 cover: This value scales an image so all dimensions are greater than or
equal to the size of the container or HTML element.

1 contain: This value scales an image so all dimensions are less than or
equal to the size of the container or HTML element.

Auto Contain Cover

Background

image

Background Background

image image

Figure 6-7: Setting the background size to three different values.

Setting the background-position

The background-position sets the initial position of the background
image. The default initial position is in the top left corner of the web page or
specific element. You change the default position by specifying a pair of key-
word or position values, as follows:

1~ Keywords: The first keyword (1eft, center, or right) represents the
horizontal position, and the second keyword (top, center, or bottom)
represents the vertical position.

v~ Position: The first position value represents the horizontal position,
and the second value represents the vertical. Each value is defined
using pixels or percentages, representing the distance from the top-left
of the browser or the specified element. For example, background-
position: center center is equal to background-position:
50% 50%. (See Figure 6-8.)

Setting the background-repeat
The background-repeat property sets the direction the background will
tile as follows:
1 repeat: This value (the default) repeats the background image both
horizontally and vertically.
1 repeat-x: This value repeats the background image only horizontally.

1 repeat-y: This repeats the background image only vertically.

1 no-repeat: This value prevents the background from repeating at all.

Chapter 6: Getting Stylish with CSS

Background-position: left top Background-position: center top Background-position: right top
Background-position: 0% 0% Background-position: 50% 0% Background-position: 100% 0%
Background-position: left center Background-position: center center Background-position: right center
Background-position: 0% 50% Background-position: 50% 50% Background-position: 100% 50%
Background-position: left bottom Background-position: center bottom Background-position: right bottom
Background-position: 0% 100% Background-position: 50% 100% Background-position: 100% 100%

Figure 6-8: The initial background image positions specified using keywords or position.

Setting the background-attachment

The background-attachment property sets the background image to move
(or not) when the user scrolls through content on the page. The property can
be set to:

1 scroll: The background image moves when the user scrolls.

1~ fixed: The background image does not move when the user scrolls.

The following code segment uses several of the properties discussed ear-
lier to add a background image that stretches across the entire web page,
is aligned in the center, does not repeat, and does not move when the user
scrolls. (See Figure 6-9.)

body {

background-image: url("http://upload.wikimedia.org/wikipedia/commons/
thumb/a/a0/USMC-090807-M-8097K-022.jpg/640px-USMC-090807-M-
8097K-022.jpg") ;

background-size: cover;

background-position: center center;

background-repeat: no-repeat;

background-attachment: fixed;

91

92 Part II: Building the Silent and Interactive Web Page

Figure 6-9: An image set as the background for entire page.

Styling Me Pretty

The CSS rules discussed in this chapter give you a taste of a few common styling
properties and values. Although you aren't likely to remember every property
and value, with practice the property and value names will come to you natu-
rally. After you understand the basic syntax, the next step is to actually incorpo-
rate CSS into your web page and try your hand at styling HTML elements.

Adding CSS to your HTML

There are three ways to apply CSS to a website to style HTML elements:

+ In-line CSS: CSS can be specified within an HTML file on the same line
as the HTML element it styles. This method requires placing the style
attribute inside the opening HTML tag. Generally, in-line CSS is the least
preferred way of styling a website because the styling rules are fre-
quently repeated. Here’s an example of in-line CSS:

<!DOCTYPE html>
<html>
<head>
<title>Record IPOs</title>
</head>
<body>

Chapter 6: Getting Stylish with CSS

<hl style="color: red;">Alibaba IPO expected to be biggest IPO of all
time</hl>
</body>
</html>

 Embedded CSS: With this approach, CSS appears within the HTML file,
but separated from the HTML tags it modifies. The CSS code appears
within the HTML file between an opening and closing <style> tag,
which itself is located between an opening and closing <head> tag.
Embedded CSS is usually used when styling a single HTML page differ-
ently than the rest of your website.

In this example, the embedded CSS styles the header red, just like the in-
line CSS does above.

<!DOCTYPE html>
<html>
<head>
<title>Record IPOs</title>
<style type="text/css">
hi {
color: red;

}
</style>
</head>
<body>
<hl>Alibaba IPO expected to be biggest IPO of all time</hl>
</body>
</html>

1~ Separate style sheets: CSS can be specified in a separate style sheet —
that is, in a separate file. Using a separate style sheet is the preferred
approach to storing your CSS because it makes maintaining the HTML
file easier and allows you to quickly make changes. In the HTML file, the
<link> tag is used to refer to the separate style sheet, and has three
attributes:

* href: Specifies the CSS filename.
¢ rel: Should be set equal to "stylesheet".

e type: Should be set equal to "text/css".

With three different ways of styling HTML elements with CSS, all three ways
could be used with contradictory styles. For example, say your in-line CSS
styles h1 elements as red, whereas embedded CSS styles them as blue, and a
separate style sheet styles them as green. To resolve these conflicts, in-line
CSS has the highest priority and overrides any other CSS rules. If no in-line
CSS is specified, then embedded CSS has the next highest priority, and finally

93

9/, Partil: Building the Silent and Interactive Web Page

in the absence of in-line or embedded CSS, the styles in a separate style sheet
are used. In the example, with the presence of all three styles, the h1 element
text would appear red because in-line CSS has the highest priority and over-
rides the embedded CSS blue styling, and the separate CSS green styling.

The following example uses a separate CSS style sheet to style the header
red, as in the previous two examples:

CSS: style.css

hl {
color: red;

}
HTML: index.html

<DOCTYPE html>
<html>
<head>
<title>Record IPOs</title>
<link href="style.css" text="text/css" rel="stylesheet">
</head>
<body>
<hl>Alibaba IPO expected to be biggest IPO of all time</hl>
</body>
</html>

Building your first web page

Practice your HTML online using the Codecademy website. Codecademy is a
free website created in 2011 to allow anyone to learn how to code right in the
browser, without installing or downloading any software. You can practice
all of the tags (and a few more) discussed in this chapter by following these
steps:

1. Open your browser, go to www.dummies.com/go/codingfd, and
click on the Codecademy link.
2. Sign in to your Codecademy account.

Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click on Get Started with HTML.

4. Background information is presented in the upper left portion of
the site, and instructions are presented in the lower left portion of
the site.

http://www.dummies.com/go/codingfd

Chapter 6: Getting Stylish with cSs 95

5. Complete the instructions in the main coding window. As you type, a
live preview of your code is generated.

6. After you have finished completing the instructions, click the Save
and Submit Code button.

If you have followed the instructions correctly, a green checkmark
appears, and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

96 Part II: Building the Silent and Interactive Web Page

Next Steps with CSS

In This Chapter
Formatting lists and tables
Styling web pages using parent and child selectors
Naming pieces of code using id and class
Using the box model to position HTML elements on the page

Design is not just what it looks like and feels like. Design is how it works.

—Steve Jobs

’ n this chapter, you continue building on the CSS you learned in the previ-
ous chapter. So far, the CSS rules you’ve seen applied to the entire web
page, but now they get more specific. You learn how to style several more
HTML elements, including lists, tables, and forms, and how to select and style
specific parts of a web page, such as the first paragraph in a story or the last
row of a table. Finally, you learn how professional web developers use CSS
and the box model to control down to the pixel the positioning of elements
on the page. Understanding the box model is not necessary to build our app
in Chapter 10.

Before diving in, remember the big picture: HTML puts content on the web
page, and CSS further styles and positions that content. Instead of trying

to memorize every rule, use this chapter to understand CSS basics. CSS
selectors have properties and values that modify HTML elements. There

is no better way to learn than by doing, so feel free to skip ahead to the
Codecademy practice lessons at the end of the chapter. Then, use this chap-
ter as a reference when you have questions about specific elements you are
trying to style.

98 Partii: Building the Silent and Interactive Web Page

Styling (More) Elements on Your Page

NBER
\g&
&

In this section, you discover common ways to style lists and tables. In the
previous chapter, the CSS properties and rules you learned like color and
font-family can apply to any HTML element containing text. By contrast,
some of the CSS shown here is used only to style lists, tables, and forms.

Styling lists

In Chapter 5 you learned how to create ordered lists, which start with mark-
ers like letters or numbers, and unordered lists, which start with markers like
bullet points. By default, list items in an ordered list use numbers (for exam-
ple, 1, 2, 3), whereas list items in unordered lists use a solid-black-circle (e).

These defaults may not be appropriate for all circumstances. In fact, the two
most common tasks when styling a list include:

1 Changing the marker used to create a list: For unordered lists, like this
one, you can use a solid disc, empty circle, or square bullet point. For
ordered lists, you can use numbers, roman numerals (upper or lower
case), or case letters (upper or lower).

1~ Specifying an image to use as the bullet point: You can create your
own marker for ordered and unordered lists instead of using the default
option. For example, if you created an unordered bulleted list for a
burger restaurant, instead of using a solid circle as a bullet point you
could use a color hamburger icon image.

You can accomplish either of these tasks by using the properties in Table 7-1
with an ol or ul selector to modify the list type.

CSS selectors using properties and rules modify HTML elements by the same

name. For example, Figure 7-1 has HTML tags that are referred to in CSS
with the ul selector, and styled using the properties and rules in Table 7-1.

Table 7-1 Common CSS Properties and Values for Styling Lists

Property Name Possible Values Description

list-style- disc Sets the markers used to create

type , list items in an unordered list to
circle

disc (e), circle (o), square (m), or
square none.

(unordered list)

none

3

Chapter 7: Next Steps with CSS 99

Property Name Possible Values Description
list-style- decimal Sets the markers used to create
type listitems in an ordered list to
upper-roman .
. decimal (1, 2, 3), uppercase roman
(ordered list)
lower-roman numerals (I, II, [ll), lowercase
roman numerals (i, i, iii), upper-
upper-alpha r
PP P case letters (A, B, C), or lower-
lower-alpha case letters (a, b, c).
list-style- url(*URL") When URL is replaced with the
image image link sets an image as the

marker used to create a list item.

Many text website navigation bars are created using unordered bulleted lists
with the marker set to none. You can see an example in the Codecademy CSS
Positioning course starting with exercise 21.

CSS properties and values apply to a CSS selector and modify an HTML ele-
ment. In the following example, embedded CSS (between the opening and
closing <style> tags) and in-line CSS (defined with the style attribute in
the HTML) is used to:

1 Change the marker in an unordered list to a square using

list-style-type

1 Change the marker in an ordered list to uppercase roman numerals
again using list-style-type

»* Set a custom marker to an icon using list-style-image

<html>
<head>

<title>Figure 7-1: Lists</title>

<style>
ul {

list-style-type: square;

}

ol {

list-style-type: upper-roman;

}
1 {

}

font-size: 27px;

The code for this is shown below and in Figure 7-1. Figure 7-2 shows this code
rendered in the browser.

’ 00 Part II: Building the Silent and Interactive Web Page

3

</style>
</head>
<body>

<hl>Ridesharing startups</hl>

Hailo: book a taxi on your phone</lis

Lyft: request a peer to peer ride</lis

<li style="list-style-image: url('car.png');">Uber: hire a driver</lis

<hl>Food startups</hl>

Grubhub: order takeout food online</lis
<li style="list-style-image: url('burger.png');">Blue Apron: subscribe to
weekly meal delivery</lis
Instacart: request groceries delivered the same day

</body>
</html>

<html>
<head>
<title>Figure 7-1: Liste</title>
i B<style>
ul ¢
list-style-type: square;
)
ol {
list-style-type: upper-roman;
)

i
font-gize: 27px:
)
L</style>
</head>
B<body>
<hl>Ridesharing startups</hl>
s H
Hailo: book a taxi on your phone
Lyft: request a peer to peer ride
<li style="list-style-image: wgl('car.png');"™Uber: request a drivers for hire
F
<h1>Food startups</hl>

Grubhub: order takeout food online
<1i style="list-style-image: url('burger.png’);">Blue Apron: subscribe to weekly meal
delivery</1li>
Instacart: request groceries delivered the same day

</body>
L</html>

Figure 7-1: Embedded and in-line CSS.

If the custom image for your marker is larger than the text, your text may not
align vertically with the marker. To fix this, you can either increase the font
size of each list item using font-size, as shown in the example, increase
the margin between each list item using margin, or set list-style-type
to none and set a background image on the ul element using
background-image.

WBER
‘x&
&

Chapter 7: Next Steps with CSS

There are three ways to apply CSS — inline CSS using the style attribute,
embedded CSS using an opening and closing <styles tag, and in a separate
CSS style sheet.

« c o

Ridesharing startups

= Hailo: book a taxi on your phone
= Lyft: request a peer to peer ride

® Uber: request a drivers for hire

Food startups

I Grubhub: order takeout food online

£ Blue Apron: subscribe to weekly meal delivery
111 Instacart: request groceries delivered the same day

Figure 7-2: Ordered and unordered lists modified to change
the marker type.

Designing tables

In Chapter 5, you found out how to create basic tables. By default, the width
of these tables expands to fit content inside the table, content in individual
cells is left aligned, and no borders are displayed.

These defaults may not be appropriate for all circumstances. Deprecated
(unsupported) HTML attributes can modify these defaults, but at any time
browsers could stop recognizing these attributes, and any tables created
with these attributes would display incorrectly. As a safer alternative, CSS
can style tables with greater control. Three common tasks CSS can perform
for tables include the following:

1~ Setting the width of a table, table row, or individual table cell with the
width property.
v~ Aligning text within the table with the text-align property.

v Displaying borders within the table with the border property. (See
Table 7-2.)

101

’ 02 Part ll: Building the Silent and Interactive Web Page

Table7-2 Common CSS Properties and Values for Styling Tables

Property Possible Description
Name Values
width pixels (#px) Width of table measured either in pixels
% on-screen or as a percentage of the browser
0 window or container tag.
text- left Position of text relative to the table according to
align) the value of the attribute. For example, text -
right . T " P .
align="“center” positions the textin the
center center of the table cell.
justify
border width Defines three properties in one — border-
width, border-style, and border-
style color. The values must be specified in this
color order: Width (pixel), style (none, dotted, dashed,

solid), and color (name, hexadecimal code, RBG
value). For example, border: 1px solid red.

In the following example, the table is wider than the text in any cell, the text
in each cell is centered, and the table border is applied to header cells:

<html>
<head>

<title>Figure 7-2: Tables</title>

<style>
table {
width: 700px;

}

table, td {
text-align: center;
border: 1px solid black;
border-collapse: collapse;

}

</style>

</head>

<body>
<table>

<caption>Desktop browser market share (August 2014)</caption>

<tr>
<th>Source</th>
<th>Chrome</th>
<th>IE</th>
<th>Firefox</th>
<th>Safari</th>

Chapter 7: Next Steps with CSS ’ 03

<th>Other</th>

</tr>

<tr>
<td>StatCounter</td>
<td>50%</td>
<td>22%</td>
<td>19%</td>
<td>5%</td>
<td>4%</td>

</tr>

<tr>
<td>W3Counter</td>
<td>38%</td>
<td>21%</td>
<td>16%</td>
<td>16%</td>
<td>9%</td>

</tr>

</table>
</body>
</html>

The HTML tag <caption> and the CSS property border-collapse further
style the table below. The <caption> tag adds a title to the table. Although
you can create a similar effect using the <h1> tag, <caption> associates the
title with the table. The CSS border-collapse property can have a value of
separate or collapse. The separate value renders each border sepa-
rately (refer to Figure 5-9), whereas collapse draws a single border when
possible (see Figure 7-3).

\

[Figure 7-2: Tables

€ 2 Ca =
Deskiop browser market share (August 2014)
Source Chrome E Firefox Safari Other
StarCounter [50% 2% 19% 5% %
W3Counter | 38% [21w | 16% [1% | e

Figure 7-3: Table with width, text alignment, and border
modified using CSS.

Selecting Elements to Style

Currently, the CSS you have seen styles every HTML element that matches
the CSS selector. For example, in Figure 7-3 the table and td selectors have
a text-align property that centered text in every table cell. Depending on
the content, you may want to only center text in the header row, but left-align
text in subsequent rows. Two ways to accomplish this include:

104 Partii:Building the Silent and Interactive Web Page

A\

v~ Styling specific HTML elements based on position to other elements.

» Naming HTML elements, and only styling elements by name.

Styling specific elements

When styling specific elements, it is helpful to visualize the HTML code

as a family tree with parents, children, and siblings. In the following code
example (also shown in Figure 7-4), the tree starts with the html element,
which has two children head and body. The head has a child element called
title. The body has h1, ul, and p elements as children. Finally, the ul ele-
ment has 11 elements as children, and the p element has a elements as chil-
dren. Figure 7-5 shows how the following code appears in the browser, and
Figure 7-6 shows a depiction of the following code using the tree metaphor.
Note that Figure 7-6 shows each relationship once. For example, in the code
below there is an a element inside each of three 11i elements, and Figure 7-6
shows this ul 11 a relationship once.

<html>
<head>
<title>Figure 7-3: DOM</title>
</head>
<body>

<hl>Parody Tech Twitter Accounts</hl>

Bored Elon Musk
</1i>

Vinod Coleslaw
</1i>

horse ebooks
</1i>

<hl>Parody Non-Tech Twitter Accounts</hls
<p>Modern Seinfeld</p>
<p>Lord Voldemort7</p>

</body>
</html>

Bored Elon Musk is a parody of Elon Musk, the founder of PayPal, Tesla, and
SpaceX. Vinod Coleslaw is a parody of Vinod Khosla, the Sun Microsystems
co-founder and venture capitalist. Horse ebooks is a spambot that became an
Internet phenomenon.

Chapter 7: Next Steps with CSS ’ 05

T O<html>

2 H<head>

3 <title>Figure 7-3: DOM</title>
4 f</head>

5 H<body>
6

o

8

<hl>Parody Tech Twitter Accounts</hl>

H
s B <1i>
10 <a href-"http: //twitter.con/BoredElonMusk">Bored Elon Musk
11 </1li>
12
1 5 <Lli>
14
15 </lir
18
17 E <1i>
18 <a href-"http: //twitter.com/Horse_ebooks™>horse ebooks
19 </1li> -
20

22 | <hl>DParody Non-Tech Twitter Accounts</hl>
23 | <p>Modern Seinfeld</p>
24 <prLord Voldemort7</p>

26 </body>
27 '</html>

Figure 7-4: Styling a family tree of elements.

[Figure 7-3: DOM x

€« c a =
Parody Tech Twitter Accounts

¢ Bored Elon Musk
¢ Vinod Coleslaw
¢ horse ebooks

Parody Non-Tech Twitter Accounts

Medern Seinfeld

Lord_Voldemort7

Figure 7-5: Parody Tech and Non-Tech Twitter accounts
(browser view).

html

head body

title h1 ul p

Figure 7-6: Parody Tech and Non-Tech Twitter account
(HTML tree or Document Object Model view).

’ 06 Part II: Building the Silent and Interactive Web Page

WMBER
@&
&

The HTML tree is called the DOM or document object model.

Child selector

The Parody Non-Tech Twitter account anchor tags are immediate children of
the paragraph tags. If you wanted to style just the Parody Non-Tech Twitter
accounts, you can use the child selector, which selects the immediate chil-
dren of a specified element. A child selector is created by first listing the
parent selector, then a greater-than sign (>), and finally the child selector.

In the following example, the anchor tags that are immediate children of the
paragraph tags are selected, and those hyperlinks are styled with a red font
color and without any underline. The Parody Tech Twitter accounts are not
styled because they are direct children of the list item tag. (See Figure 7-7.)

p>a {
color: red;
text-decoration: none;

}

[Figure 7-5: Child selectar %

€« c a

Parody Tech Twitter Accounts

* Bored Elon Musk
s Vinod Coleslaw

® horse ebooks

Parody Non-Tech Twitter Accounts

Modern Seinfeld

Lerd Veldemort?

Figure 7-7: Child selector used to style the Parody
Non-Tech Twitter accounts.

If you use just the a selector here, all the links on the page would be styled
instead of just a selection.

Descendant selector

The Parody Tech Twitter account anchor tags are descendants, or located
within, the unordered list. If you wanted to style just the Parody Tech Twitter
accounts, you can use the descendant selector, which selects not just imme-
diate children of a specified element but all elements nested within the

Chapter 7: Next Steps with CSS

A\

specified element. A descendant selector is created by first listing the parent
selector, a space, and finally the descendant selector you want to target.

In the following example, as shown in Figure 7-8, the anchor tags which are
descendants of the unordered list are selected, and those hyperlinks are
styled with a blue font color and are crossed out. The Parody Non-Tech
Twitter accounts are not styled because they are not descendants of an unor-
dered list.

ul a {
color: blue;
text-decoration: line-through;

}

[*) Figure T-6: Descendant se| %

e > cla =

Parody Tech Twitter Accounts
o Bered-Elenidusk

* Vined-Coleslaw
s herseehbeooks

Parody Non-Tech Twitter Accounts

Idodern Seinfeld

Lord Voldemort?

Figure 7-8: Child selector used to style the Parody Tech
Twitter accounts.

Interested in styling just the first anchor tag within a list, like the Modern
Seinfeld Twitter account, or the second list item, like the Vinod Coleslaw
Twitter account? Go to w3schools.com and read more about the first-
child (www.w3schools.com/cssref/sel firstchild.asp), and nth-
child selectors (www.w3schools.com/cssref/sel nth-child.asp).

Naming HTML elements

The other way of styling specific elements in CSS is to name your HTML ele-
ments. You name your code by using either the id or class attribute, and
then style your code by referring to the id or class selector.

107

http://www.w3schools.com/cssref/sel_firstchild.asp
http://www.w3schools.com/cssref/sel_nth-child.asp

JO8 Pparti: Building the Silent and Interactive Web Page

Naming your code using the id attribute

Use the id attribute to style one specific element on your web page. The id attri-
bute can name any HTML element, and is always placed in the opening HTML tag.
Additionally, each element can have only one id attribute value, and the attribute
value must appear only once within the HTML file. After you define the attribute
in the HTML file, you refer to the HTML element in your CSS by writing a hashtag
(#) followed by the attribute value. Using the id attribute, the following code
styles the Modern Seinfeld Twitter link the color red with a yellow background:

HTML.:
<p>Modern Seinfeld</p>

CSS:

#ierry {
color: red;
background-color: yellow;

}

Naming your code using the class attribute

Use the class attribute to style multiple elements on your web page. The
class attribute can name any HTML element, and is always placed in the
opening HTML tag. The attribute value need not be unique within the HTML
file. After you define the attribute in the HTML file, you refer to the HTML ele-
ment by writing a period (.) followed by the attribute value. Using the class
attribute, the following code styles all the Parody Tech Twitter account links
the color red with no underline:

HTML:

Bored Elon Musk
</1i>

Vinod Coleslaw
</1i>

Horse ebooks
</1i>

CSS:

.tech {
color: red;
text-decoration: none;

}

3

Chapter 7: Next Steps with CSS

Proactively use a search engine, such as Google, to search for additional CSS
effects. For example, if you wanted to increase the spacing between each list
item, open your browser and search for list item line spacing css. Links
appearing in the top ten results should include:

»” www.w3schools.com: A beginner tutorial site.

1 www.stackoverflow.com: A discussion board for experienced
developers.

» www.mozilla.org: A reference guide initially created by the founda-
tion that maintains the Firefox browser, and now maintained by a com-
munity of developers.

Each of these sites is a good first place to start, and you should look for
answers that include example code.

Aligning and Laying Out Vour Elements

A\

CSS not only allows control over the formatting of HTML elements, it also
allows control over the placement of these elements on the page, known

as page layout. Historically, developers used HTML tables to create page
layouts. HTML table page layouts were tedious to create, and required that
developers write a great deal of code to ensure consistency across browsers.
CSS eliminated the need to use tables to create layouts, helped reduce code
bloat, and increased control of page layouts.

Organizing data on the page

Before diving in to any code, let’s review in Figure 7-9 some of the basic ways
we can structure the page and the content on it. Layouts have evolved over
time, with some layouts working well on desktop computers but not display-
ing optimally on tablet or mobile devices.

Always ask yourself how your intended layout will appear on desktop, tablet,
and mobile devices.

Hundreds of different layouts exist, and a few selected page layouts appear
here along with example websites:

Left and right navigation toolbars are not usually seen on mobile devices. Top
navigation toolbars are used both on desktop and mobile devices, and
bottom navigation toolbars are most common on mobile devices.

109

http://www.w3schools.com
http://www.stackoverflow.com
http://www.mozilla.org

’ ’ 0 Part II: Building the Silent and Interactive Web Page

[Figure -7 Leftmav bsr - x

) Figure 7-T: Right navbar x

€ > C |Q = € > C |a =
Main content Main content
Footer Footer

[} Figure
€ > C |Q =

Top nav bar

1) Figure 1-7: Bottom nav b= x

€ cla

Main content

Footer

Main content

Footer

Figure 7-9: Vertical and horizontal navigation layouts.

The examples in Figure 7-10 show real websites with these layouts:

= Crimrme
€ = @ [wwwndschools comisseeldef

w3schools.com

HONE WAL G55 MVASCHPT GG PP JQURY AWGUAR BOTETAR M. ASTAGT MO

CSS Reference

« W3se

Fors | o

255 R
Cs5 saec

Next Reference

g wasenoa

e 1€ st reuiary with o1 s browsars.

s colors
€55 Color Vi
€55 color i

€SS Properties
58 property Groups

i

+ oo oo
The "CSS" csmnndcates n whkh CSS erson The prcoaty ' cetned (CSSL, CSS2,or CS53)
Color Properties

Sets e celorof text

Sets e pecity evelfor an sement. s

Background and Border Properties

T |

€ &+ € O hunterwalkcom B
i
Piggy Rounds Part Il: Why Some Large
VCPinds Are Doing More Seed Deals

[

seeing.

a8 chacks from unds thit s sl et SEA e B rourd

collaboratiog. Mypstcular POV is thatpigy fcunds st ke party rounds, wre

seenert) Fous monthelater warted & ipdata the piggyround” hypothesis
with e additors! data wroued lrge furdmothatiors.

1Large Funds Are Chasing Potential Outliers Eatler

G tAorB
foundh = that have Deen Mostactive in pigy ounck we dcing 50 to chase

huving the potentio o scale very quicly in success case. Often these funds e

‘example, efs s thata fund it especally well-énown fo thex consumer
investnants Accordingly i consumar startup hts escape veloeity,thi fund
bet Soby ®

atseed] evenl herés

Figure 7-10: Use of left and right navigation toolbar on w3schools.com (left) and

hunterwalk.com (right).

Chapter 7: Next Steps with CSS

3

Vertical navigation aids reader understanding when hierarchy or relationship
exists between navigational topics. In the w3schools.com example, HTML,
JavaScript, Server Side, and XML relate to one another, and underneath each
topic heading are related sub-topics.

Horizontal or menu navigation, as shown in Figure 7-11, helps reader naviga-
tion with weak or disparate relationships between navigational topics. In the
eBay example, the Motors, Fashion, and Electronics menu items have differ-

ent products and appeal to different audiences.

eBay Stories
A Day with eBay at New York Fashion Week
RO—

Teke an e ok our st st stesafa on th tretsof New

FAe L Y ;
& Takea Class with
MoMA

Get Sydney Style

VISIT EXPLORE LEARN SUPPORT SHOP Ps1

Figure 7-11: Use of top and bottom navigation toolbar on ebay.com
(left) and moma.org (right).

Don’t spend too much time worrying about what layout to pick. You can
always pick one, observe whether your visitors can navigate your website
quickly and easily, and change the layout if necessary.

Shaping the div

The page layouts above are collections of elements grouped together. These
elements are grouped together using rectangular containers created with an
opening and closing <div> tag, and all of the layouts above can be created
with these <divs> tags. By itself, the <div> tag does not render anything

on the screen, but instead serves as a container for content of any type like
HTML headings, lists, tables, or images. To see the <div> tag in action, take a
look at the Codecademy.com home page in Figure 7-12.

Notice how the page can be divided into three parts — the navigation header,
the middle video testimonial, and then additional text user testimonials. <div>
tags are used to outline these major content areas, and additional nested
<div> tags within each part are used to group content like images and text.

111

’ ’ 2 Part II: Building the Silent and Interactive Web Page

[E_ Learnto code | Codecade: %

& € [wwweodecademy.com QT

3

| Eodelcademy

How can coding
help you?

Codecademy Stories

e

Figure 7-12: Codecademy.com homepage with visible
borders for the <div> tags.

In the following example, as shown in Figure 7-13, HTML code is used to
create two containers using <divs> tags, the id attribute names each div,
and CSS sizes and colors the div:

HTML:

<div id="first"></div>
<div id="second"></div>

CSS:

div {
height: 100px;
width: 100px;
border: 2px solid purple;

}

#first {
background-color: red;
}

#second {
background-color: blue;

}

Chapter 7: Next Steps with CSS ’ 73

(") Figure 7-11: Div with pa: x
C A

Figure 7-13: Two boxes created with HTML <div> tag
and styled using CSS.

Understanding the box model
Just as we created boxes with the <div> tags above, CSS creates a box
around each and every single element on the page, even text. Figure 7-14
shows the box model for an image that says “This is an element.” These
boxes may not always be visible, but are comprised of four parts:

1 content: HTML tag that is rendered in the browser

1 padding: Optional spacing between content and the border

1 border: Marks the edge of the padding, and varies in width and

visibility

1 margin: Transparent optional spacing surrounding the border

] 14 Partii: Building the Silent and Interactive Web Page

\\3

Border

Margin

Padding

=3
v
—
w
b}
5
o)
—_
=
D
|

~—————— Element width———————

Box width

Figure 7-14: Box model for img element.

Using the Chrome browser, navigate to your favorite news website, then
right-click an image and in the context menu choose Inspect Element. On the
right side of the screen you see three tabs; click the Computed tab. The box
model is displayed for the image you right-clicked, showing the content
dimensions, and then dimensions for the padding, border, and margin.

The padding, border, and margin are CSS properties, and the value is usually
expressed in pixels. In the following code, shown in Figure 7-15, padding and
margins are added to separate each div.

div {
height: 100px;
width: 100px;
border: 1px solid black;
padding: 10px;
margin: 10px;

Positioning the boxes

Now that you understand how to group elements using HTML, and how CSS
views elements, the final piece is to position these elements on the page. Various
techniques can be used for page layouts, and a comprehensive overview of each
technique is out of the scope of this book. However, one technique to create

the layouts shown in Figure 7-16 is to use the f1oat and clear properties (as
described in Table 7-3).

Chapter 7: Next Steps with CSS ’ 75

| Figure 7-13: Div with pa x
€ > cla

Figure 7-15: Padding and margin added to separate each div.

Table 7-3 Select CSS Properties and Values for Page Layouts

Property Possible Description

Name Values

float left Sends an element to the 1eft or right of the
right container itis in. The none value specifies the
none element should not float.

clear left Specifies which side of an element to not have
right other floating elements.
both
none

If the width of an element is specified, the £1oat property allows elements
that would normally appear on separate lines to appear next to each other,
such as navigation toolbars and a main content window. The clear property
is used to prevent any other elements from floating on one or both sides of
current element, and the property is commonly set to both to place web page
footers below other elements.

’ ’ 6 Part II: Building the Silent and Interactive Web Page

The following example code uses <div> tags, float, and clear to create

a simple left navigation layout. (See Figure 7-16.) Typically, after grouping
your content using <divs> tags, you name each <divs> tag using class or id
attributes, and then style the div in CSS. There is a lot of code below, so let’s
break it down into pieces:

1~ The CSS is embedded between the opening and closing <styles> tag,
and the HTML is between the opening and closing <body> tags.

1~ Between the opening and closing <body> tag, using <divs> tags, the
page is divided into four parts with header, navigation bar, content, and
footer.

 The navigation menu is created with an unordered list, which is left-
aligned, with no marker.

1~ CSS styles size, color, and align each <div> tag.

1~ CSS properties, float, and clear, are used to place the left navigation
layout to the left, and the footer below the other elements.

<!DOCTYPE html>
<html>
<head>
<title>Figure 7-14: Layout</titles
<style>
#header{
background-color: #FF8C8C;
border: 1px solid black;
padding: 5px;
margin: 5px;
text-align: center;

}

#navbar {
background-color: #00EOFF;
height: 200px;
width: 100px;
float: left;
border: 1px solid black;
padding: 5px;
margin: 5px;
text-align: left;

#content {
background-color: #EEEEEE;
height: 200px;
width: 412px;
float: left;
border: 1px solid black;
padding: 5px;
margin: 5px;
text-align: center;

}

#footer{
background-color: #FFBD47;
clear: both;
text-align: center;
border: 1px solid black;
padding: 5px;
margin: 5px;

}

ul {
list-style-type: none;
line-height: 25px;
padding: Opx;

}

Chapter 7: Next Steps with CSS

</style>
</head>
<body>

<div id="header"><hl>Nik's Tapas Restaurant</hl></div>

<div id="navbar"s

About us
Reservations
Menus</1i>
Gallery</1li>
Events
Catering</1li>
Press</1li>

</div>

<div id="content"></div>

<div id="footer">Copyright © Nik's Tapas</div>

</body>
</html>

117

’ ’8 Part II: Building the Silent and Interactive Web Page

[Figure 7-14: Layout x

c a =

Nik's Tapas Restaurant

About us
Eeservations
Menus
Gallery
Events

Catermg
Press

Copyright © MNik's Tapas |

Figure 7-16: Left navigation web page layout created
using <div> tags.

Writing More Advanced CSS

Practice your CSS online using the Codecademy website. Codecademy is a

free website created in 2011 to allow anyone to learn how to code right in the
browser, without installing or downloading any software. Practice all of the
tags (and a few more) that you learned in this chapter by following these steps:

1. Open your browser, go to www.dummies.com/go/codingfd, and

click on the Codecademy link.

. Sign in to your Codecademy account.

Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

. Navigate to and click on CSS: An Overview, CSS Selectors, and CSS

Positioning to practice CSS styling and positioning.

. Background information is presented in the upper left portion of the

site, and instructions are presented in the lower left portion of the site.

. Complete the instructions in the main coding window. As you type, a

live preview of your code is generated.

. After you have finished completing the instructions, click the Save

and Submit Code button.

If you have followed the instructions correctly, a green checkmark
appears, and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

http://www.dummies.com/go/codingfd

Working Faster with Twitter
Bootstrap

In This Chapter
Understanding what Twitter Bootstrap does
Viewing layouts created with Twitter Bootstrap
Creating web page elements using Twitter Bootstrap

Speed, it seems to me, provides the one genuinely modern pleasure.

—Aldous Huxley

TNitter Bootstrap is a free toolkit that allows users to create web pages
quickly and with great consistency. In 2011, two Twitter developers,
Mark Otto and Jacob Thornton, created the toolkit for internal use at Twitter,
and soon after released it to the general public. Before Bootstrap, develop-
ers would create common web page features over and over again and each
time slightly differently, leading to increased time spent on maintenance.
Bootstrap has become one of the most popular tools used in creating web-
sites, and is used by NASA and Newsweek for their websites. With a basic
understanding of HTML and CSS, you can use and customize Bootstrap lay-
outs and elements for your own projects.

In this chapter, you discover what Bootstrap does and how to use it. You also
discover the various layouts and elements that you can quickly and easily
create when using Bootstrap.

Figuring Out What Bootstrap Does

Imagine you are the online layout developer for The Washington Post, respon-
sible for coding the front page of the print newspaper (see Figure 8-1) into a
digital website version. The newspaper consistently uses the same font size

’ 20 Part II: Building the Silent and Interactive Web Page

and typeface for the main headline, captions, and bylines. Similarly, there are
a set number of layouts to choose from, usually with the main headline at the
top of the page accompanied by a photo.

@he Washington Post

L.S. mines Internet firms’ data

Google, Facebook, Apple. Yahoo deny % mm
giving NSA direct access lo servers

In Golan, Israelis
rush Lo finish fence

Seesey Desmocrat s Thorscay with
Lautenbers, whadisd Monday at

Student-athlete will not be
defined by his sexuality
Openly gay track star is ooe of T.C. Williams's most popubsr studeats

Figure 8-1: The front page of The Washington Post (June 7, 2013).

Every day you could write your CSS code from scratch, defining font type-
face, sizes, paragraph layouts, and the like. However, given that the newspa-
per follows a largely defined format, it would be easier to define this styling
ahead of time in your CSS file with class names, and when necessary refer to
the styling you want by name. At its core, this is how Bootstrap functions.

Bootstrap is a collection of standardized prewritten HTML, CSS, and
JavaScript code that you can reference using class names (for a refresher, see
Chapter 7) and then further customize. Bootstrap allows you to create and
gives you:

1~ Layouts: Define your web page content and elements in a grid pattern.

1~ Components: Use existing buttons, menus, and icons that have been
tested on hundreds of millions of users.

Chapter 8: Working Faster with Twitter Bootstrap

1~ Responsiveness: A fancy word for whether your site will work on mobile
phones and tablets in addition to desktop computers. Ordinarily, you
would write additional code so your website appears properly on these
different screen sizes, but Bootstrap code is already optimized to do this
for you, as shown in Figure 8-2.

1 Cross-browser compatibility: Chrome, Firefox, Safari, Internet Explorer,
and other browsers all vary in the way they render certain HTML ele-
ments and CSS properties. Bootstrap code is optimized so your web
page appears consistently no matter the browser used.

==

ANGRY BRDS J
GALACTIC
GUWVEAWAY

O APRIL 3RD, WE WILL MAKE 1,000 HIZD N CREDITS
GALACTIC
h!'ﬁﬂlﬁ

,‘% b gALASTIS
) 68 RV EERARWEARY]
SVAIABLE oA EUEHY PLAY R WIT THE Wiy Aictic CNTANEY

UPDATE. TO CELEBRATE THIS WE ARE GOING TO GIVE
[RWRY ANEXTRR 60,000 CREDITS!

ANAILABLEFOR EVERY PLAYER WITH THE
GIVERWAY UPDATE. TO CELEBRATE THIS WE |
TO GIVE AWAY AN EXTRA 60,000 CREDITS!

Figure 8-2: The Angry Birds Star Wars page optimized for desktop, tablet, and mobile using
Bootstrap.

Installing Bootstrap

Install and add Bootstrap to your HTML file by following these two steps:
1. Include this line of code between your opening and closing <head> tag:

<link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/
bootstrap/3.2.0/css/bootstrap.min.css">
\P
) The <1ink> tag refers to version 3.2.0 of the Bootstrap CSS file hosted on the
Internet, so you must be connected to the Internet for this method to work.

2. Include both these lines of code immediately before your closing
HTML </body> tag.

<!--jQuery (needed for Bootstrap's JavaScript plugins) -->

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.
js"></script>

<!--Bootstrap Javascript plugin file -->

<script srec="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.
min.js"></script>

121

] 22 rartii: Building the Silent and Interactive Web Page

The first <script> tag references a JavaScript library called jQuery.
JavaScript is covered in Chapter 9. Although jQuery is not covered

in this book, at a high level, jQuery simplifies tasks performed using
JavaScript. The second <script > tag references Bootstrap JavaScript
plugins, including animated effects such as drop-down menus. If your
website does not use any animated effects or Bootstrap JavaScript
plugins, you don’t need to include this file.

Bootstrap is free to use for personal and commercial purposes, but does
require including the Bootstrap license and copyright notice.

If you will not have reliable access to an Internet connection, you can also down-
load and locally host the Bootstrap CSS and JavaScript files. To do this, after
unzipping the Bootstrap file, use the <1ink> and <script > tags to link to the
local version of your file. Visit www .getbootstrap.com/getting-started/
to download the files, and to access additional instructions and examples.

Understanding the Layout Options

Bootstrap allows you to quickly and easily lay out content on the page using
a grid system. You have three options when using this grid system:

1~ Code yourself: After you learn how the grid is organized, you can write
code to create any layout you wish.

1 Code with a Bootstrap editor: Instead of writing code in a text editor,
drag and drop components and elements to generate Bootstrap code.
You can then download and use this code.

1~ Code with a prebuilt theme: Download free Bootstrap themes or buy a
theme where the website has already been created, and you fill in your
own content.

Lining up on the grid system
Bootstrap divides the screen into a grid system of 12 equally-sized columns.
These columns follow a few rules:

1 Columns must sum to a width of 12 columns. You can use one column
that is 12 columns wide, 12 columns that are each one column wide, or
anything in between.

1~ Columns can contain content or spaces. For example, you could have a
4-column-wide column, a space of 4 columns, and another 4-column-wide
column.

~ Unless you specify otherwise, these columns will automatically stack
into a single column on smaller browser sizes or screens like mobile
devices, and expand horizontally on larger browser sizes or screens
like laptop and desktop screens. See Figure 8-3.

http://www.getbootstrap.com/getting-started/

WING/
gg‘

Chapter 8: Working Faster with Twitter Bootstrap ’ 23

1 2 3 4 5 6 7 8 9 07 N 12

Figure 8-3: Sample Bootstrap layouts.

Now that you have a sense for how these layouts appear on the screen, let
us take a look at example code used to generate these layouts. To create any
layout, follow these steps:

1. Create a <div> tag with the attribute class="container".

2. Inside the first <div> tag, create another nested <div> tag with the
attribute class="row".

3. For each row you want to create, create another <div> tag with the
attribute class="col-md-X". Set X equal to the number of columns
you want the row to span.

For example, to have a row span 4 columns, write <div class=
"col-md-4">. The md targets the column width for desktops, and I
show you how to target other devices later in this section.

You must include <div class="container"> at the beginning of your page,
and have a closing </div> tag or your page will not render properly.

The following code, as shown in Figure 8-4, creates a simple three-column
centered layout:

<div class="container"s
<!-- Example row of columns -->
<div class="row">
<div class="col-md-4">
<h2>Heading</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.
</p>
</divs>
<div class="col-md-4">
<h2>Heading</h2>

’ 24 Part II: Building the Silent and Interactive Web Page

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.
</p>
</div>
<div class="col-md-4">
<h2>Heading</h2>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.
</p>
</div>
</div>

</div>

L Fgure b4 Thiee colume

c a

Heading

™ dolor S Bmet. corsectetr Ads NG BiF, S0
labare et it

sliua. Ut enim ad mini

" oare o
eneClalion Ulan6a 13001 0 Ul AGU B &8 GO ConseguaL.

1) Figure 84 Three colum-

-y = Heading
Lo (s 1o S8 e, coraegr Geips g e, 563 00 2LEMmeS fEmpCr
. . i reedure ut akare e dolore magna liua, Ut 2nm = i venian, s nosind
Heading Heading Heading <xeetation Wlanco 3000 i G o £3 Comnoc corsecta
Lorem s dolor i amel, cansecztur Lorem gaan g o amet, cansecteur Larem fpsun dalarat amet, corsectetur '
adnsiing ei, usmestemper adipsicng eit, se0 oo eusmocitemper 2di93cing e, 3ect o ewsm Heading

oremagna alous Ut Incolcurt Lt isbore et oolore magna sious Ut et ut ahore e dolore
o h e e OB 1BS0M Q0101 S SMEL, COPSRETLF Srdfis) e eI, 564 20 &SmOt tempor
N IPGIGIUIE UE 13037 et delore megna liga. s 2nim ad minim veniam, 343 nasind

Exercitalion ulamco ahots nisi W aigipexea
o exermitation Ulamca 130013 nisi Ut 30U B €2 COMNOCO CoNSE QA

commoc conseuat

lorts sl quin e s e

Figure 8-4: Bootstrap three-column layout with desktop (left) and mobile (right) versions.

To see another example, go to the Codecademy site, and resize the browser
window. You will notice that as you make the browser window smaller, the
columns will automatically stack on top on one another to be readable. Also,
the columns are automatically centered. Without Bootstrap, you would need
more code to achieve these same effects.

The Lorem ipsum text you see above is commonly used to create filler text.
Although the words don’t mean anything, the quotation originates from a
first-century BC Latin text by Cicero. You can generate filler text when
creating your own websites by using www.lipsum.org or www.
socialgoodipsum.com.

Dragging and dropping to a website

After looking at the code above, you may want an even easier way to gener-
ate the code without having to type it yourself. Bootstrap editors allow you
to drag and drop components to create a layout, and after which the editor
will generate Bootstrap code for your use.

http://www.lipsum.org
http://www.socialgoodipsum.com
http://www.socialgoodipsum.com

3

Chapter 8: Working Faster with Twitter Bootstrap

Bootstrap editors you can use include the following:

1~ Layoutit.com: Free online Bootstrap editor (as shown in Figure 8-5) that

allows you to drag and drop components and then download the source
code.

1~ Jetstrap.com: Paid online drag and drop Bootstrap editor.
1 Pingendo.com: Free downloadable drag and drop Bootstrap editor.
1~ Bootply.com: Free online Bootstrap editor with built-in templates to modify.

These sites are free, and may stop working without notice. You can find addi-
tional options by using any search engine to search for Bootstrap editors.

Layoutl - Interface Build: x

€« C' [wwwlayoutitcom/buildir=4531395

® @@ @@

Hello, world!

This is a template for a simple marketing or informational
website. It includes a large callout called the here unit and
three supporting pieces of content. Use it as a starting point to
create something more unigue.

Figure 8-5: Layoutit.com interface with drag and drop Bootstrap components.

Using predefined templates

Sites exist with ready-to-use Bootstrap themes; all you need to do is add your
own content. Of course, you can also modify the theme if you wish. Some of
these Bootstrap theme websites are:

1 Blacktie. co: Free Bootstrap themes (shown in Figure 8-6), all created
by one designer.
1 Bootstrapzero.com: Collection of free, open-source Bootstrap templates.

1 Bootswatch.com and bootsnipp.com: Includes pre-built Bootstrap
components that you can assemble for your own site.

1 Wrapbootstrap.com: Bootstrap templates available for purchase.

125

http://www.blacktie.co
http://www.bootstrapzero.com
http://www.bootswatch.com
http://www.bootsnipp.com
http://www.wrapbootstrap.com

’ 26 Part II: Building the Silent and Interactive Web Page

<\¥
Bootstrap themes may be available for free, but follow the licensing terms.
The author may require attribution, email registration, or a tweet.

[SHIELD - Free Bootstrap 7 x

€ = C [wwwhlacktieco/demosshield/ - o T x| =

NS

A Bootstrap 3:One Page=lh
EXClUEive for BIEEkTIe.

«©

Figure 8-6: One page Bootstrap template from blacktie.co.

Adapting layout for mobile, tablet, and desktop

On smaller screens Bootstrap will automatically stack the columns you create
for your website. However, you can exercise more control than just relying on
the default behavior over how these columns appear. There are four device
screen sizes you can target — phones, tablets, desktops, and large desktops. As
shown in Table 8-1, Bootstrap uses a different class prefix to target each device.

Table 8-1 Bootstrap Code for Various Screen Sizes
Phones Tablets Desktops Large
(<768 px) (>768px) (>992px) desktops

(21200 px)

Class prefix col-sx- col-sm- col-md- col-1g-

Max con- None 750px 970px 1170px

tainer width (auto)

Max column Auto ~62px ~81px ~97px

width

Chapter 8: Working Faster with Twitter Bootstrap 7 2 7

Based on Table 8-1, if you wanted your website to have two equal sized col-
umns on tablets, desktops, and large desktops you would use the col-sm-
class name as follows:

<div class="container"s
<div class="row">
<div class="col-sm-6">Column 1</div>
<div class="col-sm-6">Column 2</div>
</div>
</div>

After viewing your code on all three devices, you decide that on desktops
you prefer unequal instead of equal columns such that the left column

is half the size of the right column. You target desktop devices using

the col-md- class name and add it to the class name immediately after
col-sm-:

<div class="container"s
<div class="row">
<div class="col-sm-6 col-md-4">Column 1</divs>
<div class="col-sm-6 col-md-8">Column 2</div>
</div>
</div>

Some elements, such as the <div> tag above, can have multiple classes. This
allows you to add multiple effects, such as changing the way a column is dis-
played, to the element. To define multiple classes, use the class attribute
and set it equal to each class; separate each class with a space. For an exam-
ple, refer to the preceding code: The third <div> element has two classes,
col-sm-6 and col-md-4.

\\J

Finally, you decide that on large desktop screens you want the left column to
be two columns wide. You target large desktop screens using the col-1g-
class name, as shown in Figure 8-7, and add to your existing class attribute
values:

<div class="container"s
<div class="row">
<div class="col-sm-6 col-md-4 col-1g-2">Column 1l</div>
<div class="col-sm-6 col-md-8 col-1g-10">Column 2</div>
</div>

</div>

’ 28 Part II: Building the Silent and Interactive Web Page

T} Figure 1 Thre column >

C (a =
Heading Heading
Lorem psum dolor it amet, conectetr adiscing i, Lorem ipsum colc st amet, corseclebr scpisicng it
55300 SUSTON O NE LR U 052 GO0 36050 PO RO ANt 3o 2t
mans algua. Ut enim ad minim veriam, qis nosbus magna alava, ULenin 20 i veniem, uisnosinud
exeratazon ulameo s st alup o 62 axerctaton famco atons s utaloup o 22
commoda cansequat, commode consequat.

7 Figure 8- Three calomn %

[<BES

Heading Heading
Loren fpsum anicr st amet, sorsectetur Lot 5Um G0l 5T aMet, Consectetur 3IScing et 5 oo 4503 tempor NEK U o faore
empor =tuo ST 2 NiAM, S MOSU EXerCHSUT UISER 130Gt 1Lt
alqy

exercitation ullam o lbors risi Uzl guip 2 e

commodn conserat

) Figure 7: Three column X

ca

Heading Heading
st

Lo Loron lcaum doie s amet gt coreccun. Ut eri

Figure 8-7: A two-column site displayed on tablet, desktop,
and large desktop.

Coding Basic Web Page Elements

In addition to pure layouts, Bootstrap can also create web page components
found on almost every website. The thought here is the same as when work-
ing with layouts — instead of recreating the wheel every time by designing
your own button or toolbar, it would be better to use pre-built code, which
has already been tested across multiple browsers and devices.

The following examples show how to quickly create common web
components.

Designing buttons

Buttons are a basic element on many web pages, but usually can be difficult
to set up and style. As shown in Table 8-2, buttons can have various types
and sizes.

Chapter 8: Working Faster with Twitter Bootstrap ’ 2 9

Table 8-2 Bootstrap Code for Creating Buttons
Attribute Class prefix Description
Button type btn-defaultbtn- Standard button type with
primarybtn- hover effect
successbtn-danger Blue button with hover
effect
Green button with hover
effect
Red button with hover
effect
Button size btn-lgbtn- Large button size
defaultbtn-sm Default button size

Small button size

To create a button, write the following HTML:

1~ Begin with the but ton HTML element.
»~ In the opening <buttons> tag include type="button".

» Include the class attribute, with the btn class attribute value, and
add additional class prefixes based on the effect you want. To add addi-
tional styles, continue adding the class prefix name into the HTML class
attribute.

As shown in Figure 8-8, the following code combines both button type and
button size:

<p>
<button type="button" class="btn btn-primary btn-1lg"sLarge primary button</
button>
<button type="button" class="btn btn-default btn-1lg">Large default
button</buttons
</p>
<p>
<button type="button" class="btn btn-success">Default Success button</button>
<button type="button" class="btn btn-default">Default default button</buttons>
</p>
<p>
<button type="button" class="btn btn-danger btn-sm">Small danger
button</button>
<button type="button" class="btn btn-default btn-sm">Small default
button</buttons

</p>

’30 Part II: Building the Silent and Interactive Web Page

<\¥

For additional button type, button size, and other button options see
http://getbootstrap.com/css/#buttons.

[Figure 8-11: Dropdawn . x

c a

EIGERTTER A Large default button

Default default button

Small danger button Srmall default button

Figure 8-8: Bootstrap button types and sizes.

Navigating with toolbars

Web pages with multiple pages or views usually have one or more toolbars to
help users with navigation. Some toolbar options are shown in Table 8-3.

Table 8-3
Attribute Class Prefix

Bootstrap Code for Creating Navigation Toolbars

Description

Toolbar type nav-tabs

nav-pills

Tabbed navigation toolbar

Pill, or solid button navigation
toolbar

Toolbar dropdown

button type caret
dropdown-menu

Marks button or tab as dropdown
menu

Down-arrow dropdown menu
icon

Dropdown menu items

To create a pill or solid button navigation toolbar, write the following HTML.:

1~ Begin an unordered list using the ul element.

+ In the opening tag, include class="nav nav-pills".

1 Create buttons using the <1i> tag. Include class="active" in one
opening <11 > tag to designate which tab on the main toolbar should
appear as visually highlighted when the mouse hovers over the button.

http://getbootstrap.com/css/#buttons

Chapter 8: Working Faster with Twitter Bootstrap

1~ To create a drop-down menu, nest an unordered list. See the code next
to “More” with class prefixes "dropdown", "caret", and "dropdown-
menu". You can link to other web pages in your drop-down menu by
using the <a> tag.

The following code, as shown in Figure 8-9, creates a toolbar using Bootstrap:

<ul class="nav nav-pills">
<li class="active"sTimeline</1li>
About</1li>
Photos</1i>
Friends</1li>
<li class="dropdown">
More

<ul class="dropdown-menu">
Places</1li>
Sports</1li>
Music</1li>

</1li>

[Figure &-9; Dropdown me) %

c a

Timeline About Photos Friends More -

Places
Sports

Music

Figure 8-9: Bootstrap toolbar with drop-down menus.

QP The dropdown-toggle class and the data-toggle="dropdown" attribute
and value work together to add drop down menus to elements like links. For
additional toolbar options, see http://getbootstrap.com/
components/#nav.

Adding icons

Icons are frequently used with buttons to help convey some type of action.
For example, your email program likely uses a button with a trash can icon to
delete emails. Icons quickly communicate a suggested action to users with-
out much explanation.

131

http://getbootstrap.com/components/#nav
http://getbootstrap.com/components/#nav

’32 Part II: Building the Silent and Interactive Web Page

§$pL S T(,&

R
S 1 ”5‘, These icons are called glyphs, and www.glyphicons.com provides the
\) glyphs used in Bootstrap.

0]

TE

Bootstrap supports more than 200 glyphs, which you can add to buttons or
toolbars using the tag. As shown in Figure 8-10, the example code
below creates three buttons with a star, paperclip, and trash can glyph.

<button type="button" class="btn btn-default">Star
</star>

</button>

<button type="button" class="btn btn-default">Attach
</star>

</button>

<button type="button" class="btn btn-default">Trash
</star>

</button>

[Figure 8-10: ITeans with bu x

C |a =

Stark | Attach#® | Trash @

Figure 8-10: Bootstrap buttons with icons

3

For the names of all the Bootstrap glyphs, see www.getbootstrap.com/
components/#glyphicons.

Build the Airbnb Home Page

Practice Bootstrap online using the Codecademy website. Codecademy is a
free website created in 2011 to allow anyone to learn how to code right in the
browser, without installing or downloading any software. Practice all of the
tags (and a few more) that you learned in this chapter by following these steps:

1. Open your browser, go to www.dummies.com/go/codingfd, and
click on the link to Codecademy.

http://www.glyphicons.com
http://www.getbootstrap.com/components/#glyphicons
http://www.getbootstrap.com/components/#glyphicons
http://www.dummies.com/go/codingfd

Chapter 8: Working Faster with Twitter Bootstrap

. Sign in to your Codecademy account.

Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

. Navigate to and click on Make a Website to practice Bootstrap.

. Background information is presented, and instructions are presented
on the site.

5. Complete the instructions in the main coding window.

6. After you have finished completing the instructions, click the Got It or

Save and Submit Code button.

If you have followed the instructions correctly, a green checkmark
appears and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forum, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

133

’34 Part II: Building the Silent and Interactive Web Page

Adding in JavaScript

In This Chapter
Understanding JavaScript basics and structure
Coding with variables, conditional statements, and functions
Learning about API basics and structure
Viewing an API request and response

The best teacher is very interactive.
—Bill Gates

avaScript, one of the most popular and versatile programming languages
on the Internet, adds interactivity to websites. You have probably seen
avaScript in action and not even realized it, perhaps while clicking buttons
that change color, viewing image galleries with thumbnail previews, or ana-
lyzing charts that display customized data based on your input. These web-
site features and more can be created and customized using JavaScript.

JavaScript is an extremely powerful programming language, and this entire
book could have been devoted to the topic. In this chapter, you learn
JavaScript basics, including how to write JavaScript code to perform basic
tasks, access data using an API, and program faster using a framework.

What Does JavaScript Do?

JavaScript creates and modifies web page elements, and works with the exist-
ing web page HTML and CSS to achieve these effects. When you visit a web
page with JavaScript, your browser downloads the JavaScript code and runs
it client-side, on your machine. JavaScript can perform tasks to do any of the
following:

1~ Control web page appearance and layout by changing HTML attributes
and CSS styles.

’36 Part II: Building the Silent and Interactive Web Page

1~ Easily create web page elements like date pickers, as shown in
Figure 9-1, and drop-down menus.

v~ Take user input in forms, and check for errors before submission.
v~ Display and visualize data using complex charts and graphs.

» Import and analyze data from other websites.

Loghh Help ~ List Your Space

Figure 9-1: JavaScript can create the date picker found on every
travel website.

JavaScript is different from another programming language called Java. In
1996, Brendan Eich, at the time a Netscape engineer, created JavaScript,
which was originally called LiveScript. As part of a marketing decision,
LiveScript was renamed to JavaScript to try and benefit from the reputation
of then-popular Java.

JavaScript was created almost 20 years ago, and the language has continued
to evolve since then. In the last decade, its most important innovation has
allowed developers to add content to web pages without requiring the user
to reload the page. This technique, called AJAX (asynchronous JavaScript),
probably sounds trivial, but has led to the creation of cutting-edge browser
experiences such as Gmail (shown in Figure 9-2).

Before AJAX, the browser would display new data on a web page only after
waiting for the entire web page to reload. However, this slowed down the
user experience, especially when viewing web pages which had frequent real
time updates like web pages with news stories, sports updates, and stock

A\

Chapter 9: Adding in JavaScript ’3 7

information. JavaScript, specifically AJAX, created a way for your browser to
communicate with a server in the background, and to update your current
web page with this new information.

+Jason Gmall Calendar Documents Pholos Sites Web Moo~

Gwmail =

Mail - < woro 1190019 [

[o [—————— e T ——r—— =
o ‘

Starred

S — YourPans ouTubs Oiget. g 16,00
oute

> Googler Peter Harbison added you on Googles - Folc:

g him Sep 16

sep 16

> SaraGostz I Best of Vosemits - Nead to pick. to Sep 15
> Hiking (2)]

Home > Phil Sharp Assignment 84 - Did you gl t Sep 15
Reodipts = Michaol, me (2) congratulations!
ToDo]

Ugentt P Alex Goviey o

More+

Sep 16

Sep s

> Merodith Blackwe! bithday plans Sep 14,

» Meredith Blackwell oh heyyy - i ! Sep 14

> Susanne, me (4) IEIIT tiking on weekend? - Peter On Th Sep 14

5 ma.. Phi, Morodit (5) Hike this weokend! - 1. grost Sep 1a.
% Kathlsen Chen Costume party - I trink: Jun 29
5 Paul MeDonaid [EZIE Fun Hike Vosterday! Jun29

> Avslle Reinstein July 8t weekend - 1 there: | b Jun 28

1 Aelle

= IS Bach Tonhalle concert Friday Jun22

> Yan Toeytin Mar2s
® Yan Tseytlin Updates - Hya, Sinc: 2410
> Ricardo, me (2) Anyone going to Yosemite this weekend? 91908

> Jaff Welington resume - Can you send w1908

> Ance [CIET Hike Mount Tam? - Hi o vookend 119 10 6o a 01607

Figure 9-2: Gmail uses AJAX, which lets users read new emails
without reloading the web page.

Here is an easy way to think about AJAX: Imagine you are at a coffee shop,
and just ordered a coffee after waiting in a really long line. Before asynchro-
nous JavaScript, you had to wait patiently at the coffee bar until you received
your coffee before doing anything else. With asynchronous JavaScript, you
can read the newspaper, find a table, phone a friend, and do multiple other
tasks until the barista calls your name alerting you that your coffee is ready.

Understanding JavaScript Structure

JavaScript has a different structure and format from HTML and CSS.
JavaScript allows you to do more than position and style text on a web

page — with JavaScript, you can store numbers and text for later use, decide
what code to run based on conditions within your program, and even name
pieces of your code so you can easily reference them later. As with HTML
and CSS, JavaScript has special keywords and syntax that allow the com-
puter to recognize what you are trying to do. Unlike HTML and CSS, however,
JavaScript is intolerant of syntax mistakes. If you forget to close an HTML tag,

] 38 Partii: Building the Silent and Interactive Web Page

WMBER
s@
&

or to include a closing curly brace in CSS, your code may still run and your
browser will try its best to display your code. When coding in JavaScript, on
the other hand, forgetting a single quote or parenthesis can cause your entire
program to fail to run at all.

HTML applies an effect between opening and closing tags — <h1>This is a
header</strongs. CSS uses the same HTML element and has properties and
values between opening and closing curly braces —h1 { color: red;}.

Using Semicolons, Quotes,
Parentheses, and Braces

3

The code below illustrates the common punctuation used in JavaScript —
semicolons, quotes, parentheses, and braces (also called curly brackets):

var age=22;
var planet="Earth";
if (age>=18)

{

console.log("You are an adult");
console.log("You are over 18");

}

else

{
console.log("You are not an adult");
console.log("You are not over 18");

1
General rules of thumb to know while programming in JavaScript include:

1~ Semicolons separate JavaScript statements.

 Quotes enclose text characters or strings (sequences of characters). Any
opening quote must have a closing quote.

1~ Parentheses are used to modify commands with additional informa-
tion called arguments. Any opening parenthesis must have a closing
parenthesis.

 Braces group JavaScript statements into blocks so they execute
together. Any opening brace must have a closing brace.

These syntax rules can feel arbitrary, and may be difficult to remember ini-
tially. With some practice, however, these rules will feel like second nature
to you.

Chapter 9: Adding in JavaScript ’39

Coding Common JavaScript Tasks

JavaScript can be used to perform many tasks, from simple variable assign-
ments to complex data visualizations. The following tasks, here explained
within a JavaScript context, are core programming concepts that haven’t
changed in the last twenty years and won’t change in the next twenty.
They’re applicable to any programming language. Finally, I've listed instruc-
tions on how to perform these tasks, but if you prefer you can also practice
these skills right away by jumping ahead to the “Writing Your First JavaScript
Program” section, later in this chapter.

Storing data with variables

Variables, like those in algebra, are keywords used to store data values for
later use. Though the data stored in a variable may change, the variable name
remains the same. Think of a variable like a gym locker — what you store in
the locker changes, but the locker number always stays the same. The vari-
able name usually starts with a letter, and Table 9-1 lists some types of data
JavaScript variables can store.

For a list of rules on variable names see the “JavaScript Variables” section at
www.w3schools.com/js/js_variables.asp.

Table 9-1 Data Stored by a Variable
Data Type Description Examples
Numbers Positive or negative numbers with or without 156-101.96
decimals
Strings Printable characters Holly
NovakSefior
Boolean Value can either be true or false. truefalse

The first time you use a variable name, you use the word var to declare the
variable name. Then, you can optionally assign a value to variable using
the equals sign. In the following code example, I declare three variables and
assign values to those variables:

var myName="Nik";
var pizzaCost=10;
var totalCost=pizzaCost * 2;

http://www.w3schools.com/js/js_variables.asp

140 Partii:Building the Silent and Interactive Web Page

3

3

Programmers say you have declared a variable when you first define it using
the var keyword. “Declaring” a variable tells the computer to reserve space
in memory and to permanently store values using the variable name. View
these values by using the console. log statement. For example, after run-
ning the preceding example code, running statement console.

log (totalCost) returns the value 20.

After declaring a variable, you change its value by referring to just the vari-
able name and using the equals sign, as shown in the following examples:

myName="Steve" ;
pizzaCost=15;

Variable names are case sensitive, so when referring to a variable in your pro-
gram remember that MyName is a different variable from myname. In general,
it’s a good idea to give your variable a name that describes the data being
stored.

Making decisions with if-else statements

After you have stored data in a variable, it is common to compare the vari-
able’s value to other variable values or to a fixed value, and then to make a
decision based on the outcome of the comparison. In JavaScript, these com-
parisons are done using a conditional statement. The 1f-else statement is a
type of conditional. Its general syntax is as follows:

if (condition) {
statementl to execute if condition is true

}

else {
statement2 to execute if condition is false

}

In this statement, the if is followed by a space, and a condition enclosed

in parentheses evaluates to true or false. If the condition is true, then
statement], located between the first set of curly brackets, is executed. If the
condition is false and if [include the else, which is optional, then state-
ment2, located between the second set of curly brackets, is executed. Note
that when the else is not included and the condition is false, the conditional
statement simply ends.

Notice there are no parentheses after the else — the else line has no con-
dition. JavaScript executes the statement after else only when the preceding
conditions are false.

The condition in an if-else statement is a comparison of values using oper-
ators, and common operators are described in Table 9-2.

Chapter 9: Adding in JavaScript

Table 9-2 Common JavaScript Operators
Type Operator Description Example
Less than < Evaluates whether one value (x < 55)
is less than another value
Greater than > Evaluates whether one value (x > 55)
is greater than another value
Equality === Evaluates whether two values (x === 55)
are equal
Less than or <= Evaluates whether one (x <= 55)
equal to value is less than or equal to
another value
Greater than >= Evaluates whether one value (x >= 55)
or equal to is greater than or equal to
another value
Inequality 1= Evaluates whether two values (x != 55)

are not equal

Here is a simple if statement, without the else:

var carSpeed=70;
if (carSpeed > 55) {

alert ("You are over the speed limit!");

}

In this statement I declare a variable called carSpeed and set it equal to 70.
Then an if statement with a condition compares whether the value in the
variable carSpeed is greater than 55. If the condition is t rue, an alert, which
is a pop-up box, states “You are over the speed limit!” (See Figure 9-3.) In this
case, the value of carSpeed is 70, which is greater than 55, so the condition
is true and the alert is displayed. If the first line of code instead was var
carSpeed=40; then the condition is false because 40 is less than 55, and no

alert would be displayed.

JavaScript Alert

You are ouer the speed limit

Figure 9-3: The alert pop-up box.

141

142 Partii:Building the Silent and Interactive Web Page

Let us expand the if statement by adding else to create an if-else, as
shown in this code:

var carSpeed=40;
if (carSpeed > 55)

alert ("You are over the speed limit!");
}

else {
alert ("You are under the speed limit!");
}

In addition to the else, added an alert statement inside the curly brack-
ets following the else, and set carSpeed equal to 40. When this if-else
statement executes, carSpeed is equal to 40, which is less than 55, so the
condition is false, and because the else has been added, an alert appears
stating “You are under the speed limit!” If the first line of code instead was
var carSpeed=70; as before, then the condition is true, because 70 is
greater than 55, and the first alert would be displayed.

Our current if-else statement allows us to test for one condition, and to
show different results depending on whether the condition is true or false.
To test for two or more conditions, you can add one or more else if
statements after the original if statement. The general syntax for this is as
follows:

if (conditionil) (
statementl to execute if conditionl is true

else if (condition2) {
statement2 to execute if condition2 is true

else {
statement3 to execute if all previous conditions are false

The if-else is written as before, and the else if is followed by a space,
and then a condition enclosed in parentheses that evaluates to either true
or false.lf conditionlis true, then statementl, located between

the first set of curly brackets, is executed. If the conditionl1 is false,

then conditionz2 is evaluated and is found to be either true or false. If
condition2is true, then statement2, located between the second set

of curly brackets, is executed. At this point, additional else if statements
could be added to test additional conditions. Only when all if and else if
conditions are false, and an else is included, is statement3 executed.
Only one statement is executed in a block of code, after which the remaining
statements are ignored and the next block of code is executed.

A\

<MBER

Chapter 9: Adding in JavaScript ’ 43

When writing the if-else, you must have one and only one if statement,
and, if you so choose, one and only one else statement. The else ifis
optional, can be used multiple times within a single i f-else statement, and
must come after the original if statement and before the else. You cannot
have an else if or an else by itself, without a preceding if statement.

Here is another example else 1if statement:

var carSpeed=40;
if (carSpeed > 55)

alert ("You are over the speed limit!");
}

else if (carSpeed === 55)
alert ("You are at the speed limit!");
}

When this if statement executes, carSpeed is equal to 40, which is less
than 55, so the condition is false, and then the else 1if condition is evalu-
ated. The value of carSpeed is not exactly equal to 55 so this condition is
also false, and no alert of any kind is shown, and the statement ends. If the
first line of code were instead var carSpeed=55; then the first condition
is false, because 55 is not greater than 55. Then the else if condition
is evaluated, and because 55 is exactly equal to 55, the second alert is dis-
played, stating “You are at the speed limit!”

Look carefully at the code above — when setting the value of a variable, one
equals sign is used, but when comparing whether two values are equal, then
three equals signs (===) are used.

As a final example, here is an if-else statement with an else if
statement:

var carSpeed=40;
if (carSpeed > 55) {

alert ("You are over the speed limit!");
}

else if (carSpeed === 55) {
alert ("You are at the speed limit!");
}

else {
alert ("You are under the speed limit!");
}

As the diagram in Figure 9-4 shows, two conditions, which appear in the figure
as diamonds, are evaluated in sequence. In this example, the carSpeed is
equal to 40, so the two conditions are false, and the statement after the else
is executed, showing an alert that says “You are under the speed limit!” Here
carSpeed is initially set to 40, but depending on the initial carSpeed variable
value, any one of the three alerts could be displayed.

’ 44 Part II: Building the Silent and Interactive Web Page

WMBER
@%
&

Figure 9-4: If-else with an else if statement.

The condition is always evaluated first, and every condition must either be
true or false. Independent from the condition is the statement that exe-
cutes if the condition is true.

Working with string and number methods

The most basic data types, usually stored in variables, are strings and num-
bers. Programmers often need to manipulate strings and numbers to perform
basic tasks such as the following:

1~ Determining the length of a string, as for a password.

1~ Selecting part (or substring) of a string, as when choosing the first name
in a string that includes the first and last name.

»* Rounding a number to fixed numbers of decimal points, as when taking a
subtotal in an online shopping cart, calculating the tax, rounding the tax
to two decimal points, and adding the tax to the subtotal.

These tasks are so common that JavaScript includes shortcuts called meth-
ods (italicized above) that make performing tasks like these easier. The gen-
eral syntax to perform these tasks is to follow the affected variable’s name
or value with a period and the name of the method, as follows for values and
variables:

value.method;
variable.method;

Table 9-3 shows examples of JavaScript methods for the basic tasks dis-
cussed above. Examples include methods applied to values, such as strings,
and to variables.

Chapter 9: Adding in JavaScript ’ ﬁ5

Table 9-3 Common JavaScript Methods
Method Description Example Result
.toFixed (n) Rounds a number to var jenny= 8.68
ndecimal places 8.675309;
jenny.
toFixed (2) ;
.length Represents the "Nik". 3
number of characters length;
in a string
.substring Extracts portion of var name= box
(start, end) the string beginning "Inbox";name.
from position start substring
to end. Position (2,5);

refers to the loca-
tion between each
character, and starts
before the first char-
acter with zero.

<MBER
é‘,*

When using a string, or assigning a variable to a value that is a string, always
enclose the string in quotes.

The .toFixed and .length methods are relatively straightforward, but
the . substring method can be a little confusing. The starting and ending
positions used in . substring(start, end) do not reference actual char-
acters, but instead reference the space between each character. Figure 9-5
shows how the start and end position works. The statement "Inbox" .
substring(2,5) starts at position 2, which is between "n" and "b", and
ends at position 5 which is after the "x".

I nboXx

0 1 2 3 4 5

Figure 9-5: The .substring method references positions
that are between characters in a string.

’ 46 Part II: Building the Silent and Interactive Web Page

\\3

For a list of additional string and number methods see W3Schools www .
w3schools.com/js/js_number methods.asp and www.w3schools.
com/js/js_string methods.asp.

Alerting users and prompting them for input

Displaying messages to the user and collecting input are the beginnings of
the interactivity that JavaScript provides. Although more sophisticated tech-
niques exist today, the alert () method and prompt () method are easy
ways to show a pop-up box with a message, and prompt the user for input.

The syntax for creating an alert or a prompt is to write the method with text
in quotes placed inside the parentheses like so:

alert ("You have mail");
prompt ("What do you want for dinner?");

Figure 9-6 shows the alert pop-up box created by the alert () method, and
the prompt for user input created by the prompt () method.

JavaScript Alert JavaScript

Wou have mail What doyou want for dinner?

0K Cancel

Figure 9-6: A JavaScript alert pop-up box and a user prompt.

Naming code with functions

Functions are a way of grouping JavaScript statements, and naming that
group of statements for easy reference with a function name. These state-
ments are typically grouped together because they achieve a specific coding
goal. You can use the statements repeatedly by just writing the function name
instead of having to write the statements over and over again. Functions pre-
vent repetition and make your code easier to maintain.

When [was younger every Saturday morning my mother would tell me to
brush my teeth, fold the laundry, vacuum my room, and mow the lawn.
Eventually, my mother tired of repeating the same list over and over again,
wrote the list of chores on paper, titled it “Saturday chores,” and put it on the
fridge. A function names a group of statements, just like “Saturday chores”
was the name for my list of chores.

http://www.w3schools.com/js/js_number_methods.asp
http://www.w3schools.com/js/js_number_methods.asp
http://www.w3schools.com/js/js_string_methods.asp
http://www.w3schools.com/js/js_string_methods.asp

Chapter 9: Adding in JavaScript

\

WMBER
é&
&

Functions are defined once using the word function, followed by a function
name, and then a set of statements inside curly brackets. This is called a func-
tion declaration. The statements in the function are executed only when the
function is called by name. In the following example, | have declared a func-
tion called greeting that asks for your name using the prompt () method,
returns the name you entered storing it in a variable called name, and dis-
plays a message with the name variable using the alert () method:

function greeting() {
var name=prompt ("What is your name?");
alert ("Welcome to this website " + name);

}

greeting() ;
greeting() ;

Beneath the function declaration, I have called the function twice, and so |
will trigger two prompts for my name, which are stored in the variable name,
and two messages welcoming the value in the variable name to this website.

The “+” operator is used to concatenate (combine) strings with other strings,
values, or variables.

Functions can take inputs, called parameters, to help the function run, and
can return a value when the function is complete. After writing my list of
chores, each Saturday morning my mother would say “Nik, do the Saturday
chores,” and when my brother was old enough she would say “Neel, do

the Saturday chores.” If the list of chores is the function declaration, and
“Saturday chores” is the function name, then “Nik” and “Neel” are the param-
eters. Finally, after [was finished, [would let my mom know the chores were
complete, much as a function returns values.

In the following example, I have declared a function called amountdue, which
takes price and quantity as parameters. The function, when called, calcu-
lates the subtotal, adds the tax due, and then returns the total. The func-
tion amountdue (10, 3) returns 31.5.

function amountdue (price, quantity) {
var subtotal=price * quantity;
var tax = 1.05;
var total = subtotal * tax;
return total;

}

alert ("The amount due is $" + amountdue(10,3));

Every opening parenthesis has a closing parenthesis, every opening curly
bracket has a closing curly bracket, and every opening double quote has a
closing double quote. Can you find all the opening and closing pairs in the
example above?

147

]148 Partii:Building the Silent and Interactive Web Page

\\J

Adding JavaScript to the web page

The two ways to add JavaScript to the web page are:

1 Embed JavaScript code in an HTML file using the script tag.

1~ Link to a separate JavaScript file from the HTML file using the script
tag.

To embed JavaScript code in an HTML file, use an opening and closing
<script> tag, and write your JavaScript statements between the two tags,
as shown in the following example:

<!DOCTYPE html>
<html>
<head>
<title>Embedded JavaScript</title>
<scripts>
alert ("This is embedded JavaScript");
</script>
</head>
<body>
<hl>Example of embedded JavaScript</hl>
</body>
</html>

The <script> tag can be placed inside the opening and closing <head> tag,
as shown above, or inside the opening and closing <body> tag. There are some
performance advantages when choosing one approach over the other, and you
can read more at http://stackoverflow.com/questions/436411/
where-is-the-best-place-to-put-script-tags-in-html-markup.

The <script> tagis also used when linking to a separate JavaScript file,
which is the recommended approach. The <script> tag includes:

1 A type attribute, which for JavaScript is always set equal to "text/
javascript"

v A src attribute, which is set equal to the location of the JavaScript file.

<!DOCTYPE html>
<html>
<head>
<title>Linking to a separate JavaScript file</title>
<script type="text/javascript" src="script.js"></script>
</head>
<body>
<hl>Linking to a separate JavaScript file</hl>
</body>
</html>

http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup
http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup

Chapter 9: Adding in JavaScript ’ 4 9
<MBER

The <script> tag has an opening and closing tag, whether the code is
embedded between the tags or linked to separate file using the src attribute.

Writing Your First JavaScript Program

Practice your JavaScript online using the Codecademy website. Codecademy
is a free website created in 2011 to allow anyone to learn how to code right in
the browser, without installing or downloading any software. Practice all of the
tags (and a few more) that you learned in this chapter by following these steps:

1. Open your browser, go to www . dummies.com/go/codingfd, and
click on the link to Codecademy.

2. Sign in to your Codecademy account.

Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click on Getting Started with Programming.

4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the
site.

5. Complete the instructions in the main coding window.

6. After you have finished completing the instructions, click the Save
and Submit Code button.

If you have followed the instructions correctly, a green checkmark
appears and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

Working with APls

Although APIs (application programming interfaces) have existed for decades,
the term has become popular over the last few years as we hear more con-
versation and promotion around their use. Use the Facebook API! Why doesn’t
Craigslist have an API? Stripe’s entire business is to allow developers to accept
payments online using its payments AP

Many people use the term API, but few understand its meaning. This section
will help clarify what APIs do and how they can be used.

http://www.dummies.com/go/codingfd

’50 Part II: Building the Silent and Interactive Web Page

What do APls do?

An API allows Program A to access select functions of another separate
Program B. Program B grants access by allowing Program A to make a
data request in a structured, predictable, documented way, and Program B
responds to this data request with a structured, predictable, documented
response, as follows (see Figure 9-7):

1 It’s structured because the fields in the request and the data in the response
follow an easy-to-read standardized format. For example, the Yahoo
Weather API data response includes these selected structured data fields:

"location": {
"city": "New York",
"region": "NY"

"units": {
"temperature": "F"

"forecast": {
"date": "29 Oct 2014",
nhig—hn . 8N ,
"low": "48",
"text": "PM Showers"

}
A\
See the full Yahoo Weather API response by visiting http://
developer.yahoo.com/weather/.

v~ It’s predictable because the fields that must be included and can be
included in the request are pre-specified, and the response to a success-
ful request will always include the same field types.

v It’s documented because the API is explained in detail. Any changes usu-
ally are communicated through the website, social media, email, and
even after the API changes, there is often a period of backward compat-
ibility when the old API requests will receive a response. For example,
when Google Maps issued version 3 of their API, version 2 still operated
for a certain grace period.

ﬁ Their

Your

App App

S

Figure 9-7: An API allows two separate programs to talk
to each other.

NMBER
‘g&
&

Chapter 9: Adding in JavaScript

Above you saw a weather API response, so what would you include in a
request to a weather API? The following fields are likely important to include:

1 Location, which can potentially be specified by using zip code, city and
state, current location in latitude and longitude coordinates, or IP address.

1 Relevant time period, which could include the instant, daily, three day,
weekly, or 10-day forecast.

v~ Units for temperature (Fahrenheit or Celsius) and precipitation (inches
or centimeters).

These fields in our request just specify the desired type and data format. The
actual weather data would be sent after the APl knows your data preferences.

Can you think of any other factors to consider when making the request? Here
is one clue — imagine you work for Al Roker on NBC’s Today TV show, and you
are responsible for updating the weather on the show’s website for 1 million
visitors each morning. Meanwhile, | have a website, NikWeather, which aver-
ages 10 daily visitors who check the weather there. The Today website and my
website both make a request to the same weather API at the same time. Who
should receive their data first? It seems intuitive that the needs of 1 million
visitors on the Today website should outweigh the needs of my website’s 10
visitors. An API can prioritize which request to serve first, when the request
includes an API key. An APl key is a unique value, usually a long alpha-numeric
string, which identifies the requestor and is included in the API request.
Depending on your agreement with the API provider, your API key can entitle
you to receive prioritized responses, additional data, or extra support.

Can you think of any other factors to consider when making the request? Here
is another clue — is there any difference in working with weather data versus
financial data? The other factor to keep in mind is frequency of data requests
and updates. APIs will generally limit the number of times you can request
data. In the case of a weather API, maybe the request limit is once every
minute. Related to how often you can request the data is how often the data

is refreshed. There are two considerations — how often the underlying data
changes, and how often the API provider updates the data. For example, except
in extreme circumstances the weather generally changes every 15 minutes. Our
specific weather API provider may update its weather data every 30 minutes.
Therefore, you would only send an API request once every 30 minutes, because
sending more frequent requests wouldn’t result in updated data. By contrast,
financial data such as stock prices and many public APIs, which change mul-
tiple times per second, allow one request per second.

Scraping data without an API

In the absence of an API, those who want data from a third-party website
create processes to browse the website, search and copy data, and store it
for later use. This method of data retrieval is commonly referred to as screen

151

152 Parti: Building the Silent and Interactive Web Page

scraping or web scraping. These processes, which vary in sophistication from
simple to complex, include:

1~ People manually copying and pasting data from websites into a data-
base: Crowdsourced websites, such as www.retailmenot . com recently
listed on the NASDAQ stock exchange, obtain some data in this way.

1~ Code snippets written to find and copy data that match pre-set pat-
terns: The pre-set patterns are also called regular expressions, which
match character and string combinations, and can be written using web
languages like JavaScript or Python.

1 Automated software tools which allow you to point and click the fields
you want to retrieve from a website: For example, www.kimonolabs.
com is one point-and-click solution, and when FIFA World Cup 2014
lacked a structured API, kimonolabs . com extracted data, such as
scores, and made it easily accessible.

The advantage of screen scraping is that the data is likely to be available
and with less restrictions because it is content that regular users see. If an
API fails, it may go unnoticed and depending on the site take time to fix. By
contrast, the main website failing is usually a top priority item, and fixed
as soon as possible. Additionally, companies may enforce limits on data
retrieved from the API that are rarely seen and harder to enforce when
screen scraping.

The disadvantage of screen scraping is that the code written to capture data
from a website must be precise and can break easily. For example, a stock
price is on a web page in the second paragraph, on the third line, and is the
fourth word. The screen scraping code is programmed to extract the stock
price from that location, but unexpectedly the website changes its layout

so the stock price is now in the fifth paragraph. Suddenly, the data is inac-
curate. Additionally, there may be legal concerns with extracting data in this
way, especially if the website terms and conditions prohibit screen scraping.
In one example, Craigslist terms and conditions prohibited data extraction
through screen scraping, and after litigation a court banned a company
which accessed Craigslist data using this technique.

Researching and choosing an API

For any particular data task there may be multiple APIs that can provide you
with the data you seek. The following are some factors to consider when
selecting an API for use in your programs:

~ Data availability: Make a wish list of fields you want to use with the API,
and compare it to fields actually offered by various API providers.

~ Data quality: Benchmark how various API providers gather data, and
the frequency with which the data is refreshed.

http://www.retailmenot.com
http://www.kimonolabs.com
http://www.kimonolabs.com
http://www.kimonolabs.com

Chapter 9: Adding in JavaScript ’53

1~ Site reliability: Measure site uptime because regardless of how good the
data may be, the website needs to stay online to provide API data. Site
reliability is a major factor in industries like finance and healthcare.

 Documentation: Review the API documentation for reading ease and
detail so you can easily understand the API features and limitations
before you begin.

1~ Support: Call support to see response times and customer support
knowledgeability. Something will go wrong and when it does you want to
be well supported to quickly diagnose and solve any issues.

1~ Cost: Many APIs provide free access below a certain request threshold.
Investigate cost structures if you exceed those levels so you can prop-
erly budget for access to your APIL

Using JavaScript Libraries

A JavaScript library is pre-written JavaScript code that makes the develop-
ment process easier. The library includes code for common tasks that has
already been tested and implemented by others. To use the code for these
common tasks, you only need to call the function or method as defined in the
library. Two of the most popular JavaScript libraries are jQuery and D3.js.

jQuery

jQuery uses JavaScript code to animate web pages by modifying CSS on the
page, and to provide a library of commonly used functions. Although you
could write JavaScript code to accomplish any jQuery effect, jQuery’s biggest
advantage is completing tasks by writing fewer lines of code. As the most
popular JavaScript library today, jQuery is used on the majority of top 10,000
most visited websites. Figure 9-8 shows a photo gallery with jQuery transi-
tion image effects.

D3.js

D3.js is a JavaScript library for visualizing data. Just like with jQuery, similar
effects could be achieved using JavaScript, but only after writing many more
lines of code. The library is particularly adept at showing data across mul-
tiple dimensions, and creating interactive visualizations of datasets. The cre-
ator of D3.js is currently employed at The New York Times, which extensively
uses D3.js to create charts and graphs for online articles. Figure 9-9 is an
interactive chart showing technology company IPO value and performance
over time.

’54 Part II: Building the Silent and Interactive Web Page

Nivo Slider Demo. x

« C') demo.dev7Zstudios.com/nivo-slide =
Arc de Triomphe =

Figure 9-8: Photo gallery with jQuery transition image effects triggered
by navigation arrows.

& The Facebook Offering: H x %} =R |
€ - C | [wwwnytimes.com/interactive/2012/05/17/business/dealbook/how-the-facebook-offering-compares htm|?_r=0 ¥ =
UPDATED by 17,2012 B raceeook W TwiTeR 8 ooooler B EwaL [SHARE

The Facebook Offering: How It Compares

Next > 2 Find 2 company

Company Facebook Facehook
ntilons of Facebools offer price was $38 a share, giving the
tociays colers company a valuation of $104 billion, nearly four times
m0— larger than Google in 2004.
0—
2004
GO0GLE
60— Walue st [P0 $28 billion

+18% +398%
Fistday Three years
change later

Google

Apple

1980 1985 1980 1905 2000 2005 2010
Year of L.P.O.

Figure 9-9: An IPO chart showing the valuation of the Facebook IPO
relative to other technology IPOs.

Chapter 9: Adding in JavaScript ’55

Searching for Uideos with YouTube’s APl

Practice accessing APIs using the Codecademy website. Codecademy is a

free website created in 2011 to allow anyone to learn how to code right in the
browser, without installing or downloading any software. Practice all of the
tags (and a few more) that you learned in this chapter by following these steps:

1. Open your browser, go to www. dummies.com/go/codingfd, and
click on the link to Codecademy.

2. Sign in to your Codecademy account.

Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click on How to use APIs with JavaScript, and then
Searching for YouTube Videos.

4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the
site.

5. Complete the instructions in the main coding window.

6. After you have finished completing the instructions, click the Save
and Submit Code button.

If you have followed the instructions correctly, a green checkmark
appears and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

http://www.dummies.com/go/codingfd

’56 Part II: Building the Silent and Interactive Web Page

Part Il

Putting Togethera
Web Application

W=l = (=
PICKUP LOCATION z
81 CHRISTOPHER STREET
¥ ZETIET @
HEENGT et E 23 5t - Broadway(Tl 3 3
< N 145t > b
< b5 by 4
5 [. /e H
8AVD 23510 2,
Ganseveort St &pl,q 75 Sr
5 Horatio St 7 "5 Gramercy Park 5@3
h
= Jane St Sane st 14517 by oo
& ik 2
L 14 510 22,
s W 12th 5t % sy
g >
e
J
T £7g,
The Spq 145t - Union Sqi1 r}ﬁ'm R
)
5 £
Union Sa - 1450 {ma'si- Unien'sq "%,
chates St ot
i 5t~ Christopher S £2)
CEY i, &
Chiistopher Street(z) She'::"’” = Sl & 1 SavD o, o)
3 ! ol® i wasm = = £1 6‘:‘% g
aoh= s = “s St
B £ £ S
i .+ IFC Center (w g erf 5
5 & ' 5
2 The Comedy Cellar (=) 4 Ho St NUET ol o
Clarksoy gy & o) %y
o =" Astor Place Theatre
oo
%
5 S
—_— Houston St Uy
L) @ % < e,
1 Charem B < RS > 4
Hollang o & i kg,
Tunine &
SpringSIT 5
i & Bleecker St y o
o ot Mapdata®©2014 Google TemsofUss Reporamap amor
uber uberXL CARSEAT L L suv RUSH
-

To see how to build your own app using geolocation, check out www . dummies .

com/extras/coding.

we
extras

http://www.dummies.com/extras/coding
http://www.dummies.com/extras/coding

In this part . . .

Plan to bring your first web application to life.

Meet the people who help build web applications.
Research each component of your first web application.
Build your web application with offers based on location.

Debug the errors in your first web application.

10

Building Your Own App

In This Chapter
Completing a case study using an app
Understanding the process of creating an app to solve a problem
Discovering the various people that help create an app

If you have a dream, you can spend a lifetime . . . getting ready for it. What
you should be doing is getting started.

—Drew Houston

’ f you have read (or skimmed) the previous chapters you now have enough
HTML, CSS, and JavaScript knowledge to write your own web application.

To review, HTML puts content on the web page, CSS styles that content, and

JavaScript allows for interaction with that content.

You may feel like you don’t have enough coding knowledge to create an app,
but I promise that you do. Besides, the only way to know for certain is to get
started and try. In this chapter, you come to better understand the app you are
going to build, and the basic steps to create that app. Developers often begin
with just the information presented in this chapter and are expected to create
a prototype. After reading this chapter think about how you would build the
app, and then refer to chapters that follow for more details on each step.

Building a Location-Based Offer App

Technology can provide developers (like you) one of the most valuable
pieces of information about your users — their current location. With mobile
devices, such as cell phones and tablets, you can even find a user’s location
when they are on-the-go. Although you likely have used an app to retrieve

’ 60 Part lll: Putting Together a Web Application

the time, weather, or even driving directions, you may never have received
an offer on your phone to come into a store while walking down the street or
driving in a car. Imagine passing by a Mexican restaurant during lunch time
and receiving an offer for a free taco. I'm hungry, so let’s get started!

Understanding the situation

The following is a fictitious case study. Any resemblance to real companies or
events is coincidental.

The McDuck’s Corporation is one of the largest fast food restaurants in the
world, specializing in selling hamburgers in a restaurant called McDuck’s.
The company has 35,000 of these restaurants which serve 6.5 million burg-
ers every day to 70 million people in over 100 countries. In September 2014,
McDuck’s experienced its worst sales decline in over a decade. After many
meetings, the executive team decided that the key to improving sales would
be increasing restaurant foot traffic. “Our restaurant experience, with burger
visuals and french-fry aromas, is the best in the industry — once a customer
comes in it is a guaranteed sale,” says McDuck’s CEO Duck Corleone. To
promote restaurant visits, McDuck’s wants a web application so customers
can check-in to their favorite store, and receive an offer or coupon if they are
close to a restaurant. “Giving customers who are 5 or 10 minutes away from a
restaurant an extra nudge may result in a visit. Even if customers use this app
while at the restaurant, this will allow us to maintain a relationship with them
long after they have left,” says Corleone.

The McDuck Corporation wants to run a pilot to better understand whether
location based offers will increase sales. Your task is to:

1~ Create an app that will prove whether location based offers are effective.

v~ Limit the app to work on just one McDuck’s store of your choice.

~ Obtain the location of customers using the app.

1~ Show offers to those customers who are five or ten minutes from the store.
McDuck’s currently has a website and a mobile app, but both only show

menu and store location information. If this pilot is successful, McDuck’s will
incorporate your code into its website and mobile app.

Plotting your next steps

Now that you understand McDuck’s request, you likely have many questions:

1 What will the app look like?

1 What programming languages will I use to create the app?

Chapter 10: Building Your Own App

1 How will [write code to locate a user’s present location?
1 What offer will I show to a user who is 5 to 10 minutes away?
These are natural questions to ask, and to make sure you are asking all the

necessary questions upfront in an organized way you will follow a standard
development process.

Following an App Development Process

SMBER
S

Building an app can take as little time as an hour or as long as decades. For
most startups, the development processes for the initial product prototype
averages one or two months to complete, whereas enterprise development
processes for commercial grade software takes six months to a few years to
complete, depending on the industry and the project’s complexity. A brief
overview of the entire process is described here, and then each step is cov-
ered in additional detail as you build the app for McDuck’s.

An app can be a software program that runs on desktop or mobile devices.
The four steps you will follow when building your app are:

+~ Planning and discovery of app requirements

1~ Researching of technology needed to build the app, and designing the
app look and feel

v Coding your app using a programming language

* Debugging and testing your code when it behaves differently than you
intended

In total, you should plan to spend between two to five hours building this
app. As shown in Figure 10-1, planning and research alone will take more than
half your time, especially if this is the first time you are building an app. You
might be surprised to learn that actually writing code will take a relatively
small amount of time, with the rest of your time spent debugging your code
to correct syntax and logic errors.

App development processes have different names, and the two biggest pro-
cesses are called waterfall and agile. Waterfall is a set of sequential steps fol-
lowed to create a program, whereas agile is a set of iterative steps followed to
create a program. Additional discussion can be found in Chapter 3.

101

’ 62 Part lll: Putting Together a Web Application

Time Allocations in the App Development Process

Debugging
30%

Coding
10%

Figure 10-1: Time allocated to complete the four
steps in the app development process.

Planning Your First Web Application

You or your client has a web app idea, and planning is the process of put-
ting those ideas down on paper. Documenting all the features that will go
into the app is so important, because as the cartoon in Figure 10-2 shows
for web development, and in computer science generally, it can be difficult
to understand upfront what features are technically easy versus difficult to
implement.

The planning phase also facilitates an upfront conversation around time,
project scope, and budget, where a common saying is to “pick two out of the
three.” In some situations, such as with projects for finance companies, time-
lines and project scope may be legally mandated or tied to a big client, and
cannot be changed, and so additional budget may need to set aside to meet
both. In other situations, such as projects for small startups, resources are
scarce so it’s more common to adjust the project scope or extend the time-
line than to increase the project’s budget. Before writing any code, it will be
helpful to understand which dimensions can be flexed and which are fixed.

Finally, although you will likely play multiple roles in the creation of this web
app, in real life teams of people help bring to life the web apps you use every
day. You will see the roles people play, and how everyone works together.

Chapter 10: Building Your own App] 03

UHEN A USER TAKES A PHOTD,
THE APP SHOULD CHECK WHETHER
THEY'RE. IN A NATIONAL PARK ...

SURE, ERSY GIS LOOKUR
GIMME A FEW HOURS.

... AND CHECK WHETHER
THE PHOTD IS OF A BIRD.

I NEED A RESEARCH

k TEAM AND FIVE YEARS.
% Q

IN CS, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

==

Figure 10-2: It can be difficult to separate technically
easy and difficult projects.

Exploring the Overall Process

The purpose of the planning phase is to:

 Understand the client goals: Some clients may want to be the first to
enter an industry with an app, even if it means sacrificing quality. Other
clients may require the highest standards of quality, reliability, and sta-
bility. Similarly, some others may prioritize retaining existing customers,
while others want to attract new customers. All these motivations affect
the product design and implementation in big and small ways.

P If you are a developer in a large company, your client is usually not the
end user but whoever in your internal team must greenlight the app
before it is released to the public. At many companies, such as Google,
Yahoo, and Facebook, most projects do not pass internal review and are
never released to the public.

’ 64 Part lll: Putting Together a Web Application

\

3

1 Document product and feature requests: Clients usually have an overall

product vision, a list of tasks the user must be able to complete with the
app. Often, clients have features in mind that would help accomplish
those tasks.

1~ Agree on deliverables and a timeline: Almost every client will imagine

a much bigger product than you have time to build. For a developer, it is
extremely important to understand what features are absolutely neces-
sary and must be built, and what features are “nice to have” if there is
time remaining at the end of the project. If every feature is a “must have”
you need to either push the client to prioritize something, or make sure
you have given yourself enough time.

Estimating the time to complete software projects is one of the most dif-
ficult project management tasks. There is greater variability and uncer-
tainty than physical construction projects, like building a house, or
intellectual projects, like writing a memo. The most experienced devel-
opers at the world’s best software companies routinely miss estimates,
so don’t feel bad if completion takes longer than you think. Your estima-
tion skill will improve with time and practice.

After separating the necessary features from the “nice to have,” you
should decide which features are easy and which are complex. Without
previous experience this might seem difficult, but think about whether
other applications have similar functionality. You should also try searching
the web for forum posts, or products that have the feature. If no product
implements the feature, and all online discussion portray the task as dif-
ficult it would be worthwhile agreeing up-front on an alternative.

1~ Discuss tools and software you will use to complete the project, and

your users will use to consume the project: Take the time to understand
your client and user’s workflow to avoid surprises from incompatible
software. Web software usually works across a variety of devices, but
older operating systems and browsers can cause problems. Defining at
the start of the project exactly which browser versions you will support
(such as Internet Explorer 9 and later), and which devices (such as desk-
top and iPhone only) will save development and testing time. Usually,
these decisions are based on how many existing users are on those plat-
forms, and many organizations will support a browser version if used by
a substantial amount of the user base — usually at least five percent.

Browser incompatibilities are decreasing as the latest desktop and mobile
browsers updates themselves, and are now easier to keep up-to-date.

Chapter 10: Building Your own App] ©5

Meeting the People Who Bring a Web App to Life

You will be able to complete the app in this book by yourself, but the apps
you build at work or use every day, like Google Maps or Instagram, are cre-
ated by teams of people. Teams for a single product can vary in size, reaching
upwards of 50 people, and each person plays a specific role across areas like
design, development, product management, and testing. In smaller compa-
nies, the same person may perform multiple roles, while at larger companies
the roles become more specialized and individual people perform each role.

Creating with designers

Before any code has been written, designers work to create the site look

and feel through layout, visuals, and interactions. Designers answer simple
questions like “should the navigational menu be at the top of the page or

the bottom?” to more complex questions like “how can we convey a sense

of simplicity, creativity, and playfulness?” In general, designers answer these
types of questions by interviewing users, creating many designs of the same
product idea, and then making a final decision by choosing one design. Good
design can greatly increase adoption of a product or use of site, and products
like Apple’s iPhone and Airbnb.com. (See Figure 10-3.)

When building a website or app, you may decide you need a designer, but
keep in mind within design there are multiple roles that designers play. The
following roles are complementary, and may all be done by one person or by
separate people:

1~ User interface (U) and user experience (UX) designers deal primarily
with “look and feel” and with layout. When you browse a website, for
example Amazon, you may notice that across all pages the navigation
menus, and content are in the same place, and use identical or very simi-
lar font, buttons, input boxes, and images. The Ul/UX designer thinks
about the order in which screens are displayed to the user, along with
where and how the user clicks, enters text, and otherwise interacts with
the website. If you eavesdropped on Ul/UX designers, you may hear con-
versation like, “his page is too busy with too many call to actions. Our
users don’t make this many decisions anywhere else on the site. Let’s
simplify the layout by having just a single Buy button so anyone can
order in just one click.”

1~ Visual designers deal primarily with creating the final graphics used on
a website, and is the role most closely associated with “designer”. The
visual designer creates final versions of icons, logos, buttons, typogra-
phy, images. For example, look at your Internet browser — the browser
icon, the Back, Reload, and Bookmark buttons are all created by a visual

’ 66 Part I1l: Putting Together a Web Application

designer, and anyone using the browser for the first time will know what
the icons mean without explanation. If you eavesdropped on visual
designers, you may hear conversation like, “The color contrast on these
icons is too light to be readable, and if including text with the icon, let’s
center-align the text below the icon instead of above it.”

+~ Interaction designers deal primarily with interactions and animations
based on user input and situation. Initially, interaction design were lim-
ited to keyboard and mouse interactions, but today touch sensors on
mobile devices have created many more potential user interactions. The
interaction designer thinks about how to use the best interaction so the
user is able to complete a task as easily as possible. For example, think
about how you check your email on your mobile phone. For many years,
the traditional interaction was to see a list of messages, click on a mes-
sage, and then click on a button to reply, flag, folder, or delete the mes-
sage. In 2013, interaction designers rethought the email app interaction,
and created an interaction so users could swipe their finger left or right
to delete or reply to email messages instead of having to click through
multiple menus. If you eavesdropped on interaction designers, you may
hear conversation like, “While users are navigating with our maps app,
instead of letting us know they are lost by clicking or swiping, maybe
they can shake the phone and we instantly have a location specialist call
them.”

Figure 10-3: Jonathan lve, SVP of Design at Apple,
is credited for Apple’s design successes.

3

A\

Chapter 10: Building Your Own App

If creating an app was like making a movie, designers would be screenwriters.

Coding with front- and back-end developers

After the design is complete, the front-end and back-end developers make
those designs a reality. Front-end developers, such as Mark Otto and Jacob
Thornton (see Figure 10-4), code in HTML, CSS, and JavaScript, and convert
the design into a user interface. These developers write the same code that
you have been learning throughout this book, and ensure the website looks
consistent across devices (desktop, laptop, and mobile), browsers (Chrome,
Firefox, Safari, and so on), and operating systems (Windows, Mac, and so on).
All these factors, especially increased adoption of mobile device, result in
thousands of combinations that must be coded for and tested because every
device, browser, and operating system renders HTML and CSS differently.

Figure 10-4: Mark Otto and Jacob Thornton created
Bootstrap, the most popular front-end framework.

If creating an app was like making a movie, front-end developers would be the
starring actors.

Back-end developers such as Yukihiro Matsumoto (see Figure 10-5) add func-
tionality to the user interface created by the front-end developers. Back-end
developers ensure everything that’s not visible to the user and behind the
scenes is in place for the product to work as expected. Back-end developers
use server-side languages like Python, PHP, and Ruby to add logic around
what content to show, when, and to whom. In addition, they use databases to
store user data, and create servers to serve all of this code to the users.

167

’ 68 Part lll: Putting Together a Web Application

<\¥

If creating an app was like making a movie, back-end developers would be the
cinematographers, stunt coordinators, makeup artists, and set designers.

Figure 10-5: Yukihiro Matsumoto created Ruby,
a popular server-side language used to create
websites.

Managing with product managers

Product managers help define the product to be built, and manage the prod-
uct development process. When engineering teams are small (such as fifteen
people or less) communication, roles, and accountability are easily managed
internally without much formal oversight. As engineering teams grows, the
overhead of everyone communicating with each other also grows, and with-
out some process can become unmanageable, leading to miscommunication
and missed deadlines. Product managers serve to lessen the communication
overhead, and when issues arise as products are being built decide whether
to extend timelines, cut scope, or add more resources to the team. Product
managers are often former engineers, who have a natural advantage in help-
ing solve technical challenges that arise, but non-technical people are also
assuming the role with success. Usually, no engineers report to the product
manager, causing some to comment that product managers have “all of the
responsibility, and none of the authority.” One product manager wielding
great responsibility and authority is Sundar Pichai, who originally was a prod-
uct manager for the Google toolbar, and recently was appointed to oversee
many of Google’s products, including search, Android, Chrome, maps, ads,
and Google+. (See Figure 10-6.)

Chapter 10: Building Your Own App] 09

Figure 10-6: Sundar Pichai oversees almost
every major Google product.

Testing with quality assurance

Testing is the final step of the journey after an app or website has been built.
As a result of the many hands that helped with production, the newly created
product will inevitably have bugs. Lists are made of all the core app user
tasks and flows, and human testers along with automated programs go
through the list over and over again on different browsers, devices, and oper-
ating systems to find errors. Testers compile the newly discovered bugs, and
send them back to the developers, who prioritize which bugs to squash first.
Trade-offs are always made between how many users are affected by a bug,
the time it takes to fix the bug, and the time left until the product must be
released. The most important bugs are fixed immediately, and minor bugs are
scheduled to be fixed with updates or later released. Today, companies also
rely on feedback systems and collect error reports from users, with feedback
forms and in some cases through automated reporting.

’ 70 Part lll: Putting Together a Web Application

11

Researching Your First
Web Application

In This Chapter
Dividing an app into smaller pieces, or steps
Using code from various sources to perform those steps

Creating app designs by reviewing and improving upon existing solutions

If we knew what it was we were doing, it would not be called research.

—Albert Einstein

Wth the basic requirements defined, the next step is researching how
to build the application. Apps consist of two main parts: functionality
and form (design). For each of these parts, you must:

1~ Divide the app into steps: Although it’s good practice to divide anything
you are going to build into steps, diving apps into manageable pieces
is an absolute necessity for large software projects with many people
working across multiple teams.

1~ Research each step: When doing your research, the first question to ask
is whether you must build a solution yourself or use an existing solution
built by someone else. Building your own solution usually is the best
way to directly address your need, but it takes time, whereas implement-
ing someone else’s solution is fast but may only meet part of your needs.

1~ Choose a solution for each step: You should have all the solutions
selected before writing any code. For each step, decide whether you
are writing your own code, or using pre-built code. If you are not writ-
ing the code yourself, compare a few options so you can pick one with
confidence.

’ 72 Part lll: Putting Together a Web Application

Dividing the App into Steps

The biggest challenge with dividing an app into steps is knowing how big or
small to make each step. The key is to make sure each step is discrete and
independent. To test whether you have the right number of steps, ask yourself
if someone else could solve and complete the step with minimal guidance.

Finding your app’s functionality

Recall that McDuck’s wants to promote restaurant visits by using a web appli-
cation that sends customers an offer or coupon if they're close to a restau-
rant. To make this job easier, you are to create the app for customers visiting
just one store.

Your first move is to break down this app into steps needed for the app to
function. These steps should not be too specific: Think of them in broad
terms, as if you were explaining the process to a kindergartner. With a pen
and paper, write down these steps in order. Don’t worry about whether each
step is correct, as your skill will improve with practice and time. To help you
start, here are some clues:

1~ Assume the McDuck’s app activates when the customer presses a button
in the app to check-in to a store.

» When the button is pressed, what are the two locations that the app
must be aware of?

+* When the app is aware of these two locations, what calculation involving
these two locations must the computer make?

1~ After computing this calculation, what effect will the computer show?

Fill out your list now, and don’t continue reading until you've completed it.

a a , a a a
Finding your app’s functionality: My version
The following is my version of the steps needed to make the app function
according to McDuck’s specifications. My steps may differ from yours, of
course, and this variation is completely fine. The important lesson here is that
you understand why each of these steps is necessary for the app to work:

1. The customer presses a button on the app.

The instructions above said to initiate the app with the press of a button.
That being said, there are two other options for launching the app:

e Executing the steps continuously in the background, regularly check-
ing the customer’s location. Currently, this technique places a heavy
drain on the battery, and is not usually recommended.

e Executing the steps only when the customer opens the app.

Chapter 11: Researching Your First Web Application ’ 73

2. After the button is pressed, find the customer’s current location.

The customer’s location is one of the two locations you need to identify.
The customer’s current location is not fixed, and it changes, for exam-
ple, when the customer is walking or driving.

3. Find the fixed location of a McDuck’s store.

The McDuck’s restaurant location is the other location you need to
identify. Because this is a pilot, you only need to identify the location
for one McDuck’s restaurant, a fixed location that will not change.
Hypothetically, assuming that the pilot is successful and that McDuck’s
wants to implement this app for users visiting all 35,000 restaurants,
you’d have to track many more restaurant locations. Additionally, in a
larger rollout the locations would need to be updated regularly, as new
restaurants open, and as existing restaurants move or close.

4. Calculate the distance between the customer’s current location and
the McDuck’s restaurant, and name this distance Customer Distance.

This step calculates how far away the customer is from the McDuck’s
restaurant. One complexity to be aware of — but not to worry about
right now — is the direction in which the customer is moving. Although
McDuck’s did not specify whether they want to display offers to custom-
ers heading both toward and away from their store, this may be a ques-
tion worth asking anyway.

5. Convert five to ten minutes of customer travel into a distance called
Threshold Distance.

McDuck’s CEO Duck Corleone wants to target customers who are five

to ten minutes away from the store. Distance, in this sense, can be mea-
sured in both time and in units of distance such as miles. For consis-
tency, however, plan to convert time into distance — translate those five
to ten minutes into miles. The number of miles traveled in this time will
vary by common mode of transportation and by location, because five
to ten minutes of travel in New York City won'’t get you as far as five to
ten minutes of travel in Houston, Texas.

6. If the Customer Distance is less than the Threshold Distance, then
show an offer to the customer.

Following McDuck’s specifications, the app should attract customers to
come to the store, and so the app only shows offers to customers who
are close to the restaurant. Another complexity to be aware of — but
not to worry about right now — is that the Customer Distance can
change quickly. Customers traveling by car could easily be outside the
Threshold Distance one minute and inside it the next. Figure 11-1 shows
the customers we want to target, relative to a fixed restaurant location.

’ 74 Part lll: Putting Together a Web Application

A\

Threshold
distance

Figure 11-1: Customers we want to target based on a fixed
restaurant location.

Many software logic mistakes happen at this stage, because the programmer
forgets to include a step. Take your time reviewing these steps and under-
standing why each step is essential, and why this list of steps is the minimum
necessary to operate the app.

Finding your app’s form

After you settle on what the app will do, you must find the best way to pres-
ent this functionality to users. There are many ways that users can interact
with your app’s functionality, so picking out the right approach can be tricky.
Designing an app can be fun and rewarding, but it’s hard work. After the first
iteration of an app’s design, developers are often disappointed: Users will
rarely use the product as intended and will find many parts of the app con-
fusing. This is natural — especially because at this stage you’re often creating
something or having the user do something that hasn’t been done before.
Your only choice is to keep trying, to keep testing, modifying, and creating
new designs until your app is easy for everyone to use. Although the iPod

is a hardware product, the approach Apple took to perfect it is basically

the same. Figure 11-2 shows how the design can change over time, with the
button layout changing from the original click-wheel to individual horizontal
buttons, and finally back to the click-wheel again.

Chapter 11: Researching Your First Web Application ’ 75

Cre—" —
——e S 7 »
—— Mot <

[——

b

L /
S - ‘?

(1st Gen) (2nd/3rd Gen) (4th Gen)
| TR
(4th Gen w/Color) (5th Gen, Video) (Classic)

Figure 11-2: Apple’s iPod design changes over multiple product releases.

The following list describes a basic design process to create the look and feel
of your app:

1. Define the main goals of your app.

If you were at a party, and you had to explain what your app did in one
sentence, what would it be? Some apps help you hail a taxi, reserve a
table at a restaurant, or book a flight. Famously, the goal for the iPod
was 1,000 songs in your pocket accessible within three clicks, which
helped create an easy to use user interface. An explicitly defined goal
will serve as your north star, helping you to resolve questions and forc-
ing you to keep trying.

2. Break these goals into tasks.

Each goal is the sum of many tasks, and listing them will help you design
the shortest path to completing each task and ultimately the goal. For
instance, if your app’s goal is for a user to book a flight, then the app will
likely need to record desired flying times and destinations, search and
select flights departing during those times, record personal and payment
information, present seats for selection, and confirm payment of the flight.
Sometimes designers will segment tasks by user persona, another name

’ 76 Part lll: Putting Together a Web Application

for the person completing the task. For example, this app may be used

by business and leisure travelers. Leisure travelers may need to do heavy
searching and pick flights based on price, while business travelers mostly
rebook completed flights and pick flights based on schedule.

Research the flows and interactions necessary to accomplish these tasks.

For example, our flight app requires the user to select dates and times.
One immediate question is whether the date and time should be two sepa-
rate fields or one field, and on a different or same screen as the destina-
tion. Try to sketch what feels intuitive for you, and research how others
have solved this problem. You can use Google to find other travel apps,
list all the various designs, and either pick or improve upon the design
you like best. Figure 11-3 shows two different approaches to flight search.
Similarly, you can also use design-centric sites, such as www.dribbble.
com, to search designer portfolios for features and commentary.

¥ Cheap Flights, Cheap Hot %

€« C' 8 https/wwwhipmunk.com

_ United Airlines - Airline Ti. %

« X [0 wwwanited.comfveb fen-US/defaul taspdroot=1

A STAR ALLIANGE MEMBER %7 "
5 Sign In

Type in keyword

tf hipmunk FLIGHTS w K LOG IN = v
X

Home | Reservations | Travelinformation | Deals&Offers | MileagePlus® | Products &

The fastest, easiest way to plan travel

@ Search Hotels

Latest News. changed
and Offers 1mporta

laz and &

Print Boarding Pass

Where
|

Check In Check Out
Nov 7 Nov 9

RISl ERLN m

Figure 11-3: Different designs for flight reservation from Hipmunk.com and United Airlines.

Confirmation or MileagePlus Numt

© More Check-in options
Chedscin iz availabla within 24 hours

Change or View Reservations

Find a Reservation by Confirmati

Reservation Type: * Flight - Car
Confirmation: Last Name: <
3

Create basic designs, called wireframes, and collect feedback.

Wireframes, as shown in Figure 114, are low fidelity website drawings which
show structurally how site content and interface interact. Wireframes are
simple to create, but should have enough detail to elicit feedback from
others. Many wireframe tools use a simple almost pencil-like drawing to
help anyone providing comments to focus on the structural and bigger
picture design, instead of smaller details like button colors or border
thicknesses. Feedback at this stage to refine design is so important
because the first wireframe likely does not address users’ main concerns
and overcomplicates the tasks a user needs to do.

http://www.dribbble.com
http://www.dribbble.com

Chapter 11: Researching Your First Web Application ’ 77

<\¥
With mobile devices increasing in popularity relative to desktop devices,
remember to create mobile and desktop versions of your wireframes.
EMail <Baox] [Jzchive | Fiss | Doete]
[Compose] subject vE
Inbox First thread in conversation
Orafts Second thread in conversation
Sent
All Mail Third thread in conversation
Fourth thread in conversation
Name and date
lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.
Figure 11-4: A wireframe for an email client.

5. Create mock-ups and collect more feedback. (See Figure 11-5.)
After you have finished talking to your client and to users, it is time
to create mock-ups, which are high fidelity website previews. These
designs have all the details a developer needs to create the website
including final layout, colors, images, logos, and sequences of screens
to show when the user interacts with the web page. After creating a
mock-up, plan to collect more feedback.

EMall < Back Archive Flag = Delete
[compose | subject via
e
Drafts Second thread in conversation
Sent Third thread in conversation
Al Fourth thread in conversation
name and date
lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore
Figure 11-5: A mock-up for an email client.
N\

Collecting feedback at every stage of the design process might seem

unnecessary, but it is much easier to explore different designs and make
changes before any code has been written.

’ 78 Part lll: Putting Together a Web Application

6. Send the final file to the developers.

After the mock-up has been created and approved, you typically send a
final image file to the developer. Although this file could be in any image
file format like PNG or JPG, the most popular file format used by design-
ers is PSD, created using Adobe Photoshop.

Finding your app’s form: The McDuck’s
Offer App design

In this section you follow the design process described in the previous sec-
tion to create a simple design for the McDuck’s Offer app. As part of the
design, you should do the following things:

1. Define the main goals of your app.

The main goal for McDuck’s is to use offers to attract customers to
restaurants.

2. Break these goals into tasks.
Customers need to view the offer, navigate to the store, and use the offer.
3. Research the flows and interactions needed to accomplish these tasks.

Because this is the first iteration of the app, let’s focus on just allowing
the customer to view the offer.

One function that McDuck’s did not specify is the ability to save single-
use coupons and to share general-use coupons. However, when looking
at other apps, like the ones in Figure 11-6, the need for this becomes
more obvious. Also, some similar apps allow the customer to spend
money to buy coupons — maybe this functionality should be added as
well. These questions would be great to present to McDuck’s later.

Figure 11-6: Example flow from deals and offer apps currently in the market.

The apps in Figure 11-6 also all display various “call to action” buttons to
the user before displaying the deal. Some apps ask the user to check-in
to a location, other apps ask the user to purchase the coupon, and still
others show a collection of new or trending coupons today.

Chapter 11: Researching Your First Web Application ’ 79

For now, and to keep things simple, let’s assume that our McDuck’s
app has a button that allows customers to check-in to their favorite
McDuck’s location, and when clicked within the target distance the app
displays a general-use coupon that customers receive for free.

4. Create basic designs, called wireframes, and collect feedback.

A sample design for the app, based on the look and feel of other apps,
appears in Figure 11-7.

MeDucks App

o Q x Q |hup.h‘wwwmcducksapp.com ' @
McDucks Offer App

Figure 11-7: A sample wireframe for the
McDuck's offer app.

5. Create mock-ups and collect more feedback.

Ordinarily, you would create mock-ups, which are more polished designs
with real images, from the wireframes and present them to customers
for feedback. In this case, however, the app is simple enough that you
can just start coding.

Identifying Research Sources

Now that you know what your app will do, you can focus on how your app
will do it. After breaking down your app into steps, you go over each step to
determine how to accomplish it. For more complicated apps, developers first
decide which of these two methods is the best way to complete each step:

’ 80 Part I1l: Putting Together a Web Application

3

v~ Building code from scratch: This is the best option if the functionality in
a particular step is unique or strategically important, an area of strength
for the app, and existing solutions are expensive or non-existent. With this
option, you and developers within the company write the code.

~ Buying or using a pre-existing solution: This is the best option if the
functionality in a particular step is common, non-core technical area
for the app, and existing solutions are competitively priced. With this
option, you and developers working on the app use code written by
external third party developers.

One company that recently made this decision — publicly and painfully — is
Apple with its Maps product. In 2012, after years of using Google Maps on its
mobile devices, Apple decided to introduce its own maps application that it
had been developing for two years. Although the Maps product Apple built
internally turned out to initially be a failure, Apple decided to build its own
mapping application because it viewed mapping capabilities as strategically
important and because turn-by-turn navigation solutions were not available
in the solution provided by Google.

Whether you're building or buying, research is your next step. Here are some
sources to consider when researching:

1~ Search engines: Use Google.com or another search engine to type in
what you are trying to accomplish with each step. One challenge can
be discovering how the task you're trying to achieve is referred to by
programmers. For instance, if | want to find my current location, I might
enter show my location in an app into a search engine, but this results in
a list of location-sharing apps. After reading a few of the top ten results,
I see that location-tracking is also referred to as geolocation. When |
search again for geolocation the top results include many examples of
code that shows my current location.

For more generic searches for code examples, try including the name of
the computer language and the word syntax. For example, if you want to
insert an image on a web page, search for image html syntax to find code
examples.

~ Prior commercial and open-source apps: Examining how others built
their apps can give you ideas on how to improve upon what already
exists, and insight into pushing existing technology to the limit to achieve
an interesting effect. For instance, say you wanted to build a mobile app
that recognized TV ads from the “audio fingerprint” of those ads and
directed viewers to a product page on a mobile device. To create this
app, you could build your own audio fingerprinting technology, which
would likely take months or longer to build, or you could partner with
Shazam, a commercial application, or Echoprint, an open-source music
fingerprinting service. Either app can record a 10 to 20-second audio
sample, create a digital fingerprint after overcoming background noise

Chapter 11: Researching Your First Web Application

\\J

and poor microphone quality, compare the fingerprint to large audio
database, and then return identification information for the audio sample.

1~ Industry news and blogs: Traditional newspapers, like the Wall Street
Journal, and tech blogs, like TechCrunch.com, report on the latest inno-
vations in technology. Regularly reading or searching through these sites
is a good way to find others who have launched apps in your space.

1~ API directories: You can easily search thousands of APIs for the func-
tionality you need to implement. For example, if you were creating an
app that used face recognition instead of a password, you could search
for face detection APIs and use an API you find instead of trying to build
a face detection algorithm from scratch. Popular API directories include
www . programmableweb . com and www . mashape . com.

As discussed in Chapter 9, APIs are a way for you to request and receive
data from other programs in a structured, predictable, documented way.

1~ User-generated coding websites: Developers in different companies
frequently face the same questions on how to implement functional-
ity for features. Communities of developers online talk about shared
problems and contribute code so anyone can see how these problems
have been solved in the past. You can participate in developer conver-
sation and see the code other developers have written by using www .
stackoverflow.comand www.github.com.

Researching the Steps in the McDuck’s Offer App

3

To implement the functionality in the McDuck’s Offer app, you broke down
the app into six steps using plain English. Now, research how you can convert
those steps into code using the resources listed in the previous section. Your
app will require HTML to put content on the page, CSS to style that content,
and JavaScript for the more interactive effects. Do your best to research each
of the steps on your own, write down the answers, and then look over the
suggested code in the next section:

1~ “The customer presses a button on the app”: This code creates a
button that triggers every subsequent step. Creating a button on a web
page is a very common task, so to narrow down the results search for
html button tag. Review some of the links in the top 10 search results,
and then write down the HTML tag syntax to create a button that says
“McDuck’s Check-in.”

In your search results, sites like w3schools. com are designed for begin-
ners, and will include example code and simple explanations.

1~ “After the button is pressed, find the customer’s current location:” In
web lingo, finding a user’s location is called geolocation. I will provide
you with JavaScript geolocation code, along with an explanation for how

181

http://www.programmableweb.com
http://www.mashape.com
http://www.stackoverflow.com
http://www.stackoverflow.com
http://www.github.com

’ 82 Part lll: Putting Together a Web Application

gMBER

€« C' | @ https:/Awnenwr.google.com/maps/place/iicDonald s/@fa0.7410344,-72.9880763L8z/data= 14mSI1lm 21 2m 1 1smedonalds!3n gy
R 5 =) Smille Train "<ty
5 by, St
meodenalds supreme 5 +Mikhil a
L& Court-Appellate Division iff Raf's (7
1= List all results
—~ =" a
4 . Park A Autumn (11
<% McDonald's e * D 8 ark Avenue AUtumn
q Madison Square Park
26 E23rd 5t Directions ~ Save
Mew York, WY 10010 &5 i
o Sty O
Open today Open 24 hours medonalds.com S
Baruch College
Campus High School
P ~ Madison Square
N e Fresbyterian o
Church
E Credit Suisse ($
Senator Roscoe & oy
2 reviews - Menu - § Conkling 2, =
Monument %, A8
Classic, long-running fast-food chain known for its burgers, fries & ¥ &
0 shakes. - Google < H
Wirite a review - Add a photo Gregorys Coffee (=
11) Natural Defi
= That is @ 79% markup on the McChicken Bait (71 @ Welgreens (&
tive Salad (7)
@ "Wow,whatashame’ McDonald's &
@ Icanic fast-food o
burger & fries chain 0 Staples (@)
Suggesi 1) Press i 8
- 0
& =) Butterfly Studio Salon = T
& = i
X &) Ann Taylor it £5,
< g %2 2]
&5 @ o Bath & Body Works (&
1 S .
Almond (11 ok
+
&
- <7
Stay 622,,0, 2351617 =
S
s a a
MeHE[E Google L =
= -) Glorhiols of Grameiay STIX Meditetrance
Punch Bar & Gill (1 & Map data ®2014 Google Tems Privaty Raports problam

% McDonald's - Google Map x W |

it works and where I found it. To trigger this JavaScript code, you need
to add an attribute to the HTML button tag to call a JavaScript function
named getlocation ().

As described in Chapter 4, HTML attributes are inserted in the opening
HTML tag.

Search for html button javascript button on click to find out how to insert
the onclick attribute to your button HTML code. Review the search
results, and then write down the HTML syntax for your button code.

“Find the fixed location of a McDuck’s store:” You'll need a real-world
address to serve as the McDuck’s store. Use a mapping application like
maps .google.com to find the street address of a burger restaurant near
you. Computers typically represent physical addresses using latitude and
longitude numbers instead of street addresses. You can search for web-
sites that convert street addresses into latitude and longitude numbers,
or if you're using Google Maps, you can find the numbers in the URL,

as shown in Figure 11-8. The first number after the @ sign and up to the
comma is the latitude, and the second number between the two commas
is the longitude. Figure 11-8 shows a McDonald’s store in New York City,
and the latitude is 40.7410344, and the longitude is —73.9880763.

[=lET =]

Figure 11-8: Latitude and longitude of a McDonald’s in New York City.

http://maps.google.com

Chapter 11: Researching Your First Web Application

3

A\

Track down the latitude and longitude numbers for the burger restau-
rant of your choice, up to seven decimal places, and write them down on
a piece of paper.

Include a negative sign if you see one, and all seven decimal places for
the greatest accuracy.

1 “Calculate the distance between the customer’s current location

and the McDuck’s restaurant, and name this distance Customer
Distance”: Latitude and longitude are coordinates that represent a loca-
tion on a sphere. The distance along the surface of the sphere between
two sets of latitude and longitude coordinates is calculated using the
Haversine formula. You can find a JavaScript version of the formula at
stackoverflow.com/questions/27928/how-do-i-calculate-
distance-between-two-latitude-longitude-points. This is the
formula you will use to calculate distance when creating the McDuck’s
app, and I will include this code for you.

Don’t get bogged down in the details of how the Haversine formula
works. Abstraction is an important concept to remember when program-
ming, and this basically means that as long as you understand the inputs
to a system, and the outputs, you don’t really need to understand the
system itself, much as you don’t need to understand the mechanics of
the internal combustion engine in order to drive a car.

“Convert five to ten minutes of customer travel into a distance called
Threshold Distance”: Using the most common method of transporta-
tion in your current city, write down the number of miles you could you
travel, on average, in five to ten minutes.

1~ “If the Customer Distance is less than the Threshold Distance then

show an offer to the customer”: The two pieces to research for this step
are the conditional statement that decides when to show the offer to the
consumer, and the actual offer:

e The conditional statement: This is written in JavaScript using an
if-else statement. If the customer is within the threshold distance,
then it shows the offer; otherwise (else) it shows another message. To
review the if-else syntax, search Google or another search engine for
JavaScript ifelse statement syntax (or refer to Chapter 9 to review the
coverage of the if-else statement syntax there).

e The offer to show to the consumer: The easiest way to show an offer
is to use the JavaScript alert (). Search for JavaScript alert syntax.

After you've conducted your searches, write down your if-else state-
ment with atext alert () for a free burger if the customer is within the
Threshold Distance, and a text alert () notifying the customer they
have checked in.

183

http://stackoverflow.com/questions/27928/how-do-i-calculate-distance-between-two-latitude-longitude-points
http://stackoverflow.com/questions/27928/how-do-i-calculate-distance-between-two-latitude-longitude-points

’ 84 Part lll: Putting Together a Web Application

P When you have the if-else statement working, you can replace the
text alert () with an image. Search http://images.google.com for
a burger coupon image. After you find the image, left-click on it from the
image grid in the search results, and left-click again on View Image
button. When the image loads the direct link to the image will be in the
URL address bar in the browser. The code to insert the image is shown
in Chapter 4.

Choosing a Solution for Each Step

With your research finished, it’s time to find the best solution. If multiple
solutions exist for each step, you now need to choose one. To help you
choose, weigh each of your multiple solutions across a variety of factors,
such as these:

+* Functionality: Will the code you write or pre-built solution you found do
everything you need?

 Documentation: Is there documentation for the pre-built solution, like
instructions or a manual, that is well written with examples?

1 Community and support: If something goes wrong while writing your
code, is there a community you can turn to for help? Similarly, does the
pre-built solution have support options you can turn to if needed?

1~ Ease of implementation: [s implementation as simple as copying a few
lines of code? Or is a more complex setup or an installation of other sup-
porting software necessary?

~ Price: Every solution has a price, whether it is the time spent coding
your own solution or the money paid for someone else’s pre-built code.
Think carefully about whether your time or money is more important to
you at this stage.

The following are suggested solutions for the previous McDuck’s Offer app
research questions. Your answers may vary, so review each answer to see
where your code differs from mine:

1~ “The customer presses a button on the app”: The HTML tag syntax to
create a button that says “McDuck’s Check-in” is:

<button>McDuck's Check-in</buttons>
\\J

The syntax for an HTML button is available here www.w3schools.com/
tags/tag_button.asp.

http://images.google.com
http://www.w3schools.com/tags/tag_button.asp
http://www.w3schools.com/tags/tag_button.asp

Chapter 11: Researching Your First Web Application ’ 85

<\P

s

1~ “After the button is pressed, find the customer’s current location”:

The HTML syntax for your button code is:
<button onclick="getLocation () ">McDuck's Check-in</button>

The syntax for calling a JavaScript function by pressing a button is avail-
able here www.w3schools.com/jsref/event onclick.asp.

+~ “Find the fixed location of a McDuck’s store”: | picked a McDonald’s

store in New York City near Madison Square Park whose latitude is
40.7410344 and longitude is —73.9880763. The latitude and longitude for
your restaurant, of course, will likely differ.

1 “Calculate the distance between the customer’s current location and

the McDuck’s restaurant, and name this distance Customer Distance”:
The following is the actual code for the Haversine formula, used to
calculate the distance between two location coordinates, found on
Stackoverflow at stackoverflow.com/questions/27928/how-do-
i-calculate-distance-between-two-latitude-longitude-
points, I modified this code slightly so that it returned miles instead of
kilometers:

function getDistanceFromLatLonInKm(latl,lonl,lat2,lon2) {

var R = 6371; // Radius of the earth in km

var dlat = deg2rad(lat2-latl); // deg2rad below

var dLon = deg2rad(lon2-lonl);

var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(latl)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)

var ¢ = 2 * Math.atan2 (Math.sqgrt(a), Math.sqrt(l-a));

var d = R * ¢ * 0.621371; // Distance in miles

return d;

}

function deg2rad(deg) {
return deg * (Math.PI/180);

}

An explanation of how this formula works is outside the scope of this
book, but make sure you understand the formula’s inputs (latitude and
longitude) and the output (distance between two points in miles).

1 “Convert five to ten minutes of customer travel into a distance called

Threshold Distance”: In New York City, people usually walk, so trav-
eling for five to ten minutes would take you 0.5 miles, which is my
Threshold Distance.

http://www.w3schools.com/jsref/event_onclick.asp
http://stackoverflow.com/questions/27928/how-do-i-calculate-distance-between-two-latitude-longitude-points
http://stackoverflow.com/questions/27928/how-do-i-calculate-distance-between-two-latitude-longitude-points
http://stackoverflow.com/questions/27928/how-do-i-calculate-distance-between-two-latitude-longitude-points

’ 86 Part I1l: Putting Together a Web Application

1~ “If the Customer Distance is less than the Threshold Distance, then
display an offer to the customer”: The syntax for the i f-else state-
ment with the two text alert () methods is:

If (distance < 0.5) {
alert ("You get a free burger");
}

else {
alert ("Thanks for checking in!");
}
\\3

The syntax for a JavaScript if-else statement is available at www.
w3schools.com/js/js _1if else.asp.

http://www.w3schools.com/js/js_if_else.asp
http://www.w3schools.com/js/js_if_else.asp

12

Coding and Debugging Your First
Web Application

In This Chapter
Reviewing code to see pre-existing functionality
Writing code by following steps to create your app
Debugging your code by looking for common syntax errors

Talk is cheap. Show me the code.

—Linus Torvalds

’ t may not feel like it, but you've already done the majority of work toward
creating your first web application. You painfully broke down your app
into steps, and researched each step to determine functionality and design.
As Linus Torvalds, creator of the Linux operator system, said, “Talk is cheap.”
So let’s start actually coding.

Getting Ready to Code

Before you start coding, do a few housekeeping items. First, ensure that you
are doing all of the following:

1~ Using the Chome browser: Download and install the latest version of
Chome, as it offers the most support for the latest HTML standards, and
is available for download at www.google.com/chrome/browser.

1~ Working on a desktop or laptop computer: Although it is possible to
code on a mobile device, it can be more difficult and all layouts may not
appear properly.

http://www.google.com/chrome/browser

’ 88 Part lll: Putting Together a Web Application

1 Remembering to indent your code to make it easier to read: One main
source of mistakes is forgetting to close a tag or curly brace, and indent-
ing your code will make spotting these errors easier.

» Remembering to enable location services on your browser and com-
puter: To enable location services within Chrome, click on the settings
icon (3 horizontal lines on the top right of the browser), and click on
Settings. Then click on the Settings tab, and at the bottom of the screen
click on “Show Advanced settings . . .” Under the Privacy menu head-
ing, click on “Content settings . .. ” and scroll down to Location and
make sure that “Ask when a site tries to track your physical location”
is selected. You can read more here support.google.com/chrome/
answer/142065.

To enable location services on a PC no additional setting is necessary,
but on a Mac using OS X Mountain Lion or later, from the Apple menu

choose System Preferences, then click on the Security & Privacy icon,
and click the Privacy tab. Click the padlock icon on the lower left, and
select Location Services, and check Enable Location Services. You can
read more here support.apple.com/en-us/ht5403.

Finally, you need to set up your development environment. To emulate a
development environment without instructional content use Codepen.io.
Codepen.io offers a free stand-alone development environment, and makes
it easy to share your code. Open this URL in in your browser: codepen.io/
nabraham/pen/ExnsA.

Coding Your First Web Application

With the Codepen.io URL loaded, let us review the development environment,
the pre-written code, and the coding steps for you to follow.

Development environment

The Codepen.io development environment, as shown in Figure 12-1, has three
coding panels, one each for HTML, CSS, and JavaScript. There is also a pre-
view pane to see the live results of your code. Using the button at the bottom
of the screen, you can hide any coding panel you aren’t using, and the layout
of the coding panels can be changed.

Signing up for a Codepen.io account is completely optional, and allows you to
fork or save the code you have written, and share it with others.

http://support.google.com/chrome/answer/142065
http://support.google.com/chrome/answer/142065
http://support.apple.com/en-us/ht5403
http://codepen.io/nabraham/pen/ExnsA
http://codepen.io/nabraham/pen/ExnsA

Chapter 12: Coding and Debugging Your First Web Application ’ 89

€ CodePen - A Pen by Niki

« C [codepen.iofnabraham/pen/ExnsA
C@ DEPEN @sae NrFok Wnfo [2share

& HTML X &css

McDuck's Local Offers

Figure 12-1: The Codepen.io development environment.

Pre-written code

The Codepen.io development environment includes some pre-written
HTML, CSS, and JavaScript code for the McDuck’s app. The pre-written code
includes code you have seen in previous chapters, and new code that is
explained below:

1 HTML: The HTML code for the McDuck’s app is below, and includes

e Two sections: an opening and closing <head> tag, and an opening
and closing <body> tag.

¢ Inside the <body> tags are <h1> tags to create a heading and
<div> tags.

e Additional <div> tags to display messages created in the
JavaScript file. The <div> tag is a container that can hold content
of any type. The first <div> tag is used to display your current lon-
gitude and latitude. The second <div> tag can be used to display
additional content to the user.

e Instructions to insert the HTML button and onclick attribute
code, which you researched in previous chapters.

’ 90 Part lll: Putting Together a Web Application

Here’s the HTML code:

<!DOCTYPE html>
<html>
<head>
<title>McDuck's App</title>
</head>
<body>
<hl> McDuck's Local Offers</hl>
<!--1. Create a HIML button that when clicked calls the JavaScript
getLocation() function -->

<!--Two containers, called divs, used to show messages to user -->

<div id="geodisplay"></div>
<div id="effect"></div>

</body>
</html>

1 CSS: The CSS code for the McDuck’s app is below, and includes:
e Selectors for the body, heading, and paragraph tags.

* Properties and values that set the text alignment, background
color, font family, font color, and font size.

Once your app is functioning, style the app by adding a McDuck’s color
scheme and background image logo.

Here’s the CSS:

body {
text-align: center;
background: white;

}

hl, h2, h3, p {
font-family: Sans-Serif;
color: black;

}

p {
font-size: lem;
}

v~ JavaScript: The JavaScript code for the McDuck’s app is below. This pre-
written code is a little complex, because it calculates the current loca-
tion of the user using the HTML Geolocation APL. In this section I review
the code at a high level so you can understand how it works and where
it came from.

Chapter 12: Coding and Debugging Your First Web Application

The Geolocation API is the product of billions of dollars of research

and is available to you for free. The most recent browsers support
geolocation, though some older browsers do not. At a basic level, code
is written to ask whether the browser supports the Geolocation API,
and, if yes, to return the current location of the user. When called, the
Geolocation API balances a number of data inputs to determine the
user’s current location. These data inputs include GPS, wireless network
connection strength, cell tower and signal strength, and IP address.

With this in mind, let’s look at the JavaScript code. The JavaScript code
includes two functions, as follows:

e The getLocation () function.This function determines whether
the browser supports geolocation. It does this by using an i f
statement and navigator.geolocation, which is recognized
by the browser as part of the Geolocation API and which returns a
true value if geolocation is supported.

Here is the getLocation () function:

function getLocation() {
if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition (showLocation) ;

}

® The showLocation () function: When the browser supports geolo-
cation, the next step is to call the showlocation function, which
calculates and displays the user’s location.

And here is the showLocation () function:

function showLocation (position) {

// 2. Hardcode your store location on line 12 and 13, and update the
comment to reflect your McDuck's restaurant address

// Nik's apt @ Perry & W 4th St (change to your restaurant location)

var mcduckslat=40.735383;
var mcduckslon=-74.002994;

// current location
var currentpositionlat=position.coords.latitude;
var currentpositionlon=position.coords.longitude;

// calculate the distance between current location and McDuck's location
var distance=getDistanceFromLatLonInMiles (mcduckslat, mcduckslon, currentpos
itionlat, currentpositionlon) ;

// Displays the location using .innerHTML property and the lat & long
coordinates for your current location

191

’ 92 Part lll: Putting Together a Web Application

document .getElementById ("geodisplay") .innerHTML="Latitude: " +
currentpositionlat + "
Longitude: " + currentpositionlon;

}

// haversine distance formula
The rest omitted for brevity because it's shown in a previous chapter

The showLocation () function performs the following tasks:

¢ Assigns the McDuck longitude and latitude to mduckslat and
mcduckslon (Lines 12 and 13 of the code).

e Assigns the longitude and latitude of the customer’s current loca-
tion to currentpositionlat and currentpositionlon (Lines
16 and 17 of the code).

e Calculates the distance in miles between those two points and
assigns that distance to a variable called distance (Line 20 of the
code). The Haversine formula calculates the distance between two
points on a sphere, in this case the earth, and the code is shown
online but omitted here for brevity.

e After the button is clicked, the getElementByID and
. innerHTML methods display the customer’s current longitude
and latitude in an HTML tag named "geodisplay" using the id
attribute.

‘x\gN\BEI? JavaScript functions are case-sensitive, so getLocation () differs from
& getlocation (). The letter L is uppercase in the first function, and low-
ercase in the second function. Similarly, showLocation () differs from
showlocation () for the same reason.

Coding steps for you to follow

With some of the code already written, and with research in the previous
chapter, follow these steps to insert the code:

1. Insert the HTML button code below with onclick attribute calling
the getLocation () function after line 8 in the HTML file.

<button onclick="getLocation()">McDuck's Check-in</button>

After you insert this code, press the button. If your location settings are
enabled and you inserted the code properly, you will see a dialog box
asking for your permission to share your computer’s location. As shown
in Figure 12-2, look at the top of your browser window and click Allow.

Chapter 12: Coding and Debugging Your First Web Application ’ 93

& CodePen - APen by Nikh x ¥
<« (&5 codepenio/nabr

@ http://s.codepen.io wants to use your computer's ocation. | Allow | | Deny

C @ DEPEN @ Save S Fork ¥ info [2 share

& HTML X &cCSsS

McDuck*s Local
offers

McDuck®s Local Offers

McDuck's Local Offers

Check-in

Collections v Embed Details & Comments | x Delete Keyboard

Figure 12-2: The browser asks for your permission before sharing your location.

2. Update lines 12 and 13 in the JavaScript file with the latitude and lon-
gitude of the restaurant near you serving as the McDuck’s store.

After you have updated the location, make sure to change the com-
ment in line 10 to reflect the address of your restaurant (instead of my
apartment).

3. Add an alert that displays the distance between your location and the
restaurant.

The distance variable stores the miles from your current location to
the restaurant. Make a rough estimate — or use a map for greater preci-
sion — of your current distance from the restaurant you picked. Then
using an alert, show the distance by inserting this code below in line 23.

alert (distance) ;

If the distance in the alert is larger or smaller than you expected, you
likely entered in incorrect values for the latitude or longitude. If the dis-
tance matches your estimate, insert two slashes ("//") before the alert
and comment it out.

’ 94 Part lll: Putting Together a Web Application

\

4. Write an if-else statement on line 26 to show an alert if you are

within your threshold distance to the restaurant.

My code, based on a half-mile threshold distance, is displayed below —
yours may vary depending on your alert text and threshold distance.
(See Figure 12-3.)

if (distance < 0.5) {
alert ("You get a free burger");
}
else {
alert ("Thanks for checking in!");
}

@ CodePen - A Pen by ik

¢ = € [codepenio/nabranam/pen/Ensa

C @ DEPEN - The page at s.codepen.io says:

You get a free burger!
& HTML

flcbuck’s Local Offers

getLocation()"

McDuck's Local Offers

Check-in

Figure 12-3: The McDuck’s app displaying an offer to come to the store.

When your app logic is working, you can change alert ("You get a
free burger") ; to an actual picture of a coupon or burger. To do so,
replace the entire line the alert is on with the following code:

document .getElementById ("effect") .innerHIML="<img src='http://www.image.
com/image.jpg'>";

Replace the URL after src and within the single quotes to your own
image URL. Be sure to keep the double quotation marks after the first
equals sign and before the semi-colon, and the single quotation marks
after the second equals sign and before the right angle bracket.

Chapter 12: Coding and Debugging Your First Web Application

5. (Optional) When the app is working, change the text colors and insert
background images to make the app look more professional.

Use hex-values or color names, as discussed in Chapter 6, to change the
text and background colors. Additionally, you can insert a background
image, as you did in the Codecademy About You exercise, using the fol-
lowing code (see Figure 12-4):

background-image: url ("http://www.image.com/image.jpg") ;

€ CodePen - A Pen by ik,

& - C [codepenio/nabraham/pen/Bnsa

CODEPEN

offers

Figure 12-4: The completed McDuck's app with styled content
displaying an image to the user.

Debugging Your App

When coding your app, you will almost inevitably write code that does not
behave as you intended. HTML and CSS are relatively forgiving, with the
browser even going so far as to insert tags so the page renders properly.
However, JavaScript isn’t so forgiving, and the smallest error, such as a miss-
ing quotation mark, can cause the page to not render properly.

Errors in web applications can consist of syntax errors, logic errors, and dis-
play errors. Given that we worked through the logic together, the most likely
culprit causing errors in your code will be syntax related. Here are some
common errors to check when debugging your code:

195

’ 96 Part lll: Putting Together a Web Application

1 Opening and closing tags: In HTML, every opening tag has a closing tag,
and you always close the most recently opened tag first.

1~ Right and left angle brackets: In HTML, every left angle bracket < has a
right angle bracket >.

1~ Right and left curly brackets: In CSS and JavaScript, every left curly
bracket must have a right curly bracket. It can be easy to accidentally
delete it or forget to include it.

~ Indentation: Indent your code and use plenty of tabs and returns to
make your code as readable as possible. Proper indentation will make
it easier for you to identify missing tags, angle brackets, and curly
brackets.

1~ Misspelled statements: Tags in any language can be misspelled, or
spelled correctly but not part of the specification. For example, in HTML,
 is incorrect because scr should really be
src for the image to render properly. Similarly, in CSS font-color
looks like it is spelled correctly but no such property exists. The correct
property to set font color is just color.

Keep these errors in mind when debugging — they may not solve all your
problems, but they should solve many of them. If you have tried the steps
above and still cannot debug your code, tweet me at @nikhilgabraham and
include the #codingFD hashtag and your Codepen.io URL in your tweet.

Part IV

Developing Your Coding
Skills Further

http://www.dummies.com/extras/coding
http://www.dummies.com/extras/coding

In this part . . .

1~ Learn basic programming tasks in Ruby.
v~ Use Ruby write a simple program to format text.
1~ Review Python philosophy and basic commands.

1~ Use Python write a simple program to calculate tips.

13

Getting Familiar with Ruby

In This Chapter
Understanding Ruby principles and style
Assigning variables and using if statements
Manipulating strings for consistency and formatting

I hope Ruby helps every programmer be productive, enjoy programming,
and be happy. That is the primary purpose of Ruby language.

—Yukihiro Matsumoto, creator of Ruby

R uby is a server-side language created by Yukihiro “Matz” Matsumoto,
a developer who was looking for an easy-to-use scripting language.
Matsumoto had experience programming in other languages like Perl and
Python, and, unsatisfied with both, created Ruby. When designing Ruby,
Matsumoto’s explicit goal was to “make programmers happy”, and he cre-
ated the language so programmers could easily learn it and use it. It worked.
Today Ruby, and particularly Ruby working with a Ruby framework called
Rails, is the most popular way for startups and companies to quickly create
prototypes and launch websites on the Internet.

In this chapter, you learn Ruby basics, including its design philosophy; how
to write Ruby code to perform basic tasks; and steps to create your first
Ruby program.

What Does Ruby Do?

Ruby is a general purpose programming language typically used for web
development. Until now, the HTML, CSS, and JavaScript you have learned
in the previous chapters has not allowed for storing data after the user has
navigated away from the page or closed the browser. Ruby makes it easy to

200 Partiv: Developing Your Coding Skills Further

A\

a\\J

store this data, and create, update, store, and retrieve it in a database. For
example, imagine [wanted to create a social networking website like Twitter.
The content I write in a tweet is stored in a central database. I can exit my
browser, and turn off my computer, but if [come back to the website later my
tweets are still accessible to me. Additionally, if others search for me or key-
words in the tweets | have written, this same central database is queried, and
any matches are displayed. Ruby developers frequently perform tasks like
storing information in a database, and a Ruby framework called Rails speeds
up development by including pre-built code, templates, and easy ways to per-
form these tasks. For these reasons, websites frequently use Ruby and Rails
together.

A website using the Rails framework is referred to as being built with Rails or
“Ruby on Rails”.

Twitter’s website was one of the most trafficked websites to use Ruby on
Rails, and until 2010 used Ruby code for its search and messaging products.
Other websites currently using Ruby on Rails include:

1 E-commerce websites such as those on the www. shopify.com plat-
form, including The Chivery and Black Milk Clothing.

1 Music websites such as www. soundcloud. com.
» Social networking sites such as www . yammer . com.

1~ News websites such as www.bloomberg. com.

As shown above, Ruby and Rails can create a variety of websites. While Rails
emphasizes productivity, allowing developers to quickly write code and test
prototypes, some developers criticize Ruby and Rails for not being scalable,
and use as evidence Twitter rewriting their code to stop using Rails for many
core features. While I cannot resolve the productivity-scalability debate for
you here, I can say that Rails can adequately handle millions of visitors per
month, and no matter the language used, significant work must be done to
scale a website to properly handle tens or hundreds of millions of visitors a
month.

Confirm the programming language used by these or any major website with
BuiltWith available at www.builtwith.com. After entering the website
address in the search bar, look under the Frameworks section for Ruby on
Rails.

Defining Ruby Structure

Ruby has its own set of design principles that guide how the rest of the lan-
guage is structured. All the languages you have learned so far have their own
conventions, like the curly braces in JavaScript or opening and closing tags in

http://www.shopify.com
http://www.soundcloud.com
http://www.yammer.com
http://www.bloomberg.com
http://www.builtwith.com

Chapter 13: Getting Familiar with Ruby 2}]

HTML, and Ruby is no different with conventions of its own. The design prin-
ciples in Ruby explain how Ruby tries to be different from the programming
languages that came before it. With these design principles in mind you will
then see what Ruby code looks like, understand Ruby’s style, and learn the
special keywords and syntax that allow the computer to recognize what you
are trying to do. Unlike HTML and CSS, and similar to JavaScript, Ruby can be
particular about syntax and misspelling a keyword or forgetting a necessary
character will result in the program not running.

Understanding the principles of Ruby

Ruby has a few design principles to make programming in the language less
stressful and more fun for programmers of other programming languages.
These design principles are:

~ Principle of conciseness: In general, short and concise code is needed
to create programs. The initial set of steps to run a program written in
English is often referred to as pseudo-code. Ruby is designed so as little
additional effort is needed to translate pseudo-code into actual code.
Even existing Ruby commands can be made more concise. For example,
Ruby’s if statement can be written in three lines or just one.

+~ Principle of consistency: A small set of rules governs the entire language.
Sometimes this principle in referred to as the principle of least astonish-
ment or principle of least surprise. In general, if you are familiar with
another programming language, the way Ruby behaves should feel intui-
tive for you. For example, in JavaScript when working with string meth-
ods, you can chain them together like so

"alphabet".toUpperCase () .concat ("Soup")

This JavaScript statement returns “ALPHABETSoup” by first making the
string “alphabet” uppercase using the . toUpperCase () method, and
then concatenating “soup” to “ALPHABET”. Similarly, the Ruby state-
ment below chains together methods just as you would expect, also
returning “ALPHABETSoup”.

"alphabet".upcase.concat ("Soup")

+~ Principle of flexibility: There are multiple ways to accomplish the same
thing, and even built-in commands can be changed. For example, when
writing an if-else statement you can use the words if and else, but
you can also accomplish the task with a single “?”. The following code
both perform the same task.

202 Partiv: Developing Your Coding Skills Further

Version 1:
if 3>4
puts "the condition is true"
else
puts "the condition is false"
end
Version 2:
puts 3>4 ? "the condition is false" : "the condition is true"

Styling and spacing
Ruby generally uses less punctuation than other programming languages you
may have previously tried. Some sample code is included below.

print "What's your first name?"
first name = gets.chomp
first name.upcase!

if first name=="NIK"

print "You may enter!"
elise

print "Nothing to see here."
end

If you ran this code it would do the following:

v~ Print a line asking for your first name.

1~ Take user input (gets.chomp) and save it to the £irst name variable.

1~ Test the user input. If it equals “NIK” then print “You may enter!” other-
wise print “Nothing to see here.”

Each of these statement types is covered in more detail later in this chapter.
For now, as you look at the code, notice some of its styling characteristics

1 Less punctuation: unlike JavaScript there are no curly braces, and unlike
HTML there are no angle brackets.

1~ Spaces, tabs, and indentation are ignored: unless within a text string
whitespace characters do not matter.

1~ Newlines indicate the end of statements: although you can use semi-
colons to put more than one statement on a line, the preferred and more
common method is to put each statement on its own line.

Chapter 13: Getting Familiar with Ruby ~ 2() 3

1 Dot-notation is frequently used: the period (as in . chomp or .upcase)
signals the use of a method, which is common in Ruby. A method is a
set of instructions that carry out a particular task. In this code example,
. chomp removes carriage returns from the user input, and .upcase
transforms the user input into all upper case.

1 Exclamation points signal danger: methods applied to variables, like
first name.upcase, by default do not change the variable’s value and
only transform a copy of the variable’s value. Exclamation points signal
a permanent change, so first name.upcase! permanently changes
the value of the variable first name.

Coding Common Ruby Tasks and Commands

Ruby can perform many tasks from simple text manipulation to complex login
and password user authentication. The following basic tasks, while explained
within a Ruby context, are core programming concepts applicable to any pro-
gramming language. If you have read about another programming language

in this book, the following will look familiar. These tasks all take place in the
Ruby shell, which looks like a command line interface. Ruby can also gener-
ate HTML to create interactive web pages, but that is slightly more complex
and not covered here.

Instructions on how to do these basic tasks are below, but you can also prac-
tice these skills right away by jumping ahead to the “Building a Simple Form-
0 Text Formatter Using Ruby” section, later in this chapter.
N\
Programming languages can do the same set of tasks, and understanding the
set of tasks in one language makes it easier to understand the next language.

Defining data types and variables

Variables, like in algebra, are keywords used to store data values for later
use. Though the data stored in a variable may change, the variable name will
always be the same. Think of a variable like a gym locker — what you store in
the locker changes, but the locker number always stays the same.

Variables in Ruby are named using alphanumeric characters and the under-
score (_) character, and cannot begin with a number or capital letter.
Table 13-1 lists some of the data types that Ruby can store.

20/ PartIv: Developing Your Coding Skills Further

3

Table 13-1 Data Stored by a Variable
Data Type Description Example
Numbers Positive or negative numbers with or 156—101.96
without decimals
Strings Printable characters Holly
NovakSefior
Boolean Value can either be true or false truefalse

To initially set or change a variable’s value, write the variable name and use
one equals sign, as shown in the following example:

myName = "Nik"
pizzaCost = 10
totalCost = pizzaCost * 2

Unlike JavaScript, Ruby does not require you to use the var keyword to
declare a variable, or to set its value the first time.

Variable names are case sensitive, so when referring to a variable in your pro-
gram remember that MyName is a different variable from myname. In general,
give your variable a name that describes the data being stored.

Computing simple and advanced math

After you create variables, you may want to do some math on the numerical
values stored in those variables. Simple math like addition, subtraction, mul-
tiplication, and division is done using operators you already know. One dif-
ference is exponentiation (such as, for example, 2 to the power of 3) is done
using two asterisks. Examples are shown below, and in Table 13-2.

suml = 1+1 (equals 2)
suml = 5-1 (equals 4)
suml = 3*4 (equals 12)
suml = 9/3 (equals 3)
suml = 2**3 (equals 8)

Advanced math like absolute value, rounding to the nearest decimal, round-
ing up, or rounding down can be performed using number methods, which
are shortcuts to make performing certain tasks easier. The general syntax
is to follow the variable name or value with a period, and the name of the
method as follows for values and variables

value.method
variable.method

Chapter 13: Getting Familiar with Ruby 2()5

The values and variables that methods act upon are called objects. If you
compared Ruby to the English language, think of objects like nouns and meth-
ods like verbs.

Table 13-2 Common Ruby Number Methods
Method Name Description Example Result
.abs Returns the abso- -99.abs 99
lute value of a
number
.round (ndigits) Rounds a number 3.1415. 3.14
to n digits round (2)
.floor Rounds down 4.7.floor 4
to the nearest
integer
.ceil Rounds up to the 7.3.ceil 8

nearest integer

Using strings and special characters

Along with numbers, variables in Ruby can also store strings. To assign a
value to a string use single or double quotation marks.

firstname = "Jack"
lastname = 'Dorsey'

To display these variable values, you can puts or print the variable value
to the screen. The difference between the two is puts adds a newline (ie.,
carriage return) after displaying the value, while print does not.

QIING/ Variables can also store numbers as strings instead of numbers. Even though

¥ the string looks like a number, Ruby will not be able to perform any opera-
tions on it. For example, Ruby cannot evaluate this code as is amountdue =
"18" + 24.

One issue arises with strings and variables — what if your string itself
includes a single or double quote? For example, if | want to store a string
with the value ‘I'm on my way home’ or “Carrie said she was leaving for “just
a minute””. As is, the double or single quotes within the string would cause
problems with variable assignment. The solution is to use special characters
called escape sequences to indicate when you want to use characters like
quotation marks, which normally signal the beginning or end of a string, or
other non-printable characters like tabs. Table 13-3 shows some examples of
escape sequences.

200 Part\V: Developing Your Coding Skills Further

\\;

3

Table 13-3 Common Ruby Escape Sequences

Special Description Example Result

character

\’or\" Quotation print "You You had me at

marks had me at "Hello"

\ "Hello\ nn

\t Tab print "Item\ Item Units
tUnits \tPrice" Price

\n Newline print Anheuser?
"Anheuser?\ ;
nBusch?\n Busch?
Bueller? Bueller?
Bueller?" Bueller?

Escape sequences are interpreted only for strings with double quotation
marks. For a full list of escape sequences, see http://en.wikibooks.org/
wiki/Ruby Programming/Strings

Deciding with conditionals: If, elsif, else

With data stored in a variable, one common task is to compare the variable’s
value to a fixed value or another variable’s value, and then make a decision
based on the comparison. If you previously read the JavaScript chapter, you
may recall much of the same discussion, and the concept is exactly the same.
The general syntax for an if-elsif-else statement is as follows:

if conditionall

statementl to execute if conditionall is true
elsif conditional2

statement2 to execute if conditional2 is true
else

statement3 to run if all previous conditionals are false
end

Notice there is only one ‘e’ in elsif statement.

The if is followed by a conditional, which evaluates to true or false. If
the condition is true, then the statement is executed. This is the minimum
necessary syntax needed for an if-statement, and the elseif and else
are optional. If present, the elsif tests for an additional condition when the
first conditional is false. You can test for as many conditions as you like

http://en.wikibooks.org/wiki/Ruby_Programming/Strings
http://en.wikibooks.org/wiki/Ruby_Programming/Strings

\\3

Chapter 13: Getting Familiar with Ruby 2/

using elsif. Specifying every condition to test for can become tedious, so it
is useful to have a “catch-all”. If present, the else serves this function, and
executes when all previous conditionals are false.

You cannot have an elsif or an else by itself, without a preceding if state-
ment. You can include many elsif statements, but one and only one else
statement.

The conditional in an if statement compares values using comparison oper-
ators, and common comparison operators are described in Table 13-4.

Table 13-4 Common Ruby Comparison Operators
Type Operator Description Example
Less than < Evaluates whether one value X < 55
is less than another value
Greater than > Evaluates whether one value X > 55
is greater than another value
Equality == Evaluates whether two values x == 55
are equal
Less than or <= Evaluates whether one X <= 55
equal to value is less than or equal to
another value
Greater than >= Evaluates whether one value X >= 55
or equal to is greater than or equal to
another value
Inequality 1= Evaluates whether two values x l= 55

are not equal

Here is an example if statement.

carSpeed=40
if carSpeed > 55

print "You are over the speed limit!"
elsif carSpeed == 55

print "You are at the speed limit!"
else

print "You are under the speed limit!"
end

208 Part IV: Developing Your Coding Skills Further

? Start
You are over

the speed limit! carSpeed
==55

You are at the You are under
speed limit! the speed limit!

Figure 13-1: An 1 f -else statementwithanelsif.

As the diagram in Figure 13-1 shows, there are two conditions, each signaled
by the diamond, which are evaluated in sequence. In this example, carSpeed
is equal to 40, so the first condition (carSpeed > 55)is false, and then
the second conditional (carSpeed==55) is also false. With both conditionals
false, the else executes and prints to the screen “You are under the speed
limit!”

Input and output

As you have seen in this chapter, Ruby allows you to collect input from and
display output to the user. To collect user input use the gets method, which
stores the user input as a string. In the following example, the user enters his
first name which is stored in a variable called full name:

print "What's your full name?"
full name = gets

gets might sound like an odd keyword to collect user input. Ruby is influ-
enced by the C programming language, which also has a gets function to col-
lect user input.

Imagine the user entered his name, “Satya Nadella.” As the code is currently
written, if you display the value of the variable full name you would see
this

Satya Nadella\n

The \n escape sequence appears after the name because after asking for
input the user pressed the “Enter” key, which Ruby stores as \n. To remove
the \n add the chomp method to the string, and it will remove the \n and \r
escape sequences.

Chapter 13: Getting Familiar with Ruby ~ 2(()9

print "What's your full name?"
full name = gets.chomp

Now when you display the full name variable you would only see “Satya
Nadella”.

To display output to the user you can either use print or puts, short for
“put string”. The difference between the two is that put s adds a newline
after executing, while print does not. The following code shows the difference
when print and puts is executed.

Print code:

print "The mission has "
print "great tacos"

Result:
The mission has great tacos
Puts code:

puts "The mission has "
puts "great tacos"

Result:

The mission has
great tacos

Shaping Your Strings
Manipulating strings is one of the most common tasks for a programmer.
Sample tasks in this category include:
»~ Standardizing strings to have consistent upper- and lowercase.
1 Removing white space from user input.
~ Inserting variables values in strings displayed to the user.

Ruby shines when it comes to dealing with strings, and includes many built-in
methods that make processing strings easier in Ruby than in other languages.

2 ’ 0 Part IV: Developing Your Coding Skills Further

String methods: upcase, downcase, strip

Standardizing user input to have proper case and remove extra white space
characters is often necessary to easily search the data later. For example,
imagine you are designing a website for the New York Department of Motor
Vehicles, and one page is for driver license application and renewals. Both
the application and renewal forms ask for current address, which includes a
field for two letter state abbreviation. After reviewing completed paper forms,
and previous electronic data you see that drivers enter the state in several
ways including “NY”, “ny”, “Ny”, “ny “, “nY”, and other similar variants. If
“NY” was the desired result you could use upcase and strip to make this
input consistent. Table 13-5 further describes these string methods.

Table 13-5 Select Ruby String Methods

Method name Description Example Result

upcase Returns all uppercase "nY".upcase "NY™"
characters

downcase Returns all lowercase "Hi". "hin
characters downcase

capitalize Capitalizes first letter, "wake UP". "Wake
lowercases remaining capitalize up"
letters

strip Removes leading and " Ny ".strip "Ny"

trailing whitespaces

Inserting variables in strings with #

To insert variable values into strings shown to the user, you can use the
hashtag sequence #{ . . . }. The code between the open and closing curly
braces is evaluated and inserted into the string. Like with escape sequences,
the variable value is inserted only into strings created with double quotation
marks. See the example code and result below.

Code:

yearofbirth = 1990

pplinroom = 20

puts "Your year of birth is #{yearofbirth}. Is this correct?"

puts 'Your year of birth is #{yearofbirth}. Is this correct?'

puts "There are #{pplinroom / 2} women in the room with the same birth year."

Chapter 13: Getting Familiar with Ruby 2]]

Result:

Your year of birth is 1990. Is this correct?
Your year of birth is #{yearofbirth}. Is this correct?
There are 10 women in the room with the same birth year.

The first string used double quotes and the variable was inserted into the
string and displayed to the user. The second string used single quotes so
the code inside the curly braces was not evaluated, the variable value was
not inserted, and instead #{yearofbirth} was displayed. The third string
shows that any code can be evaluated and inserted into the string.

This method of inserting variable values into strings is called string
interpolation.

Building a Simple Form-Text
Formatter Using Ruby

Practice your Ruby online using the Codecademy website. Codecademy is

a free website created in 2011 to allow anyone to learn how to code right in
the browser, without installing or downloading any software. Practice all of
the tags (and a few more) that you learned in this chapter by following these
steps:

1. Open your browser, go to www.dummies.com/go/codingfd, and
click on the link to Codecademy.

2. Sign in to your Codecademy account.

Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click on Introduction to Ruby to practice some basic
Ruby commands.

4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the
site.

5. Complete the instructions in the main coding window.

6. After you have finished completing the instructions, click the Save
and Submit Code button.

If you have followed the instructions correctly, a green checkmark
appears, and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forums, or
tweet me at enikhilgabraham and include hashtag #codingFD.

http://www.dummies.com/go/codingfd

212 Partiv: Developing Your Coding Skills Further

14

Wrapping Your Head
around Python

In This Chapter
Understanding Python principles and style
Practicing Python code like assigning variables and using if statements
Doing a simple Python project

I chose Python as a working title for the project, being in a slightly
irreverent mood (and a big fan of Monty Python’s Flying Circus).

—Guido van Rossum, creator of Python

python is a server-side language created by Guido van Rossum, a devel-
oper who was bored during the winter of 1989 and looking for a project
to do. At the time, Van Rossum had already helped create one language,
called ABC, and the experience had given him many ideas that he thought
would appeal to programmers. He executed upon these ideas when he cre-
ated Python. Although ABC never achieved popularity with programmers,
Python was a runaway success. Python is one of the world’s most popular
programming languages, used by beginners just starting out and profession-
als building heavy-duty applications.

In this chapter, you learn Python basics, including the design philosophy
behind Python, how to write Python code to perform basic tasks, and steps
to create your first Python program.

What Does Python Do?

Python is a general purpose programming language typically used for web
development. This may sound similar to the description used for Ruby in
the previous chapter, and really both languages are more similar than they

2 14 Partiv: Developing Your Coding Skills Further

A\

are different. Python, like Ruby, allows for storing data after the user has
navigated away from the page or closed the browser, unlike HTML, CSS,
and JavaScript. Using Python commands you can create, update, store, and
retrieve this data in a database. For example, imagine [wanted to create
alocal search and ratings site like Yelp.com. The reviews users write are
stored in a central database. Any review author can exit the browser, turn
off the computer, and come back to the website later to find their reviews.
Additionally, when others search for venues, this same central database is
queried, and the same review is displayed. Storing data in a database is a
common task for Python developers, and existing Python libraries include
pre-built code to easily create and query databases.

SQLite is one free lightweight database commonly used by Python program-
mers to store data.

Many highly trafficked websites, such as YouTube, are created using Python.
Other websites currently using Python include:

»* Quora for its community question and answer site.
v~ Spotify for internal data analysis.

v Dropbox for its desktop client software.

1~ Reddit for generating crowd-sourced news.

v~ Industrial Light & Magic and Disney Animation for creating film special
effects.

From websites to software to special effects, Python is an extremely versatile
language, powerful enough to support a range of applications. In addition, to
help spread Python code, Python programmers create libraries, which are
stand-alone pre-written code that do certain tasks, and make them publicly
available for others to use and improve. For example, a library called Scrapy
performs web scaping, while another library called SciPy performs math func-
tions used by scientists and mathematicians. The Python community maintains
thousands of libraries like these, and most are free and open-source software.

You can generally confirm the front-end programming language used by any
major website with BuiltWith available at www.builtwith.com. After enter-
ing the website address in the search bar, look under the Frameworks section
for Python. Note that websites may use Python for backend services not visi-
ble to BuiltWith.

Defining Python Structure

Python has its own set of design principles that guide how the rest of the
language is structured. To implement these principles, every language has
its own conventions, like curly braces in JavaScript or opening and closing

http://www.builtwith.com

Chapter 14: Wrapping Your Head around Python 2 75

tags in HTML. Python is no different, and we will cover both design principles
and conventions so you can understand what Python code looks like, under-
stand Python’s style, and learn the special keywords and syntax that allow
the computer to recognize what you are trying to do. Python, like Ruby and
JavaScript, can be very particular about syntax, and misspelling a keyword or
forgetting a necessary character will result in the program not running.

Understanding the Zen of Python

There are nineteen design principles that describe how the Python language
is organized. Some of the most important principles include

1~ Readability counts: This is possibly Python’s most important design
principle. Python code looks almost like English, and even enforces
certain formatting, such as indenting, to make the code easier to read.
Highly readable code means that six months from now when you revisit
your code to fix a bug or add a feature, you will be able to jump in
without trying too hard to remember what you did. Readable code also
means others can use your code or help debug your code with ease.

Reddit.com is a top-10-most-visited website in the US, and a top-50-most-
visited website in the world. Its co-founder, Steve Huffman, initially
coded the website in Lisp and switched to Python because Python is
“extremely readable, and extremely writeable”.

1~ There should be one — and preferably only one — obvious way to do
it: This principle is directly opposite to Perl’s motto, “There’s more than
one way to do it.” In Python, two different programmers may approach
the same problem and write two different programs, but the ideal is
that the code will be similar and easy to read, adopt, and understand.
Although Python does allow multiple ways to do a task — as, for exam-
ple, when combining two strings — if an obvious and common option
exists, it should be used.

v~ If the implementation is hard to explain, it’s a bad idea: Historically,
programmers were known to write esoteric code to increase perfor-
mance. However, Python was designed not to be the fastest language,
and this principle reminds programmers that easy-to-understand imple-
mentations are preferable over faster but harder-to-explain ones.

P Access the full list by design principles, which is in the form of a poem, by
typing import this; into any Python interpreter, or by visiting https://
www . python.org/dev/peps/pep-0020. These principles, written by Tim
Peters, a Python community member, were meant to describe the intentions
of Python’s creator, Van Rossum, who is also referred to as the Benevolent
Dictator for Life (BDFL).

https://www.python.org/dev/peps/pep-0020
https://www.python.org/dev/peps/pep-0020

216 Part\v: Developing Your Coding Skills Further

\\J

Styling and spacing
Python generally uses less punctuation than other programming languages
you may have previously tried. Some sample code is included here:

first name=raw_input ("What's your first name?")
first name=first name.upper ()

if first name=="NIK":
print "You may enter!"
else:
print "Nothing to see here."

The examples in this book are written for Python 2.7. There are two popular
version of Python currently in use — Python 2.7 and Python 3. Python 3 is
the latest version of the language but it is not backwards-compatible, so code
written using Python 2.7 syntax does not work when using a Python 3 inter-
preter. Initially, Python 2.7 had more external libraries and support than
Python 3, but this is changing. For more about the differences between ver-
sions see https://wiki.python.org/moin/Python2orPython3.

If you ran this code it would do the following:

v~ Print a line asking for your first name.

1~ Take user input (raw_input (What’'s your first name?)) and save
it to the first name variable.

v Transform any inputted text into uppercase.

1~ Test the user input. If it equals “NIK,” then it will print “You may enter!”
Otherwise it will print “Nothing to see here.”

Each of these statement types is covered in more detail later in this chapter.
For now, as you look at the code, notice some of its styling characteristics:

1~ Less punctuation: Unlike JavaScript, Python has no curly braces, and
unlike HTML, no angle brackets.

1~ Whitespace matters: Statements indented to the same level are grouped
together. In the example above, notice how the i f and else align, and
the print statements underneath each are indented the same amount.
You can decide the amount of indentation, and whether to use tabs or
spaces as long as you are consistent. Generally, four spaces from the left
margin is considered the style norm.

See Python style suggestions on indentation, whitespaces, and com-
menting by visiting https://www.python.org/dev/peps/
pep-0008.

https://wiki.python.org/moin/Python2orPython3
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Chapter 14: Wrapping Your Head around Python 2 ’ 7

1~ Newlines indicate the end of statements: Although you can use semi-
colons to put more than one statement on a line, the preferred and more
common method is to put each statement on its own line.

1~ Colons separate code blocks: New Python programmers sometimes
ask why using colons to indicate code blocks, like the one at the end of
the if statement, is necessary when newlines would suffice. Early user
testing with and without the colons showed that beginner programmers
better understood the code with the colon.

Coding Common Python Tasks
and Commands

3

Python, as with other programming languages like Ruby, can do everything
from simple text manipulation to designing complex graphics in games. The
following basic tasks are explained within a Python context, but they’re
foundational in understanding any programming language. Even experienced
developers learning a new language, like Apple’s recently released Swift pro-
gramming language, start by learning these foundational tasks. If you have
already read the chapter on Ruby, the code to perform these tasks will look
similar.

Start learning some basic Python below, or practice these skills right away
by jumping ahead to the “Building a Simple Tip Calculator Using Python” sec-
tion, later in this chapter.

Millions of people have learned Python before you, so it’s easy to find
answers to questions that might arise while learning simply by conducting an
Internet search. The odds are in your favor that someone has asked your
question before.

Defining data types and variables

Variables, like the ones in algebra, are keywords used to store data values for
later use. Though the data stored in a variable may change, the variable name
will always be the same. Think of a variable as a gym locker — what you store
in the locker changes, but the locker number always stays the same.

Variables in Python are named using alphanumeric characters and the
underscore (_) character, and they must start with a letter or an underscore.
Table 14-1 lists some of the data types that Python can store.

2 18 Partiv: Developing Your Coding Skills Further

3

Table 14-1 Data Stored by a Variable
Data Type Description Example
Numbers Positive or negative numbers with or without 156-101.96
decimals
Strings Printable characters Holly
NovakSefior
Boolean Value can either be true or false truefalse

To initially set or change a variable’s value, write the variable name, a single
equals sign, and the variable value, as shown in the following example:

myName = "Nik"
pizzaCost = 10
totalCost = pizzaCost * 2

Avoid starting your variable names with the number one (1), a lowercase “L”
(D), or uppercase i (I). Depending on the font used these characters can all
look the same, causing confusion for you or others later!

Variable names are case sensitive, so when referring to a variable in your pro-
gram remember that MyName is a different variable from myname. In general,
give your variable a name that describes the data being stored.

Computing simple and advanced math

After you create variables, you may want to do some math on the numeri-

cal values stored in those variables. Simple math like addition, subtrac-

tion, multiplication, and division is done using operators you already know.
Exponentiation (such as, for example, 2 to the power of 3) is done differently in
Python than in JavaScript, and uses two asterisks. Examples are shown here:

numl = 1+1 #equals 2
num2 = 5-1 #equals 4
num3 = 3*4 f#equals 12
num4 = 9/3 #equals 3
num5 = 2**3 fequals 8

The # symbol indicates a comment in Python.
Don'’t just read these commands, try them! Go to http://repl.it/

languages/Python for a lightweight in-browser Python interpreter that you
can use right in your browser without downloading or installing any software.

http://repl.it/languages/Python
http://repl.it/languages/Python

Chapter 14: Wrapping Your Head around Python 2 ’ 9

Advanced math like absolute value, rounding to the nearest decimal, round-
ing up, or rounding down can be performed using math functions. Python has
some functions which are built-in pre-written code that can be referenced to
make performing certain tasks easier. The general syntax to use Python math
functions is to list the function name, followed by the variable name or value
as an argument, as follows:

method (value)
method (variable)

The math functions for absolute value and rounding follow the syntax above,
but some math functions, like rounding up or rounding down are stored in a
separate math module. To use these math functions you must:

1~ Write the statement import math just once in your code before using
the math functions in the math module.

1 Reference the math module, as follows: math.method (value) or
math.method (variable).

See these math functions with examples in Table 14-2.

Modules are separate files that contain Python code, and the module must be
referenced or imported before any code from the module can be used.

Table 14-2 Common Python Math Functions
Function Description Example Result
name
abs (n) Return the absolute value of abs (-99) 99

a number (n)
round Round a number (n) to a round 3.14
(n, 4d) number of decimal points (d) (3.1415, 2)
math. Round down to the nearest math. 4.0
floor (n) integer floor(4.7)
math. Round up to the nearest math. 8.0
ceil (n) integer ceil(7.3)

3

See all the function in the math module by visiting https://docs.python.
org/2/library/math.html.

https://docs.python.org/2/library/math.html
https://docs.python.org/2/library/math.html

22() Partiv: Developing Your Coding Skills Further

WMBER
@@
&

Using strings and special characters

Along with numbers, variables in Python can also store strings. To assign a
value to a string you can use single or double quotation marks, as follows:

firstname = "Travis"
lastname = 'Kalanick'

Variables can also store numbers as strings instead of numbers. However,
even though the string looks like a number, Python will not be able to add,
subtract, or divide strings and numbers. For example, consider amountdue
= "18" + 24 — running this code as is would result in an error. Python
does multiply strings but in an interesting way — print ‘Ha’ * 3 results in
‘HaHaHa"’.

Including a single or double quote in your string can be problematic because
the quotes inside your string will terminate the string definition prematurely.
For example, if I want to store a string with the value ‘I'm on my way home’
Python will assume the * after the first letter I is the end of the variable
assignment, and the remaining characters will cause an error. The solution

is to use special characters called escape sequences to indicate when you
want to use characters like quotation marks, which normally signal the begin-
ning or end of a string, or other non-printable characters like tabs. Table 14-3
shows some examples of escape sequences.

Table 14-3 Common Python Escape Sequences
Special Description Example Result
character

\’or\" Quotation print "You You had me at

marks had me at "Hello"
\ n Hel lO\ nn

\t Tab print "Item\ Item Units
tUnits \ Price
tPrice"

\n Newline print Anheuser?
"Anheuser?\ 5
nBusch? \ Busch?
nBueller? Bueller?

Buellexr?" Bueller?

Chapter 14: Wrapping Your Head around Python 22 ’

P Escape sequences are interpreted only for strings with double quotation
marks. For a full list of escape sequences see the table under Section 2.4
"Literals" at http://docs.python.org/2/reference/lexical _
analysis.html.

Deciding with conditionals: If, elif, else

With data stored in a variable, one common task is to compare the variable’s
value to a fixed value or another variable’s value, and then make a decision
based on the comparison. If you previously read the chapters on JavaScript
or Ruby, the discussion and concepts here are very similar. The general
syntax for an if-elif-else statement is as follows:

if conditionall:
statementl to execute if conditionall is true
elif conditional2:
statement2 to execute if conditional2 is true
else:
statement3 to run if all previous conditional are false
N\
Notice there are no curly brackets or semi-colons, but don’t forget the colons
and to indent your statements!

The initial if statement will evaluate to true or false. When
conditionallis true, then statementl is executed. This is the minimum
necessary syntax needed for an if-statement, and the elif and else
are optional. When present, the e1if tests for an additional condition when
conditionallis false. You can test for as many conditions as you like
using elif. Specifying every condition to test for can become tedious, so
having a "catch-all" is useful. When present, the else serves as the "catch-
all", and executes when all previous conditionals are false.
< You cannot have an elif or an else by itself, without a preceding if state-
ment. You can include many elif statements, but one and only one else
statement.

The conditional in an if statement compares values using comparison oper-
ators, and common comparison operators are described in Table 14-4.

http://docs.python.org/2/reference/lexical_analysis.html
http://docs.python.org/2/reference/lexical_analysis.html

222 PartIV: Developing Your Coding Skills Further

Table 14-4 Common Python Comparison Operators
Type Operator Description Example
Less than < Evaluates whether one value is X < 55
less than another value
Greater than > Evaluates whether one value is X > 55
greater than another value
Equality == Evaluates whether two values X == 55
are equal
Less than or <= Evaluates whether one value X <= 55
equal to is less than or equal to another
value
Greater than >= Evaluates whether one value x >= 55
or equal to is greater than or equal to
another value
Inequality 1= Evaluates whether two values X != 55

are not equal

Here is an example if statement.

carSpeed=55
if carSpeed > 55:

print "You are over the speed limit!"
elif carSpeed == 55:

print "You are at the speed limit!"
else:

print "You are under the speed limit!"

As the diagram in Figure 14-1 shows, there are two conditions, each signaled
by the diamond, which are evaluated in sequence. In this example, carSpeed
is equal to 55, so the first condition (carSpeed > 55)is false, and then
the second conditional (carSpeed==55) is true and the statement executes
printing “You are at the speed limit!” When a conditional is true, the i £
statement stops executing, and the else is never reached.

Input and output

Python can collect input from the user, and display output to the user. To
collect user input use the raw_input (“Prompt”) method, which stores
the user input as a string. In the example below, the user enters his full name
which is stored in a variable called full name.

full name = raw_input ("What's your full name?")

Chapter 14: Wrapping Your Head around Python 223

? Start
You are over

the speed limit! carSpeed
==55

You are at the You are under
speed limit! the speed limit!

Figure 14-1: An 1 f -else statementwithanelif.

Imagine the user entered his name, “Jeff Bezos.” You can display the value of
the variable using print full name and you would see this

Jeff Bezos
\\s
Python, unlike Ruby, does not store the newline \n escape sequence after
user input.

At this point, you may feel like printing variables and values in a Python
interpreter console window is very different from dynamically creating web
pages with variables created in Python. Integrating Python into a web page
to respond to user requests and generate HTML pages is typically done with
a Python web framework, like Django or Flask, which have pre-written code
to make the process easier. These frameworks typically require some instal-
lation and set-up work, and generally separate the data being displayed from
templates used to display the page to the user.

Shaping Your Strings
Whenever you collect input from users, you need to clean the input to
remove errors and inconsistencies. Here are some common data cleaning
tasks:
v~ Standardizing strings to have consistent upper and lower case

»* Removing white space from user input

~ Inserting a variable’s value in strings displayed to the user

Python includes many built-in methods that make processing strings easy.

224 Part IV: Developing Your Coding Skills Further

Dot notation with upper (), lower (),
capitalize (), and strip ()

Standardizing user input to have proper case and remove extra white space
characters is often necessary to easily sort the data later. For example,
imagine you are designing a website for the New York Knicks so fans can
meet players after the game. The page asks for fans to enter their name, so
that team security can later check fan names against this list before entry.
Reviewing past fan entries you see that fans enter the same name several
ways like “Mark”, “mark”, “ marK “ and other similar variants that cause
issues when the list is sorted alphabetically. To make the input and these
names consistent you could use the string functions described in Table 14-5.

Table 14-5 Select Python String Functions

Function name Description Example Result

string. Returns all upper- "nY".upper () "NY"

upper () case characters

string. Returns all lower- "Hi".lower () "hi"

lower () case characters

string. Capitalizes first "wake UP". "Wake

capitalize() letter, lowercases capitalize() up"
remaining letters

string. Removes lead- " Ny ".strip() "Ny ™"

strip() ing and trailing

whitespaces

String formatting with %

To insert variable values into strings shown to the user, you can use the
string format operator %. Inserted into the string definition, %d is used to
specify integers, %s is used to specify strings, and the variables to format
(mapping key) are specified in parenthesis after the string is defined. See the
example code and result below:

Code:

yearofbirth = 1990

pplinroom = 20

name = "Mary"

print "Your year of birth is %d. Is this correct?" % (yearofbirth)

print 'Your year of birth is %d. Is this correct?' % (yearofbirth)

print "There are %d women in the room born in %d and %s is one of them." %
(pplinroom/2, yearofbirth, name)

Chapter 14: Wrapping Your Head around Python 225

Result:

Your year of birth is 1990. Is this correct?
Your year of birth is 1990. Is this correct?
There are 10 women in the room born in 1990 and Mary is one of them.

The first string used double quotes and the variable was inserted into the
string and displayed to the user. The second string behaved just like the first
string, because unlike in Ruby, defining strings with single quotes does not
affect the string formatting. The third string shows that code can be evalu-
ated (pplinroom / 2) and inserted into the string.

The string.format () method is another way to format strings in Python.

Building a Simple Tip Calculator Using Python

Practice your Python online using the Codecademy website. Codecademy is
a free website created in 2011 to allow anyone to learn how to code right in
the browser, without installing or downloading any software. Practice all of
the tags (and a few more) that you learned in this chapter by following these
steps:

1. Open your browser, go to www. dummies.com/go/codingfd, and
click on the link to Codecademy.

2. Sign in to your Codecademy account.

Signing up is discussed in Chapter 3. Creating an account allows you to
save your progress as you work, but it’s optional.

3. Navigate to and click on Python Syntax to practice some basic Python
commands.

4. Background information is presented in the upper left portion of the
site, and instructions are presented in the lower left portion of the
site.

5. Complete the instructions in the main coding window.

6. After you have finished completing the instructions, click the Save
and Submit Code button.

If you have followed the instructions correctly, a green checkmark
appears and you proceed to the next exercise. If an error exists in your
code a warning appears with a suggested fix. If you run into a problem,
or have a bug you cannot fix, click on the hint, use the Q&A Forum, or
tweet me at @nikhilgabraham and include hashtag #codingFD.

http://www.dummies.com/go/codingfd

220 PartIv: Developing Your Coding Skills Further

PartV
The Part of Tens

http://www.dummies.com/extras/coding
http://www.dummies.com/extras/coding

In this part . . .

1 Continue to learn how to code with online resources.

v~ Stay up to date with industry news and community
discussion.

»* Solve coding bugs with online and offline resources.

v~ Keep in mind ten tips as you learn how to code.

15

Ten Free Resources for
Coding and Coders

rle technology world is constantly evolving. New technologies are
invented, developers build new products using these technologies, and
new markets emerge from people using these products. In the time it took
me to write these chapters and for this book to find its way into your hands,
much has already changed. The following resources help you continue learn-
ing, answer questions, and stay abreast of these changes.

The resources listed below are all completely free. Many of these resources
stay free by depending on community members like you to contribute, so
don’t be shy about participating!

Learning-to-Code Websites

Learning to code is a constant journey that never ends for even the most
experienced programmers. New languages and frameworks appear every
day, and the only way to stay current is to keep learning. Although you may
not be an experienced developer just yet, the following resources appeal to
beginners with different learning styles. You can learn general introductory
computer science topics or specific web development techniques by reading
text or watching video lectures, and do it at your own pace or in a scheduled
class. Let’s get started!

Codecademy

www .codecademy . com

Codecademy, created for people with no previous programming experience,
is the easiest way to learn how to code online. Many chapters in this book
use lessons from the site. You can use the site to

http://www.codecademy.com

230 Part V: The Part of Tens

ngmm

&

A\

v~ Learn front-end languages like HTML, CSS, and JavaScript
v Try back-end languages like Ruby, Python, and PHP
v~ Build real pages from websites like AirBnb, Flipboard, and Etsy

Front-end languages address website appearance, whereas back-end lan-
guages add website logic, such as what to show users and when. See
Chapter 2 for more detail.

You don’t need to download or install anything to start coding at
Codecademy — just sign up or sign in and start learning.

If you get stuck, check for a hint at the bottom of the instructions, or click the
Q&A Forum link to ask a question or to see if someone has already posted a
solution to your problem.

Coursera and Udacity

WWW.coursera.org
www.udacity.com

MOOCs, or massive open online courses, are classes or courses that are taught
via the Internet to a virtually unlimited number of students. These courses
encourage the use of online forums and interactivity to create a sense of com-
munity. Coursera and Udacity, two of the biggest MOOCs, have a variety of
coding-related courses. Each course is taught through a series of video lec-
tures by a university faculty member or an industry expert. (See Figure 15-1.)
After watching video lectures, your homework assignments and projects help
reinforce what you've learned. Each site offers optional paid features, such

as certificates of completion or individual support, but you don’t have to pay
anything to access the base material. The strength of these sites is their hun-
dreds of hours of video dedicated to technology topics such as front-end web
development, mobile web development, data science, or general computer
science theory.

Before you start a course at either website, make sure you can set aside time
for study each week. You can expect to devote 5 to 10 hours per week for 7 to
10 weeks for any of these courses.

Hackdesign.org

www . hackdesign.org

http://www.coursera.org
http://www.udacity.com
http://www.hackdesign.org

Chapter 15: Ten Free Resources for Coding and Coders 23 ’

3

-48299949/m-48698544 7 =

<« C' | @ hitps /wew udacity corn/coursefviewer#lic-cs 1

UDACITY

Intro to Computer Science

i2 Lesson 1: How to GetStarted | > Introduction

mmmmmmmm

Get the full course

Start our full course
experience! You'll have
access to a personal Coach
for code reviews, project
feedback, and pacing

: support Earn your verified

ssssssssss

\
- /‘\ \
B certificate of completion.

> o oo © @ &% Wl 1 earn more

freviousy juiext Start fre trial

Instructor Notes Downloadables

Welcome to the class! | hope you find it fun and LESSON

Figure 15-1: Intro to Computer Science, taught by University of Virginia
Professor David Evans on Udacity.

The other half of coding is designing. Good visual design is often the differ-
ence between having hundreds of people use and share your website and
having millions of people do so. Hack Design has 50 design lessons created
by top designers from around the world, including designers from Facebook,
Dropbox, and Google. Each lesson is emailed to you weekly, and includes
articles to read, and design tasks to complete based on what you have just
learned. Topics covered include typography, product design, user interac-
tions, and rapid prototyping tools.

Many of the expert designers have public portfolio websites at which you can
see past designs and projects. In addition, many post their creative work on
Dribble, available at www.dribbble.com (note the three b’s in the URL).

Code.org

www .code.org

In December 2013, Code.org made history when over 15 million U.S.

school students participated in a learn-to-code event called Hour of Code.
Throughout 2014, an additional 25 million students would practice their pro-
gramming skills for one hour. Code.org hosts its own content for students

http://www.dribbble.com
http://www.code.org

232 Part V: The Part of Tens

3

from kindergarten to eighth grade. It also provides links to other learn-to-
code resources, which are targeted for a range of ages, and topics include
v~ Tutorials that teach HTML, JavaScript, Python, and other languages

v Visual programming tools that help elementary and middle school
students drag-and-drop their way to learning how to code

» Instructions to make your own Angry Birds, Flappy Bird, and Lost in
Space apps

Code.org also has offline learn-to-code materials, so you can keep learning
even if you don’t have reliable access to an Internet connection.

Coding-Reference Websites

As you learn to code, either by reading this book or from some of the websites
discussed previously, you will get stuck. Your code just won’t behave as you
intended. This happens to every programmer — it’s an inevitable part of the
process of turning human logic and fuzzy thoughts into rigid code a computer
can understand. The important thing is to have a plan, and to have some
resources to help debug your code and solve your problem. The following
resources include reference texts, which help you check your coding syntax,
and community user groups, which help you check your program logic.

W3Schools

www.w3schools.com

W3Schools is one of the best resources for beginners who are just starting to
learn. The website includes reference material and basic tutorials for HTML,
CSS, JavaScript, PHP, and other programming languages, libraries, and stan-
dards. (See Figure 15-2.) In addition, the reference pages include many coding
examples, which you can view and modify in your browser, along with a list
of attributes or properties that can be used. If you know you can insert an
image using HTML, change the text color using CSS, or show an alert to the
user using JavaScript, but you cannot remember the exact syntax to do so,
try starting with W3Schools.

Although it’s a great resource, W3Schools has no affiliation with or endorse-
ment from the W3C, which is the governing body that creates the standards
browsers follow when rendering HTML, CSS, and other languages and
formats.

http://www.w3schools.com

Chapter 15: Ten Free Resources for Coding and Coders 233

€ = € [wwwawdschools.com =) =

w3schools.com

the world’s largest web development site

educate yourself!

HTML @ css o8] Javascript

HTML Tutorial CSS Tutorial Javascript Tutorial

HTML Tag Reference CSS Reference JavaScript Reference

SQL PHP JQuery

SQL Tutorial PHP Tutorial JQuery Tutorial

SQL Reference PHP Reference JQuery Reference

References

v wschools comijsfdefault asp

Figure 15-2: HTML, CSS, and JavaScript tutorials and reference
pages on W3Schools.

Mozilla Developer Network

http://developer.mozilla.org

Mozilla Developer Network (MDN) is a wiki-style reference and tutorial web-
site that covers HTML, CSS, JavaScript, and various APIs. The website is
maintained by the developer community, so anyone can contribute — even
you! Although not as beginner-friendly as W3Schools, MDN is one of the
most complete and accurate sources of documentation for web languages.
Developers frequently use MDN to reference syntax, and also to see desktop
and mobile browser compatibility for specific tags and commands. You can
also check out tutorials on MDN hosted by the Mozilla Foundation, a non-
profit organization that helps support and maintain the Firefox browser.

Stack Overflow

www . stackoverflow.com

Stack Overflow is relatively young, founded in 2008, but has quickly become
the best place for developers to ask and answer questions about coding.
Anyone can ask a question, individual programmers provide answers, and
the website community votes up or down the answers to show agreement or

http://developer.mozilla.org
http://www.stackoverflow.com

234 Part V: The Part of Tens

a\\J

disagreement. The site includes topics that cover all major web programming
languages, and the most popular topics include JavaScript, Ruby, and Python.

Before asking a question, search the website and see if an answer to your
question has already been posted. One of the website rules of etiquette is
showing you have done some research before posting a question.

Tech News and Community Websites

3

There are people coding all over the world, and someone in Shanghai can
make an app you use every day just as easily as someone in San Francisco. A
number of resources are available for developers to better understand what
others are working on, both at big companies and at startups. In addition

to what people are working on right now, if you have a website you want to
build, it can be helpful to see what has been built in the past, so you can iden-
tify areas for improvement.

Beyond being informative, these resources offer communities of people with
goals similar to yours. These communities are among the most valuable
resources available to you. Whether you are learning to code or an expert
developer soliciting feedback on a website, working with others is better than
working alone.

The following resources help you stay informed on what is happening in
the tech community, and interact with other people interested in tech in
your city.

TechCrunch

www . techcrunch.com

TechCrunch is a popular blog that covers technology startups and major
technology companies. In 2006, the website cemented its reputation when it
broke the story of Google acquiring YouTube for $1.6 billion. Along with its
online reporting, TechCrunch has conferences throughout the year, such as
Disrupt, which hosts conversations with industry veterans and highlights
new tech startups.

TechCrunch also operates CrunchBase (www . crunchbase.com), a crowd-
sourced database of 650,000 people and companies. Crunchbase is one of the
most accurate and complete sources of information on startups, past and
present, and their founders.

http://www.techcrunch.com
http://www.crunchbase.com

Chapter 15: Ten Free Resources for Coding and Coders

Hacker News

http://news.ycombinator.com

HackerNews (HN) is a discussion website hosted by YCombinator, a startup
incubator in California. The website homepage is a collection of hyperlinks,
often to startup websites and news articles, that individual users have sub-
mitted. (See Figure 15-3.) After a submission is made, the entire community
can upvote the submission, and the top-ranked submissions are listed first
on the homepage. Also, the community can comment on individual submis-
sions, and each comment can also be upvoted, with the top-ranked comment
appearing first on each submission page. In this way, the community curates
the best news, which appears on the front page, and the best comments,
which appear on each submission page. The community is made up of hun-
dreds of thousands of users, including AirBnB co-founder Brian Chesky,
Dropbox co-founder Drew Houston, Netscape co-founder and now venture
capitalist Marc Andreessen, and venture capitalist Fred Wilson.

7 i eckerNews e = 0

€« C' 8 nttps/inews ycombinator.com W=

4. A Law Lets L.R.S. Seize Accounts on Susplcmn No Crime Required (nyti
ago | flag |

o | flag | 1

4 Recreating the spectrogram face (
7 points by DanielRapp 4 hours ago | flag | 11 ¢

7. 4Roman Gladiators ate a mostly vegetarian diet and drank a tonic of ashes (sci
37 points by diodorus 3 hours ag 2 ments
8.4 Pro Git, 2nd Edition (ait
44 points by p oper 12
A Nevada puts stop to ndesharlng Uber far now (reviewjournal.c
16 poin ago | flag | 4
10. 4 Stealthy startup Snft Machlnes

flag | 3

nl:hes wrtual CPV cores (peworld.com)

enple Have Normal
D3 6 hours ago [flag
13.4 Guardlan launches open source data Juurnallsm tool

5 points by denzil_correa S hours ago | flag | 1 ¢

5

14. 4 Wllllam Gibson Writes the Future (g
37 points by Theve 9

15. 4 Angular 2 Core (d

tile 1

o | flag | 19

16. 4 L|V|ng wnh Schizophrenia: Cuffea and Fnends (well.blogs
4 points by k-mcgrady 8 hours ago | flag | 4 commen
17. AHand Coded Assemhlv Eeats Intrmsu:s in Speed and Simplicity (danluu.com)
34 points by nkurz S hours ago | f
18. A How statlcally linked pmgrams run on Linux (2012) (theareenplace.net)
71 points by arunc 8 hours ago | flag | 4

19. A The Sklnnv on Bad Parchment (

Figure 15-3: The community-curated news and discussions at HackerNews homepage.

235

http://news.ycombinator.com

236 Part V: The Part of Tens

A\

Submission titles that begin with “Show HN” are a request to the community
to comment on a startup website that has just launched. Submission titles
that begin with “Ask HN” are a request to the community to answer or com-
ment on a question.

Meetup

www.meetup.com

Meetup is a website that organizes face-to-face local meetings based on inter-
ests or activities. Meetup organizers, who are volunteer community mem-
bers, host meetings by posting information on the website. Then, community
members search, join, and RSVP for meetings through the website.

To use the website, go to www.meetup . com and then follow these steps:

1. Enter your city and how far you are willing to travel.

2. In the search field, enter coding or web development. If you have a
specific language you want to learn, like Ruby or JavaScript, enter the
language name.

3. Review the Meetup groups, and look for ones with a good number
of members. You can join a group and receive notifications of future
events, or RSVP for a specific upcoming event. Some events may have
a fee to cover expenses.

Although you can learn alone, finding other people learning to code is a great
way to stay motivated and keep up your momentum. The people you meet
may be learning to code for the same reasons you are, such as to build a web-
site, improve skills for an existing job, or find a new tech-related job.

http://www.meetup.com
http://www.meetup.com

16

Ten Tips for Novice Coders

Learning to code is more popular today than ever before. It seems like
everyone has a website or an app idea, and as soon as your friends,
family, or coworkers discover your new coding abilities, many will ask for
advice and help. No matter whether you're dabbling at it after work, or
attending an intensive ten-week coding boot camp, learning to code can be
a challenging journey. It can pay to pick up a few pointers from some of the
people who crossed the finish line ahead of you. Keep the following tips in
mind, especially when starting your coding journey.

Pick a Language, Any Language

As a novice coder, you may not be sure where to start. Should you learn C++,
Python, Java, Ruby, PHP, JavaScript all at the same time, sequentially, or just
pick a few? If you have never programmed before, I recommend learning a
language used to create web pages, because with these languages it’s easy to
get started and publish work for others to see. Within this set of languages, |
recommend starting with HTML and CSS. Both are markup languages, which
are the easiest to learn, and let you put content on a web page with HTML,
and style that content with CSS. After you understand some of the basics of
presenting content, you can then learn a programming language to manipu-
late that content. Keep in mind that you don’t need to learn every program-
ming language — JavaScript, which adds interactivity to the web page, is

a common starting point for beginners, along with either Ruby or Python,
which adds more advanced features like user accounts and logins.

Learning to code is similar to learning to drive a car. When you first learned
to drive, you probably didn’t worry too much about the type of car you were
driving. After passing the driving test, you could operate just about any car,
even one you hadn’t driven before, because you knew to look for the ignition,
accelerator, and brake. Learning a programming language works the same
way: After you learn one language, you know what to look for, and learn-

ing and using another language becomes easier. In other words, just start
somewhere!

238 Part V: The Part of Tens
Define a Goal

When you start learning to code, picking a goal can help you stay motivated.
You can pick any goal you like, but make sure it’'s something you would be
really excited to accomplish. Good goals for beginners include

1~ Creating a small website — consisting of one to four different
pages — for yourself, a business, or a group.

v~ Building your coding vocabulary so you can understand what develop-
ers or designers say in meetings at work.

1~ Creating a prototype, or a basic version, of a website or app idea — for
example, an app that tells you when the next bus is arriving to your cur-
rent location.

At first, practice doing very small coding tasks — the equivalent of chop-
ping vegetables in culinary school. These tasks, such as bolding a headline,
may leave you feeling disconnected from your ultimate goal. But as you keep
learning, you will start to piece together individual coding skills and see a
path to accomplish your goal.
< Pick a simple goal at first to build your confidence and technical skills. As
you gain confidence, you can build more professional-looking websites and

apps.

Break Down Your Goal into Bite-Sized Steps

After defining a goal, break it down into small steps. This helps you

1~ See all the steps needed to complete the goal

1~ Research how to do each specific step

1~ Ask others for help easily when you’re stuck on a step
For example, if you want to build an app that tells you when you can expect
the next bus to arrive closest to your current location, you can list the steps
as follows:

1. Find your current location.

2. Find the bus station closest to your current location.

3. Identify the specific bus that travels to the closest bus station.

4. Determine the location of that bus traveling to the bus station.

5. Calculate the distance from the bus’s current location to the bus station.

\

Chapter 16: Ten Tips for Novice Coders 239

6. Assuming an average speed for the bus, convert the distance into time
using the equation distance = speed x time.

7. Display the time to the user.

This level of detail is specific enough to start researching individual steps,
such as how to find your current location using code, and it gives you a com-
plete list of steps from start to finish for the intended goal.

At first, the steps you create may be broad or incomplete, but with time you
will improve your ability to detail these steps, which are sometimes called
specifications.

Distinguish Cupcake from Frosting

s

Whether you're at home creating your first app, or at work on a team build-
ing a website, your projects will tend to include too many features to build by
a specific deadline. This leads inevitably to one of three results: The project
launches on time but is buggy; the project launches late; or your team works
overtime to launch the project on time. The only other choices for a project
behind schedule are to extend the deadline, which usually does not happen,
or to add additional programmers, which usually is not helpful because of the
time needed to get the new programmers up-to-speed.

A better strategy is to decide upfront which features are the cupcake — that
is, which are essential — and which are the unessential frosting, the ones
that are nice to have but optional. This shows you where your priorities are.
If your project is running over on time or budget, you can build the optional
features later or not at all.

When building your own apps make sure you distinguish the essential from
the optional features before you actually start coding. In the bus app example
above, determining my current location could be optional. Instead, I could
select one specific bus stop, and first complete steps 3 through 7. Then, if
time allows, I can make the app more flexible by finding my current location,
and then finding the closest bus stop.

The phrase minimum viable product is used by developers to refer to the set
of features essential to the proper functioning of the product.

Google Is a Developer’s Best Friend

Developers constantly use the Google search engine to research either gen-
eral questions on how to code a feature, or specific questions on syntax for
a command or tag. For example, imagine that a few months from now, after

24 0 Part V: The Part of Tens

reading this book, you need to add an image to a website. You remember that
HTML has a tag to insert images on a website, but you don’t recall the exact
syntax. To quickly and efficiently find the answer, you could follow these
steps:

1. Go to www.google. com.
2. Search for HTML image syntax.

The programming language, the intended command, and the word syntax
should be sufficient to find a good set of resources.

3. For syntax questions in HTML and CSS, you will likely see these
domains names in the top 10 search results, and you should read their
content as a next step:

* w3schools.com is one of the best resources for beginners to find
basic information.

® developer.mozilla.org is a crowdsourced documentation and
tutorial site. Its documentation is very accurate, although some
content is not beginner-friendly.

® stackexchange.comand stackoverflow.com are crowd-
sourced discussion sites where developers can ask and answer
questions.

* w3.org is the governing body that creates HTML and CSS stan-
dards. Its documentation is the most accurate, but it’s dry and not
beginner-friendly.

You can use this same process to research questions in other coding lan-
guages, or to find code examples from other developers who are building
features similar to yours.

Zap Those Bugs

While you’re doing all this coding you will inevitably create errors, commonly
referred to as bugs. There are three types of errors:

1 Syntax errors occur when you write invalid code the computer
doesn’t understand. For example, in CSS, you’d write color: blue;
to change the color of an element. If you wrote font-color: blue;
instead, you’d generate a syntax error because font-color is an
invalid property.

http://www.google.com

Chapter 16: Ten Tips for Novice Coders 24 ’

* Semantic errors occur when you write valid code that has an unin-
tended effect. For example, trying to divide a number by zero is a seman-
tic error in JavaScript.

1~ Logic or design errors occur when you write valid code that has the
intended effect, but the code produces the wrong result. For example, in
JavaScript, converting miles to feet using var miles = 4000 * feet
is a logic error. Although the code is written correctly and does what the
programmer wants it to do, it still produces the wrong answer — there
are actually 5,280 feet in a mile, not 4,000.

Your browser will do its best to display your HTML or CSS code as you
intended, even in the presence of syntax errors. However, with other pro-
gramming languages, such as JavaScript, code with syntax errors won'’t run at
all. The best way to find and eliminate bugs is to first check your code syntax,
and then the logic. Review your code line by line, and if you still cannot find
the error, ask another person to take a look at your code, or post it on an
online community forum like stackoverflow.com.

Developers use specialized tools in the browser to diagnose and debug
errors. You can learn more about these developer tools in the Chrome
browser by going to www . codeschool.com/courses/
discover-devtools.

\\J

Just Ship It

Reid Hoffman, the founder of LinkedIn, famously said, “If you are not embar-
rassed by the first version of your product, you've launched too late.” When
you start coding, you will likely be reluctant to show others your creations,
whether it’s your first basic website or something more complex. Hoffman
was commenting on this desire to keep trying to perfect what you have built,
and says instead to release (or “ship”) your code to public view even if you
feel embarrassed. Regardless of the size of your website or app, it is better to
receive feedback early and learn from your mistakes, then to continue head-
ing in the wrong direction.

Also, remember that the highly trafficked, highly polished websites you use
today started initially from humble beginning and very simple prototypes.
Google’s first homepage, for example, had only a fraction of the functionality
or style of its homepage today. (See Figure 16-1.)

http://www.codeschool.com/courses/discover-devtools
http://www.codeschool.com/courses/discover-devtools

20,2 PartV:The Part of Tens

Google

BET

Search the web using Google!

Gongle Search | Fm fesling lucky |

Special Searches - Heég\ " .
Linux Search Googlel Logas SRET [P ﬁ_f/,_u;

Copyright ©1923 Google Inc.

Figure 16-1: Google's original homepage in 1998.

Collect Feedback

After you finish coding the first version of your website or app, collect feed-
back on your code and on the final product. Even if everything is working and
your website looks great, that doesn’t mean your code was written correctly
or that your site does everything it could. For example, YouTube initially
started as a video-dating site, but changed to a general video-sharing website
based on user feedback.

The best way to obtain this information is to collect quantitative and quali-
tative data on your code and the product. Measuring the places where visi-
tors click and how long they stay on each web page gives you quantitative
information, which helps you diagnose and improve low-performing pages.
You can collect qualitative information by surveying users, either by email-
ing them survey questions or by watching people in-person use your website
and then asking questions. Often this data will surprise you — users may
find confusing the features you thought were obvious and easily understood,
and vice-versa. Similarly, if possible, have someone examine your code, in a
process called a code review, to ensure that you didn’t overlook any major
problems.

Iterate on Vour Code

After you've collected feedback, the next step is to “iterate” on that feedback:
Keep coding until the major issues in your feedback have been addressed,
and until you have improved both the code and the product. Keep in mind
that it’s usually best to confirm the usefulness of your product first, before
spending time improving the code.

3

Chapter 16: Ten Tips for Novice Coders 243

This process — building a product with a minimum set of essential features,
collecting feedback on the product, and then iterating on that feedback — is
sometimes referred to as the Lean Startup methodology. In the past, manu-
facturing processes, once set, were extremely difficult to change, but these
days, changing software is as simple as modifying a few lines of code. This
contrasts with the way products used to be coded, which involved longer
development cycles and less upfront feedback.

Just like with document drafts, save the old versions of your code in case you
realize an older version was better, or in the event you find bugs in the cur-
rent version of your code and you have to use an older version of the code to
debug it.

Shave Vour Success and Failure

A\

While coding you may have come across documentation on a website you
found confusing or just plain wrong. Maybe you found a great resource or a
tool that worked especially well for a product you were building. Or perhaps
the opposite happened — no one used the features you built with code, and
you had to give up the project.

In all these situations, the best thing you can do for yourself and the larger
community is to blog about your successes and failures. Blogging benefits
you because it shows others the issues you're thinking about and trying

to solve. Similarly, blogging benefits others who will use Google to search

for and read about your experiences, just as you used Google to search for
ideas and solve problems. Many non-technical entrepreneurs, such as Dennis
Crowley of Foursquare and Kevin Systrom of Instagram, taught themselves
enough coding to build small working prototypes, built successful products,
and then shared that journey with others.

You can blog for free and share your experiences using blogging sites like
Wordpress (www . wordpress . com), Blogger (www.blogger . com), or Tumblr
(www . tumblr.com).

http://www.wordpress.com
http://www.blogger.com
http://www.tumblr.com

244, Partv: The Part of Tens

Index

o Symbols ®

<> (angle brackets), 45-46, 195

* (asterisk), 204

: (colon), 78, 217

{} (curly brackets), 78, 195

“ (double quotes), 205-206, 220

= (equal sign), 48, 78

=== (equality) operator, 141, 143, 207, 222

/ (forward slash), 45

> (greater than) operator, 106, 141, 207, 222

>= (greater than or equal to) operator, 141,
207, 222

I= (inequality) operator, 141, 207, 222

< (less than) operator, 141, 207, 222

<= (less than or equal to) operator, 141,
207, 222

%, formatting strings with, 224

. (period), 108

+ operator, 147

symbol, 210-211, 218

‘ (single quotes), 205-206, 220

// (two slashes), 193

_ (underscore) character, 203, 217

o/ o

a (anchor element), 86
A/B testing, 61
Abraham, Nik (author), contact
information for, 2, 40, 58, 74, 95, 118,
133, 149, 155, 196, 211, 225
abs () function, 219
.abs method, 205
action attribute, 73
active, 86
ad blocker, 24
adding
background images, 88-92
icons, 131-132

images, 54
JavaScript, 135-155, 148-149
logic with Python, Ruby, and PHP, 26-27
advanced math, computing, 204-205,
218-219
advertising, coding for, 12
agile process, 33-34, 161
Airbnb, 11, 132-133
AJAX (asynchronous JavaScript), 136-137
alert () method, 146, 183-184
alert statement, 142
alerting users, 146
align attribute, 67-70
aligning
elements, 109-117
tables and cells, 67-70
anchor element (a), 86
anchor tag, 53
Andreesen, Marc (software designer), 10
angle brackets (<>), 45-46, 195
Angry Birds app, 9
API directories, 181
APIs (application programming interfaces),
working with, 149-153
appearance, of web pages, 24
application programming interfaces (APIs),
working with, 149-153
apps
building, 159-169
coding, 37
debugging, 195-196
designing, 36-37
development process, 161-162
dividing into steps, 172-179
form for, 174-179
functionality of, 172-174, 184
location-based, 159-161
open-source, 180-181
arguments, 138
asterisk (*), 204

246 Coding For Dummies

asynchronous JavaScript (AJAX), 136-137
attributes

about, 46-48

action, 73

align, 67-70

border, 67-70, 113

class, 108-109, 129

colspan, 67

form, 71-72

height, 69

hidden, 46-47

href, 53, 93

lang, 47-48

method, 72

onclick, 182, 189-190

rel, 93

src, 148

style, 99, 101

title, 46-48, 104

type, 71, 93, 148

valign, 69

value, 71

width, 67-70
availability, of data, 152

ol e

backend, 24-25
back-end developers, 167
background images, adding, 88-92
background-attachment, setting, 91-92
background-attachment property, 89,
91-92
background-color property, 89
background-image, setting, 89
background-image property, 88-89
background-position, setting, 90
background-position property, 88, 90
background-repeat, setting, 90-91
background-repeat property, 89-91
background-size, setting, 89-90
background-size property, 88-90
Balsamiq, 37
BDFL (Benevolent Dictator for Life), 215
Benevolent Dictator for Life (BDFL), 215
Berners-Lee, Tim (computer engineer), 58
Blacktie.co (website), 125

Blogger (website), 243
body element, 48-49, 104
<body> tag, 148, 189-190
bold, highlighting with, 55-56
Boolean data type, 139, 204, 218
Bootply.com (website), 125
bootsnipp.com (website), 125
Bootstrap
about, 119
building Airbnb home page, 132-133
coding basic web page elements, 128-132
installing, 121-122
layout options, 122-128
themes, 125-126
what it does, 119-121
Bootstrapzero.com (website), 125
Bootswatch.com (website), 125
border attribute, 67-70, 113
border property, 101-102
border-collapse property, 103
box model, 113-114
boxes, positioning, 114-117
<brs> tag, 52
braces, JavaScript, 138
breaking down goals, 238-239
browsers
defined, 19
incompatibilities with, 164
bugs, 240-241
building
Airbnb home page, 132-133
apps, 159-169
basic forms, 72-73
filler text, 124
location-based offer apps, 159-161
mobile web apps, 29
native mobile apps, 30-31
ordered lists, 62
simple form-text formatter using Ruby, 211
tip calculators using Python, 225
unordered lists, 62
web pages, 94-95
websites with HTML, 57-58
BuiltWith (website), 200, 214
bullet points, specifying images to use as, 98
<buttons> tag, 129
buttons, designing, 128-130

o o

C++, 16, 31
capitalise method, 210
capitalize () function, 223-224
<captions tag, 103
Cascading Style Sheets (CSS)
about, 26, 75, 97
adding to HTML, 92-94
aligning elements, 109-117
code for, 190
hacking websites with, 79-81
laying out elements, 109-117
naming code using class attribute,
108-109
selecting elements to style, 103-109
structure of, 77-81
styling, 92-93
styling elements on pages, 98-103
tasks and selectors, 81-92
uses for, 75-77
writing advanced, 118
case-sensitivity
for JavaScript functions, 192
in Python, 218
in Ruby, 204
of variables, 204
.ceil method, 205
cells, aligning with tables, 67-70
changing
layout for mobile, tablet, and desktop,
126-128
markers, 98
Cheat Sheet (website), 3
child selector, 106
chomp method, 208-209
choosing
APIs, 152-153
elements to style, 77-78, 103-109
programming languages, 237
solutions, 184-186
tools for programming, 38-40
Chrome, 39, 187
class attribute, 108-109, 129
classes, 131
clear property, 115
client goals, for apps, 163

closing tags, 45, 195
COBOL, 16
code
about, 8-9
debugging, 38
indenting, 188, 196
iterating, 242-243
naming using class attribute, 108-109
naming using id attribute, 108
naming with functions, 146-147
pre-written, 189-192
web apps built with, 16-18
writing with Angry Birds app, 9
Codecademy
about, 229-230
building web pages, 94-95
building websites with HTML, 57-58
HTML, 73-74
website, 1-2
working online with, 39-40
Code.org, 231-232
Codepen.io (website), 188
coders
resources for, 229-236
tips for, 237-243
code-writing process, 33-38
coding
about, 7-9
apps, 37
basic web page elements, 128-132
common tasks and commands in Python,
217-223
common tasks and commands in Ruby,
203-209
common tasks in JavaScript, 139-149
on the job, 12
mobile applications, 27-31
preparing for, 187-188
resources for, 229-236
steps for, 192-195
uses for, 10-13
web applications, 16-18, 26-27, 187-196
web apps built with code, 16-18
coding-reference websites, 232-234
Coffitivity, 13
collecting feedback, 242
colons (%), 78, 217

Index 24 7

248

Coding For Dummies

color, setting, 83-84
color picker, 84
color property, 79-80, 82-84, 86
colspan attribute, 67
columns, table, 66-67
commands
Python, 217-223
Ruby, 203-209
community, for apps, 184
community websites, 234-236
comparing
compiled code and interpreted code, 16
low-level and high-level programming
languages, 15
compiled code, compared with interpreted
code, 16
components, in Bootstrap, 120
Computer Science Education Week, 9
computing simple and advanced math,
204-205, 218-219
concatenate, 147
conciseness, principle of, 201
conditional statement, 140
conditionals
in Python, 221-222
in Ruby, 206-208
consistency, principle of, 201
console. log statement, 140
content, 113
content, organizing on web pages, 59-61
cost, API, 153
Coursera, 230
creating
Airbnb home page, 132-133
apps, 159-169
basic forms, 72-73
filler text, 124
location-based offer apps, 159-161
mobile web apps, 29
native mobile apps, 30-31
ordered lists, 62
simple form-text formatter using Ruby, 211
tip calculators using Python, 225
unordered lists, 62
web pages, 94-95
websites with HTML, 57-58

cross-browser compatibility, in
Bootstrap, 121

CrunchBase (website), 234

CSS (Cascading Style Sheets)
about, 26, 75, 97
adding to HTML, 92-94
aligning elements, 109-117
code for, 190
hacking websites with, 79-81
laying out elements, 109-117

naming code using class attribute,

108-109

selecting elements to style, 103-109

structure of, 77-81
styling, 92-93

styling elements on pages, 98-103

tasks and selectors, 81-92

uses for, 75-77

writing advanced, 118
curly brackets ({}), 78, 195
cursive, 85
customizing links, 86

o) e

D3.js, 153-154
data
listing, 61-64
organizing on pages, 109-111
putting in tables, 64-70
scraping without APIs, 151-152
storing with variables, 139-140
data types
Boolean, 139, 204, 218
Python, 217-218
Ruby, 203-204
strings, 139
debugging
about, 240-241
apps, 195-196
code, 38
web apps, 187-196
declaration block, 78-79
defining goals, 238
del element, 55
deliverables, agreeing on, 164

descendant selector, 106-107
design errors, 241
design/designing
apps, 36-37
buttons, 128-130
coding for, 12
tables, 101-103
designers, 165-167
desktops
adapting layout for, 126-128
displaying web pages on, 19-26
development environment, 161-162,
188-189
Disney Animation, 214
display errors, 38
displaying web pages on desktops and
mobile devices, 19-26
<divstag, 111-113, 115, 123, 127, 189-190
dividing apps into steps, 172-179
IDOCTYPE html element, 48-49
documentation
API, 150, 153
for apps, 184
product and feature requests, 164
dot-notation
in Python, 223-224
in Ruby, 203
double quotes (“), 205-206, 220
downcase method, 210
dragging and dropping, to websites,
124-125
Dribble (website), 176, 231
Drive, 39
Dropbox, 214
dropdown-toggle class, 131
Dummies (website), 3

ofF o

ease of implementation, for apps, 184
e-commerce websites, using Ruby, 200
Editor, 38-39
Eich, Brendan (Netscape engineer), 136
elements

aligning, 109-117

body, 48-49, 104

choosing to style, 77-78
coding basic web page, 128-132
del, 55
IDOCTYPE html, 48-49
em, 55
head, 48-49, 104
hil, 104
html, 48-49, 104
identifying in HTML, 45-46
laying out, 109-117
11,104
naming in HTML, 107-109
ol, 62
p, 104
selecting to style, 103-109
strong, 55
styling on pages with CSS, 98-103
sub, 56
sup, 56
table, 67-70
title, 48-49
tr, 69
u, b5
ul, 62, 104
elif statement, in Python, 221-222
else statement
in Python, 216, 221-222
in Ruby, 206-208
elsif statement, in Ruby, 206-208
em element, 55
embedded CSS, 93
enabling location services, 188
equal sign (=), 48, 78
equality (===) operator, 141, 143, 207, 222
errors, 38
escape sequences, 206, 221
Evans, David (professor), 231
exclamation points, in Ruby, 203

ofF o

face detection APIs, 181
failures, sharing, 243
fantasy, 85

features, distinguishing, 239
feedback, collecting, 242

Index 2& 9

250

Coding For Dummies

filler text, generating, 124
first-child selectors, 107
flexibility, principle of, 201
Flickr (website), 54
float property, 115
. floor method, 205
following
app development process, 161-162
instructions, 8-9
font-family, setting, 84-85
font-family property, 82, 84-85
font-size, setting, 83
font-size property, 79, 82-83, 100
font-style, setting, 84
font-style property, 82, 84
font-weight, setting, 84
font-weight property, 82, 84
foreground images, styling, 88-92
fork, 188
form, for apps, 174-179
formatting strings with %, 224
forms, HTML, 70-73
form-text formatter, building using
Ruby, 211
FORTRAN, 31
forward slash (/), 45
framework, 27
frontend, 24-25
front-end developers, 167
full stack developer, 24, 37
function declaration, 146-147
functionality
across languages, when comparing
programming and spoken
languages, 14
of apps, 172-174, 184
functions
abs (), 219
capitalize (), 223-224
getLocation (), 182,191, 192
lower (), 223-224
math.ceil (), 219
math.floor (), 219
naming code with, 146-147
round (), 219
showLocation (), 191-192

string.capitalize(), 224
string.lower (), 224
string.strip(), 224
string.upper (), 224
strip(), 223-224

upper (), 223-224

oG o

geolocation, 182
Geolocation API, 190-192
getElementByID, 192
getLocation () function, 182, 191-192
glyphs, 132
goals
breaking down, 238-239
defining, 238
Google, 239-240
Google Chrome, 20
Google Images (website), 54
Google Maps, 150-151, 180
Google Voice app, 28
greater than (>) operator, 106, 141, 207, 222
greater than or equal to (>=) operator, 141,
207, 222
grid system, lining up, 122-124
Groupon, 11

oH o

<hl> tag, 64, 103, 138, 189-190
hl...h6 headings, 51
Hackdesign.org, 230-231
Hacker News, 235
hacking
news websites, 20-22
websites with CSS, 79-81
head element, 48-49, 104
<head> tag, 148, 189-190
headlines, writing, 51
height attribute, 69
hex code, 84
hidden attribute, 46-47
high-level programming languages,
compared with low-level programming
languages, 15

highlighting with bold, italics, underline,
and strikethrough, 55-56
hl element, 104
Hoffman, Reid (founder of LinkedIn), 241
Hood Model, 13
Horse ebooks, 104
hotlinking, 54, 89
Hotmail (website), 10
hover, 86
href attribute, 53, 93
HTML (HyperText Markup Language)
about, 26, 43, 59
adding CSS to, 92-94
building websites with, 57-58
forms, 70-73
history of, 58
listing data, 61-64
naming code using class attribute, 108
naming elements, 107-109
organizing content on pages, 59-61
practicing with, 73-74
structure of, 44-49
style, 55-56
tables, 64-70
tasks and tags, 49-54
uses for, 43-44
HTML code, 189-190
html element, 48-49, 104
Huffington Post (website), 20
hyperlinks, 52-53
HyperText Markup Language (HTML)
about, 26, 43, 59
adding CSS to, 92-94
building websites with, 57-58
forms, 70-73
history of, 58
listing data, 61-64
naming code using class attribute, 108
naming elements, 107-109
organizing content on pages, 59-61
practicing with, 73-74
structure of, 44-49
style, 55-56
tables, 64-70
tasks and tags, 49-54
uses for, 43-44

Index 25’

o] e

icons
adding, 131-132
explained, 3
id attribute, naming code using, 108
identifying research sources, 179-181
if statement
about, 141, 143
example of, 207-208, 222
in Python, 216, 221-222
in Ruby, 206-208
if-else statements, 140-144,
183-185
images, adding, 54, 88-92
 tag, 54
indenting
code, 188, 196
in Ruby, 202
Industrial Light & Magic, 214
industry news/blogs, 181
inequality (I=) operator, 141, 207, 222
infrastructure, of web pages, 24
in-line CSS, 92-93
. innerHTML methods, 192
input
in Python, 222-223
in Ruby, 208-209
inserting variables in strings with #,
210-211
installing Bootstrap, 121-122
instructions, following, 8-9
interaction designer, 166
Internet broadband connectivity, software
for, 10
Internet protocol address (IP address), 23
Internet resources
API directories, 181
Blacktie.co, 125
Blogger, 243
Bootply.com, 125
bootsnipp.com, 125
Bootstrapzero.com, 125
Bootswatch.com, 125
building with HTML, 57-58

252 Coding For Dummies

Internet resources (continued)
BuiltWith, 200, 214

buttons, 130

Cheat Sheet, 3

Chrome, 39, 187
Codecademy, 1, 2, 229
Code.org, 231-232
Codepen.io, 188
coding-reference, 232-234
color picker, 84

community websites, 234-236
Coursera, 230

CrunchBase, 234

developer tools, 241
dragging and dropping to, 124-125
Dribble, 176, 231

Drive, 39

Dummies, 3

escape sequences, 206
first-child selectors, 107
Flickr, 54

glyphs, 132

Google Chrome, 20

Google Images, 54
Hackdesign.org, 230

Hacker News, 235

hacking with CSS, 79-81
Hood Model, 13

Hotmail, 10

HTML button syntax, 184
Huffington Post, 20
Jetstrap.com, 125

Kimono Labs, 152
Layoutit.com, 125
learning-to-code, 229-232
Lorem ipsum text, 124
Meetup, 236

Mozilla, 109, 240

Mozilla Developer Network, 233
Notepad++, 39, 57
nth-child selectors, 107
Pingendo.com, 125

Python, 216

Python functions, 219
Python interpreter, 215, 218
retailmenot, 152

Sequoia, 13
Sites, 39
Stack Exchange, 240
Stack Overflow, 109, 233, 240-241
tech news, 234-236
TechCrunch, 234
TextMate, 57
TextMate 2.0, 39
toolbar options, 131
Tumblr, 243
Udacity, 230
user-generated coding, 181
w3.org, 240
W3Schools, 109, 139, 184-185, 232, 240
Weebly, 39
Wix, 39
Wordpress, 243
Wrapbootstrap.com, 125
Yahoo Weather API, 150
interpreted code, compared with compiled
code, 16
I[P address (Internet protocol address), 23
italics, highlighting with, 55-56
iterating code, 242-243
iterative steps, 33
Ive, Jonathan (designer), 166

o)] °
Java, 31
JavaScript
about, 16, 26
adding, 135-155, 148-149
APIs, 149-153
braces, 138
case-sensitivity in, 192
code for, 190-192
coding common tasks, 139-149
libraries, 153-154
parentheses, 138
quotes, 138
searching for videos, 154-155
semicolons, 138
structure of, 137-138
what it does, 135-137
writing programs in, 149

Jetstrap.com (website), 125
job, coding on the, 12
jQuery, 153

oK o

Kimono Labs (website), 152

o/ o

lang attribute, 47-48
layers, 37
laying out elements, 109-117
Layoutit.com (website), 125
layouts
adapting for mobile, tablet, and desktop,
126-128
in Bootstrap, 120, 122-128
learning-to-code websites, 229-232
left angle brackets, 195
left curly brackets, 195
length, of strings, 144
.length method, 145
less than (<) operator, 141, 207, 222
less than or equal to (<=) operator, 141,
207, 222
1i element, 104
<1li> tag, 63, 130
libraries, JavaScript, 153-154
lining up grid system, 122-124
<links> tag, 86, 121
links, customizing, 86
listing data, 61-64
lists
nesting, 63-64
styling, 98-101
list-style-image property, 99
list-style-type property, 98-99
LiveScript. See JavaScript
location services, enabling, 188
location-based offer apps, building, 159-161
logic
adding with Python, Ruby, and PHP, 26-27
of web pages, 24
logic errors, 38, 241
Lorem ipsum text, 124

lower () function, 223-224

lowering text with subscript, 56

low-level programming languages,
compared with high-level
programming languages, 15

o o

margin, 113
markers, changing, 98
marketing, coding for, 12
massive open online course (MOOCs), 230
math.ceil () function, 219
math. floor () function, 219
Meetup, 236
method attribute, 72
methods

about, 144

.abs, 205

alert (), 146, 183-184

capitalise, 210

.ceil, 205

chomp, 208-209

downcase, 210

.floor, 205

.innerHTML, 192

.length, 145

prompt (), 146, 147

.round, 205

string.format (), 224

strip, 210

.substring, 145

.toFixed, 145

upcase, 210
Meyer, Rebecca (brain cancer patient), 83
minimum viable product, 37, 239
misspelled statements, 196
mobile devices

adapting layout for, 126-128

displaying web pages on, 19-26

software for, 10
mobile web applications

building, 29

coding, 27-31

defined, 25

native, 25-26, 30-31

Index 253

254

Coding For Dummies

mockups, 36-37

Modern Seinfeld Twitter account, 107
modules, 219

monospace, 85

MOOCs (massive open online course), 230
Mozilla (website), 109, 240

Mozilla Developer Network, 233

music websites, using Ruby, 200

Musk, Elon (founder of PayPal), 104

o\ o

\n character, 206, 220
\n escape sequence, 208-209, 223
naming
code using class attribute, 108-109
code using id attribute, 108
code with functions, 146-147
HTML elements, 107-109
native mobile applications
building, 30-31
defined, 25-26
natural lifespan, when comparing
programming and spoken
languages, 14
navigating, with toolbars, 130-131
nesting lists, 63-64
Netscape Navigator, 10
newlines
in Python, 217
in Ruby, 202
news websites
hacking, 20-22
using Ruby, 200
Notepad, 39
Notepad++, 39, 57
nth-child selectors, 107
number data type, 204
number methods, 144-146
numbers data type, 139, 218

o () o

offline, working, 38-39
ol element, 62
onclick attribute, 182, 189-190

‘one creator,” when comparing
programming and spoken
languages, 14

online, working, 39-40

opening tags, 45, 195

open-source apps, 180-181

operations, coding for, 12

ordered lists, creating, 62

organizing

content on web pages, 59-61

data on pages, 109-111

text in paragraphs, 52
Otto, Mark (Twitter developer), 119, 167
output

in Python, 222-223

in Ruby, 208-209

opPoe

p element, 104
padding, 113
pages, web
adding JavaScript to, 148-149
building, 94-95
coding basic elements, 128-132
displaying on desktops and mobile
devices, 19-26
organizing content on, 59-61
organizing data on, 109-111
styling elements on with CSS, 98-103
paragraphs, organizing text in, 52
parameters, 147
parentheses, 138, 147
Parody Tech Twitter accounts, 106-107
percent (%), formatting strings with, 224
period (.), 108
Peters, Tim (Python community
member), 215
Photoshop, 37
PHP, adding logic with, 26-27
Pichai, Sundar (product manager), 168-169
Pingendo.com (website), 125
planning web apps, 162-164
plus (+) operator, 147
positioning boxes, 114-117
pound (#) symbol, 210-211, 218

predefined templates, Bootstrap, 125-126

predictability, of APIs, 150
preparing for coding, 187-188
pre-written code, 189-192
price, of apps, 184
principle of conciseness, 201
principle of consistency, 201
principle of flexibility, 201
print statement, in Python, 216
prior commercial apps, 180-181
product managers, 168
programmer, becoming a, 33-40
programming

about, 33

code-writing process, 33-38

tools, 38-40

for the web, 16, 19-31
programming languages

about, 31

selecting, 237

types of, 13-16
prompt () method, 146-147
prompting users for input, 146
properties

about, 77-78

background-attachment, 89, 91-92

background-color, 89

background-image, 88-89

background-position, 88, 90

background-repeat, 89-91

background-size, 88-90

border, 101-102

border-collapse, 103

clear, 115

color, 79-80, 82-84, 86

float, 115

font-family, 82, 84-85

font-size, 79, 82-83, 100

font-style, 82, 84

font-weight, 82, 84

list-style-image, 99

list-style-type, 98-99

text-align, 101-103

text-decoration, 82, 85-86

values, 78-79

width, 101-102

pseudo-class selectors, 87
public relations, coding for, 12
punctuation

in Python, 216

in Ruby, 202
Python

about, 16, 213

adding logic with, 26-27

building tip calculators using, 225

case-sensitivity in, 218

coding common tasks and commands,

217-223

conditionals in, 221-222

data types, 217-218

input in, 222-223

output in, 222-223

shaping strings, 223-224

spacing in, 216-217

special characters, 220-221

strings, 220-221

structure of, 214-217

styling in, 216-217

variables, 217-218

what it does, 213-214
Python interpreter, 215, 218

oQo

quality, of data, 152
quality assurance, 169
Quora, 214

quotes, JavaScript, 138

o R o

r escape sequence, 208-209
Rails, 200. See also Ruby
raising text with superscript, 56
readability, of Python, 215
Reddit, 214

regular expressions, 152

rel attribute, 93

reliability, of data, 153
Remember icon, 3

Index 255

256

Coding For Dummies

researching
APIs, 152-153
identifying sources, 179-181
web apps, 171-186
what to build, 35-36
resources, for coding and coders, 229-236
responsiveness, in Bootstrap, 121
retailmenot (website), 152
RGB value, 84
right angle brackets, 195
right curly brackets, 195
round () function, 219
.round method, 205
rows, table, 66-67
Ruby
about, 16, 199
adding logic with, 26-27
building simple form-text formatter
using, 211
case-sensitivity in, 204
coding common tasks and commands,
203-209
conditionals in, 206-208
principles of, 201-202
shaping strings, 209-211
spacing in, 202-203
structure of, 200-203
styling in, 202-203
what it does, 199-200
“Ruby on Rails,” 200. See also Ruby

oS o

sales, coding for, 12
sans-serif, 85
SciPy library, 214
scraping data without APIs, 151-152
Scrapy library, 214
screen scraping, 151-152
<scripts> tag, 122, 148-149
search engines, 180
searching for videos with YouTube’s API,
154-155
selecting
APIs, 152-153
elements to style, 77-78, 103-109

programming languages, 237
solutions, 184-186
tools for programming, 38-40
selectors
about, 77-78
CSS, 81-92
semantic errors, 241
semicolons, JavaScript, 138
sequential steps, 33
Sequoia, 13
serif, 85
setting
background-attachment, 91-92
background-image, 89
background-position, 90
background-repeat, 90-91
background-size, 89-90
color, 83-84
font-family, 84-85
font-size, 83
font-style, 84
font-weight, 84
text-decoration, 85
shaping
<div> tags, 111-113
strings, 209-211, 223-224
sharing successes and failures, 243
showLocation () function, 191-192
simple math, computing, 204-205,
218-219
single quotes (), 205-206, 220
Sites, 39
social networking sites, using Ruby, 200
software, 10-11, 164
solid-black-circle, 98
solutions, choosing, 184-186
spaces, 49, 202
spacing
in Python, 216-217
in Ruby, 202-203
 tag, 132
special characters
in Python, 220-221
in Ruby, 205-206
specifications, 239

Index

spoken languages, compared with
programming languages, 14-15

Spotify, 214
SQLite, 214
src attribute, 148
Stack Exchange (website), 240
Stack Overflow, 109, 233-234, 240-241
statements

alert, 142

conditional, 140

console. log, 140

elif, 221-222

else, 206-208, 216, 221-222

elsif, 206-208

if, 141, 143, 206-208, 216,

221-222

if-else, 140-144, 183-185

misspelled, 196

print, 216
storing

data with variables, 139-140

web pages, 24
strikethrough, highlighting with, 55-56
string data type, 204, 218
string methods, 144-146, 210
string.capitalize () function, 224
string.format () method, 224
string.lower () function, 224
strings

about, 138

formatting with %, 224

inserting variables in with #, 210-211

in Python, 220-221

in Ruby, 205-206

shaping, 209-211, 223-224
strings data type, 139
string.strip () function, 224
string.upper () function, 224
strip () function, 223-224
strip method, 210
strong element, 55
 tag, 67
structure

of APIs, 150

of Cascading Style Sheets (CSS), 77-81

of HyperText Markup Language (HTML),
44-49
of JavaScript, 137-138
of Python, 214-217
of Ruby, 200-203
of tables, 65-66
when comparing programming and
spoken languages, 14
style
choosing elements to, 77-78
HyperText Markup Language (HTML),
55-56
selecting elements to, 103-109
style attribute, 99, 101
style sheets, 93
<style> tag, 99, 101
styling
Cascading Style Sheets (CSS), 92-93
elements on pages with CSS, 98-103
foreground images, 88-92
lists, 98-101
in Python, 216-217
in Ruby, 202-203
sub element, 56
subscript, lowering text with, 56
.substring method, 145
successes, sharing, 243
sup element, 56
superscript, raising text with, 56
support
API, 153
for apps, 184
syntax, 14, 180
syntax errors, 38, 240

oJ o

t character, 206, 220
table element, 67-70
<table> tag, 65-66
tables
aligning with cells, 67-70
designing, 101-103
putting data in, 64-70
structure of, 65-66

257

258 Coding For Dummies

tablets, adapting layout for, 126-128
tags

anchor, 53

<body>, 148, 189-190

, 52

<buttons, 129

<captions, 103

closing, 45, 195

defined, 45

<divs>, 111-113, 115, 123, 127, 189-190

<hl>, 64, 103, 138, 189-190

<heads>, 148, 189-190

HyperText Markup Language (HTML),

49-54

<imgs, 54

<1li>, 63,130

<link>, 86, 121

opening, 45, 195

in Ruby, 202

<scripts>, 122, 148-149

<spans, 132

<strongs>, 67

<style>, 99, 101

<tables, 65-66

<tds>, 65-66

<tr>, 65-66

<uls, 98,130
tasks

CSS, 81-92

HyperText Markup Language (HTML),

49-54

JavaScript, 139-149

Python, 217-223

Ruby, 203-209
<td> tag, 65-66
tech news websites, 234-236
TechCrunch, 234
Technical Stuff icon, 3
text

lowering with subscript, 56

organizing in paragraphs, 52

raising with superscript, 56
text-align property, 101-103
text-decoration, setting, 85
text-decoration property, 82, 85-86

TextEdit, 39

TextMate, 39, 57

themes, Bootstrap, 125-126

Thornton, Jacob (Twitter developer),
119, 167

timeline, agreeing on, 164

tip calculators, building using Python, 225

Tip icon, 3
title attribute, 46-48, 104
title element, 48-49
.toFixed method, 145
toolbars, navigating with, 130-131
tools
discussing, 164
selecting for programming, 38-40
tr element, 69
<tr> tag, 65-66
Tumblr (website), 243
Twitter Bootstrap. See Bootstrap
two slashes (//), 193
type attribute, 71, 93, 148
types
of programming languages, 13-16
of visual design, 36-37

o lf o

u element, 55
Uber, 11
Udacity, 230
UI (user interface) designer, 165
ul element, 62, 104
 tag, 98, 130
underline, highlighting with, 55-56
underscore (_) character, 203, 217
unordered lists, creating, 62
upcase method, 210
upper () function, 223-224
user experience (UX) designer, 165
user interface (UI) designer, 165
user-generated coding websites, 181
users

alerting, 146

prompting for input, 146
UX (user experience) designer, 165

o o

valign attribute, 69
value attribute, 71
values
about, 77-78
of properties, 78-79
van Rossum, Guido (developer), 213, 215
var keyword, 139-140
variables
case-sensitivity of, 204
inserting in strings with #, 210-211
in Python, 217-218
in Ruby, 203-204
storing data with, 139-140
videos, searching for with YouTube’s API,
154-155
Vinod Coleslaw Twitter account, 107
visited, 86
Visual Basic, 16
visual design, types of, 36-37
visual designer, 165-166

o[/ o

W3Schools, 109, 139, 232-233, 240
Warning! icon, 3
waterfall process, 33-34, 161
web
how it works, 22-24
programming for the, 16, 19-31
web applications
built with code, 16-18
coding, 16-18, 26-27, 187-196
debugging, 187-196
defined, 25
planning, 162-163
researching, 171-186
web pages
adding JavaScript to, 148-149
building, 94-95
coding basic elements, 128-132
displaying on desktops and mobile
devices, 19-26
organizing content on, 59-61

organizing data on, 109-111

styling elements on with CSS, 98-103
web scraping, 151-152
web-based software, 10
websites

API directories, 181

Blacktie.co, 125

Blogger, 243

Bootply.com, 125

bootsnipp.com, 125

Bootstrapzero.com, 125

Bootswatch.com, 125

building with HTML, 57-58

BuiltWith, 200, 214

buttons, 130

Cheat Sheet, 3

Chrome, 39, 187

Codecademy, 1, 2, 229

Code.org, 231-232

Codepen.io, 188

coding-reference, 232-234

color picker, 84

community websites, 234-236

Coursera, 230

CrunchBase, 234

developer tools, 241

dragging and dropping to, 124-125

Dribble, 176, 231

Drive, 39

Dummies, 3

escape sequences, 206

first-child selectors, 107

Flickr, 54

glyphs, 132

Google Chrome, 20

Google Images, 54

Hackdesign.org, 230

Hacker News, 235

hacking with CSS, 79-81

Hood Model, 13

Hotmail, 10

HTML button syntax, 184

Huffington Post, 20

Jetstrap.com, 125

Kimono Labs, 152

Layoutit.com, 125

Index 259

260 Coding For Dummies

websites (continued)
learning-to-code, 229-232
Lorem ipsum text, 124
Meetup, 236

Modzilla, 109, 240

Mozilla Developer Network, 233
Notepad++, 39, 57
nth-child selectors, 107
Pingendo.com, 125

Python, 216

Python functions, 219
Python interpreter, 215, 218
retailmenot, 152

Sequoia, 13

Sites, 39

Stack Exchange, 240

Stack Overflow, 109, 233, 240-241
tech news, 234-236
TechCrunch, 234

TextMate, 57

TextMate 2.0, 39

toolbar options, 131
Tumblr, 243

Udacity, 230
user-generated coding, 181
w3.org, 240

W3Schools, 109, 139, 184-185, 232, 240

Weebly, 39
Wix, 39

Wordpress, 243
Wrapbootstrap.com, 125
Yahoo Weather API, 150
Weebly, 39
whitespace, in Python, 216
width attribute, 67-70
width property, 101-102
wireframes, 36-37
Wix, 39
Wordpress (website), 243
Wrapbootstrap.com (website), 125
writing
advanced CSS, 118
code with Angry Birds app, 9
headlines, 51
JavaScript programs, 149
programs in JavaScript, 149
written in English, when comparing
programming and spoken
languages, 15

® y °

Yahoo Weather API (website), 150

Yelp, 16-18

YouTube API, searching for videos with,
154-155

Yukihiro Matsumoto (developer), 167-168

About the Author

Nikhil Abraham has worked at Codecademy.com for the last two years. At
Codecademy, he helps technology, finance, media, and advertising companies
teach their employees how to code. With his help, thousands of marketing,
sales, and recruiting professionals have written their first lines of code and
built functional applications. In addition to teaching, he manages partner-
ships and business development for Codecademy, and has helped bring
coding to schools in the United States, Brazil, Argentina, France, and the
United Kingdom.

Prior to Codecademy, Nikhil worked in a variety of fields, including manage-
ment consulting, investment banking, and law, and founded a Y-Combinator-
backed technology education startup. He received a JD and MBA from

the University of Chicago, and a BA in quantitative economics from Tufts
University.

Nikhil lives in Manhattan, New York.

Dedication

This book is dedicated to Molly Grovak.

Author’s Acknowledgments

This book was possible with help from a number of people.

Thanks to all the people at Wiley, including Steven Hayes, for keeping an
open mind to as many ideas as can fit in one phone call, and Christopher
Morris for edits and helpful advice. Also, thank you to all the technical edito-
rial, layout, and graphics folks for turning text of variable quality into text of
outstanding quality.

Thanks to those of you who helped shape the content in this book and
online. For everyone at Codecademy, including Zach and Ryan, thank you

for the feedback on the chapters and for answering my questions. Thanks

to Douglas Rushkoff, for starting a national conversation on whether we as

a society should program or be programmed, and for bringing this message
to schools, universities, and non-profits. Thanks to Susan Kish, for being the
only executive I can find who has spoken publicly about her journey learning
how to code (check out her TED Talk!), and for seeing the future of coding

in corporations. Thanks to Alia Shafir and Joshua Slusarz for all the coding
sessions you helped organize, leaders you wrangled, rooms you reserved,
and laptops you rebooted. Thanks to Melissa Frescholtz and her leadership
team for supporting a culture of code, and bringing code education even

to places where it’s used every day. Thanks to alumni at Cornell University,
Northwestern University, University of Virginia, and Yale University for
testing early versions of content, and helping make it better. Thanks to the
people at Donorschoose.org, including Charles Best and Ali Austerlitz, and at
Google.org for shining a bright light on coding for women and girls. Thanks to
Code.org for making coding accessible and cool for tens of millions of kids in
the United States and abroad.

Finally, thanks to Molly, who ordered more take-out, brewed more tea, and
cleaned the apartment more times than I can count.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes Project Coordinator: Melissa Cossell
Senior Project Editor: Christopher Morris Cover Image: ©iStock.com/blackred
Copy Editor: Christopher Morris

Technical Editor: Travis Faas

Editorial Assistant: Claire Johnson

Sr. Editorial Assistant: Cherie Case

Apple & Mac

iPad For Dummies,
6th Edition
978-1-118-72306-7

iPhone For Dummies,
7th Edition
978-1-118-69083-3

Macs All-in-One
For Dummies, 4th Edition
978-1-118-82210-4

OS X Mavericks
For Dummies
978-1-118-69188-5

Blogging & Social Media
Facebook For Dummies,
5th Edition
978-1-118-63312-0

Social Media Engagement
For Dummies
978-1-118-53019-1

WordPress For Dummies,
6th Edition
978-1-118-79161-5

Business

Stock Investing
For Dummies, 4th Edition
978-1-118-37678-2

Investing For Dummies,
6th Edition
978-0-470-90545-6

Personal Finance
For Dummies, 7th Edition
978-1-118-11785-9

QuickBooks 2014
For Dummies
978-1-118-72005-9

Small Business Marketing
Kit For Dummies,

3rd Edition
978-1-118-31183-7

Careers

Job Interviews
For Dummies, 4th Edition
978-1-118-11290-8

Job Searching with Social
Media For Dummies,

2nd Edition
978-1-118-67856-5

Personal Branding
For Dummies
978-1-118-11792-7

Resumes For Dummies,
6th Edition
978-0-470-87361-8

Starting an Etsy Business
For Dummies, 2nd Edition
978-1-118-59024-9

Diet & Nutrition

Belly Fat Diet For Dummies
978-1-118-34585-6

Mediterranean Diet
For Dummies
978-1-118-71525-3

Nutrition For Dummies,
5th Edition
978-0-470-93231-5

Digital Photography
Digital SLR Photography
All-in-One For Dummies,
2nd Edition
978-1-118-59082-9

Digital SLR Video &
Filmmaking For Dummies
978-1-118-36598-4

Photoshop Elements 12
For Dummies
978-1-118-72714-0

Gardening

Herb Gardening

For Dummies, 2nd Edition
978-0-470-61778-6

Gardening with Free-Range

Chickens For Dummies
978-1-118-54754-0

Health

Boosting Your Immunity
For Dummies
978-1-118-40200-9

@ Available in print and e-book formats.

Diabetes For Dummies,
4th Edition
978-1-118-29447-5

Living Paleo For Dummies
978-1-118-29405-5

Big Data
Big Data For Dummies
978-1-118-50422-2

Data Visualization
For Dummies
978-1-118-50289-1

Hadoop For Dummies
978-1-118-60755-8

Language &
Foreign Language
500 Spanish Verbs
For Dummies
978-1-118-02382-2

English Grammar
For Dummies, 2nd Edition
978-0-470-54664-2

French All-in-One
For Dummies
978-1-118-22815-9

German Essentials
For Dummies
978-1-118-18422-6

[talian For Dummies,
2nd Edition
978-1-118-00465-4

Making Everything Easier!”

Investing

Making Everything Easier”

Windows 8

Making Everything Easier”

500 Spanish
Verbs

DUI\};MIES

IN FULL COLOR!

Edward C. Baig
Bob “Dr. Mac” LeVitus

Available wherever books are sold. For more information or to order direct visit www.dummies.com

Math & Science

Algebra | For Dummies,
2nd Edition
978-0-470-55964-2

Anatomy and Physiology
For Dummies, 2nd Edition
978-0-470-92326-9

Astronomy For Dummies,
3rd Edition
978-1-118-37697-3
Biology For Dummies,

2nd Edition
978-0-470-59875-7
Chemistry For Dummies,
2nd Edition
978-1-118-00730-3

1001 Algebra Il Practice

Problems For Dummies
978-1-118-44662-1

Microsoft Office
Excel 2013 For Dummies
978-1-118-51012-4

Office 2013 All-in-One
For Dummies
978-1-118-51636-2

PowerPoint 2013
For Dummies
978-1-118-50253-2

Word 2013 For Dummies
978-1-118-49123-2

Music

Blues Harmonica
For Dummies
978-1-118-25269-7

Guitar For Dummies,
3rd Edition
978-1-118-11554-1

iPod & iTunes
For Dummies, 10th Edition
978-1-118-50864-0

Programming
Beginning Programming
with C For Dummies
978-1-118-73763-7

Excel VBA Programming
For Dummies, 3rd Edition
978-1-118-49037-2

Java For Dummies,
6th Edition
978-1-118-40780-6

Religion & Inspiration

The Bible For Dummies
978-0-7645-5296-0

Buddhism For Dummies,
2nd Edition
978-1-118-02379-2

Catholicism For Dummies,
2nd Edition
978-1-118-07778-8

Self-Help & Relationships
Beating Sugar Addiction
For Dummies
978-1-118-54645-1

Meditation For Dummies,
3rd Edition
978-1-118-29144-3

Seniors

Laptops For Seniors
For Dummies, 3rd Edition
978-1-118-71105-7

Computers For Seniors
For Dummies, 3rd Edition
978-1-118-11553-4

iPad For Seniors
For Dummies, 6th Edition
978-1-118-72826-0

Social Security
For Dummies
978-1-118-20573-0

Smartphones & Tablets

Android Phones
For Dummies, 2nd Edition
978-1-118-72030-1

Nexus Tablets
For Dummies
978-1-118-77243-0

Samsung Galaxy S 4
For Dummies
978-1-118-64222-1

@ Available in print and e-book formats.

Samsung Galaxy Tabs
For Dummies
978-1-118-77294-2

Test Prep
ACT For Dummies,
5th Edition
978-1-118-01259-8

ASVAB For Dummies,
3rd Edition
978-0-470-63760-9

GRE For Dummies,

7th Edition
978-0-470-88921-3
Officer Candidate Tests
For Dummies
978-0-470-59876-4
Physician’s Assistant Exam
For Dummies
978-1-118-11556-5

Series 7 Exam For Dummies
978-0-470-09932-2

Windows 8

Windows 8.1 All-in-One
For Dummies
978-1-118-82087-2
Windows 8.1 For Dummies
978-1-118-82121-3
Windows 8.1 For Dummies,

Book + DVD Bundle
978-1-118-82107-7

Making Everything Easier”

Android Phones

DUMMIES

IN FULL COLOR!

Dan Gookin
Besslingauthorof Ancrod Taets
ForDummies”

"Making Everything Easier”

Job Searching
with Social Media

FOR

DUMMIES

Wiley Brand

" -
Covers iPad with Retina Display, Pad 2. and 05

iPad
For ngors
DUMMIES

Learn to:

INF COLOR!
Nancy C. Muir €

mmmmmmmmmmmmmm

Available wherever books are sold. For more information or to order direct visit www.dummies.com

ake Dummies with you
everywhere you go!

Whether you are excited about e-books, want more
from the web, must have your mobile apps, or are swept up
in social media, Dummies makes everything easier.

Q Bowme Movies | Ulosd

I'ES COM Making Everything Easier™

A0 Tube)

221 10868882

mmmmm

Visit Us Like Us Follow Us Watch Us
EE EEEE You Egpm
e ik S
Gl e Tube JE=:

bit.ly/JEOO on.fb.me/1f1ThNu bit.ly/ZDytkR bit.ly/gbOQHN

Join Us Pin Us Circle Us Shop Us

linkd.in/1gurkMm bit.ly/16caOLd bit.ly/1aQTuDQ

[EyE OFA 0 010 -

B

bit.ly/4dEp9

Leverage the Power

For Dummies is the global leader in the reference category and
one of the most trusted and highly regarded brands in the world.
No longer just focused on books, customers now have access to
the For Dummies content they need in the format they want. Let

us help you develop a solution that will fit your brand and help

you connect with your customers.

Advertising & Sponsorships

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.

Targeted ads - Video « Email marketing « Microsites - Sweepstakes sponsorship

nd
to Win it DUMMIE\S ‘ Enter for your chance towin $ 10,000 ‘ ')
Business & Careers —
Computers & Software RESUM]J
W

Consumer Electronics

Crafts & Hobbies

Education & Languages £

Food & Drink

Health & Fitness DUMMIE‘S elearning Center

H & Gard
e e From Windows 8 and Office 2010 to Digital Photography...

Internet & Social Media Start eLearning today! Register now 2 1 M i I Iion
Music & Creative Arts hI P
Pets Learn Something New. Job searching Mont y age
.
Photography & Video B“f‘”essp‘“TT“m VI ews &
With My Fill-In-

Personalize, Prin H1TH .

' 13 Million Unique
Visitors

Personal Finance

Relationships & Famil
P v = Using a Person-to-Person Approach in Your Job Search

Religion & Spirituality Searching Online Job Boards
= Job Search: Pros and Cons of Online Sacial Networking www.Digital Sherpa.c

= How to Create Effective and Professional Cnline Profiles Increase Traffic w/O
Management. Free Cons\

Sports & Outdoors

Games p ’
Read more articles on Job Searching .
Application Manag
www.manageengine.com
Monitor App Servers, Databases, ¥

Systems. Try Now!
Answering Tough Interview Questions ~ ~~ Adchoces

carina Touah IR aY

For Dummies is a registered trademark of John Wiley & Sons, Inc.

of For Dummies

Custom Publishing

Reach a global audience in any language by creating a solution that will
differentiate you from competitors, amplify your message,
and encourage customers to make a buying decision.

Apps « Books « eBooks « Video « Audio - Webinars

Living the
Boomer Life
DU,MMIE'S

Making Everything Easier!”

Predicttzve
Coding

Colonoscopy

DUMMIE‘S

Scott W. Ambler
Matthew Holitza

mwell-being

Brand Licensing & Content

Leverage the strength of the world’s most popular reference brand to reach
new audiences and channels of distribution.

Learn guitar
the fun and easy way™

o 2200902«

Sove Woter Save Moncr

Home Water Conservation Kit ‘

DUMHIES

Acoustic Guitar
Starter Pac

6CDs-7 hoursof Music
Frmthiddesgototepreés
1500 yeasofdssl s

n
<
=
2,
o)
Q

For more information, visit www.Dummies.com/biz

FOR

DUMMIE‘S

A Wiley Brand

Dummies products make life easier!

-DIY
- Consumer Electronics
- Crafts

Making Everything Easier”

Learn ukulele
the fun and easy way

Ukulele
Starter Pack

K‘-’;‘vg"‘r

- Software - Videos
- Cookware - Music
- Hobbies - Games

- and More!

Wlﬂ OMM‘EpasslblylhewalldsEnses!maumsmmsmﬂ’
Large Tlltmg
TV Wall Mounting Kit
DU 5

mﬂs«'vlﬂllldmmhmr g atbarel I

1 Solidheavy gougestelconsruction
1 Durablepowder-cootedblack fish
1 Atractiveond functone desgn
' Wrldwide patentspending

Unlimited 24/7 live tech support
for]ust 51 34 95a year

Great tech supportis only a phone call away! Call us now: 855-234-TECH(8324)

Here's How it Works:

SIGNUP CALLWITH WEFIXT
APROBLEM

- no Keyboard
P’sai"'arte" P: a"k

»@»&'»M ‘

MHere's What We Fix:

INTERACTIVE
LESSONS
—

Home Water Conservatlon Kit

For more information, go to Dummies.com- and search the store by category.

For Dummies is a registered trademark of John Wiley & Sons, Inc.

DUMMIES

A Wiley Brand

At home, at work, or on the go,
Dummies is here to help you
go digital!

From elLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,
Dummies makes learning easier.

Bl www.facebook.com/fordummies DUMMIES 'COM"

" A Wiley Brand

y www.twitter.com/fordummies

http://www.facebook.com/fordummies
http://www.twitter.com/fordummies

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with Coding
	Chapter 1: What Is Coding?
	Defining What Code Is
	Following instructions
	Writing code with some Angry Birds

	Understanding What Coding Can Do for You
	Eating the world with software
	Coding on the job
	Scratching your own itch (and becoming rich and famous)

	Surveying the Types of Programming Languages
	Comparing low-level and high-level programming languages
	Contrasting compiled code and interpreted code
	Programming for the web

	Taking a Tour of a Web App Built with Code
	Defining the app’s purpose and scope
	Standing on the shoulders of giants

	Chapter 2: Programming for the Web
	Displaying Web Pages on Your Desktop and Mobile Device
	Hacking your favorite news website
	Understanding how the World Wide Web works
	Watching out for your front end and back end
	Defining web and mobile applications

	Coding Web Applications
	Starting with HTML, CSS, and JavaScript
	Adding logic with Python, Ruby, or PHP

	Coding Mobile Applications
	Building mobile web apps
	Building native mobile apps

	Chapter 3: Becoming a Programmer
	Writing Code Using a Process
	Researching what you want to build
	Designing your app
	Coding your app
	Debugging your code

	Picking Tools for the Job
	Working offline
	Working online with Codecademy.com

	Part II: Building the Silent and Interactive Web Page
	Chapter 4: Exploring Basic HTML
	What Does HTML Do?
	Understanding HTML Structure
	Identifying elements
	Featuring your best attribute
	Standing head, title, and body above the rest

	Getting Familiar with Common HTML Tasks and Tags
	Writing headlines
	Organizing text in paragraphs
	Linking to your (heart’s) content
	Adding images

	Styling Me Pretty
	Highlighting with bold, italics, underline, and strikethrough
	Raising and lowering text with superscript and subscript

	Building Your First Website Using HTML

	Chapter 5: Getting More Out of HTML
	Organizing Content on the Page
	Listing Data
	Creating ordered and unordered lists
	Nesting lists

	Putting Data in Tables
	Basic table structuring
	Stretching table columns and rows
	Aligning tables and cells

	Filling Out Forms
	Understanding how forms work
	Creating basic forms

	Practicing More with HTML

	Chapter 6: Getting Stylish with CSS
	What Does CSS Do?
	CSS Structure
	Choosing the element to style
	My property has value
	Hacking the CSS on your favorite website

	Common CSS Tasks and Selectors
	Font gymnastics: size, color, style, family, and decoration
	Customizing links
	Adding background images and styling foreground images

	Styling Me Pretty
	Adding CSS to your HTML
	Building your first web page

	Chapter 7: Next Steps with CSS
	Styling (More) Elements on Your Page
	Styling lists
	Designing tables

	Selecting Elements to Style
	Styling specific elements
	Naming HTML elements

	Aligning and Laying Out Your Elements
	Organizing data on the page
	Shaping the div
	Understanding the box model
	Positioning the boxes

	Writing More Advanced CSS

	Chapter 8: Working Faster with Twitter Bootstrap
	Figuring Out What Bootstrap Does
	Installing Bootstrap
	Understanding the Layout Options
	Lining up on the grid system
	Dragging and dropping to a website
	Using predefined templates
	Adapting layout for mobile, tablet, and desktop

	Coding Basic Web Page Elements
	Designing buttons
	Navigating with toolbars
	Adding icons

	Build the Airbnb Home Page

	Chapter 9: Adding in JavaScript
	What Does JavaScript Do?
	Understanding JavaScript Structure
	Using Semicolons, Quotes, Parentheses, and Braces
	Coding Common JavaScript Tasks
	Storing data with variables
	Making decisions with if-else statements
	Working with string and number methods
	Alerting users and prompting them for input
	Naming code with functions
	Adding JavaScript to the web page

	Writing Your First JavaScript Program
	Working with APIs
	What do APIs do?
	Scraping data without an API
	Researching and choosing an API

	Using JavaScript Libraries
	jQuery
	D3.js

	Searching for Videos with YouTube’s API

	Part III: Putting Together a Web Application
	Chapter 10: Building Your Own App
	Building a Location-Based Offer App
	Understanding the situation
	Plotting your next steps

	Following an App Development Process
	Planning Your First Web Application
	Exploring the Overall Process
	Meeting the People Who Bring a Web App to Life
	Creating with designers
	Coding with front- and back-end developers
	Managing with product managers
	Testing with quality assurance

	Chapter 11: Researching Your First Web Application
	Dividing the App into Steps
	Finding your app’s functionality
	Finding your app’s functionality: My version
	Finding your app’s form
	Finding your app’s form: The McDuck’s Offer App design

	Identifying Research Sources
	Researching the Steps in the McDuck’s Offer App
	Choosing a Solution for Each Step

	Chapter 12: Coding and Debugging Your First Web Application
	Getting Ready to Code
	Coding Your First Web Application
	Development environment
	Pre-written code
	Coding steps for you to follow

	Debugging Your App

	Part IV: Developing Your Coding Skills Further
	Chapter 13: Getting Familiar with Ruby
	What Does Ruby Do?
	Defining Ruby Structure
	Understanding the principles of Ruby
	Styling and spacing

	Coding Common Ruby Tasks and Commands
	Defining data types and variables
	Computing simple and advanced math
	Using strings and special characters
	Deciding with conditionals: If, elsif, else
	Input and output

	Shaping Your Strings
	String methods: upcase, downcase, strip
	Inserting variables in strings with #

	Building a Simple Form-Text Formatter Using Ruby

	Chapter 14: Wrapping Your Head around Python
	What Does Python Do?
	Defining Python Structure
	Understanding the Zen of Python
	Styling and spacing

	Coding Common Python Tasks and Commands
	Defining data types and variables
	Computing simple and advanced math
	Using strings and special characters
	Deciding with conditionals: If, elif, else
	Input and output

	Shaping Your Strings
	Dot notation with upper(), lower(), capitalize(), and strip()
	String formatting with %

	Building a Simple Tip Calculator Using Python

	Part V: The Part of Tens
	Chapter 15: Ten Free Resources for Coding and Coders
	Learning-to-Code Websites
	Codecademy
	Coursera and Udacity
	Hackdesign.org
	Code.org

	Coding-Reference Websites
	W3Schools
	Mozilla Developer Network
	Stack Overflow

	Tech News and Community Websites
	TechCrunch
	Hacker News
	Meetup

	Chapter 16: Ten Tips for Novice Coders
	Pick a Language, Any Language
	Define a Goal
	Break Down Your Goal into Bite-Sized Steps
	Distinguish Cupcake from Frosting
	Google Is a Developer’s Best Friend
	Zap Those Bugs
	Just Ship It
	Collect Feedback
	Iterate on Your Code
	Share Your Success and Failure

	Index
	About the Author
	Wiley End User License Agreement

Coding

