

http://www.dummies.com/cheatsheet/css3
http://www.dummies.com
http://www.dummies.com
http://www.dummies.com

by John Paul Mueller

CSS3

CSS3 For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.
Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.
Library of Congress Control Number: 2013948027
ISBN 978-1-118-44142-8 (pbk); ISBN 978-1-118-46210-2 (ebk); ISBN 978-1-118-61240-8 (ebk);
ISBN 978-1-118-61261-3 (ebk)
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com/
http://www.wiley.com/

Contents at a Glance
Introduction .. 1

Part I: Getting Started with CSS3 5
Chapter 1: Understanding CSS3 ... 7
Chapter 2: Performing Basic Tasks ... 21
Chapter 3: Working with Fonts and Colors .. 45
Chapter 4: Working with Graphics .. 61
Chapter 5: Using CSS Shortcuts ... 85

Part II: Making Layouts Fast and Simple
with Libraries .. 113
Chapter 6: Creating a Test Site with jQuery and jQuery UI 115
Chapter 7: Creating Pages Using Dynamic Drive ... 155
Chapter 8: Using the Google API .. 175

Part III: Working with CSS3 Generators..................... 191
Chapter 9: Managing Colors Using ColorZilla .. 193
Chapter 10: Creating Themes Using ThemeRoller... 215
Chapter 11: Using the Dynamic Drive Tools... 237

Part IV: Modifying Pre-Built Content
for a Unique Look .. 257
Chapter 12: Understanding CSS for Libraries and Generators 259
Chapter 13: Modifying the jQuery and jQuery UI CSS ... 269
Chapter 14: Modifying the Dynamic Drive CSS .. 291

Part V: The Part of Tens ... 311
Chapter 15: Ten Phenomenal Places to Find Libraries ... 313
Chapter 16: Ten Phenomenal Places to Find Generators ... 323
Chapter 17: Ten Quick Ways to Produce a Great Layout ... 335

Index .. 345

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
Icons Used in This Book ... 3
Beyond the Book ... 3
Where to Go from Here ... 4

Part I: Getting Started with CSS3 5

Chapter 1: Understanding CSS3 . .7
Defining Why You Need CSS3 ... 9
Understanding How Browser Support Affects You 11
Obtaining an Overview of the CSS Modules ... 12
Understanding Styles .. 13
Creating External Styles .. 17
Defining the CSS Units of Measure .. 18

Chapter 2: Performing Basic Tasks .21
Working with Selectors ... 22

An overview of selectors... 22
Working with tag selectors ... 24
Working with attribute selectors ... 28
Working with pattern selectors ... 33
Working with event selectors ... 36
Working with state selectors .. 38

Understanding Layout Using the Basic Box Model 40
Viewing the box .. 40
Working with the box model .. 41

Designing Backgrounds .. 43

Chapter 3: Working with Fonts and Colors .45
Using Fonts ... 46
Understanding Web Safe Fonts .. 47

Using standard Web safe functionality ... 48
Using .WOFF fonts .. 49

Producing Text Effects .. 51
Using the safe text decorations.. 51
Adding the CSS3 text effects ... 52

CSS3 For Dummies vi
Adding Colors .. 55

Understanding how CSS colors work .. 55
Using color values.. 56
Using color names ... 57
Using hexadecimal values for color .. 57

Understanding Aural Style Sheets ... 58

Chapter 4: Working with Graphics .61
Understanding the Tag .. 62
Working with Foreground Images ... 63

Creating a border ... 65
Centering the image ... 66
Adding a caption .. 68

Adding Background Images .. 69
Using CSS alone .. 69
Using a single image .. 75
Using multiple images ... 77

Positioning Graphics ... 78
Working with Repetitive Images .. 80

Changing repetitive backgrounds .. 80
Creating repetitive borders .. 81

Chapter 5: Using CSS Shortcuts .85
Understanding Style Inheritance ... 86
Cascading Styles—Using Multiple Styles Together 87
Using Additional Basic User Interface Features .. 92

Performing quick navigation .. 93
Providing a document outline .. 97

Creating Special Effects .. 102
Transforming objects, including graphics 102
Using the attr() function ... 106

Working with Multiple Columns .. 108

Part II: Making Layouts Fast and Simple
with Libraries ... 113

Chapter 6: Creating a Test Site with jQuery and jQuery UI 115
Using the jQuery Core Features ... 116

Detecting the user’s browser type .. 116
Selecting elements ... 120
Changing an element’s CSS ... 121

Understanding jQuery UI .. 124

vii Table of Contents

Using the jQuery UI Controls ... 125
Working with Accordion ... 126
Working with Datepicker .. 128
Working with Dialog .. 129
Working with Progressbar .. 131
Working with Slider ... 133
Working with Tabs ... 135

Performing jQuery UI Interactions .. 137
Creating a Draggable Interface ... 137
Creating a Droppable Interface .. 138
Creating a Resizable Interface .. 140
Creating a Selectable Interface ... 141
Creating a Sortable Interface .. 143

Creating jQuery UI Special Effects ... 144
Adding color animations ... 145
Employing class transitions ... 146
Working with advanced easing .. 149
Performing transforms .. 151

Defining the Basic Page Layout .. 152

Chapter 7: Creating Pages Using Dynamic Drive 155
Working with Layouts ... 156

Developing with fixed layouts .. 156
Developing with liquid layouts .. 157
Using two-column layouts .. 157
Working with layouts .. 158
Modifying the layouts .. 160
Using three column layouts .. 163
Employing CSS frames ... 167

Creating Menus .. 168
Developing horizontal menus .. 168
Developing vertical menus ... 170

Performing Image Magic ... 171
Dressing Up Forms .. 172
Using the Free Icons .. 173

Chapter 8: Using the Google API .175
Understanding Why Developers Like the Google API 176

Working with AngularJS .. 178
Working with Chrome Frame ... 179
Working with Dojo ... 179
Working with Ext Core .. 181

CSS3 For Dummies viii
Accessing jQuery ... 181
Accessing jQuery UI ... 181
Working with MooTools ... 182
Working with Prototype .. 183
Working with script_aculo_us .. 184
Working with SWFObject .. 184
Working with WebFont Loader .. 185

Using the Google APIs Explorer ... 185
Getting a Google account .. 185
Obtaining a developer key .. 186
Working with the Google APIs Explorer .. 187

Creating a Site that Uses Multiple Libraries ... 189

Part III: Working with CSS3 Generators 191

Chapter 9: Managing Colors Using ColorZilla 193
Obtaining the Plugin .. 194
Choosing Colors with the Color Picker ... 198

Using the Color Picker ... 198
Using the Palette Browser .. 200

Grabbing Colors Using the Eyedropper .. 203
Working with the Color Analyzer .. 204

Performing the analysis .. 204
Seeing the details ... 205
Saving the output ... 207

Creating a Gradient ... 207
Developing a basic gradient ... 208
Adding special effects ... 210
Saving the result .. 211
Converting an image to CSS .. 212

Chapter 10: Creating Themes Using ThemeRoller 215
Understanding ThemeRoller .. 216
Using the ThemeRoller Interface ... 217
Working with Predefined Themes ... 218

Viewing the predefined themes ... 219
Accessing the predefined themes directly 220

Creating Custom Themes ... 222
Choosing a predefined theme as a starting point 223
Performing the configuration ... 223

ix Table of Contents

Downloading Themes to Your System .. 227
Downloading a predefined theme .. 227
Downloading a custom theme .. 228

Adding Custom Themes to Your Projects .. 229
Viewing the index.html file ... 230
Viewing the interactive demos ... 231
Looking at the documentation ... 233
Adding a custom theme to your own project 234

Chapter 11: Using the Dynamic Drive Tools .237
Managing Images with Image Optimizer ... 239
Creating Icons Using FavIcon Generator .. 241
Creating Animations with Animated Gif ... 243
Generating Images Using Gradient Image Maker 246
Generating Controls Using Button Maker Online 249

Creating the button ... 250
Using the button .. 251

Adding Pizzazz Using Ribbon Rules .. 253
Creating the ribbon rule.. 253
Using the ribbon rule... 254

Part IV: Modifying Pre-Built Content
for a Unique Look ... 257

Chapter 12: Understanding CSS for Libraries and Generators259
Finding the CSS for a Library or Generator .. 260
Viewing the CSS ... 262
Deciding What to Modify or Tweak ... 264
Locating Modification Aids ... 265

Searching for modification aids ... 266
Using other developer solutions .. 266
Getting answers from other professionals 268

Chapter 13: Modifying the jQuery and jQuery UI CSS 269
Looking at the jQuery and jQuery UI CSS ... 270

Understanding the basic layout ... 270
Defining reasonable changes .. 274
Avoiding potential error conditions .. 275

Defining a Specialized Control ... 276
Creating Specialized Control Effects ... 279

Developing the page code... 279
Creating the XML file ... 282

CSS3 For Dummies x
Working with Added Graphics ... 282

Creating the HTML ... 283
Designing the CSS styles ... 284
Developing the required code .. 286

Working with Plug-ins ... 287
Finishing with the Coded Bits .. 289

Chapter 14: Modifying the Dynamic Drive CSS291
Understanding the Script Categories .. 292
Locating the CSS for a Particular Feature ... 295
Adding Modifications .. 297

Obtaining the example .. 297
Making the example more flexible ... 298
Modifying the JavaScript .. 300
Modifying the CSS .. 303

Working with Menus ... 304
Defining a specialized menu ... 304
Developing menus with graphics ... 308
Creating specialized menu effects ... 309

Part V: The Part of Tens .. 311

Chapter 15: Ten Phenomenal Places to Find Libraries 313
Animating Page Elements with Animate.css .. 313
Locating a Library Using CSSDB.co ... 315
Combining CSS3 and JavaScript with JSter .. 316
Developing Background Animations with Animatable 317
Easing Your Way into a Transition with Easings 318
Transitioning Elements Using Morf.js ... 319
Creating Full Interactive Applications with YUI 320
Displaying Tooltips Using HINT.css .. 321
Ridding Yourself of Browser Differences with Normalize.css 321
Ensuring Your Application Works with

Mobile Devices Using Skeleton .. 322

Chapter 16: Ten Phenomenal Places to Find Generators 323
Creating Animations Using Stylie .. 323
Designing CSS Styles Using CSSDesk ... 325
Making Applications Run Faster with yepnope.js 326
Generating Templates Using Initializr ... 327

xi Table of Contents

Optimizing Applications to Work with Older Browsers
with Modernizr ... 329

Enhancing Selector Support Using Selectivizr ... 329
Designing Unusual List Presentations with Liffect 330
Editing Code Using Komodo Edit .. 331
Engineering Layer Effects Using LayerStyles ... 332
Testing Your Font Stacks Using FFFFALLBACK 333

Chapter 17: Ten Quick Ways to Produce a Great Layout 335
Learning the Layout Properties ... 336
Creating Basic Layouts Using CSS Layout Generator 336
Getting Help Understanding CSS Layouts with Learn CSS Layout 338
Using a Reset to Overcome Errors .. 338
Creating Mobile-Friendly Layouts with the 960 Grid System 339
Finding Articles and Blog Posts Discussing Layouts 340
Obtaining Free Layouts Through Design Shack 340
Getting a Really Complex Design Through Free CSS Templates 341
Relying on a CSS Framework .. 343
Using Best Practices to Enhance Your Layouts 344

Index ... 345

CSS3 For Dummies xii

Introduction

C
ascading Style Sheets (CSS) help you define a website’s presentation
and special effects. Because of this capability, most books about CSS on

the market are written for designers. They get into the artistic elements of
CSS and make you create everything from scratch. CSS3 for Dummies is differ-
ent. It was written with the developer in mind. It may not seem as if a devel-
oper necessarily would need to know about presentation and design-related
issues, but users want applications that are pleasant to use, so developers
need to know about both topics. This book assumes that you’re a developer,
and that you’re busy — that you really need to get a great-looking application
out yesterday because the boss is breathing down your neck. You don’t need
to be an artist to produce spectacular sites — you just need a helping hand.
Most of the artwork’s already done for you — you just need to know where to
find it.

About This Book
Your time is valuable. This book helps you understand quickly how to use
tools to create great-looking applications that provide all the right user
prompts in a fraction of the time it would take you to write the application
from scratch. In fact, once you know the secrets in this book, you may wonder
why other people think working with CSS3 is hard. By the time you complete
this book, you’ll be able to dazzle the user and make your boss think you
spent days working on the page that only took a few hours to write this morn-
ing. Even though complete applications will take longer, you can create usable
mockups of what your application will look like in an incredibly short time.

However, this book isn’t all about tools. When necessary, you see how things
work at a much lower level so that you can maintain the code you create
with the same ease that you experienced when putting it together. Instead
of covering absolutely every nuance of CSS3 development, though, CSS3 For
Dummies concentrates on the CSS3 features you use most often and examines
them in a real-world functional environment.

No, this book won’t turn you into a designer, but that’s the point. You’ll
become a developer who can compete with the best designers out there, on
your own terms, by using tools that designers generally don’t rely upon. The
difference is that your sites won’t be unique one-offs — they’ll rely on the

2 CSS3 For Dummies

huge base of predefined templates and tools that already exist for everyone to
use. Even so, everyone will think your offerings are unique because of the way
you can use these various tools together to create results that look unique.

The chapters were written for everyday developers, but note that a portion
of most chapters contains advanced material, mostly in sidebars, that will
interest only some readers. When you see one of these specialized topics,
feel free to skip it.

You can also skip any material marked with a Technical Stuff icon. This mate-
rial is helpful, but you don’t have to know it to work with CSS3, HTML, or
JavaScript. I include this material because I find it helpful in my programming
efforts and believe that you will, too.

This book uses special typefaces to emphasize some information. For example,
entries that you need to type appear in bold. All code, website URLs, and
onscreen messages appear in monofont type. When I define a new word,
you see that word in italics.

Because you use multiple applications when you’re working with CSS3,
I always point out when to move from one application to the next. Note,
however, that the testers for this book tried out the code with the Internet
Explorer, Firefox, and Chrome browsers on the Macintosh, Linux, and
Windows platforms. One tester also checked at least some of the code using
a Windows 8 phone. In most cases, you shouldn’t experience any problem
working with your application unless specifically noted in the application
description. Please let me know (at John@JohnMuellerBooks.com) if you
ever experience a problem with one of the examples.

Foolish Assumptions
You might find it difficult to believe that I’ve assumed anything about you —
after all, I haven’t even met you yet! Although most assumptions are indeed
foolish, I made these assumptions to provide a starting point for the book.

It’s important that you’re familiar with the platform and browser you want to
use because the book doesn’t provide any handholding in this regard. To focus
on CSS3 (and HTML5 and JavaScript when needed) as fully as possible, the
book covers browsers marginally and platform requirements not at all. You
really do need to know how to install applications, use the browser, and gener-
ally work with your chosen platform before you begin working with this book.

Knowing a little about both HTML5 and JavaScript is helpful but not essen-
tial. Any experience you have with programming will be helpful as well. The
book doesn’t assume you have any knowledge of CSS3.

mailto:John@JohnMuellerBooks.com

3 Introduction

Icons Used in This Book
As you read this book, you’ll see icons in the margins that indicate material
of interest (or not, as the case may be).This section briefly describes each
icon in this book.

 Tips are nice because they help you save time or perform some task without a
lot of extra work. The tips in this book are timesaving techniques or pointers
to resources that you should try to get the maximum benefit from CSS3 (or
HTML5 or JavaScript in some cases).

 I don’t want to sound like an angry parent or some kind of maniac, but you
should avoid doing anything marked with a Warning icon. Otherwise you
could find that your program only serves to confuse users who will then
refuse to work with it.

 Whenever you see this icon, think advanced tip or technique. You might find
these tidbits of useful information just too boring for words, or they could
contain the solution you need to get a program running. Skip these bits of
information whenever you like.

 If you don’t get anything else out of a particular chapter or section, remem-
ber the material marked by this icon. This text usually contains an essential
process or a bit of information that you must know to write CSS3 programs
 successfully.

Beyond the Book
A lot of extra content that you won’t find in this book is available at www.
dummies.com. Go online to find the following:

 ✓ Source code for the examples in this book at

www.dummies.com/extras/css3

 This book contains a lot of code, and you might not want to type
it. In fact, it’s probably better if you don’t type this code manually.
Fortunately, you can find the source code for this book on the Dummies.
com website at www.dummies.com/extras/css3. The source code is
organized by chapter, and I always tell you about the example files in the
text. The best way to work with a chapter is to download all the source
code for it at one time.

http://www.dummies.com
http://www.dummies.com
http://www.dummies.com/extras/css3
http://www.dummies.com/extras/css3

4 CSS3 For Dummies

 ✓ Online articles covering additional topics at

www.dummies.com/extras/css3

 Here you’ll find out how to access multiple Google API libraries and use
them in a single app, how to use Komodo Edit to create CSS files, and
how to create table-like effects using CSS3 and HTML5 tags, among other
details to aid you in your CSS3 journey.

 ✓ The Cheat Sheet for this book is at

www.dummies.com/cheatsheet/css3

 Here you’ll find a roadmap to common CSS3 properties and selectors.

 ✓ Updates to this book, if we have any, are also available at

www.dummies.com/extras/css3

Where to Go from Here
It’s time to start your CSS3 adventure! If you’re a complete CSS3 novice, start
with Chapter 1 and progress through the book at a pace that allows you to
absorb as much of the material as possible. If you’re in an absolute rush to get
going with CSS3 as quickly as possible, you could possibly skip to Chapter 2
with the understanding that you may find some topics a bit confusing later.

Advanced readers, those who already have a basic understanding of CSS3,
can save time by moving directly to Chapter 6. You can always go back to
earlier chapters as necessary when you have questions. However, it’s impor-
tant that you understand how each example works before moving to the next
one. Every example has important lessons for you, and you could miss vital
content if you start skipping too much information.

http://www.dummies.com/extras/css3
http://www.dummies.com/cheatsheet/css3
http://www.dummies.com/extras/css3

Part I
Getting Started with CSS3

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com

In this part . . .
 ✓ Discover why CSS3 is such an important technology
 ✓ Create simple pages that rely on CSS for formatting
 ✓ Use fonts and colors to add pizzazz to your site
 ✓ Add graphics to make your site more appealing and to convey

nonverbal information
 ✓ Understand the shortcuts you can use to make working with

CSS3 easier

Chapter 1

Understanding CSS3
In This Chapter
▶ Understanding why using Cascading Style Sheets version 3 (CSS3) is essential
▶ Determining how your browser affects your use of CSS3
▶ Considering the structure of CSS3 through its modules
▶ Defining the concept of a style
▶ Working with basic styles
▶ Determining how units of measure affect appearance

T
here was a time when even websites painstakingly formatted with arcane
tags still ended up boring or unattractive because the tags simply didn’t

provide much flexibility in presenting content. In addition, the tags were
supported in different ways by each of the browsers that were popular at
the time, so that your beautifully rendered page ended up looking terrible
on another user’s system. The improper use of tags (such as those used to
define tables) also caused problems for people with special needs when their
software failed to work with the tags. In short, developers needed something
better than tags to create nicely formatted presentations — that something
better is Cascading Style Sheets (CSS).

The stated purpose of CSS is to provide a human-readable method of separat-
ing the content on a page from the presentation of that content. Separating
content from presentation allows users to substitute style sheets that pres-
ent information in a manner that works better for them (such as the substitu-
tion of larger fonts or specific color combinations for sight-impaired users).
Separating presentation from content also means that you can define a pre-
sentation once and use it on a variety of pages and formats. When you decide
you need to change a presentation, all you need to do is change the CSS,
rather than edit the specific tags on every page of your site.

However, CSS has gone well beyond simple presentation on HTML pages. CSS
also works with a wide variety of other content types such as XML. In addi-
tion, CSS makes it possible to create special effects on your page, so that you

8 Part I: Getting Started with CSS3

get the appearance of programming without actually writing any code to do
it. The term special effect covers a lot of ground. It includes everything from
mouseover effects (a change that occurs when you hover the mouse over a
page element) to the use of transparency to fool the eye into seeing both fore-
ground and background elements in specific ways. You can also use special
effects to perform tasks such as giving a page a three-dimensional (3D) look.

 Even through CSS is standardized through various organizations such as
the Internet Engineering Task Force (IETF) as Request for Comment (RFC)
2318 (see www.faqs.org/rfcs/rfc2318.html) and the World Wide Web
Consortium (W3C) as specific version-level specifications (see www.w3.org/
TR/CSS21/ for the version 2.1 specification), there are differences in the way
browsers work with CSS. For the most part, you’ll find that every browser sup-
ports the basic CSS formatting functionality without any problem. It’s when
you get into the special effects that you may notice some differences, so this
chapter has a special section that discusses some of the differences you need
to consider. The differences between browsers is one reason that this book
focuses on third-party tools that address these differences for you so that you
can focus on creating great-looking pages.

The chapter ends with some simple examples of working with CSS to create
some simple effects. You’ll also discover how various units of measure affect
the manner of presentation on a page.

Defining the CSS3 standard
The CSS3 standard is a combination of a
number of existing and new W3C standards.
The base standard is the CSS2.1 standard found
at www.w3.org/TR/CSS21/. Added to this
standard are the following standards:

 ✓ CSS Style Attributes (www.w3.org/TR/
css-style-attr/)

 ✓ Media Queries Level 3 (www.w3.org/
TR/css3-mediaqueries/)

 ✓ CSS Namespaces (www.w3.org/TR/
css3-namespace/)

 ✓ Selectors Level 3 (www.w3.org/TR/
css3-selectors/)

 ✓ CSS Color Level 3 (www.w3.org/TR/
css3-color/)

At some point, the W3C will combine all of these
independent pieces into a single standard. For
now, you can find the pieces documented at
www.w3.org/TR/CSS/#css3. Although
looking at the standards can be interesting,
you don’t actually need to know anything about
them when using this book. You’ll find that this
book does all of the heavy lifting for you so that
you can focus on creating great content, rather
than on trying to figure out the arcane word-
ing used by standards organizations to create a
precise definition of a technology.

http://www.faqs.org/rfcs/rfc2318.html
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/css-style-attr/
http://www.w3.org/TR/css-style-attr/
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-namespace/
http://www.w3.org/TR/css3-namespace/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/CSS/%23css3

9 Chapter 1: Understanding CSS3

Defining Why You Need CSS3
The introduction to this chapter discusses some of the reasons you need
CSS. The most important reason is that you need some means of separating
content from presentation so that it’s easier to maintain a site, and so that
people with special needs can still access your site by using a different style
sheet from the one used by everyone else. There have actually been a lot
of style sheet standards in the past, but CSS has special functionality that
makes it unique. The defining functionality is the ability to combine several
style sheets together to create an overall appearance for a page. These style
sheets cascade — that is, one flows into another — so that every style sheet is
represented in the output. The standard provides rules for resolving conflicts
between style sheets so that you always know how the output will appear.

The early versions of CSS provided a wealth of functionality. Even if you were
still limited to the features provided by these early versions, you’d still have
good reasons to use CSS in your next project. You’ll find that just about every
browser on the planet supports these basic features, which include

 ✓ Font characteristics such as typeface and emphasis

 ✓ Text element characteristics such as letter spacing, word spacing, and
spacing between lines

 ✓ Color characteristics of all elements including fonts and backgrounds

 ✓ Alignment of various elements including text, images, controls, and tables

 ✓ Positioning and size of spacing elements such as borders, padding, and
margins

 ✓ Identification and classification of groups of attributes

Two groups commonly use CSS because of the functionality it provides:

 ✓ Developers use CSS to create robust applications that are less likely to
encounter browser-specific tag issues.

 ✓ Designers use CSS to provide specific presentation characteristics or to
make it easy to present the same content in a number of ways.

This book favors developers who need to create great looking pages quickly,
even when it might mean creating a page that lacks that certain pizzazz that
designers favor. With this in mind, you also need to consider that later ver-
sions of CSS provide these additional features:

10 Part I: Getting Started with CSS3

 ✓ Absolute, relative, and fixed positioning of elements so that you can
create a precise alignment of application elements on screen

 ✓ The use of a z-index to control the stacking of elements on screen so that
one element can hide another as part of an application’s functionality

 ✓ Support for various media types so that a developer need not be an
artist to create dramatic looking pages

 ✓ Support for aural style sheets where content is read instead of merely
being presented in print form for these uses:

	 •	To	help	those	with	special	visual	needs

	 •	To	help	teach	people	to	read

	 •	Creating	an	environment	in	which	users	who	can	speak	another	
language but can’t read it can still interact with the page

	 •	Developing	home	entertainment	systems

	 •	Interacting	with	web	content	in	a	car

	 •	Presenting	content	that	has	no	written	counterpart

 ✓ Rendering bi-directional text (text that can flow either left to right or
right to left)

 ✓ Adding new font effects, such as shadows

CSS3 makes things even better! When working with CSS3, you use a new con-
cept called modules. A module is an individual CSS feature that has its own
specification (a written description of how the feature should work that is pro-
vided by a standards group). As a result of using modules, you no longer need
to wade through a single huge CSS document looking for the CSS feature you
want to interact with. Instead, you can locate precisely what you need in a much
smaller document that’s easier to search. (For more on modules, see the sec-
tion, “Obtaining an Overview of the CSS Modules,” later in this chapter.) There
are actually fifty different specifications that are either completed or under con-
sideration now. You can see them at www.w3.org/Style/CSS/specs. This
book addresses the main specifications — the ones you use most often.

 The point to this section is that CSS3 can help you perform a huge number
of tasks in a manner that will likely work with a large number of browsers on
many different platforms. By following the standard, you create an environ-
ment in which any vendor who also follows the standards can run your appli-
cation unimpeded, and your users will gain access to an application that works
anywhere at any time on any platform and using any browser. Given the Bring
Your Own Device (BYOD) craze that’s sweeping industry right now (read about
BYOD at www.zdnet.com/topic-byod-and-the-consumerization-of-
it/), using CSS is your best bet for writing applications that users will actually
enjoy using.

http://www.w3.org/Style/CSS/specs
http://www.zdnet.com/topic-byod-and-the-consumerization-of-it/
http://www.zdnet.com/topic-byod-and-the-consumerization-of-it/

11 Chapter 1: Understanding CSS3

Understanding How Browser
Support Affects You

CSS3 is a complex specification and it will require time to implement fully
in every browser out there. The support your browser provides might vary
from other browsers. In fact, it’s almost guaranteed that the support levels
will vary unless you have an incredibly strict policy about browser usage in
your organization.

 There are many different techniques you can use to ensure that your appli-
cation will work as intended when working with CSS3. However, some tech-
niques work significantly better than others. Smart developers usually focus
on the three specific strategies that work best:

 ✓ Use a third-party library that uses special coding techniques to work
around the browser compatibility issues.

 ✓ Avoid using CSS3 features that don’t work with the browsers you plan to
target with your application.

 ✓ Verify in advance that the user’s browser provides the required support,
and if not, suggest that the user perform an update (including a link to
the update on your site if at all possible).

Most of this book focuses on the first technique. It’s fast, easy, reliable, and
most importantly, requires the least amount of work. Using well-designed
third-party solutions makes your work considerably easier. Starting with
Part II of this book, you use third-party libraries and tools to perform all sorts
of tasks in a manner that makes your workload light, while producing reliable
code that works as it should.

Sometimes a third-party solution can’t work around a particular issue
because no workaround exists. For example, even though CSS3 currently
supports bookmarks, no browsers currently implement this support. No
third-party solution can get around this problem. Consequently, you can add
bookmark functionality to your application, but no existing browser will put
that feature into effect (at least, until a browser implements the required
functionality). Use the chart at www.w3schools.com/cssref/css3_
browsersupport.asp to determine whether the browsers you’re targeting
provide the required support. Using this chart, you can determine that a user
requires Internet Explorer 10, Firefox 16, or Opera 12.1 to have support for
animations. Safari and Chrome both require special coding to provide anima-
tion support (which is where a third-party library comes in handy).

 The reason I’m not including this compatibility chart in the book is that the level
of support provided by browsers changes constantly. When creating browser-
based applications, you want to be sure that the online resources you use are
updated frequently to ensure you have the best information possible. The

http://www.w3schools.com/cssref/css3_browsersupport.asp
http://www.w3schools.com/cssref/css3_browsersupport.asp

12 Part I: Getting Started with CSS3

www.w3schools.com/cssref/css3_browsersupport.asp site provides
such support, but there are many other sites that also provide great support.

In some cases, the user is trying to work with your application using an
ancient browser — say, the version of Internet Explorer the dinosaurs used.
No third-party heavy lifting can help you here. Your best bet is to detect
really old browsers and do anything you can to get their users to upgrade.
Chapter 6 shows you how to perform this technique using jQuery — a third-
party library that makes the task simple and painless.

Obtaining an Overview of the CSS Modules
Previous versions of CSS relied on a single specification document to detail
all of the features it provided. CSS3 takes a different approach — it relies on
the concept of modules to provide the specification. Each module appears
in a separate document and details a particular CSS3 feature. This approach
provides several benefits:

 ✓ You don’t have to sift through a huge document to locate the one little
piece of information you need.

 ✓ Each module can be released independently, which means that the stan-
dard will be available (in part) sooner.

 ✓ Specialized groups can work on each module to ensure that it contains
the best possible features.

 ✓ Because modules are smaller, it’s easier to obtain agreement on a stan-
dard than to obtain the same agreement for CSS3 as a whole.

At this time of writing, there are fifty modules that could appear as part of a
CSS3 standard, but only some of these modules are currently approved —
and you really require only a subset of them to create most applications. The
following table displays the essential modules you need to know about in
order to work with CSS3 successfully (along with their documentation sites
and the locations they’re discussed in the book):

Module Documentation online at Discussed in this
book in

CSS Values and
Units Module Level 3

www.w3.org/TR/css3-values/ Chapter 1

Selectors Level 3 www.w3.org/TR/css3-
selectors/

Chapter 2

CSS Basic Box Model www.w3.org/TR/css3-box/ Chapter 2
CSS Fonts Module
Level 3

www.w3.org/TR/css3-fonts/ Chapter 3

http://www.w3schools.com/cssref/css3_browsersupport.asp
http://www.w3.org/TR/css3-values/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-box/
http://www.w3.org/TR/css3-fonts/

13 Chapter 1: Understanding CSS3

Module Documentation online at Discussed in this
book in

CSS Text Module
Level 3

www.w3.org/TR/css3-text/ Chapter 3

CSS Color Module
Level 3

www.w3.org/TR/css3-color/ Chapter 3

CSS Speech www.w3.org/TR/css3-speech/ Chapter 3 (replaces
the older CSS Aural
Style Sheets
specification)

CSS Backgrounds
and Borders Level 3

www.w3.org/TR/css3-
background/

Chapter 4

CSS Transforms www.w3.org/TR/css3-
transforms/

Chapter 4

CSS Multi-column
Layout Module

www.w3.org/TR/css3-multi
col/

Chapter 5

CSS Basic User
Interface Module
Level 3

www.w3.org/TR/css3-ui/ Chapters 2
through 5

CSS Animations www.w3.org/TR/css3-
animations/

Explored as part of
third party library
support in various
chapters

Using this set of twelve modules will provide most of the functionality you
need for every application. Some of the other fifty modules aren’t even imple-
mented yet (and may never be). For example, the CSS Extended Box Model
hasn’t been started yet, but it should provide some exciting new functionality
when someone puts it together.

A few of the fifty modules that don’t appear in this table are used for
something other than standard applications. The CSS Marquee module is
implemented and available, but you normally use it with smartphones. The
groups working on these standards have also combined a few of the mod-
ules to make them easier to work with. The CSS 2D Transformations Module
and the CSS 3D Transformations Module have been combined into a single
CSS Transforms module. So, even though there are three entries in the list,
there’s only one implemented module to think about.

Understanding Styles
You could look at styles created by other people and quickly become lost in all
the arcane ways they’re used. The best way to start with styles is to view them
simply as a means of formatting information onscreen. Because most of the
information you’ll work with is text, it’s easiest to start with text as the basis
for understanding styles. Let’s start with this basic HTML5 formatted page:

http://www.w3.org/TR/css3-text/
http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/css3-speech/
http://www.w3.org/TR/css3-background/
http://www.w3.org/TR/css3-background/
http://www.w3.org/TR/css3-transforms/
http://www.w3.org/TR/css3-transforms/
http://www.w3.org/TR/css3-multicol/
http://www.w3.org/TR/css3-multicol/
http://www.w3.org/TR/css3-ui/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/

14 Part I: Getting Started with CSS3

<!DOCTYPE html>

<html>
<head>
 <title>A Simple Page</title>
</head>

<body>
 <h1>A Simple Heading</h1>
 <p>Simple text to go with the heading.</p>
</body>
</html>

There’s nothing complex about this page. It simply displays a heading and a
paragraph of text. Figure 1-1 shows how this page looks. (Your page may look
a little different from the information shown here due to differences in plat-
form and browser configuration.)

Figure 1-1:
A simple

HTML5 doc-
ument used

for testing
purposes.

At the moment, the heading and the paragraph are rather plain. The text will
appear in whatever default font you’ve chosen for your browser. Typically,
the text is black on a white background unless you or your browser vendor
have chosen a different color combination.

At this point, you can begin playing with the page a little to see how to format
it differently. The following procedure helps you modify the basic page so it
looks a little more interesting. You can use any text editor you like, so long as
it doesn’t add any formatting. However, using a product such as Komodo Edit
(www.activestate.com/komodo-edit) will make the task considerably
easier by providing you with help in writing your code. (Dedicated editors
will display tooltips on what to write or what options are available; and they
also provide advanced features such as debuggers.).

 1. Create a new HTML5 file with your text editor.

 Your editor may not support HTML5 files. Any text file will do. Using a
specific file type usually means that the editor inserts some of the code
for you automatically, which will save you typing time.

http://www.activestate.com/komodo-edit

15 Chapter 1: Understanding CSS3

 2. Type the code for the HTML page.

 Make sure you type the code precisely as it appears earlier in this section.

 3. Insert the following code immediately after the <title> tag.
<style type=”text/css”>

</style>

 The <style> tag defines the beginning of a style. When you place the
<style> tag directly in the page like this, it’s called an internal style.
You can also create external style sheets. External style sheets reside in
.CSS files.

 The type attribute tells the browser the <style> tag contains CSS infor-
mation in text format.

 4. Within the <style> tag, (between the <style> and </style>
entries, type the following code.
p
{
 font-family: cursive;
 font-size: large;
 color: #0000ff;
 background-color: #ffff00;
}

 This looks complicated, but it really isn’t. The p stands for the <p>
(paragraph) tag. Everything in this entry will affect the <p> tags in your
document.

 The curly braces ({}) tell the browser that all of the formatting instruc-
tions between them apply to the <p> tags in the document. You always
include the curly braces as part of the style definition.

 Within the curly braces, you see attribute name and value pairs. For
example, font-family is the name of a CSS attribute that defines
which font to use. In this case, the attribute specifies the default cursive
font for the platform and browser. Using the CSS generic names ensures
that your application will produce generically compatible results on all
platforms, using any browser.

 The font-size attribute defines a relative size. In this case, large speci-
fies you want to make the font large compared to its default size. You aren’t
specifying a specific font size, which means that each platform and browser
can render the font larger than normal for that individual environment.

 The color attribute specifies a red, green, blue value to use for the font’s
color. The value is preceded by a hash (#) followed by hexadecimal
color values from 0 to ff. In this case, the font will be the brightest blue
supported by the platform. Likewise, the background-color attribute
specifies the background for the text, which will be yellow in this case.

16 Part I: Getting Started with CSS3

 5. Save the page and load it in your browser.

 You see the effects of the style change as shown in Figure 1-2. Your page
may look different from the one in the book because your platform or
browser may use different values for the font family or font size. If the
book were able to present color, you’d see that the colors on your dis-
play would be close to those shown in the example.

Figure 1-2:
The para-
graph text

has changed
to match the
style specifi-

cations.

 6. Type the following code after the p style within the <style> tag.
h1
{
 font-family: “Times New Roman”,Georgia,serif;
 font-size: 40px;
 text-align: center;
 text-decoration: underline;
 color: #ff0000;
 background-color: #00ffff;
}

 This style affects the <h1> tag entries and it has many of the entries
used for the <p> tag style. However, notice that this time the font-
family attribute contains three entries: The Times New Roman value is
the most specific, followed by Georgia, followed by the least specific —
serif (you don’t need to know the specifics of how this works now —
Chapter 3 discusses the topic in detail). When working with a value that
contains spaces, you must enclose the value in quotes as shown.

 Using the three-entry approach gives you more control over the appear-
ance of the output, but still makes it possible for browsers that don’t
support a specific font to render the content correctly. When supplying
a specific font, make sure you also supply less specific fonts for brows-
ers that don’t have access to your specified font.

 The font-size attribute is also different. This time the style uses a spe-
cific size of 40 pixels. Even though a specific value can make it possible
to create special effects onscreen, using a specific value also creates
problems. A 40px entry will work just fine on the desktop or laptop, but
might cause problems with a tablet, and will definitely make the content
impossible to display on a smartphone.

17 Chapter 1: Understanding CSS3

 This style also includes some entries that change the appearance of the
text. The text-align attribute determines where the text is placed on
screen, while the text-decoration attribute determines any special
font features. In this case, the font is displayed centered onscreen with
an underline.

 6. Save the page and load it in your browser.

 You see the effects of the style change as shown in Figure 1-3. The head-
ing appears in red text on a pale blue background, and the paragraph is
shown as blue text on a yellow background.

Figure 1-3:
The head-

ing text has
changed to

match the
style speci-

fications.

Creating External Styles
The preceding “Understanding Styles” section of this chapter describes
styles in general and then shows you an example of a simple internal style.
Internal styles can be useful on pages — especially when the page has some
type of specialized requirement not found on other pages on the site — but
they are less common than the external kind. Most developers use external
styles to reduce the amount of work required to maintain a site. A single
.CSS file contains all of the styles for the site, which means that changing a
style site-wide is as simple as changing that one file (rather than each indi-
vidual page). Because the change occurs in just one place, there isn’t any
chance of missing one or more changes on individual pages.

Creating and using an external style sheet isn’t much different from using an
internal style sheet. The following example uses the techniques found in the
preceding section to create an external style sheet:

 1. Create a new HTML5 file with your text editor.

 2. Type the code for the HTML page found in the “Understanding Styles”
section of this chapter.

 Make sure you type the code precisely as you would to start the previ-
ous example. What you should end up with is the same plain page — one
without any styles.

18 Part I: Getting Started with CSS3

 3. Type the following code immediately after the <title> tag.
<link rel=”stylesheet” href=”ExternalCSS.CSS” />

 The <link> tag tells the browser to look for an external resource. In this
case, the rel attribute says that it should look for a style sheet and the
href attribute provides the name of that style sheet.

 4. Save the HTML5 file to disk.

 5. Create a new .CSS file with your text editor.

 Your editor may not support .CSS files. Any text file will do.

 6. Type the following code in the .CSS file.
p
{
 font-family: cursive;
 font-size: large;
 color: #0000ff;
 background-color: #ffff00;
}

h1
{
 font-family: “Times New Roman”,Georgia,serif;
 font-size: 40px;
 text-align: center;
 text-decoration: underline;
 color: #ff0000;
 background-color: #00ffff;
}

 Yes, this is the same code that you used before. The only difference is
that it now resides in an external file.

 7. Save the CSS file to disk as ExternalCSS.CSS.

 It’s absolutely essential that the name of the file precisely match the name
found in the href attribute. Some platforms are case sensitive, so you
must use the same case for the filename. For example, externalcss.
css might be viewed as a different file from ExternalCSS.CSS.

 8. Load the page in your browser.

 You see the effects of the style change as shown in Figure 1-3.

Defining the CSS Units of Measure
There are many ways to specify a value when working with CSS. For example,
you can simply say that the browser should use a large font (where medium
is the default size). You can also tell the browser to compute a size based on
the browser’s configuration. Relative measurements make it possible for the

19 Chapter 1: Understanding CSS3

browser to adjust the content presentation to match the size of the device
displaying it, but using relative measurements also means that the user may
not see the content as you originally wanted to present it. In rare cases, using
relative measurements can actually make the content unusable because the
browser doesn’t know how to use the relative measurements to present the
content correctly.

Absolute measurements have the advantage of allowing precise placement of
content onscreen and making that content a specific size or giving the content
a precise appearance. However, use absolute measurements only when you’re
certain about the user’s configuration. For example, you could use absolute
measurements when creating an application that’s for internal use within your
organization and the organization has mandated device configurations.

When creating absolute measurements, and some relative measurements,
you need to use a unit of measure that the browser will understand. Table 1-1
shows the standardized units of measure that every browser will understand,
along with a description of that measurement. You see many of these units of
measure used in the examples in this book.

Table 1-1 Standard CSS Units of Measure
Symbol Measure

ment
Type Description

% Percent Relative A percentage of a particular element. For
example, a table column can consume a
percentage of the space allocated for the
entire table’s width.

in Inch Absolute The number of screen or printed inches to
use to display an element. The number of
pixels in an inch varies according to device
and device configuration.

cm Centimeter Absolute The number of screen or printed centimeters
to use to display an element. The number of
pixels in an centimeter varies according to
device and device configuration.

mm Millimeter Absolute The number of screen or printed millimeters
to use to display an element. The number of
pixels in an millimeter varies according to
device and device configuration.

em Em Relative An em is computed based on the current
font size. The default size for most desktop
browsers is 16 px = 1 em. However, some-
one might configure the browser to use a
smaller or larger default font. See the side-
bar, “Understanding Ems” for more details.

(continued)

20 Part I: Getting Started with CSS3

Table 1-1 (continued)
Symbol Measure

ment
Type Description

ex Ex Relative A counterpart to the em, the ex is the com-
puted x-height of a font, rather than the full
height of the font. Otherwise exs work the
same as ems.

pt Point Absolute Each point is approximately 1/72-inch.
pc Pica Absolute Each pica is equal to twelve points.
px Pixel Relative Specifies an individual dot on the screen. This

is a relative measurement because it takes
into account the variable number of pixels
used by each device over a specific measure-
ment (normally an inch or centimeter). Many
developers use pixels when good presenta-
tion control is needed, but some flexibility in
adapting to a particular platform is desired.

Understanding ems
Most web developers rely on the em as their
basic unit of measure because ems automati-
cally adapt to whatever the user relies upon. If
a user has a special visual need, an em might be
much larger than the default size of 16 px. On the
other hand, someone using a smartphone might
see an em as being only 10 px due to the small
size of the screen. The point is that you can use
a consistent measure for your pages that’s then
automatically translated to whatever the user
needs. Here are the default sizes for an em when
compared to pixels for various kinds of text:

 ✓ Headline 1 (<h1>) = 20px

 ✓ Headline 2 (<h2>) = 18px

 ✓ Headline 3 (<h3>) = 16px

 ✓ Main text (<p>) = 14px

 ✓ Sub text = 12px

 ✓ Footnotes (usually <footer>) = 10px

The feature that makes ems different from pixels
or other relative measures is the concept of an
inherited default font size. If you create an ele-
ment that has a default font size different from
the default size displayed by the browser, and
then place another element within it, the child
element will use the default size of the parent,
and not that of the browser. For example, if you
place a footnote inside a paragraph tag, the
footnote will appear at 8.75 px instead of 10 px
(the default font size). The way to calculate this
value is (14 px <p> tag size / 16 px default text
size) * 10 px footnote size. Likewise, placing a
footnote inside an <h1> tag will display the
footnote at 12.5 px.

Chapter 2

Performing Basic Tasks
In This Chapter
▶ Using selectors to access objects
▶ Relying on boxes to organize content
▶ Developing backgrounds

C
hapter 1 rushed you through a few examples that demonstrated how
Cascading Style Sheets (CSS) work at a basic level. Of course, there’s a

lot more to CSS and this chapter helps you take the next step on the journey.
There are a few essential tasks that you’ll perform whenever you work with
CSS simply because there isn’t any way to avoid them.

One of these tasks is selecting objects to work with, as discussed in Chapter 1.
Creating a p or h1 style involves selecting <p> and <h1> tags (objects) within
the document. After these objects are selected, you can perform tasks with
them. Note, however, that simple tags aren’t the only objects, as you discover
in this chapter.

You also need to know how layout works at a basic level. In this chapter you
discover how CSS interacts with the drawing area onscreen. For example, you
need to know the starting point for drawing new information onscreen and
how the underlying platform deals with packaging objects for display. This is
the same sort of information that developers need in order to create desktop
applications, but it’s CSS3-specific.

Finally, on websites, white backgrounds are boring. Adding a simple picture
makes the background a lot more interesting and it doesn’t require a lot of
effort. Of course, you can add the background directly to the pages of your
site, but using a style to add the background is better. If you decide to update
the background, you can update all pages at once without difficulty. The
whole idea behind using styles is to create an environment where you can
perform tasks easily and reliably.

22 Part I: Getting Started with CSS3

Working with Selectors
When you want to change something in your environment, you select the
object associated with that factor and modify it in some way. For example,
you select the remote control, point it at the television, and change the chan-
nel as needed to view your favorite show. If you’re hungry, you open the
refrigerator, select the food that’s appealing at the moment, and then eat it.
The objects in a web page work the same way. To change an object to look the
way you want, first you select the object and then you make changes to it.

 When creating a style sheet, HTML documents can be a problem. They can be
long and so complex you can’t tell what they contain. As a consequence, you
need methods for selecting objects without knowing what those objects are
in advance. For example, you know that you want all <p> tags to appear in a
certain way, even though you don’t know where they’re placed on a page or
whether the page even has any <p> tags at all. Consequently, CSS provides
a number of techniques that allow you to find the objects you want to select
without a problem.

Because the topic is relatively complex, it’s important to find an easy way
to determine which selector to use and when to use it. This chapter breaks
selectors down into types so you can ease into them a little at a time, without
the shock of seeing a huge, somewhat disorganized list of them displayed on
a site. The following sections discuss the various ways in which you can use
selectors to interact with objects on pages.

An overview of selectors
There’s no reason that selectors should be complicated. All you’re really
trying to do is select an object on the current page so you can interact with
it in some way. The idea is quite simple. It’s the implementation that makes
things complicated. However, you can reduce the complexity by viewing
selectors in specific ways.

 Most selectors fall into particular categories. Note, however, that a special
selector, * (asterisk), selects every object in the document without regard for
type or location. You use this selector when you want to format every object
in the document in a certain way.

This chapter tells you about every selector you’ll ever use (and probably a
few you won’t). To reduce the complexity of selectors, the chapter breaks
them into functional categories like this (the standard doesn’t categorize the
selectors in this way — this breakdown is merely for your convenience):

23 Chapter 2: Performing Basic Tasks

 ✓ Tag: HTML tags form the basis of most documents. You can interact
directly with any tag, such as <p> and <h1> on the page. CSS also makes
it possible to be discriminating in your choices. For example, you could
choose to interact only with <p> tags found within a <div>. A number
of selector types work with tags in various ways.

 ✓ Attribute: HTML tags contain attributes. The most commonly used attri-
butes with CSS are class and id. However, there are methods of work-
ing with tags containing any attribute. For example, you might want to
interact in a specific way with tags that contain a target attribute and
CSS provides the means to do that.

 ✓ Pattern: There are cases when you want to format content based on a
pattern. For example, you might want to format every other list item
 in a specific way to make the list items stand out — so the user
can easily see each list item as a specific entity. If the page were to
suddenly have another item in the list, the CSS would automatically
reformat the items to match the pattern you created — all without any
special changes on your part.

 ✓ Event: Some pages you visit look like someone has performed fancy pro-
gramming to obtain the special effects that you see. In reality, many of
these sites trap an event, such as a mouseover, and create CSS to inter-
act with it. The object is formatted one way normally and then another
way when the mouse passes over it. Depending on the complexity of
the CSS you create, the effects can be truly amazing (and all without
 programming).

 ✓ State: Objects on a page have a specific state. For example, links are
active, visited, or unvisited. You can choose to format these objects in
special ways that depend solely on their state at any given time. A link
that someone has visited might appear with a check mark next to it,
while the link that’s currently active might appear highlighted in some
way. Just how you interact with the state information depends on the
sort of effect you want to achieve.

 The topic of selectors really is quite complicated. Don’t even think about view-
ing the standards without a bottle of aspirin by your side. Fortunately, there
are a few sites that you can reference that provide a list in a somewhat orga-
nized manner. For example, the W3C Schools site (www.w3schools.com/
cssref/css_selectors.asp) provides a simple chart that tells you about
the majority of the selectors in a straightforward manner. Short lists of selec-
tors, such as the one at http://net.tutsplus.com/tutorials/html-
css-techniques/the-30-css-selectors-you-must-memorize/, are
also helpful. This particular site provides straightforward information about
browser compatibility when working with selectors as well. If you really want
to find out about browser compatibility, though, have your browser take the
CSS Selectors Test at www.css3.info/selectors-test/.

http://www.w3schools.com/cssref/css_selectors.asp
http://www.w3schools.com/cssref/css_selectors.asp
http://net.tutsplus.com/tutorials/html-css-techniques/the-30-css-selectors-you-must-memorize/
http://net.tutsplus.com/tutorials/html-css-techniques/the-30-css-selectors-you-must-memorize/
http://www.css3.info/selectors-test/

24 Part I: Getting Started with CSS3

Working with tag selectors
Tag (or element) selectors are character sequences you use to choose
tags such as <h1> and <p>. In fact, you can select any HTML tag this way;
Chapter 1 shows simple examples of a tag selector at work. A tag selector
always relies on the tag name, such as p or h1. However, there are some
interesting tag selector combinations you should know about. The following
list tells you about tag selectors that you can use in addition to the simple
tag selector shown in Chapter 1.

 ✓ Tag,Tag: Separating two tags with a comma means selecting both tags,
regardless of where they appear in the document. For example, using
p,div would select all <p> and <div> tags within the document.

 ✓ Tag>Tag: Separating two tags with a greater-than sign (>) tells the
browser to select a tag that has another tag as a parent. For example, if
you have <div><p /></div> and use div>p, the browser will select
the <p> tag.

 ✓ Tag Tag: Separating two tags by a space tells the browser to select a
tag that appears within another tag. This selector differs from using a
greater than sign in that the first tag need not directly appear immedi-
ately before the second tag. For example, if you have <div><p
/></div> and use div>p, the browser won’t select anything.
However, if you use div p instead, the browser will select the <p> tag.

 ✓ Tag+Tag: Separating two tags with a plus sign (+) tells the browser to
select a tag that appears immediately after another tag. For example,
if you have <div /><p /> and use div+p, the browser will select the
<p> tag. Notice that the <p> tag doesn’t appear within the <div> tag, it
appears after the <div> tag.

 ✓ Tag~Tag: Separating two tags with a tilde (~) tells the browser to select
every tag that appears after another tag. For example, if you have <div
/><p /><p /> and use div~p, the browser will select both <p> tags.
This differs from div+p, which tells the browser to select only the first
<p> tag that follows the <div> tag.

 ✓ :root: Selects the root element of the document. The root element
depends on the document type. This selector is normally used with XML
documents, but you could potentially use it with any document type.

Even with this short list of tag selectors, you can see that CSS is quite flexible
when working with tags. Seeing the selectors in action will help you under-
stand them a bit better. The following procedure shows how to use the vari-
ous tags:

 1. Copy the ExternalCSS.HTML and ExternalCSS.CSS files (created in
Chapter 1) to a new folder.

25 Chapter 2: Performing Basic Tasks

 A number of examples in the book build on previous examples to save
time and effort on your part. Make sure you create a copy of the existing
example and use the copy for your work in this chapter.

 2. Open ExternalCSS.HTML.

 3. Type the following code after the existing <p> tag in the file and save
the changes to disk.
<div>
 <p>Text within a DIV.</p>

 <p>Text with a DIV parent.</p>

</div>
<p>Text after a DIV.</p>
<p>More text after a DIV.</p>

 This code simply adds tags in specific arrangements so that you can test
the various selectors. If you open the resulting file now, you see that
each of the <p> tags has been automatically formatted like the original
<p> tag, as shown in Figure 2-1.

Figure 2-1:
CSS auto-
matically

formats any
<p> tags
you add.

Using the :not(Selector) Selector
Some of the selectors in this chapter are pretty
specific. In some cases, it’s easier to select
objects according to characteristics that they
don’t have — that is, to select objects that
aren’t of a specific type. For example, you
might want to change the formatting of every
object that isn’t within a <p> tag. In this case,
you could create a list of tags using the comma

selector and hope that your list is complete, or
you could just use the :not() selector. For
example, :not(p) selects every object that
isn’t a <p> tag. You also can create complex
selections using the :not() selector: A selec-
tor of :not(div>p), for instance, selects
every <p> tag that doesn’t have a <div> tag
as a parent.

26 Part I: Getting Started with CSS3

 3. Open ExternalCSS.CSS.

 4. Type the following code after the existing styles and save the changes
to disk.
div>p
{
 text-align: right;
}

 5. Reload the test page.

 The effect of making the style change is shown in Figure 2-2. Notice that
the only <p> tag that’s been affected is the one that has the <div> tag
as a direct parent. In addition, notice that the previous formatting cas-
cades into the current formatting. You haven’t overridden any of the
existing formatting, so the text appears as before — it simply uses right-
justification instead of the default left-justification.

Figure 2-2:
Only the
<p> tag

with a <div>
as a direct

parent is
affected.

 6. Type the following code after the existing styles and save the changes
to disk.
div p
{
 text-decoration: line-through;
 background-color: #ff7f7f;
}

 7. Reload the test page.

 The effect of these style changes appears in Figure 2-3. Notice that two
lines are affected this time. In addition, the background-color style has
been changed, so these two lines use the new color — it takes prece-
dence over the original color. When you think about the cascading part

27 Chapter 2: Performing Basic Tasks

of CSS, think about a stream where changes downstream take prece-
dence over the original state of the water.

Figure 2-3:
All <p> tags
within <div>

tags are
affected.

 8. Type the following code after the existing styles and save the changes
to disk.
div+p
{
 font-family: monospace;
 font-style: italic;
}

 9. Reload the test page.

 The effect of these style changes appears in Figure 2-4. Only the line that
appears directly after the <div> is affected: The font has changed to a
monospace font (normally reserved for code) and is italicized.

Figure 2-4:
Only the <p>

tag directly
after the

<div> tag is
affected.

28 Part I: Getting Started with CSS3

 10. Type the following code after the existing styles and save the changes
to disk.
div~p
{
 font-weight: bolder;
 font-size: 30px;
 margin: 0px;
 color: #7f007f;
}

 11. Reload the test page.

 You see the effects of this style change in Figure 2-5. Notice that both
<p> tags that appear after the <div> tag are affected. The font now
appears bold and is larger. The font color has also changed. Especially
important in this part of the example is that setting the margin to 0px
gets rid of the white space between lines.

Figure 2-5:
All <p> tags
after <div>

tags are
affected.

Working with attribute selectors
Within many tags are attributes that describe tag properties. Two common
attributes are the tag identifier (id) and CSS classification (class). However,
CSS makes it possible to select objects by any attribute desired. The follow-
ing list tells you about attribute selectors that you commonly use when creat-
ing styles.

 ✓ .ClassName: Selects any objects that have a class attribute value with
the given name. For example, .StdPara would select every object that
has a class=”StdPara” attribute without regard for object type.

 ✓ #Id: Selects any objects that have an id attribute value with the given
name. For example, #ThirdHeader would select every object that has
an id=”ThirdHeader” attribute without regard for object type.

29 Chapter 2: Performing Basic Tasks

 ✓ :lang(Language Identifier): Selects any object with the specified lan-
guage value. For example, :lang(en) would select any object that uses
English as its language. You can find a list of common language identi-
fiers at www.w3schools.com/tags/ref_language_codes.asp.

 ✓ [Attribute]: Selects all objects that use a particular attribute regardless
of the attribute’s value. For example, [lang] would select all objects
that use the lang attribute.

 ✓ [Attribute=Value]: Selects all objects that have an attribute with
a particular value. The value must match precisely. For example,
[lang=”en-us”] would select every object that has a language attri-
bute with a value of English.

 ✓ [Attribute~=Value]: Selects all objects that have an attribute that con-
tains a particular value. The search value need only appear somewhere
within the value as a whole. For example, [title~=”Secondary”]
selects all objects with title attributes that contain the word Secondary
as a discrete word. This selector works with whole words.

 It’s possible to further restrict many of these attribute selectors by com-
bining them with tag selectors. For example, p[title~=”Secondary”]
selects only the <p> tag objects with title attributes that contain the
word Secondary as a discrete word. It’s often possible to combine
selectors in unique ways to create precisely the effect you want.

 ✓ [Attribute|=Value]: Selects all objects that have an attribute that
begins with a particular value. The search value needs to appear at the
beginning of the value as a whole, but need not be the entire value. For
example, [title|=”Sub”] selects all objects with title attributes that
start with the word Sub. This selector works with hyphenated terms.

 ✓ [Attribute^=Value]: Selects all objects that have an attribute that
begins with a particular value. For example, [title|=”Sub”] selects
all objects with title attributes that start with the word Sub. This form
of the selector differs from the [Attribute|=Value] attribute in that
it’s less restrictive. Using this form will select title=”SubHeader”,
title=”Sub Header”, or title=”Sub-Header” with equal reliability.

 ✓ [Attribute$=Value]: Selects all objects that have an attribute that ends
with a particular value. For example, [title$=”Secondary”] selects
all objects with title attributes that end with the word Secondary. This
form of the attribute is nonrestrictive — it requires no special formatting.

 ✓ [Attribute*=Value]: Selects all objects that have an attribute that con-
tains a particular value. For example, [title$=”Secondary”] selects
all objects with title attributes that contain the word Secondary. This
form of the selector is less restrictive than the [Attribute~=Value]
attribute. Using this form will select title=”SecondaryParagraph”,
title=”Secondary Paragraph”, or title=”Secondary-
Paragraph” with equal reliability.

http://www.w3schools.com/tags/ref_language_codes.asp

30 Part I: Getting Started with CSS3

Now that you have some idea of how attribute selectors work, it’s time to see
them in action. The following procedure helps you understand what attribute
selectors do and how you can use them to choose specific objects within a
document for formatting.

 1. Copy the ExternalCSS.HTML and ExternalCSS.CSS files you cre-
ated in Chapter 1 to a new folder.

 2. Open ExternalCSS.HTML.

 3. Type the following code after the existing <p> tag in the file and save
the changes to disk.
<h1 id=”SecondHeader” class=”SubHead”
 title=”Sub-Header”>
 Another Heading
</h1>
<p id=”SecondaryPara” class=”StdPara”
 title=”Secondary-Paragraph”>
 More Text
</p>
<h1 id=”ThirdHeader” class=”SubHead”
 title=”Sub-Header Secondary”>
 Another Heading Still
</h1>
<p id=”SecondaryPara” class=”StdPara”
 title=”Secondary Sub-Paragraph”>
 Still More Text
</p>
<p id=”SecondaryPara” class=”SubPara”
 title=”Sub-Paragraph” lang=”en-us”>
 Even More Text
</p>

 This code simply adds tags in specific arrangements so that you can test
the various selectors. If you open the resulting file now, you see that
each of the <h1> and <p> tags has been automatically formatted like the
original <h1> and <p> tags; the result is similar to Figure 2-1.

 3. Open ExternalCSS.CSS.

 4. Type the following code after the existing styles and save the changes
to disk.
.SubHead
{
 border: double;
 border-width: thick;
 border-color: Green;
}

31 Chapter 2: Performing Basic Tasks

 5. Reload the test page.

 You see the effect of making the style change (as shown in Figure 2-6).
Each object that has a class value of SubHead now has a thick double
border colored green.

Figure 2-6:
Every object

that has a
class value
of SubHead

now has a
border.

 There are many ways to define the colors you want to use. Many devel-
opers use the hexadecimal format shown so far because it’s precise and
flexible. However, #008000 is a little hard to read. Using the color name,
Green, is a lot easier. Of course, this means you need to know the name
of the color. Fortunately, you can find a list of names that browsers
understand at www.w3schools.com/cssref/css_colornames.asp.

 6. Type the following code after the existing styles and save the changes
to disk.
#ThirdHeader
{
 text-decoration: line-through;
}

 7. Reload the test page.

 You see the effect of making the style change as shown in Figure 2-7.
Each object that has an id value of ThirdHeader now has a text-
decoration value of line-through, rather than underline. Notice
that the new value overwrites the old value. If you want to preserve the
original value, you must specify it again.

http://www.w3schools.com/cssref/css_colornames.asp

32 Part I: Getting Started with CSS3

Figure 2-7:
Every object

that has an
id value of

ThirdHeader
now has a

line through
its text.

The oddities of attribute selectors
Using the attribute selectors can be tricky
at times. If you don’t test your assumptions
about them, using a simple test case with
all of the browsers you want to work, your
results could be surprising. For instance,
the [Attribute~=Value] attribute
works only with whole words. A selec-
tor of [title~=”Secondary”] ,
then, matches title=”Secondary
Paragraph” and title=”Sub-Header
Secondary” . However, it won’t match
title=”Secondary-Paragraph”
because of the hyphen between Secondary
and Paragraph.

Likewise, when working with the
[Attribute|=Value] selector, you
must supply hyphenated terms. For example,
[title|=”Sub”] matches title=”Sub-
Header”, but it won’t match title=”Sub
Header” because there’s a space rather than
a hyphen.

The odd thing is that these two examples work
consistently across all of the test browsers
and across all platforms. This behavior doesn’t
make sense, but you need to be aware that it
exists — and then compensate for it when cre-
ating your site. A lot of people complain about
these selector issues without realizing that
they are consistently embedded in the brows-
ers they use.

If you want to select terms without worry
about precise formatting, then you need
to rely on alternatives. For example,
[Attribute*=Value] is the less spe-
cific version of [Attribute~=Value] and
[Attribute^=Value] is the less specific
version of [Attribute|=Value]. Using
the correct selector is absolutely essential if
you want to get the desired results.

33 Chapter 2: Performing Basic Tasks

 8. Type the following code after the existing styles and save the changes
to disk.
[title|=”Sub”]
{
 text-align: right;
 background-color: rgb(128, 255, 128);
}

 9. Reload the test page.

 You see the effect of making the style change (as shown in Figure 2-8).
Each object that has the word Sub somewhere in its title attribute is
changed. Notice that this particular change affects both <p> and <h1>
tags. This example also shows another way to define color selections.
Each color: red, green, blue (rgb) is represented by a value between
0 and 255. You can read more about the rgb() approach to creating
colors at www.w3schools.com/cssref/css_colors.asp.

Figure 2-8:
Here every
object that

has Sub
in its title

property is
changed.

Working with pattern selectors
In some cases, a selection you need to make has nothing to do with either
tags or attributes, but the pattern in which the objects appear on the page.
For example, you might want to select just the first object, regardless of
what that object might be. In some cases, you want to format with alternate
members of a list or other repetitive data element in some manner to make
it easier for the user to see each element individually. The following list tells
you about pattern selectors that documents commonly use.

http://www.w3schools.com/cssref/css_colors.asp

34 Part I: Getting Started with CSS3

 ✓ :first-letter: Select the first letter of the specified object. This selector is
useful in creating special textual effects, such as drop caps.

 It’s extremely rare to see most pattern selectors used alone because
you normally don’t want to specially format just the first letter of every
object on the page in a certain way. Generally, you see pattern selectors
used in combination with an attribute selector, such as the class selec-
tor, or with a particular tag selector. Using pattern selectors globally can
have unexpected results or even cause an application to fail (depending
on how the application’s code and the CSS interact).

 ✓ :first-line: Selects the first line of the specified object.

 ✓ :before: Selects the area immediately before the specified object con-
tent. This selector is normally coupled with the content property to
insert something special before the content in the existing object.

 ✓ :after: Selects the area immediately after the specified object content.
This selector is normally coupled with the content property to insert
something special before the content in the existing object.

 ✓ :first-of-type: Selects the first object of a specific type.

 Even though the specification doesn’t actually tell you that you must
provide a type or a parent, some pattern selectors won’t work without
one. Typically you see the :first-of-type selector used with a tag
selector, (for example, p:first-of-type), but it can also be used with
an attribute selector. All of the other type and child pattern selectors
work the same way.

 ✓ :last-of-type: Selects the last object of a specific type.

 ✓ :only-of-type: Selects the only object of a specific type. If there’s more
than one object of a particular type, then no selection is made.

 ✓ :nth-of-type(Number): Selects the specified object of a specific type.

 ✓ :nth-last-of-type(Number): Selects the specified object of a specific type,
beginning from the end of the object list.

 ✓ :first-child: Selects the first child of a specified object. This selector is
commonly used to apply special formatting to the first item in a list or
table.

 ✓ :last-child: Selects the last child of a particular parent.

 ✓ :only-child: Selects the only child of a particular parent. When a parent
object has more than one child, no selection is made.

 ✓ :nth-child(Number): Selects the specified child of a particular parent.

 ✓ :nth-last-child(Number): Selects the specified child of a particular
parent beginning from the end of the list of children.

35 Chapter 2: Performing Basic Tasks

Pattern selectors can create some interesting effects on your site. The follow-
ing procedure takes a quick look at what these selectors can do. It’s impor-
tant to remember that you’ll see selectors, including pattern selectors, used
in examples throughout the book, so consider this a starting point.

 1. Copy the ExternalCSS.HTML and ExternalCSS.CSS files you cre-
ated in Chapter 1 to a new folder.

 2. Open ExternalCSS.HTML.

 3. Type the following code after the existing <p> tag in the file and save
the changes to disk.
<ul id=”MyList”>
 <li id=”One” class=”ListItem”>One
 <li id=”Two” class=”ListItem”>Two
 <li id=”Three” class=”ListItem”>Three
 <li id=”Four” class=”ListItem”>Four
 <li id=”Five” class=”ListItem”>Five

 In this case, you add a list to the page to allow easier detection of pat-
terns. Of course, patterns aren’t limited to lists or tables. You can use
them with any arrangement of objects that could lend themselves to
selection by a pattern.

 3. Open ExternalCSS.CSS.

 4. Type the following code after the existing styles and save the changes
to disk.
.ListItem:first-letter
{
 font-size: xx-large;
}

.ListItem:after
{
 content: “ \27A8”;
 font-size: x-large;
 color: Red;
}

.ListItem:nth-child(odd)
{
 background-color: LightBlue;
}

.ListItem:nth-child(2n+2)
{
 background-color: LightGreen;
}

36 Part I: Getting Started with CSS3

 5. Reload the test page.

 You see the effect of making the style change as shown in Figure 2-9. To
begin, each bullet starts with an extra-large letter.

Figure 2-9:
The for-
matting

changes
have

created pat-
terns in the

output.

 At the end of each bullet you see a special arrow character. Notice how
the CSS uses \27A8 to create this character. When viewing charts such
as the one at http://ikwebdesigner.com/special-characters/
and the one at www.petterhesselberg.com/charcodes.html, you
see these character codes presented with a &# combination at the begin-
ning. CSS uses the same numeric codes, but relies on a backslash (/).

 The :nth-child() selector can be used in a number of ways. Even though
the example doesn’t show it, you can provide a number to select one spe-
cific child element. However, this selector also accepts a number of other
interesting inputs. For example, you can use the even and odd keywords
to select the even or odd objects in a list. You can also provide an equation
that uses n to indicate the current object. When the browser inputs 0 for n,
for example, the equation becomes 2 * 0 + 2 or element 2. If you wanted to
start with element 3 instead, you’d use 2n+3. The equation you provide can
be of any complexity required to produce the desired result.

Working with event selectors
Most CSS changes are static — you ask the browser to look for specific tags,
attributes, or patterns. However, event selectors choose objects based on
a particular event, such as a mouse over. When the user hovers the mouse
pointer over an object, the object’s formatting changes to signify that the
event has occurred. When the user moves the mouse pointer off of the
object, the formatting returns to normal. The following list tells you about
event selectors that documents commonly use.

http://ikwebdesigner.com/special-characters/
http://www.petterhesselberg.com/charcodes.html

37 Chapter 2: Performing Basic Tasks

 ✓ :hover: Selects an object when the mouse pointer is hovered over it.
Developers commonly use this feature to show that an item is selected
or to display details about an object. You see this feature used quite
often with menu systems to display the submenu items.

 ✓ :focus: Selects an object when the object has the input (keyboard) focus.
It’s commonly used with forms to show which field is selected for input.
One interesting use of this selector is to show the selected field in a
larger-sized font to make input easier.

Event selectors are handy because you can use them to make it appear
the page is interacting with the user without writing even one line of code.
Everything happens as part of a style. The following procedure shows one
way to use event selectors to produce a visual effect, but this particular trick
appears relatively often in the book, so you’ll see it used more than once.

 1. Copy the ExternalCSS.HTML and ExternalCSS.CSS files (created in
Chapter 1) to a new folder.

 2. Open ExternalCSS.CSS.

 3. Type the following code after the existing styles and save the changes
to disk.
p:hover, h1:hover
{
 text-decoration: none;
 font-family: “Arial”, sans-serif;
 font-size: xx-large;
 color: BlueViolet;
 background-color: Plum;
}

 4. Reload the test page.

 5. Hover the mouse pointer over the paragraph text.

 You see the effect of making the style change as shown in Figure 2-10.
The style of the text changes to match the selection criteria.

Figure 2-10:
Events make

it appear
that your

application
is coded,

when it
really isn’t.

38 Part I: Getting Started with CSS3

 6. Hover the mouse over the header text.

 The paragraph text returns to normal and the header text now matches
the selection criteria. You can use this approach with any object on
screen and make any kind of change desired.

Working with state selectors
There are some situations in which the dynamic state of an object is impor-
tant in formatting it. For example, an object may have a link associated with
it. When the user clicks that link, the state of the link changes to “visited.”
Using state selectors can help a user determine when goals have been
achieved or a particular feature is unavailable (the object is disabled). The
following list tells you about state selectors that documents commonly use.

 ✓ :link: Selects all of the unvisited links in a document.

 It’s common practice to combine state selectors with tag selectors. For
example, you may not want to format all unvisited links in a document.
The link for an tag would most likely be formatted differently
from the link for an <a> tag. Consequently, you commonly see state
selectors as a:link where the formatting would affect all of the unvis-
ited anchor links.

 ✓ :visited: Selects all of the visited links in a document.

 ✓ :active: Selects the link that the user currently has selected.

 ✓ :empty: Selects an object that has no content.

 ✓ :target: Selects the target of an object. For example, when the user clicks
a link, the target of that link is selected.

 ✓ :enabled: Selects any object that’s enabled.

 ✓ :disabled: Selects any object that’s disabled.

 ✓ :checked: Selects any object that’s checked.

 ✓ ::selection: Selects the content that the user has highlighted in some way.

State selectors make it possible to change the appearance of the document
to match activities that the user has performed. What this means is that the
document becomes more interactive, without requiring any coding on your
part. This effect is used in a number of the examples that follow, so you’ll
get plenty of practice working with state selectors. The following procedure
shows one method for working with state selectors.

 1. Copy the ExternalCSS.HTML and ExternalCSS.CSS files (created in
Chapter 1) to a new folder.

 2. Open ExternalCSS.HTML.

39 Chapter 2: Performing Basic Tasks

 3. Type the following code after the existing <p> tag in the file and save
the changes to disk.
Select One

Select Two
<p id=”One”>One</p>
<p id=”Two”>Two</p>

 This added code provides some state indicators for the example. When
you click a link, the target of that link changes state.

 3. Open ExternalCSS.CSS.

 4. Type the following code after the existing styles and save the changes
to disk.
::selection
{
 color: BlueViolet;
 background-color: Plum;
}
::-moz-selection
{
 color: BlueViolet;
 background-color: Plum;
}

:target
{
 border: solid;
 border-width: medium;
 border-color: Red;
 background-color: BlanchedAlmond;
}

 Notice the use of the special -moz- preface for the second ::selec-
tion selector. This is one of your first exposures to browser compat-
ibility issues. In order to make this selector work with Firefox, you must
add this second ::-moz-selection selector with the preface.

 5. Reload the test page.

 6. Select some of the first paragraph text.

 The color of the text and its background change.

 7. Click Select One.

 The paragraph containing One changes its appearance as shown in
Figure 2-11.

 8. Click Select Two.

 The paragraph containing Two changes its appearance. The paragraph
containing One returns to its original appearance.

40 Part I: Getting Started with CSS3

Figure 2-11:
Using a :tar-
get selector
can make it
clear which

link was
clicked.

Understanding Layout Using
the Basic Box Model

Everything you view on a page is in a box. That box separates objects from
each other and makes it possible to create various special effects. Using
boxes makes it possible to position content onscreen, fill various areas with
color, and create the sorts of separations that users expect. The following
sections discuss the basic box model in more detail.

Viewing the box
The basic box model actually relies on a series of four boxes — each of which
is placed inside the next. Figure 2-12 shows how these boxes appear and the
names associated with each box.

Figure 2-12:
Boxes make

it possible
to format

data in pre-
cisely the

way users
expect.

41 Chapter 2: Performing Basic Tasks

Each region or box has a specific purpose. For example, the margin serves to
separate the entire boxed region from other boxed regions on the page. Of
course, you can set the margin to zero so that there’s no separation, but you
can provide as much separation as needed to obtain the desired appearance.

Borders serve to provide visual separators between items of content. They are
used all the time on web pages. What you may not realize is that each side of
a border can be controlled separately. You may choose to display only the
right border and not the top, bottom, or left when working on the left pane of
a page. The border would end up looking like a line instead of a box.

Padding separates the border from the content, when the border is displayed.
Otherwise, the border and content would appear directly next to each other
and the content would appear cramped in some cases. This would be a seri-
ous problem when you’re working with text. On the other hand, you may
actually want the border directly next to an image to highlight the image and
set it off on a page.

The result of all these regions is that you end up with a content area that’s
somewhat smaller than the box as a whole unless you eliminate the margin,
border, and padding. The content is nestled securely in its box and presents
information to the user in a form that’s both usable and aesthetically pleasing.

Working with the box model
You’ve already seen a few examples of the box model in Chapter 1 and in this
chapter. The use of a border is one such situation. In addition, setting the
margin to zero removes the space between screen elements. All the examples
so far have made use of content, but there’s no requirement to do so. An
object on the page can provide a visual function as well. The following proce-
dure shows a few other ways in which to work with the margin, border, pad-
ding, and content used to create the basic box model.

 1. Copy the ExternalCSS.HTML and ExternalCSS.CSS files (created in
Chapter 1) to a new folder.

 2. Open ExternalCSS.CSS.

 3. Change the existing styles by adding the code shown in bold:
p
{
 font-family: cursive;
 font-size: large;
 color: #0000ff;
 background-color: #ffff00;

42 Part I: Getting Started with CSS3

 border: outset;
 border-width: thick;
 border-radius: 6px;
 margin: 2px;
 padding: 5px;
}

h1
{
 font-family: “Times New Roman”,Georgia,serif;
 font-size: 40px;
 text-align: center;
 text-decoration: underline;
 color: #ff0000;
 background-color: #00ffff;

 border-bottom-style: groove;
 border-left-style: ridge;
 border-right-style: ridge;
 border-top-style: groove;
 border-width: 15px;
 border-color: Gray;
 margin: 2px;
 padding: 6px;
}

 These changes add various special effects to the text. You wouldn’t
actually use this many different kinds of styles all on one page. It’s a bit
overwhelming.

 Notice that you can make the corners square or rounded. The amount
of rounding is specified by the border-radius property. The border-
width and border properties both affect the rounding as well. Certain
border styles support round corners better than others do.

 It’s possible to control each border, margin, and padding side individu-
ally. This example also shows the effect of combining border styles to
create a particular look. In order to combine styles, you must specify
each side separately.

 4. Type the following code after the existing styles and save the changes
to disk.
body
{
 border: double;
 border-width: 20px;
 border-color: Blue Red Green Purple;
 margin: 0;
 padding: 20px;
}

43 Chapter 2: Performing Basic Tasks

 Many developers forget that the document <body> tag is also an object
onscreen — and that its appearance is controllable. This example adds
a border around the entire content area. Notice that the border-color
property is used to add a different color to each side: top, right, bottom,
and left (in that order).

 5. Reload the test page.

 You see the effect of making the style change as shown in Figure 2-13. As
previously mentioned, you’d never use this many styles together, except
in an example for comparison purposes.

Figure 2-13:
Using

borders,
margins,

and padding
to create an

interesting
effect.

Designing Backgrounds
Most pages you look at have some sort of background. For example, vendor
sites normally display pictures of the kinds of products they create or indus-
tries in which they participate. Other sites use other kinds of graphics to por-
tray the overall feeling of the site at a glance. The following procedure shows
how to add a background using CSS.

 1. Copy the ExternalCSS.HTML and ExternalCSS.CSS files (created in
Chapter 1) to a new folder.

 2. Create or obtain a background image in Joint Photographic Experts
Group (JPEG) format and name it Background.JPG.

 The downloadable source for this chapter includes a Background.JPG
file for your use.

 3. Open ExternalCSS.CSS.

44 Part I: Getting Started with CSS3

 4. Type the following code after the existing styles and save the changes
to disk.
body
{
 background-image: url(“Background.JPG”);
 background-size: 100%;
 background-repeat: no-repeat;
}

 The most common place to book background images is in the <body>.
However, nothing prevents you from using backgrounds in other objects
and in various other ways. The starting point for most backgrounds is
the background-image property where you can specify the image you
want to use with the url() method. It’s possible to add multiple images
to the background. If you do so, the browser combines the images into a
single presentation.

 The use of the background-size property determines how large the
image appears onscreen. The example is a large picture, so you want it
to take up the entire display area. Using 100% as the value means that
the image automatically resizes to take up the entire client area.

 You use the background-repeat property to determine whether the
image repeats in the background. It’s common for small images to repeat
so they take up the entire display area. Repeating a large image tends
to make the background look confusing and detract from the overall
appearance of the display.

 5. Reload the test page.

 You see the effect of making the style change (as shown in Figure 2-14).

 6. Resize the browser window.

 You see that the background image automatically resizes to take up the
entire display area.

Figure 2-14:
The for-
matting

changes
create pat-
terns in the

output.

Chapter 3

Working with Fonts and Colors
In This Chapter
▶ Interacting with fonts
▶ Designing pages to use web-safe fonts
▶ Creating and using text effects
▶ Using color to make a statement
▶ Working with aural style sheets

T
he first two chapters of this book introduce fonts and colors. You can’t
really create a page without these two features. What you’ve seen so far

are some practical ways to use both fonts and color to create a basic page. Of
course, there’s always more to the picture than just the basics. This chapter
extends your knowledge and helps you understand some interesting things
you can do with both fonts and color.

Part of jazzing up a page effectively is knowing what to avoid and why you
should avoid it. Instead of giving you a designer’s knowledge of the topic, this
chapter provides some useful tips that developers should know when work-
ing with pages. The third-party libraries that you work with later in the book
tend to enforce these guidelines automatically, but you still need to know
why these guidelines are in place.

The final part of this chapter deals with aural style sheets. The idea of hear-
ing a page and then being able to speak to it were originally intended to help
those with special needs. Aural technology includes the ideas of both hearing
and comprehending the content on a page.

 The technology was designed not only for those who lack the ability to see,
but also for those who have low vision capability or even cognitive require-
ments where hearing works better than reading. Today aural style sheets
are gaining a significant new focus. For example, they come into play when
working through turn-by-turn GPS instructions while driving a car. In fact,
any task that requires hands-free operation while keeping the eyes focused
somewhere else benefits from this sort of technology. As a developer, you’ll
be called on more often to provide some sort of aural and speech technology
as a part of the pages you design.

46 Part I: Getting Started with CSS3

Using Fonts
Text, as an abstract presentation of concrete concepts, ideas, and objects,
requires fonts for presentation. The font chosen for the text often does as
much to convey an idea as the text itself. Spend some time looking at greeting
cards and you find that the purveyors of these missives use fonts to present
the message in unique ways. A soft font accompanies a romantic message; a
comical font helps us laugh at a funny message. The goal of this chapter isn’t
to provide you with a full history of font usage; you can find online sources
such as www.onextrapixel.com/2011/12/13/the-psychology-of-
fonts/ that look at the psychology behind using a font. However, the fol-
lowing list does help you understand the standard CSS properties at your
disposal for obtaining access to fonts and using them on a page (in your own
pages, make sure you use the capitalization shown):

 ✓ font-family: Defines the name of the font. There are three font classi-
fications typically used as part of CSS (and most CSS pages use all three
unless you also specify the src property):

	 •	Specific: Provides a precise presentation wherever it’s used.
For example, when you specify Arial as a font, you know that it will
have a specific presentation everywhere you use it. A specific font
must be installed on a system or the browser will ignore it.

	 •	Web safe: This is a font type that provides a less-precise presen-
tation but is more likely to appear on the user’s machine. What
you’re actually requesting is one of several fonts that have similar
appearances. The presentation is often close enough to the origi-
nal that the user won’t even notice.

	 •	Generic: A non-specific font that fits a general description of a
type of font. Such font names include cursive, fantasy, monospace,
sans-serif, and serif. What you actually end up seeing onscreen
may not convey much of the original message at all, but these
selections are guaranteed to work on every platform.

 ✓ font-size: Determines the size of the font when compared to other
fonts on the page, or provides a specific font size. You can use one of
these techniques for defining the font size:

	 •	Specific size: As with most CSS objects, you can specify an
exact size for a font, using pixels, ems, or some other absolute or
relative measurement. (The “Defining the CSS Units of Measure”
section of Chapter 1 has details.)

	 •	Percentage: Defines the size of a font as a percentage of a parent
element’s font size. Specifying a size above 100% increases the font
size, specifying a value below 100% decreases the font size.

http://www.onextrapixel.com/2011/12/13/the-psychology-of-fonts/
http://www.onextrapixel.com/2011/12/13/the-psychology-of-fonts/

47 Chapter 3: Working with Fonts and Colors

	 •	Keyword: Specifies the font size using relative terms: xx-small,
x-small, small, medium, large, x-large, xx-large, smaller,
larger, and inherit (where the font size is inherited from the
parent).

 ✓ font-style: Determines the style of font that the browser creates.
The browser must support the style and the font must supply the style
in order for this property to take effect. The font style keywords are:
normal, italic, oblique (normally a stronger italic), and inherit.

 ✓ font-variant: Specifies whether the font should be presented in a
variant form. Not all browsers and fonts support this feature. The key-
words for this property are normal, small-caps, and inherit.

 ✓ font-weight: Determines the relative darkness of the font and the
width of its strokes. There are two methods for defining the font weight:

	 •	Numeric: A value specifying the relative weight of the font where
a value of 400 is normal and 700 is bold. The numeric values are:
100, 200, 300, 400, 500, 600, 700, 800, and 900. In most cases,
you must use the numbers precisely as specified here — a browser
may ignore a value of 150.

	 •	Keyword: Specifies the font weight using relative terms: normal,
bold, bolder, lighter, and inherit.

Understanding Web Safe Fonts
Fonts provided as part of a graphic image never have any sort of restriction
associated with them because the browser displays the text as an image and
not as text. When working with actual text, you need to consider how the text
is used and what conditions affect its presentation. Three factors come into
play when using standard CSS methodologies to work with fonts:

 ✓ The browser must support the fonts you want to use.

 ✓ The font must appear on the user’s system or you must find some
method for downloading the font to the user’s system.

 ✓ The font must be compatible with the user’s platform.

This all means you can’t be sure that any font choice you make will actually
work unless the font is described in some standard or if the browser vendor
has agreed to support the font by convention. This is where Web safe fonts
come into play. Web safe fonts are guaranteed to work on any platform —
and with any browser — that supports CSS. Consequently, when you use
Web safe fonts, you can be certain that the user will see text presented in a
manner similar to what you had originally intended. The following sections
discuss Web safe fonts in more detail.

48 Part I: Getting Started with CSS3

Using standard Web safe functionality
Hundreds of different devices use the Internet to access information. When
you run a public site, you can’t be guaranteed that a user will have any par-
ticular device. It’s quite likely that your site will see use from all sorts of
devices — everything from desktops to smartphones. People with Internet-
equipped televisions and other personal electronics will also access your
site. With this broad diversity of devices, you need to use Web safe fonts —
those guaranteed to work on the Internet — when creating an application.

Actually, there’s no one Web safe font for every platform unless you want
to use the most generic font types. Developers want to maintain a certain
appearance, so it’s important to include specific fonts first, and then fallback
fonts that are less specific. Using this approach ensures that everyone will be
able to see your page as you originally intended to present it, at least to some
degree. When you’re working with a generic font, its appearance will vary
slightly. With this in mind, here’s a list of Web safe serif fonts (whose char-
acters use a line to finish the main stroke of each character, such as the lines
that appear under the main lines of an M); the most-specific font appears first
and the least-specific font appears last.

 ✓ Georgia, serif

 ✓ “Palatino Linotype”, “Book Antiqua”, Palatino, serif

 ✓ “Times New Roman” Times, serif

Each of these fonts has a slightly different feel, but sometimes the best you
can do is a simple serif font — the last choice in each list. The following list
describes common sans-serif fonts (those whose characters lack serifs).
Again, the most specific font appears first and the least specific appears last.

 ✓ Arial, Helvetica, sans-serif

 ✓ “Arial Black” Gadget, sans-serif

 ✓ “Comic Sans MS”, cursive, sans-serif

 ✓ Impact Charcoal, sans-serif

 ✓ “Lucida Sans Unicode” “Lucida Grande”, sans-serif

 ✓ Tahoma Geneva, sans-serif

 ✓ “Trebuchet MS” Helvetica, sans-serif

 ✓ Verdana Geneva, sans-serif

The last group of fonts is for monospace type, where each letter takes up
precisely the same amount of space (as did the output of older typewriters).
Monospace fonts are normally used for application code, but you can use

49 Chapter 3: Working with Fonts and Colors

them anywhere you want to create the appearance of the typewritten page
as well. The following list presents common monospace fonts with the most-
specific first and the least-specific last.

 ✓ “Courier New” Courier, monospace

 ✓ “Lucida Console” Monaco, monospace

 These are common fonts. However, you might find that you want to use some-
thing a little less common. Fortunately, there are sites where you can see
lists of accepted fonts. In fact, the CSS Font Stack (http://cssfontstack.
com/) makes it easy to select a font by seeing how it looks first and then click-
ing a single button to copy the required code to the clipboard. For example,
when you click on Arial at that site, what you actually get is font-family:
Arial, “Helvetica Neue”, Helvetica, sans-serif;. You might also
want to look at sites such as WebDesignDev (www.webdesigndev.com/web-
development/16-gorgeous-web-safe-fonts-to-use-with-css) and
Vision {Widget} (http://visionwidget.com/web-safe-fonts.html).

Using .WOFF fonts
The CSS3 standard includes a new method for defining fonts using the
@font-face style. The new method has a number of advantages, including
the ability to use specific terms to define the font you want to use. In addi-
tion, this standard obviates the need to use Web safe fonts by considering
every font to be Web safe. However, the browser must actually support the
@font-face style — and many don’t. An additional departure from stan-
dard CSS support is that you must provide certain properties for this style
to work — even in browsers that support it. The following list describes the
required and optional properties and the values you provide for them:

 ✓ font-family (required): Specifies the name of the font as provided
by the source file (described with the src property). The font name is
always specific when you’re working with CSS3 techniques.

 ✓ src (required): Specifies the source of a font to download. Adding this
property means that you aren’t quite as limited on the fonts you can
use because when a browser that supports this property sees that the
font isn’t available on the user’s machine, it downloads the font from the
source you specify. The problem, of course, is figuring out which brows-
ers support what file formats. The following list describes the common
file formats and which browsers support them.

	 •	.WOFF (Web Open Font Format): This is the preferred file format
for browser-based applications because it enjoys broad support
amongst browsers and across platforms. Of the most popular
browsers, Internet Explorer 9+, Firefox, Chrome, Safari, and Opera
all support .WOFF files.

http://cssfontstack.com/
http://cssfontstack.com/
http://www.webdesigndev.com/web-development/16-gorgeous-web-safe-fonts-to-use-with-css
http://www.webdesigndev.com/web-development/16-gorgeous-web-safe-fonts-to-use-with-css
http://visionwidget.com/web-safe-fonts.html

50 Part I: Getting Started with CSS3

	 •	.TTF (TrueType Font): This is the preferred file format when
you target Mac and Windows systems because these systems are
apt to contain a large number of these files already. The Internet
Explorer, Firefox, Chrome, Safari, and Opera browsers all support
these font types. Some Linux systems do have a .TTF counterpart
called FreeType that may work with .TTF files, but support is
spotty at best (see www.freetype.org/freetype2/ for details).

	 •	.OTF (OpenType Font): This is the successor to the .TTF stan-
dard. A problem with this file format is that it’s newer and less
supported than .TTF files. Generally, you find this file format only
on Windows systems, despite the fact that it’s marketed as cross-
platform. Newer versions of the Internet Explorer, Firefox, Chrome,
Safari, and Opera browsers all support these font types.

	 •	.SVG (Scalable Vector Graphics): Most people associate these
file types with graphics and animation. It’s also possible to create
fonts using this technology. However, only the Chrome, Safari, and
Opera browsers support these fonts.

	 •	.EOT (Embedded OpenType): In the interest of speed, Microsoft
has created a compact version of the .OTF specification. However,
only Internet Explorer 9+ supports this file type. It’s really not a
good option unless you’re working exclusively with a newer ver-
sion of Windows where it’s guaranteed that the user has updated
the operating system and browser regularly.

 ✓ font-stretch (optional): Specifies whether the font should be modi-
fied in any way to address specific special effects and host platform
needs. The default setting is to present the font as it normally appears.
However, you can also rely on these keywords to stretch the font in
specific ways: normal, condensed, ultra-condensed, extra-
condensed, semi-condensed, expanded, semi-expanded, extra-
expanded, and ultra-expanded.

 ✓ font-style (optional): Determines the style of font that the browser
creates. The browser must support the style and the font must supply the
style in order for this property to take effect. The font-style keywords
are normal, italic, oblique (normally a stronger italic), and inherit.

 ✓ font-weight (optional): Specifies the darkness of the font. However,
you have fewer options in this case than when working with standard
font definitions (see the “Using Fonts” section of the chapter). Your
choices in this case are normal, bold, 100, 200, 300, 400, 500, 600,
700, 800, and 900.

 ✓ unicode-range (optional): Defines the range of characters that the
font supports. The default setting is “U+0-10FFFF”, which supports
1,114,111 different character combinations.

http://www.freetype.org/freetype2/

51 Chapter 3: Working with Fonts and Colors

 The new CSS3 method of supporting fonts generally works well with newer
browsers on desktop, laptop, and tablet platforms. If your users also want to
access the page using smartphones, you’ll start to find that support is lacking —
and that the page may appear in a plain font that won’t serve your needs.
Considerable testing for this problem is required when you’re working with
smartphones. A public site that has visitors using televisions and other personal
electronics probably won’t have much success using this new technique. In this
case, use the older approach that uses Web safe fonts (described in the “Using
standard Web safe functionality” section of this chapter).

Producing Text Effects
Text effects make text look dressy — give it emphasis and convey unspoken
messages to the viewer. You’ve already seen a few text effects, such as bold
and italics. Even the selection of a font-family is a kind of effect. However,
you can do more to add effects to the fonts you use. The first approach is to
decorate the text to convey additional meaning — and this approach works
everywhere. The second approach is to actually add special effects, but this
approach only works with systems that fully support CSS3. The following sec-
tions discuss both approaches.

Using the safe text decorations
The only safe text effect is the use of the text-decoration property to
define the addition of a characteristic to the font. This property works every-
where, so you don’t need to worry whether someone viewing your page on
a television or using a smartphone will get your message. The following list
describes the sorts of text decoration you can perform.

 ✓ none: Removes any text decoration that might already be in place.

 ✓ underline: Places a line under the text.

 ✓ overline: Places a line over the top of the text.

 ✓ line-through: Places a line through the text (often used to mark
 deletions).

 ✓ blink: Causes the text to blink. This particular feature is unsafe. People
who have certain physical issues, such as photosensitive epilepsy
(see www.epilepsysociety.org.uk/aboutepilepsy/what
isepilepsy/triggers/photosensitiveepilepsy), could have a
seizure just from viewing your page. Mind you, this effect isn’t limited
to those who have photosensitive epilepsy; it’s been documented for

http://www.epilepsysociety.org.uk/aboutepilepsy/whatisepilepsy/triggers/photosensitiveepilepsy
http://www.epilepsysociety.org.uk/aboutepilepsy/whatisepilepsy/triggers/photosensitiveepilepsy

52 Part I: Getting Started with CSS3

other people as well (read www.ncbi.nlm.nih.gov/pmc/articles/
PMC1028775/ as an example). In fact, the only reason this book docu-
ments this particular feature is to help you avoid it. Blinking text isn’t
just annoying; it can have significant nasty side effects.

 ✓ inherit: Uses whatever decoration is employed with the parent element.

 It isn’t possible to combine text decoration effects. For example, if you try to
combine an underline with an overline, you won’t see either effect onscreen
because the browser will be confused. In addition, text decoration effects
won’t appear in places where there’s no text.

Adding the CSS3 text effects
Just being able to decorate the text doesn’t offer much in the way of pizzazz;
most people want a lot more, especially in this age of self-published works of
all sorts. A CSS3 site can make use of a significant number of new effects, in
addition to simple text decorations. Of course, the tradeoff is that you must
know that the viewer has the required support — which means using newer
browsers on a limited number of platforms. A few text effects are part of the
specification, but so far remain unsupported by any browser — these entries
are marked as such — and you shouldn’t use them until the browser vendors
catch up. The following list describes the special text effects that you can
create using CSS3.

 ✓ hanging-punctuation (currently unsupported): Specifies whether
punctuation can appear outside the start or end of a line of text when
the text would otherwise need to be wrapped. Acceptable values are

	 •	none: The punctuation can’t appear outside the box. For more on
how page content appears within the box, see Chapter 2.

	 •	first: Punctuation can appear outside the box on the first line.

	 •	last: Punctuation can appear on the outside of the box on the last
line.

	 •	allow-end: Punctuation can appear outside the box on any line if
the punctuation wouldn’t ordinarily fit after the text is justified.

	 •	force-end: Punctuation can appear outside the box on any line. If
the line is justified, the browser will force the punctuation to land
outside the box.

 ✓ punctuation-trim (currently unsupported): Specifies whether punc-
tuation is trimmed when it appears outside the start of the end of a line
of text when the text would otherwise need to be wrapped. Acceptable
values are

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1028775/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1028775/

53 Chapter 3: Working with Fonts and Colors

	 •	none: The punctuation isn’t trimmed.

	 •	first: Trim any hanging punctuation on the first line.

	 •	last: Trim any hanging punctuation on the last line.

	 •	allow-end: Trim the punctuation on any line where it wouldn’t fit
after the line is justified.

	 •	adjacent: Trim some types of punctuation that appears at the
beginning, middle, or end of a line when the punctuation appears
next to a full-width character.

 ✓ text-align-last (currently unsupported): Describes how to align
the last line of text when the paragraph relies on a justified margin.
Acceptable values are:

	 •	auto: Relies on the value of the text-align property.

	 •	start: Aligned to the start of the line, which depends on the direc-
tion the text is laid out (left-to-right or right-to-left).

	 •	end: Aligned to the end of the line, which depends on the direction
the text is laid out (left-to-right or right-to-left).

	 •	left: Always aligned to the left side of the box (regardless of text
direction).

	 •	right: Always aligned to the right side of the box (regardless of
text direction).

	 •	center: Contents are centered within the text box.

	 •	justify: Context are justified within the text box.

 ✓ text-emphasis (currently unsupported): Sets the text-emphasis-
style and text-emphasis-color properties in a single call.

 ✓ text-justify (Internet Explorer only): Determines the alignment and
spacing of text that has been marked as justified (where the right and left
side of the text are even, rather than jagged). Acceptable values are

	 •	auto: The browser determines the method in which text is justified.

	 •	inter-word: Word spacing is used to justify the text.

	 •	inter-ideograph: Symbol spacing is used to justify the text
(spaces between words aren’t counted). This setting is normally
used with the Double-Byte Character Sets (DBCS) used with lan-
guages that rely on characters other than those used by Roman-
alphabet languages such as English.

	 •	inter-cluster: Only text that naturally lacks whitespace (such
as material written in an Asian language) is justified.

54 Part I: Getting Started with CSS3

	 •	distribute: Justification follows the model used by newspapers,
except that the last line isn’t justified when working with East
Asian languages such as Thai.

	 •	kashida: Justification is accomplished by elongating individual
characters.

	 •	trim: Justification is accomplished by shortening the amount of
whitespace between letters.

	 •	none: Disable any form of justification.

 ✓ text-outline (currently unsupported): Creates an outline that follows
the contours of the target character. The property supports three values:

	 •	thickness: The width of the outline.

	 •	blur: The radius of the outline.

	 •	color: The color used to create the outline.

 ✓ text-overflow: Defines the action that will take place when the text
overflows the box used to contain it. Acceptable values are

	 •	clip: Removes any extra text.

	 •	ellipsis: Displays an ellipsis to show there’s additional text.

	 •	String: Displays the specified string value to show there’s addi-
tional text.

 ✓ text-shadow: Displays a shadow of the target characters at the same
width as the target character. The positioning, strength, and color of the
shadow are determined by the following properties:

	 •	h-shadow: Determines the horizontal positioning of the shadow.

	 •	v-shadow: Determines the vertical positioning of the shadow.

	 •	blur: Specifies the clarity of the shadow text. Using a value of 0
means that the shadow text has the same clarity as the original text.

	 •	color: Defines the color used to create the outline.

 ✓ text-wrap (currently unsupported): Determines how text is wrapped
within the containing box. Acceptable values are

	 •	none: The text overflows the containing box when it’s too long.

	 •	normal: Text is broken between words or other white space.

	 •	unrestricted: Text is broken between any two characters.

	 •	suppress: The browser can only break lines if there are no other
valid places to break a line within the paragraph. The specification
is unclear as to where the break will take place, but the assumption
is that it will occur between words or in some other white space.

55 Chapter 3: Working with Fonts and Colors

 ✓ word-break (no Opera support): Determines how text is wrapped
within a containing box when working with a non-CJK (Chinese-
Japanese-Korean) language. Acceptable values are

	 •	normal: Break the text using the browser’s standard rules, which
normally means between words or other white space.

	 •	break-all: Break the text between any two characters.

	 •	hyphenate: Break the text at natural hyphenation points, between
words, or in some other white space.

 ✓ word-wrap: Determines how text is broken and then wrapped to the
next line in a containing box when working with a non-CJK language.
Acceptable values are

	 •	normal: Break words using the browser’s standard rules, which
normally means at natural hyphenation points.

	 •	break-word: Allow breaking of words that normally don’t allow
breaking.

Adding Colors
Color is an essential component of most pages because color conveys emo-
tion. Look at a red element and you might instantly think about danger. A
yellow element might seem light and friendly. Green could signal peaceful
conditions or nature. In short, color helps get your message across in ways
that other elements on the page might not.

 It’s essential to choose colors carefully. For one thing, not everyone has the
same level of natural color perception; colors that are too close to each other
can prove difficult to see. Another issue is that about 8 percent of the male
population and 1⁄2 percent of the female population is colorblind, which means
that they can’t easily see certain colors. For them, the colors appear shifted
to other colors — red and green, for example, could look like brown. Always
check your color combinations by using an application designed for the pur-
pose or a site such as VisCheck (www.vischeck.com/vischeck/vischeck
Image.php). The article telling how various forms of color blindness work at
www.vischeck.com/examples/ is especially helpful.

Understanding how CSS colors work
CSS provides three methods you can use to define the color of any object:
color value, color name, or hexadecimal value. (Chapters 1 and 2 introduce
these techniques.) It doesn’t matter to CSS — or to the browser — which

http://www.vischeck.com/vischeck/vischeckImage.php
http://www.vischeck.com/vischeck/vischeckImage.php
http://www.vischeck.com/examples/

56 Part I: Getting Started with CSS3

form of color definition you use; choose the method that works best for you.
It’s important that you do not change techniques in a single style sheet; use
the same color definition method consistently.

 Most devices today can display millions of colors. In fact, the devices we use
can display more colors than most of us can actually see. However, some
devices are still limited in their ability to display color. When you’re target-
ing a device with limited color capability, you need to rely on the Web safe
color palette shown at www.techbomb.com/websafe/. Using this color
palette makes CSS less likely to do problematic things like dither the colors so
the viewer sees an unfortunate mix that may not look anything like the color
choice you intended.

Using the Web safe color palette ensures that the viewer will see the color
you intended — at least for the most part. There are some situations where
a device supports some number of levels of gray and the viewer isn’t going
to see color at all. It’s important to avoid using color alone to refer to objects
onscreen; you can’t be certain that the viewer can see the color. Instead,
label objects and refer to the object’s name as needed.

Using color values
The examples in the book have focused on Red Green Blue (RGB) color
values. However, CSS actually supports a number of color value systems. The
only requirement is that the browser also supports the color system. Here
are the color systems that most browsers support:

 ✓ Red Green Blue (RGB): Use the rgb() method when describing this
color value that uses three numbers between 0 and 255 to specify the
amount of red, green, and blue to use.

 ✓ Red Green Blue Alpha channel (RGBA): Use the rgba() method when
describing this color value. The first three numbers are simply red,
green, and blue. The fourth number, alpha channel (relative transpar-
ency), is a value between 0.0 (fully transparent) and 1.0 (fully opaque).
You must have IE9+, Firefox 3+, Chrome, Safari, or Opera 10+ to use this
color value scheme.

 ✓ Hue Saturation Lightness (HSL): Use the hsl() method when describ-
ing this color value that consists of three numbers. Hue is a value
between 0 and 360 that describes the position of a color on the color
wheel: red is 0 (or 360), green is 120, and blue is 240. Saturation (the
color intensity or darkness) is a percentage value between 0 (gray scale)
and 100 (full color). Lightness is a percentage between 0 (black) and
100 (white).

http://www.techbomb.com/websafe/

57 Chapter 3: Working with Fonts and Colors

 ✓ Hue Saturation Lightness Alpha channel (HSLA): Use the hsla() method
when describing this color value that uses the same first three numbers
as an HSL value. The fourth number, alpha channel, is a value between 0.0
(fully transparent) and 1.0 (fully opaque). You must have IE9+, Firefox 3+,
Chrome, Safari, or Opera 10+ to use this color value scheme.

 Trying to understand how color values interact can be hard. The color mixer at
www.w3schools.com/tags/ref_colormixer.asp helps you see how vari-
ous color choices interact, making it easier to choose good color combinations.

Using color names
For many people, the easiest way to manage colors is to specify a color name.
There are 17 standard color names that will work on any browser, even when
that browser displays only shades of gray: aqua, black, blue, fuchsia,
gray, green, lime, maroon, navy, olive, orange, purple, red, silver,
teal, white, and yellow. Use these color names when you must ensure the
user’s ability to see the difference between colors under any circumstance.

There are 130 additional color names that will work on any systems that can
display them. The most accurate listing of all 147 color names (17 standard
and 130 additional) appears at www.w3schools.com/cssref/css_color
names.asp. This site also makes it possible to display various shades of the
colors so you can mix and match color choices. Most importantly, you obtain
access to the color’s precise hexadecimal value so that you can tweak your
color choices as needed.

 You can find these colors displayed in a number of places online, but one
of the more interesting places to view them is at www.crockford.com/
wrrrld/color.html. Choosing a color displays that color outside the table.
Selecting another color will add the color in the inner tier, while the first
choice moves out one position. This site makes it relatively easy to compare
various colors to see how they look with each other.

Using hexadecimal values for color
You define a hexadecimal value for a color by preceding the value with a hash
sign (#), followed by three hexadecimal color values (red, green, and blue). For
example, #000000 is black, #ff0000 is red, #00ff00 is green, and #0000ff
is blue. Many developers see this method as the most accurate and concise for
creating colors. However, the results of using hexadecimal color values aren’t
really any different from those of the other techniques described in this section.
(If you really like using hexadecimal values and need a good color picker for a
Windows system, try the Color Cop color picker at http://colorcop.net/.)

http://www.w3schools.com/tags/ref_colormixer.asp
http://www.w3schools.com/cssref/css_colornames.asp
http://www.w3schools.com/cssref/css_colornames.asp
http://www.crockford.com/wrrrld/color.html
http://www.crockford.com/wrrrld/color.html
http://colorcop.net/

58 Part I: Getting Started with CSS3

Understanding Aural Style Sheets
Aural style sheets make it possible for users who rely on screen readers and
other voice-driven technology to make better use of your site. You won’t
actually hear anything when your site is using an aural style sheet unless you
have a screen reader enabled. In fact, without a screen reader, the aural style
sheet won’t seem to be in place at all. The aural style sheet offers cues to the
screen reader that specify how to read the text on your site — and also pro-
vides hints about how to convert information to textual form.

 Many operating systems today include a relatively basic screen reader as
part of the product; you can enable this screen reader to test your aural style
sheets. For example, Windows offers a screen reader as part of its accessibil-
ity features — and you’ll find that the Mac has VoiceOver installed for the
same purpose. However, most people who actually rely on screen readers use
something a bit more robust, such as Jaws (www.freedomscientific.com/
products/fs/jaws-product-page.asp). You can see a list of screen read-
ers at http://en.wikipedia.org/wiki/List_of_screen_readers.

Creating an aural style sheet is precisely the same as creating any other CSS
style sheet. You define aural styles for various objects by using exactly the
same selectors as you use for creating visual effects. Aural style sheets do
have their own set of properties, however, as described in the following list:

 ✓ azimuth: Defines the horizontal source of the sound. The acceptable
values are:

	 •	angle: A value between 0 and 360 that determines the actual angle.

	 •	Keyword: left-side, far-left, left, center-left, center,
center-right, right, far-right, right-side, behind,
leftwards, or rightwards.

 ✓ cue-after: Specifies a sound to make after the content is read. You can
use a value of none or provide a specific URL for a sound source.

 ✓ cue-before: Specifies a sound to make before the content is read. You
can use a value of none or provide a specific URL for a sound source.

 ✓ elevation: Defines the vertical source of the sound. The acceptable
values are

	 •	angle: A value between 0 and 360 that determines the actual angle.

	 •	Keyword: below, level, above, higher, or lower.

 ✓ pause-after: Specifies how long to pause after reading the content.
You can provide a numeric value in seconds or a percentage based on
the length of the content.

http://www.freedomscientific.com/products/fs/jaws-product-page.asp
http://www.freedomscientific.com/products/fs/jaws-product-page.asp
http://en.wikipedia.org/wiki/List_of_screen_readers

59 Chapter 3: Working with Fonts and Colors

 ✓ pause-before: Specifies how long to pause before reading the content.
You can provide a numeric value in seconds or a percentage based on
the length of the content.

 This setting is often used to provide cues about punctuation. For exam-
ple, you’d provide a longer pause for an em dash or semicolon than you
would for a space.

 ✓ pitch: Determines the frequency of the speaking voice. The acceptable
values are

	 •	frequency: The frequency of the speaking voice in hertz.

	 •	Keyword: x-low, low, medium, high, or x-high.

 ✓ pitch-range: Determines the amount of modulation in the spoken
voice where a value of 0 is monotone. Higher values produce more ani-
mation in the voice.

 ✓ play-during: Specifies a sound to make while the content is read (pos-
sibly background music or some other accompaniment. The acceptable
values are

	 •	none: Suppresses sound while reading the content.

	 •	url: The location of the sound source to play.

	 •	Keyword: auto, mix, or repeat.

 ✓ richness: Determines the depth of the spoken voice where a value of 0
is a thin voice and higher values make the voice deeper, more resonant.

 ✓ speak: Specifies how to speak the content. The acceptable values are

	 •	normal: The content is spoken as words.

	 •	none: The content isn’t spoken at all.

	 •	spell-out: The individual characters of the content are spoken,
such as when handling abbreviations (where individual letters are
spoken). For example, you’d use this setting for W3C (World Wide
Web Consortium).

	 •	Acronyms	are	always	spoken	as	words,	so	you’d	use	the	normal
setting. For example, you’d use the spell-out setting for ACID
(Atomic, Consistent, Independent, and Durable).

 ✓ speak-header: Indicates whether the readers should speak the heading
for each cell as the individual cells are read. The acceptable values are:

	 •	always: The headers are read for each cell, whether or not the
heading has changed.

	 •	once: The headers are only read once for each cell.

60 Part I: Getting Started with CSS3

 ✓ speak-numeral: Determines how the reader handles numeric values.
The acceptable values are

	 •	digits: The individual numbers are read, such as one, two, three
for 123.

	 •	continuous: The number is read as a unit, such as one hundred
twenty three for 123.

 ✓ speak-punctuation: Determines how the reader handles punctuation.
The acceptable values are:

	 •	none: The reader doesn’t do anything special with punctuation.
Some higher end readers will add pauses automatically to match
the differences in punctuation, such as using a longer pause for an
em dash or semicolon.

	 •	code: The reader tells the viewer what punctuation appears in the
content. This would be especially important when reading content
such as source code, where punctuation is especially important or
takes on atypical meanings.

 ✓ speech-rate: Indicates how fast the reader should read the content.
The main reason to use this value is for emphasis or to make especially
difficult passages clearer. The acceptable values are

	 •	number: A number indicating the speed in Syllables Per Minute
(SPM). Some sources use Words Per Minute (WPM), but the rate
is more along the lines of syllables per minute, with longer words
taking longer to say.

	 •	Keyword: x-slow (80 SPM), slow (120 SPM), medium (180 SPM),
fast (300 SPM), x-fast (500 SPM), faster (add 40 SPM to cur-
rent rate), or slower (subtract 40 SPM from current rate).

 ✓ stress: Indicates how much emphasis the reader should place on cer-
tain syllables of a word — the higher the numeric value, the greater the
amount of emphasis. Most readers pay no attention to this value.

 ✓ voice-family: Defines which voice to use when reading the content. As
with fonts, the voice-family can be specific or generic. The most generic
voice-family values are male, female, and child. Specific voice-
family values require voice files that are supported by the reader.

 ✓ volume: Indicates how loud the reader should read the content. The
acceptable values are:

	 •	number: A value between 0 and 100 to indicate absolute volume.

	 •	%: A percentage between 0 and 100 to indicate a relative increase in
volume (with a maximum value of 100).

	 •	Keyword: silent (a value of 0), x-soft (a value of 0), soft
(a value of 25), medium (a value of 50), loud (a value of 75), or
x-loud (a value of 100).

Chapter 4

Working with Graphics
In This Chapter
▶ Working with the tag
▶ Displaying foreground images
▶ Displaying background images
▶ Placing graphics on the page
▶ Working with repetitive images

C
ontent comes in a number of forms, but the two most common forms
are text and graphics. CSS provides a number of methods for dealing

with both of these forms. Earlier chapters of this book focused on text. This
chapter begins your foray into graphics.

Most developers rely on premade graphics to create sites. So this chapter
focuses on the mechanics of working with graphics — the techniques used
to present them onscreen, rather than on any design or aesthetic element
of graphics. Of course, the starting point for most graphic elements is the
 tag. Even though the tag isn’t strictly a CSS element, knowing
about the tag is essential if you want to use CSS to control the presentation of
graphics.

An object can contain any number of foreground images and a single back-
ground image. (The background can actually consist of multiple images, but
these images are combined into a cohesive whole — you see a composite of the
various image elements.) The chapter also discusses techniques for positioning
graphics onscreen and using repetitive images to create special effects.

The one artistic technique I discuss in this chapter is the transformation
because it has a mechanical element to it. Transformations can subtly or
radically change the appearance of your image. For the most part, the trans-
formations change the way the image is presented onscreen — the way it’s
zoomed, rotated, positioned, or skewed. These are the sorts of transforma-
tions that the chapter will focus on — nothing of a completely radical nature.

62 Part I: Getting Started with CSS3

 The transformation features of CSS3 can work with any presentation object.
For example, you can use transformations with a <div> to modify the presen-
tation of text onscreen. It’s also possible to use transformations with the
<canvas> tag to change the appearance of drawn elements. When it comes to
transformations, thinking about the box (refer to Chapter 2) is a plus. Any ele-
ment that consumes space can be transformed in some way.

Understanding the Tag
The tag has been around for a long time — so long, in fact, that it
has picked up a bit of baggage along the way. Developers who think that
the tag supports certain attributes may be surprised to find that it
doesn’t — at least not anymore — because those attributes have been dep-
recated (removed) as new HTML versions have appeared on the scene. For
example, the align attribute isn’t available in HTML5 — it was deprecated
in HTML4 because CSS already provided good transformation alternatives to
the align attribute. Unfortunately, one casualty of deprecation, longdesc,
affects people with special needs, but few sites actually implemented this
useful feature anyway. Because you need to know the attributes used with
HTML5 in order to work with the examples in this book, the following list pro-
vides you with an updated list of attributes that you can use for reference.

 ✓ alt: Provides a textual description of the image for those who can’t see
it. A screen reader will describe the image to the person. It’s important to
keep the description short and focused. Even though a picture is worth a
thousand words, the viewer likely won’t have time to hear them all.

 ✓ crossorigin: Allows usage of images located on another server as
specified within an tag enclosed in a <canvas> tag. The browser
will act as if the image is served by the local server, rather than the for-
eign server. Because the image is on another server, the src attribute is
normally modified to include additional server details. To use this fea-
ture, you must also provide an origin HTTP header that describes the
location of the server. You can also use JavaScript to access this infor-
mation (see http://saltybeagle.com/2009/09/cross-origin-
resource-sharing-demo/ or https://developer.mozilla.org/
en-US/docs/HTML/CORS_Enabled_Image for an example of perform-
ing this task). This attribute can have the following values:

	 •	anonymous: The foreign server doesn’t require any special login to
use the image.

	 •	use-credentials: The foreign server requires a username and
password to gain access to the image. The credentials are supplied
using a variety of means, including a cookie, x.509 certificate, or
HTTP basic authentication.

http://saltybeagle.com/2009/09/cross-origin-resource-sharing-demo/
http://saltybeagle.com/2009/09/cross-origin-resource-sharing-demo/
https://developer.mozilla.org/en-US/docs/HTML/CORS_Enabled_Image
https://developer.mozilla.org/en-US/docs/HTML/CORS_Enabled_Image

63 Chapter 4: Working with Graphics

 ✓ height: Specifies the height of an image using any supported unit of
measure (see Chapter 1 for details).

 ✓ ismap: Specifies that the image is a server-side map when included
(there’s no value associated with this attribute). Mapped images can be
used to perform all sorts of tasks, such as acting as a site map (redirect-
ing viewers to other places on the site).

 ✓ src: Defines the source of the image. Normally, this attribute contains
a simple URL. When you’re working with the crossorigin attribute,
however, src takes on new meaning (see the crossorigin attribute
entry for details).

 ✓ usemap: Specifies that the image is a client-side map. You provide the
name of the <map> tag to use with the image.

 ✓ width: Specifies the width of an image using any supported unit of mea-
sure (see Chapter 1 for details).

Working with Foreground Images
You may have noticed that there are some interesting attributes missing from
the tag in the previous section. For example, it’s no longer possible to
define a border around your image using the border attribute (see http://
www.w3schools.com/tags/tag_img.asp for a discussion of other depre-
cated attributes). This section of the chapter focuses on the sorts of decora-
tion that you can perform on an image that doesn’t include transforming the
image in any way (Chapter 5 discusses transforming graphics).

Before you can do anything, you need a basic page to work with. The follow-
ing procedure gets you started.

 1. Create an image file of any sort that you want to see while working on
the example. Give this image file a name of CuteCat.JPG.

 The downloadable source code includes a sample file containing a 400 ×
378 pixel image that you can use. The filename and extension are impor-
tant because you need a specific name when writing the code.

 2. Create a new HTML5 file with your text editor.

 Your editor may not support HTML5 files. Any text file will do.

 3. Type the following code for the HTML page.
<!DOCTYPE html>

<html>

http://www.w3schools.com/tags/tag_img.asp
http://www.w3schools.com/tags/tag_img.asp

64 Part I: Getting Started with CSS3

<head>
 <title>Simple Graphics Example</title>
</head>

<body>
 <h1>Interact with an Image </h1>
 <div id=”ImageContainer”>
 <img alt=”A Picture of a Cute Cat.”
 title=”A Picture of a Cute Cat.”
 name=”CuteCat”
 id=”CuteCat”
 src=”CuteCat.JPG” />
 </div>
</body>
</html>

 This example displays a heading and an associated picture. The page
looks like the one shown in Figure 4-1 when you use the image supplied
with the downloadable source code.

Figure 4-1:
Create a

page that
contains an
image that
you’ll work
with in the

sections
that follow.

 4. Save the file as SimpleGraphics.HTML.

 The sample will appear in other chapters, so naming is important.

Now that you have a page to work with, it’s time to try interacting with the
image. The following sections discuss some common tasks you perform.

65 Chapter 4: Working with Graphics

Creating a border
One of the more common changes you can make to an image is to add a
border. This sets off the image from the other content on the page. Of course,
CSS offers a broad range of border types. The trick is to get the border to dis-
play around the image in such a way that you can perform other tasks with
that border later. That’s where the <div> in the HTML code comes into play.
It provides a container that can hold all sorts of things (such as the <div>
used as a container for the tag shown in the previous example) — and
you can interact with that container in various ways. The following proce-
dure helps you add a border around the image.

 1. Create a new CSS file with your text editor.

 Your editor may not support CSS files. Any text file will do.

 2. Type the following CSS style information.
#ImageContainer
{
 border-style: groove;
 border-width: thick;
 border-color: gray;
 padding: 5px;
 float: left;
}

 The majority of this style information is about the border. Adding pad-
ding to the border makes it stick out more like a frame. The float
value keeps the <div> around the image, rather than having it follow
the right side of the browser, when a user resizes the browser window.

 If you want the image on the right side of the page, rather than the left,
substitute float: right;. The entire container, image included, will
reside on the right side of the page, rather than the left. As the user
changes the browser window, the image will remain the same size, but it
will move with the right side of the browser window.

 3. Save the file as SimpleGraphics.CSS.

 The sample will appear in other chapters, so naming is important.

 4. Add the following code to the <head> area of the HTML file.
<link rel=”stylesheet” href=”SimpleGraphics.CSS” />

 This code creates the link between the HTML file and the CSS file.

 5. Save the HTML file and reload the page.

 You see the border shown in Figure 4-2.

66 Part I: Getting Started with CSS3

Figure 4-2:
Create a

page that
contains an
image with

a border
that you’ll

work with in
the sections

that follow.

Centering the image
One of the most commonly asked questions is how to center an image on the
page. Unfortunately, most of the answers you receive discuss just the
tag, without showing how to center a container. Using a container is impor-
tant because you may want to add other items to that image later. The follow-
ing procedure tells how to center the image.

 1. Add the following style to the SimpleGraphics.CSS file.
#ImageContainer img
{
 height: 400px;
 width: 400px;
 margin: 0px;
}

 The purpose of this style is to create an image of a specific size. There
are a number of ways to deal with images of various sizes. This is one of
them. It works well when most of your images are about the same size.

 In some cases, such as when you’re centering images of widely different
sizes, you must resort to using JavaScript. In order to place an image in
the center of the page, you must know the size of the image. Many third-
party libraries make it easy for you to center images onscreen — the
CSS-only technique does have limits.

67 Chapter 4: Working with Graphics

 2. Add the following code to the #ImageContainer style.
position: absolute;
height: 400px;
width: 400px;
left: 50%;
margin-left: -205px;

 This code sets the <div> position as absolute and gives it the same
size as the image, so that the <div> and tags are linked. It then
places the left side of the <div> 50% across the page, so that no matter
how the user changes the browser window, the left side of the <div>
will remain center. Of course, you don’t want to center the left side of
the <div> — you want to center the image. The margin-left setting
moves the left margin 205 pixels to the left (half the overall size of the
image, plus the padding), so that the center of the image is now in the
center of the page.

 3. Save the CSS file and reload the page.

 You see the image and its frame centered on the page as shown in
Figure 4-3.

Figure 4-3:
The image

is now
centered on

the page.

68 Part I: Getting Started with CSS3

Adding a caption
You might be wondering what sort of content could go with an tag.
You could add buttons, say, to move from one image to another in a gallery.
However, it’s more common to add a caption so that people looking at the
site have some idea of what the image is all about. The following procedure
describes how to add a caption to the image.

 1. Add the following tag (in bold) to the <div> found in the
SimpleGraphics.HTML file and save the file.
<div id=”ImageContainer”>
 <img alt=”A Picture of a Cute Cat.”
 title=”A Picture of a Cute Cat.”
 name=”CuteCat”
 id=”CuteCat”
 src=”CuteCat.JPG” />
 <p>A picture of a cute cat!</p>
</div>

 2. Add the following style to the SimpleGraphics.CSS file.
#ImageContainer p
{
 text-align: center;
 height: 20px;
 width: 400px;
 margin: 0px;
}

 It’s possible to add any amount of text formatting desired. However, you
must provide a text element of a specific size or else the border might
appear in a place other than where you’d like it to appear.

 3. Modify the #ImageContainer height property to accommodate the
new text element. The property should look like this:
height: 420px;

 Any time you add new features to the container, you must resize the
container to hold them. The original container size was 400 pixels.
You’ve added 20 pixels worth of text, so the new size is 420px.

 4. Save the CSS file and reload the page.

 The image now includes a caption as shown in Figure 4-4.

69 Chapter 4: Working with Graphics

Figure 4-4:
Adding a

caption
makes the

intent of
the image

clearer.

Adding Background Images
Background images add flavor to a site. People may not think users pay much
attention to them, but the right background image can have a major impact
on your site. Working with background images is a little different from fore-
ground images. For one thing, there’s normally only one background image
for any given object on the site and the background image is usually limited
to the main object, which is the body of the page.

 The background should be pleasing, but should not detract from the content
in the foreground. A good background image adds flavor to a site — some
background images are quite targeted, but most merely suggest the overall
theme of the site. In fact, some backgrounds are simply patterns and have
no real meaning by themselves. The following sections discuss various tech-
niques you can use to interact with background images.

Using CSS alone
There are a number of ways to create a background for your page using CSS
alone. The easiest method is to simply define a background color. Of course,
having just a single background color would be boring. However, you see

70 Part I: Getting Started with CSS3

sites that use a simple background color as a palette for adding content —
and it does work.

Another technique is to provide a frame for the entire page. You create a border
around the <body> tag. A combination of multiple layers and special effects can
create amazing border effects for your page. Using borders with other objects
increases the number of things you can do with regard to framing effects.

 The following sections describe how to create interesting backgrounds using
CSS alone. Some of these examples don’t work in Internet Explorer 9, but they
will work with all newer versions of Chrome, Firefox, and Internet Explorer 10.
Incompatibility is one of the issues you face when using techniques like these,
but the payoff is also good, so it’s important to weigh the costs against the
benefits.

Working with linear gradients
Most people will want something a little more exciting than a background color
or a frame for their sites. For example, you can rely on a linear-gradient()
function to perform the task. Using a linear-gradient(), you can create
lines (horizontal, vertical, and angled), diamonds, and squares. When you
combine the linear-gradient() with other gradient methods (such as
the radial-gradient()) you can create all sorts of patterns (as described
later in this section). For now, create a simple linear-gradient() using
the following procedure to get a feel for how they work.

 1. Create a new HTML5 file with your text editor.

 2. Type the following code for the HTML page.
<!DOCTYPE html>

<html>
<head>
 <title>A Non-image Background</title>
 <link rel=”stylesheet”
 href=”PatternedBackground.CSS” />
</head>

<body>
 <h1>A Simple Heading</h1>
 <p>Simple text to go with the heading.</p>
</body>
</html>

 The main purpose of this example is to focus on backgrounds, so the
content is quite simple. All you see is a simple header and paragraph.

 3. Save the file as PatternedBackground.HTML.

 The sample will appear in other chapters, so naming is important.

71 Chapter 4: Working with Graphics

 4. Create a new CSS file with your text editor.

 5. Type the following CSS style information.
body
{
 background: linear-gradient(
 45deg, Crimson, Transparent, RoyalBlue);
 background-color: #00ff00;
 background-size: 100px 100px;
}

 The focal point of this pattern is the background property, which relies
on the linear-gradient() function. You can use this function in a
number of ways; the example shows one simple way. It begins by tell-
ing the linear-gradient() function to draw the line at 45 degrees.
There are three colors in the gradient: Crimson, the background color
(Transparent shows the background), and RoyalBlue. The gradient
will begin with Crimson, transition to the background color, and end
with RoyalBlue, all in equal proportions.

 The background-color property defines a value of green in this case.
The background-size property defines the size of the gradient pat-
tern. It would be easy to obtain a number of different effects using the
same linear-gradient() and varying these last two properties.

 6. Save the file as PatternedBackground.CSS.

 The sample will appear in other chapters, so naming is important.

 7. Save the HTML file and reload the page.

 You see the background shown in Figure 4-5, which is actually quite
dramatic. The background automatically repeats no matter how the user
resizes the window.

Figure 4-5:
Using linear-

gradients
helps you

create
interesting

backgrounds.

 It’s possible to combine graphics and gradients to create even more unusual
effects without resorting to programming. Simply replace one of the color
entries with the URL for a downloadable graphic using the url() function.
The resulting gradient will combine color, graphics, transparency, and transi-
tion effects to create an unusual background for you.

72 Part I: Getting Started with CSS3

Experimenting with linear gradients
You could work for quite some time trying to figure out which color com-
binations look best and how best to present your gradient to the world.
In addition, you can use more than just two or three colors, so gradients
can become complex color undertakings. Gradients can also have special
settings, such as controlling the amount of each color to use. Fortunately,
there’s a fast way to discover the settings to use: the CSS3 Gradient
Generator (http://gradients.glrzad.com/) shown in Figure 4-6.

To use the CSS3 Gradient Generator, begin by setting the colors you want
to use under Color Swatches. The plus sign (+) next to this heading lets you
add more colors. Likewise, the red X button on the slider lets you remove
colors, which isn’t very obvious. The Gradient Sample shows a color swatch
of the selections you’ve made. The Gradient Direction settings let you create
angled and vertical variations of your color swatch. You can also set the kind
of color settings to use with the Color Format settings. The result of your
manipulations appear in The Code, which you can copy to your editor and
use as part of your application.

 The CSS3 Gradient Generator is simply a tool that helps you play with colors
and angles. It’s not always going to produce the final version of your gradient.
When you finish working through your selections, you still need to tinker with
the settings to ensure that the display is optimal for the user.

Figure 4-6:
The CSS3
Gradient

Generator
helps you

experi-
ment with
 gradients.

http://gradients.glrzad.com/

73 Chapter 4: Working with Graphics

Obtaining CSS patterns online
Creating simple effects using gradients is easy. However, creating something
truly spectacular takes time and artistic ability. Most developers really don’t
have the time or skills required to create something dazzling using CSS3
alone (or CSS3 combined with graphics) — that’s where designers come into
play. Many designers allow you to use their designs. You can find a number
of sites with simple examples, such as those found at http://lea.verou.
me/demos/css3-patterns.html. As you can see in Figure 4-7, these pat-
terns all rely on the CSS linear-gradient function.

In order to use these designs, you need to right-click your browser and
choose the option for viewing the source code. The designs are all docu-
mented in the <style> tag that appears at the top of the page. All you need
to do is copy the desired design from the page source to your application.

Figure 4-7:
Many sites
will provide

you with
free CSS3

designs you
can use

as back-
grounds.

http://lea.verou.me/demos/css3-patterns.html
http://lea.verou.me/demos/css3-patterns.html

74 Part I: Getting Started with CSS3

The site at http://lea.verou.me/css3patterns provides a much larger
group of significantly more complex designs, as shown at Figure 4-8. These
patterns are all labeled so you know what the designers have named them.
Click a pattern and you go to a page with that pattern as a background. In
addition, the code for that pattern appears in a window with the pattern. You
can simply copy it from this window to your application. Believe it or not, all
of these gorgeous designs use gradients alone — none of them rely on down-
loaded art to achieve their goals.

 The advantages of using CSS3 patterns are that you get an interesting back-
ground for your site quickly and easily. In addition, patterns require few
resources and they’re extremely fast to display. However, it’s also important
to realize that only people who own CSS3-capable browsers will be able to
use this solution — everyone else will see a blank background, which is why
you always provide a complementary color for the background as a minimum.
Although CSS3 patterns are long on pizzazz, they’re also quite short on com-
patibility, so you should consider using them only in situations where you
know the user will actually see them onscreen.

Figure 4-8:
A few sites

provide you
with truly
amazing

backgrounds
you can

use for your
page.

http://lea.verou.me/css3patterns

75 Chapter 4: Working with Graphics

Using a single image
The simplest, most compatible way to create a background that has at least
a little pizzazz is to use a single image. The right image says a lot about your
site and provides continuity between pages. Because this approach is so
standard, you see it used on a lot of sites. All you really need to know to use
it is the background-image property, as shown in the following procedure.

 1. Create a new HTML5 file with your text editor.

 2. Type the following code for the HTML page.
<!DOCTYPE html>

<html>
<head>
 <title>A Single Image Background</title>
 <link rel=”stylesheet”
 href=”SingleImage.CSS” />
</head>

<body>
 <h1>The Cute Cat</h1>
 <p>A page that has a cute cat as a background.</p>
</body>
</html>

 3. Save the file as SingleImage.HTML.

 The sample will appear in other locations, so naming is important.

Getting the gradient details
For the most part, you really don’t need to know
the gritty details of gradients unless you want to
design complex gradient schemes of your own.
Most developers rely on simple gradient pat-
terns of the sort I describe in the “Working with
linear gradients” section, earlier in this chapter,
or they download gradient patterns that were
designed by one of many designers out there.
However, if you want to know a little more infor-
mation, you can find it on the CSS3 Files site at
www.css3files.com/gradient/.

You may still find though that you want to know
more. You can get significant information

about linear-gradients on the Mozilla site at
https://developer.mozilla.org/
docs/Web/CSS/linear-gradient. The
associated site at https://developer.
mozilla.org/docs/Web/CSS/radial-
gradient provides details about the
radial-gradients used in some of the download-
able examples in this chapter. You can find out
additional details about gradients as a whole at
https://developer.mozilla.org/
docs/Web/Guide/CSS/Using_CSS_
gradients.

http://www.css3files.com/gradient/
https://developer.mozilla.org/docs/Web/CSS/linear-gradient
https://developer.mozilla.org/docs/Web/CSS/linear-gradient
https://developer.mozilla.org/docs/Web/CSS/radial-gradient
https://developer.mozilla.org/docs/Web/CSS/radial-gradient
https://developer.mozilla.org/docs/Web/CSS/radial-gradient
https://developer.mozilla.org/docs/Web/Guide/CSS/Using_CSS_gradients
https://developer.mozilla.org/docs/Web/Guide/CSS/Using_CSS_gradients
https://developer.mozilla.org/docs/Web/Guide/CSS/Using_CSS_gradients

76 Part I: Getting Started with CSS3

 4. Create a new CSS file with your text editor.

 5. Type the following CSS style information.
body
{
 background-image: url(“CuteCat.jpg”);
 background-color: SaddleBrown;
 color: SeaGreen;
 font-size: x-large;
 text-shadow: 1px 1px Yellow;
}

 This is the simplest form of a single background image. The back-
ground-image property has a single url() function associated with
it. Just in case the user can’t display the image (or chooses not to), you
need to set an appropriate background color. Depending on the image
(the example uses one that’s particularly hard to work with when it
comes to text), you may need to set the text color and size to make the
content easy to read.

 This is one place where using the text-shadow property may make the
difference between user joy and user complaints. Use contrasting colors
for the font and shadow so that the two work together to make the con-
tent viewable against an image with a range of colors.

 6. Save the file as SingleImage.CSS.

 The sample will appear in other locations, so naming is important.

 7. Load the SingleImage page.

 You see the background shown in Figure 4-9. Notice that the graphic
starts in the upper-left corner and automatically repeats as needed to fill
the entire window.

Figure 4-9:
Background
images can

lend just the
right level of

interest to
a page.

77 Chapter 4: Working with Graphics

Using multiple images
It’s possible to combine multiple images into a single image when working
with CSS3-capable browsers. At least one of the images must have transpar-
ent regions that allow the second image to peek out from behind it. The fol-
lowing procedure modifies the SingleImage example to contain two images.
The second image is supplied with downloadable source as PawPrint.GIF.
However, you can easily substitute an image of your liking instead (as long as
the image has the required transparent regions).

 1. Open the SingleImage.CSS file.

 2. Modify the body style so that the background-image property now
contains two images, as shown here.
body
{
 background-image: url(“PawPrint.gif”),
 url(“CuteCat.jpg”);
 background-color: SaddleBrown;
 color: SeaGreen;
 font-size: x-large;
 text-shadow: 1px 1px Yellow;
}

 Notice that the two image entries are separated by a comma — not
many multi-entry properties require commas, but this is one of them.
The order in which the images appear is also important. The image con-
taining the transparency must appear first because it appears over the
top of the second image. If you reverse the entries, the image lacking
transparencies will be on top and you’ll see only one image.

 3. Save the CSS file as MulitpleImage.CSS.

 4. Open the SingleImage.HTML file.

 5. Modify the <title> and <link> tags so they look like this:
<title>A Multiple Image Background</title>
<link rel=”stylesheet”
 href=”MultipleImage.CSS” />

 6. Save the HTML file as MultipleImage.HTML.

 7. Load the MultipleImage page.

 You see the background shown in Figure 4-10. Notice how the paw prints
overlay the original image but don’t conceal it completely.

78 Part I: Getting Started with CSS3

Figure 4-10:
It’s possible
to combine

multiple
images into

a single
background.

Positioning Graphics
You can find techniques for positioning foreground graphics in the “Centering
the image” section of this chapter. In essence, you use the combination of
the left, right, top, and bottom properties to provide basic positioning.
Tweaking the position involves using the margin-left, margin-right,
margin-top, and margin-bottom properties. To ensure that the image
stays in one place, normally you set the position property to absolute.
Of course, all positioning is relative to image size, which you set by using the
height and width properties.

Background images also have positioning functionality. You can also control
the background image position, margin, and size. The following procedure
provides an example of how you might modify the SingleImage example to
place a single copy of the image in the center of the page (and keep it there
no matter how the page is scrolled).

 1. Open the SingleImage.CSS file.

 2. Modify the body style so that the image is fixed in the center, as
shown here.
body
{
 background-image: url(“CuteCat.jpg”);
 background-color: SaddleBrown;
 color: SeaGreen;
 font-size: x-large;

79 Chapter 4: Working with Graphics

 text-shadow: 1px 1px Yellow;

 background-position: center;
 background-attachment: fixed;
}

 The background-position property makes it possible to define the
placement of the primary copy of a background image. The default set-
ting places the image in the upper-left corner, which may not be very
pleasing to the eye.

 The background-attachment property defines how that image is
attached to the browser’s background. Setting this value to fixed
means that the image stays in the same location even when the user
resizes the display or scrolls the content.

 3. Save the CSS file as BackgroundPosition.CSS.

 4. Open the SingleImage.HTML file.

 5. Modify the <link> tag so it looks like this:
<link rel=”stylesheet”
 href=”BackgroundPosition.CSS” />

 6. Save the HTML file as BackgroundPosition.HTML.

 7. Load the BackgroundPosition page.

 You see the background shown in Figure 4-11. Notice that the initial
image is now centered and the copies radiate out from it.

Figure 4-11:
Centering a
background
image often

makes the
page more

pleasing.

80 Part I: Getting Started with CSS3

Working with Repetitive Images
There are a number of ways you can use repetitive images — or keep from
using them. For example, when you work with a background, you automati-
cally get repeating images. If you’d prefer not to see multiple copies of the
image, you need to tell the browser to display only one. Likewise, you may
encounter situations where you really do want repeating images, but in a spe-
cific way, such as creating a border around a graphic. The following sections
discuss these two scenarios, but you can use the information you obtain to
control image repetition in other ways.

Changing repetitive backgrounds
There are situations where you only want a single copy of a background pic-
ture. It may be that the image you’ve used is something that doesn’t repeat
well or is large enough that you really don’t want it repeated. The following
procedure demonstrates a technique you can use to tell the browser to use
just one copy of a background image.

 1. Open the BackgroundPosition.CSS file.

 2. Modify the body style so that the image doesn’t repeat, as shown here.
body
{
 background-image: url(“CuteCat.jpg”);
 background-color: SaddleBrown;
 color: SeaGreen;
 font-size: x-large;
 text-shadow: 1px 1px Yellow;

 background-position: center;
 background-attachment: fixed;

 background-repeat: no-repeat;
 background-size: 80%;
}

 The background-repeat property is set to no-repeat so that the
browser knows to display just one copy. Because there’s just one
copy and the image may not be the right size to provide a good
presentation when the user resizes the browser, you should also
set the background-size property to resize the image automatically.

 3. Save the CSS file as NoRepeat.CSS.

81 Chapter 4: Working with Graphics

 4. Open the BackgroundPosition.HTML file.

 5. Modify the <link> tag so it looks like this:
<link rel=”stylesheet”
 href=” NoRepeat.CSS” />

 6. Save the HTML file as NoRepeat.HTML.

 7. Load the NoRepeat page.

 You see the background shown in Figure 4-12. There’s just one image in
the center now — and when you resize the browser, the image automati-
cally resizes as well.

Figure 4-12:
Use just one
image when

present-
ing larger

images.

Creating repetitive borders
One of the more common uses for repetitive images is to create borders
made of images. Unfortunately, this technique doesn’t work well with
Internet Explorer 9. It does work, however, with all newer versions of
Chrome, Firefox, and Internet Explorer 10. The following procedure takes the
SimpleGraphics example created earlier and adds a paw-print border to it.

 1. Open the SimpleGraphics.HTML file.

 You need to modify the page so that there’s a new <div> to hold the
margin, which really isn’t part of the image. If you try to attach the
margin graphics to the existing image container, the graphics will appear
centered on the image container’s margin, rather than as full images.

82 Part I: Getting Started with CSS3

 2. Add a new <div> to the page as shown here.
<div id=”BorderContainer”>
 <div id=”ImageContainer”>
 <img alt=”A Picture of a Cute Cat.”
 title=”A Picture of a Cute Cat.”
 name=”CuteCat”
 id=”CuteCat”
 src=”CuteCat.JPG” />
 <p>A picture of a cute cat!</p>
 </div>
</div>

 3. Modify the <link> tag so it looks like this:
<link rel=”stylesheet”
 href=”BorderGraphics.CSS” />

 4. Save the HTML file as BorderGraphics.HTML.

 5. Open the SimpleGraphics.CSS file.

 You need to change the styles so that they’ll work with the new con-
tainers found in the HTML file. Think about the border being a box that
encloses a box holding the image and caption. What you get instead of a
single image box is a box within a box.

 6. Add a new #BorderContainer style like the one shown here.
#BorderContainer
{
 border-style: solid;
 border-width: 20px;
 border-image:
 url(PawPrint.GIF) 25 22 23 fill round;

 padding: 24px;
 float: left;

 position: absolute;
 height: 465px;
 width: 440px;
 left: 50%;
 margin-left: -244px;
}

83 Chapter 4: Working with Graphics

 Most of these properties are the same as those originally used for the
#ImageContainer style. The BorderContainer <div> is now the
outer container, so you position it rather than the ImageContainer
<div>. There are some changes in measurements to accommodate the
size of the border.

 The biggest change is the addition of the border-image property. You
supply the URL of the image you want to use, along with the inward
offset of the border image, the width of the image, and the image outset.
The fill value tells the browser to fill the <div> with copies of the
image and the round value tells the browser to resize the image so that
an even number of images fill the <div>.

 Figuring out the numbers for a border image can be difficult and time-
consuming. Fortunately, you can use the border-image-generator
(http://border-image.com) to do the work for you. Simply provide
the location of the border image you want to use and then use the slid-
ers to figure out optimal values for placing that image around a <div>.
You can copy the results directly from the page to your application.

 7. Modify the #ImageContainer style so that it reflects its new role as
an inner container.
#ImageContainer
{
 margin: 20px;
 height: 420px;
 width: 400px;
 background-color: White;
}

 8. Save the CSS file as BorderGraphics.CSS.

 9. Load the BorderGraphics page.

 You see the page shown in Figure 4-13. Notice that the border graphics
surround both the image and its caption.

http://border-image.com

84 Part I: Getting Started with CSS3

Figure 4-13:
Border

graphics
provide

interest for
images on
your page.

Chapter 5

Using CSS Shortcuts
In This Chapter
▶ Defining style inheritance
▶ Using cascading styles to your benefit
▶ Employing basic user interface functionality
▶ Providing pizzazz through special effects
▶ Creating pages with multiple columns

E
veryone likes shortcuts — methods of doing something quickly without
any loss of quality. In fact, there are entire industries that are focused

solely on the shortcut. Just think about the number of ads you see every day
that tell you about a product, service, or technique that reduces the time you
spend doing something — they’re all shortcuts. So it shouldn’t surprise you
too much to discover that CSS has shortcuts as well. In this case, shortcuts are
techniques you can use to reduce your workload and make life easier. Many
of these techniques help you when you write the code, and then a second time
when you need to perform updates. That’s the best kind of shortcut — the kind
that keeps providing a dividend for little time spent up front.

 Many of these techniques focus on the fact that the true purpose of CSS is to
separate content from formatting. Chapters 2, 3, and 4 show you all sorts of
interesting new techniques — and you’ve probably gotten away from this core
idea a little. This chapter brings that idea back to the forefront — it’s all about
the concept of keeping things separate so you can interact with the part you
need and leave the other part undisturbed.

As part of the separation of content and formatting, this chapter discusses
some special effects, and then shows you how to present your content in
columns. Special effects make it possible to communicate information in
non-verbal ways, but they only work when the person using your site has
the ability to interact with them. When you use CSS to build your site, users
with special needs can remove your site’s special effects and still enjoy the
content you provide. Likewise, columnar presentations work for people with
normal vision who want to review content more quickly or see it grouped

86 Part I: Getting Started with CSS3

in certain ways. By using CSS, you allow someone who requires larger text
to see the content in a single column, but with a larger font size. Again, the
person can still enjoy the content, even if the presentation isn’t quite the
same as you envisioned.

Understanding Style Inheritance
All of the chapters so far have worked around the idea of style inheritance.
The cascading part of Cascading Style Sheet (CSS) tells it all. A style at the
uppermost part of the page hierarchy will cascade down into the lower parts
of the page. By defining a style at the right level of the hierarchy, you reduce
the work required to implement that style in all the places that the style is
needed. For example, a style that is defined with the <body> tag will flow
down into the <div> tag that is a child of the <body> tag. If you defined the
style at the <div> level, you would need to define it for each <div> that
requires the style. By defining it at the <body> level, you employ a shortcut
in the form of a cascading style.

 The use of a cascading architecture means that you define styles that affect
the page as a whole at a higher level than the specific styles used to define
particular elements. For example, if your page relies mainly on a single
font, then you should define that font at the <body> tag. Even though the
Document Object Model (DOM) hierarchy starts with the document, moves
toward the root (the <html> tag), and only then splits into the <head> and
<body> tags, the <body> tag is the first displayable element.

Inheritance also comes in another form. You can define styles in three differ-
ent places. The location of that definition modifies the priority of that style.
Here are the three style locations and their priorities:

 ✓ Inline (top priority): An inline style appears specifically with a particular
object. It modifies only that object and no other object in the document
or in any other document. You haven’t seen an inline style used so far in
the book because they tend to cause problems. Locating and changing
an inline style is time-consuming and error-prone, so you should avoid
them whenever possible.

 ✓ Internal: An internal style appears as part of the <style> tag in the
<head> of the document. It affects all of the objects in the document,
but no other document on the site. Using internal styles can help you
provide special pizzazz to a particular page, but you should use an
internal style only when the style is unique to that page, and you never
intend to use that style anywhere else. Given that you normally can’t
make such a guarantee, it’s best to avoid internal styles whenever pos-
sible, but even so, they’re preferable to inline styles.

87 Chapter 5: Using CSS Shortcuts

 ✓ External (lowest priority): An external style appears in an external .CSS
file. You must create a reference to this file by using a <link> tag in the
<head> of a document. The styles affect every document linked to the
.CSS file. Using this approach makes updates easier and gives your site
a uniform appearance overall. In addition, using external styles makes it
easy for people with special needs to supply an alternative style sheet
that better meets their needs.

 You can associate as many external style sheets as needed with a page
by using multiple <link> tags. This approach lets you use styles from
diverse sources so that you can format your page with the least amount
of effort. External style sheets are processed in the order in which they
appear. If two .CSS files contain the same style name that modify the same
properties, the style processed last is the style that has precedence.

The final level of inheritance to consider is the selector itself. You can create
selectors that act only on objects contained within other objects or that meet
special criteria (as discussed in Chapter 2). A specific selector will always
override the settings provided by a generic selector, so you should only use
this technique when necessary (imagine trying to find all of those specific
changes in all the files on your site). The more specific the selector, the
greater its priority becomes. However, you need to consider the effects of the
selector’s level within the document — and the manner in which the style is
defined — as part of the overall picture.

Cascading Styles — Using
Multiple Styles Together

Understanding the rules of inheritance helps you create interesting sites that
require a minimum of maintenance. By following these rules, when mainte-
nance is required, you normally have to make just one change, rather than
changing hundreds of items individually. It pays to experiment, though, so you
can understand the full effects of inheritance and the effects of using multiple
styles together. The following procedure helps demonstrate these techniques.

 1. Create a new HTML5 file with your text editor.

 Your editor may not support HTML5 files. Any text file will do.

 2. Type the following code for the HTML page.
<!DOCTYPE html>

<html>
<head>
 <title>Inheritance Example</title>

88 Part I: Getting Started with CSS3

 <style>
 p
 {
 font-family: Arial, Helvetica, sans-serif;
 color: Blue;
 background-color: Yellow;
 margin: 0;
 font-style: italic;
 font-size: medium;
 }

 div p
 {
 font-style: italic;
 font-size: larger;
 }
 </style>
</head>

<body>
 <h1>An Example of CSS Inheritance</h1>
 <p>A paragraph outside a

 <div>.</p>
 <div id=”Container”
 style=”text-align: left;”>
 <p>A paragraph inside a container.</p>
 </div>
</body>
</html>

 This page contains a number of inline styles, which always have the
highest inheritance precedence. For example, the provides a
font-family of monospace for the <div> tag part of the sentence.
You could accomplish the same thing by assigning the a class
attribute for code, but this example uses the inline style instead.

 The <div> uses an inline style to set the text-align style to left.
Because the default style sets the alignment to left, you won’t see any
difference. However, if another style change modifies the text alignment,
this style will take effect and prevent movement of this paragraph.

 The internal style modifications all appear within the <style> tag in
the <head> element. The first style sets the general characteristics for
a <p> tag. Notice that the style specifically sets the font-style to
italic and the font-size to medium.

 The second style is more specific. It sets the characteristics for <p>
tags that appear as a child of a <div>. Consequently, inheritance rules
say that this style will take precedence when the rules of inheritance are

89 Chapter 5: Using CSS Shortcuts

met, which means the font-style and font-size styles will be differ-
ent in this case. Figure 5-1 shows how these styles play out.

 4. Save the file as Inheritance.HTML.

 The sample will appear in other chapters, so naming is important.

 5. Load the Inheritance example into your browser.

 You see the role that inheritance and cascading styles play, as shown in
Figure 5-1.

Figure 5-1:
Inheritance

and cascad-
ing styles

interact
to format

this page.

 6. Create a new CSS file with your text editor.

 Your editor may not support CSS files. Any text file will do.

 7. Type the following CSS style information.
body
{
 text-align: center;
 color: DarkRed;
 background-color: Khaki;
 border: inset;
 border-color: Green;
}

h1
{
 border: outset;
 border-color: Brown;
}

p
{
 text-decoration: underline;
 font-family: “Times New Roman”, Times, serif;
 font-style: oblique;
 font-size: xx-large;
}

90 Part I: Getting Started with CSS3

 The <body> tag appears as the topmost object in a page, so the changes
noted in the body style should affect everything not specifically over-
ridden later. In this case, the example changes the text alignment to
center and places a dark red border around any content. The back-
ground color is also changed. Finally, the style adds a green border
around every object.

 The h1 style overrides any body styles. In this case, that means modify-
ing the border styles.

 The p style also overrides any body styles. However, there aren’t any
properties that are the same in this case, so the p styles enhance the
styles inherited from the body style.

 8. Save the file as Inheritance.CSS.

 The sample will appear in other chapters, so naming is important.

 9. Add the following code to the <head> area of the HTML file.
<link rel=”stylesheet” href=”Inheritance.CSS” />

 This code creates the link between the HTML file and the CSS file.

 10. Save the HTML file and reload the page.

 You see the changes shown in Figure 5-2.

Figure 5-2:
Modifying
the exter-

nal style
produces

both inheri-
tance and
cascading

changes.

 Notice that all the expected changes are in place. For example, the text is
centered, except for the one paragraph that has an inline style overriding
the centered text. The heading text is now in dark red — the paragraph
text overrides that color selection, so it remains blue. Even though there
is an external p style for the size of the text, the internal style overrides it.

 You should notice something else about the example. The body con-
tains an inset border of the correct color (where the left and top lines
are green and the border appears to sink the content below the surface
of the rest of the page) and the heading contains an outset border of

91 Chapter 5: Using CSS Shortcuts

the correct color, because it has overridden the default. The right and
bottom lines in the heading border are brown, but that the left and top
lines are a lighter color due to the effect of the outset border (giving the
appearance that the heading is raised above the surface of the back-
ground). However, the paragraphs have no border. At one time, <body>
tag changes affected the entire document and some of them still do.
However, other changes affect only the body and not other block ele-
ments. Block elements don’t inherit some settings from the body style.

 11. Delete the h1 style from the Inheritance.CSS style sheet.

 You can also comment out the h1 style by adding the starting (/*) and
ending (*/) comment symbols to it like this:
/* Commented out to show block settings.
h1
{
 border: outset;
 border-color: Brown;
}
*/

 12. Save the CSS file and reload the page.

 You see the changes shown in Figure 5-3.

Figure 5-3:
Take care

not to
assume

that your
body-style

changes
affect other
block-level

objects.

 Notice that the heading now lacks a border. It turns out that the heading
wasn’t overriding the body-level border — it was adding a new border.
Never assume that a body style will carry through to other block-level
styles — some settings simply don’t. When you find that your page
doesn’t look as you expected it to look, try configuring the setting at a
lower block level.

 You may also see some style sheets that access the html style, which
affects the <html> tag that contains the <body> tag. It’s true: You can

92 Part I: Getting Started with CSS3

work with the html style to achieve some effects. For example, you may
want to create a raised border around the page, which would require
accessing the html style.

 13. Add the html style shown here to the Inheritance.CSS style sheet.
html
{
 border: outset;
 border-color: Green;
 background-color: White;
}

 14. Save the CSS file and reload the page.

 You see the changes shown in Figure 5-4.

Figure 5-4:
The html
style can
help you

achieve spe-
cific special

effects.

 You rarely have to rely on the html style because it simply isn’t neces-
sary. The html block is a level above the body block, as shown by this
example. The html block doesn’t give you access to anything that the
body block can’t change in most cases, except for special effects like the
one shown here.

Using Additional Basic
User Interface Features

The book discusses a number of user interface features so far and you’ll find
even more details in later chapters. The user interface is the hardest part of
your application to get right. It’s not a matter of coding or of presentation —
it’s a matter of perception. The way you perceive the user interface is com-
pletely different from that of your users because you approach it from the
viewpoint of a developer — it’s unavoidable.

93 Chapter 5: Using CSS Shortcuts

 Users commonly have problems figuring out what to put in fields. Most of this
book’s user interface suggestions help you create an environment where the
user has few questions. For example, using drop-down list boxes helps elimi-
nate user confusion over what to include in fields. However, the second most
common problem is finding an application feature, a page of content, or a
resource. The following sections address this problem by presenting methods
of defining a document outline (that is, a method for navigating a single page)
and site navigation. You’ll see other techniques for addressing these issues as
the book progresses.

Performing quick navigation
Most sites provide some sort of site navigation aid. If you don’t provide this
sort of support, the user may get lost and you’ll lose business or at least activ-
ity. Site navigation makes information easier to find and use. In addition, you
really need it in order for the user to make good use of your site. The follow-
ing procedure describes how to add site navigation without programming to
a page. It doesn’t do anything fancy, but it does work well with most browsers.

 1. Create a new HTML5 file with your text editor.

 2. Type the following code for the HTML page.
<!DOCTYPE html>

<html>
<head>
 <title>Navigating User Interfaces</title>
 <link rel=”stylesheet” href=”Navigation.CSS” />
</head>

<body>
 <ul id=”MainMenu”>

 Home

 Products

 One

 Two

 Three

94 Part I: Getting Started with CSS3

 Four

 Events

 Red

 Green

 Blue

 Orange

 About

 Contact

 Founding

 Privacy

</body>
</html>

 The menu system consists of a number of lists. Each unordered list rep-
resents another layer of menus. This example has just two layers, but
you can easily apply the concepts to any number of layers desired. The
overall menu is enclosed with an unordered list element () named
MainMenu. The name is important because you’ll use it extensively
when creating the required styles.

 3. Save the file as Navigation.HTML.

 The sample will appear in other chapters, so naming is important.

95 Chapter 5: Using CSS Shortcuts

 4. Create a new CSS file with your text editor.

 5. Type the following CSS style information.
#MainMenu
{
 margin: 0;
 padding: 0;
}

#MainMenu li
{
 margin: 0;
 padding: 0;
 list-style: none;
 float: left;
}

#MainMenu li a
{
 display: block;
 margin: 0 1px 0 0;
 padding: 4px 10px;
 width: 80px;
 background: Black;
 color: White;
 text-align: center;
}

#MainMenu li a:hover
{
 background: Green;
}

#MainMenu li:hover ul
{
 visibility: visible;
}

#MainMenu ul
{
 position: absolute;
 visibility: hidden;
 margin: 0;
 padding: 0;
 background: Grey;
 border: 1px solid White;
 width: 80px;
}

#MainMenu ul a

96 Part I: Getting Started with CSS3

{
 position: relative;
 display: block;
 margin: 0;
 padding: 5px 10px;
 width: 80px;
 text-align: left;
 background: LightGrey;
 color: Black;
}

#MainMenu ul a:hover
{
 background: Violet;
}

 Wow, that’s a lot of code! Styles can become complex as you try to do
more with them. That’s why many developers rely heavily on third party
libraries and tools, which is the focus on most of this book. Trying to
come up with all that style information on your own is time consuming.
In fact, the kind of menu we’re creating here is easily made using a tool
such as CSS Menu Maker (http://cssmenumaker.com/), Menucool.
com (www.menucool.com/), or CSS3Menu (http://css3menu.com/
index.html). However, it’s important to go through this exercise at
least once so you know how things work.

 The styles begin with the MainMenu, an unordered list () element.
Everything is referenced to this element. The MainMenu consists of a
number of list items (), which are set using the #MainMenu li
style. You don’t want the list items to actually look like a list — you
want them to look like menus — so it’s essential to set the list-style
to none. Setting float to left will also help give the menu a profes-
sional appearance. Within each list item is an anchor (<a>) that points
to the location to which the user goes after selecting the menu item.
The #MainMenu li a style creates the required appearance, which
includes displaying the item as a block. When the user hovers the mouse
over one of the MainMenu items, the #MainMenu li a:hover style
turns the entry green.

 The #MainMenu li:hover ul requires a little explanation. Normally,
the secondary menu has its visibility set to hidden, so that you
don’t see it. When a user hovers the mouse over a MainMenu list item,
you want the submenu displayed. This style performs that task. It cre-
ates the appearance of using code without actually using any code.

 The submenus will appear vertically, below the horizontal main menu.
In order to do this, the #MainMenu ul style sets the width to 80px, the
size required to hold a single menu entry. This setting must match the
width setting for the #MainMenu ul a style. Notice that this second
level of menus has its visibility property set to hidden because

http://cssmenumaker.com/
http://www.menucool.com/
http://css3menu.com/index.html
http://css3menu.com/index.html

97 Chapter 5: Using CSS Shortcuts

you don’t want to see it until the user clicks the associated main menu
item. As with the main menu, you want users to know when they have
selected a particular item, so the #MainMenu ul a:hover style
changes the menu’s background value to Violet.

 6. Save the file as Navigation.CSS.

 The sample will appear in other chapters, so naming is important.

 7. Load the Navigation example.

 You see the menu similar to the one shown in Figure 5-5 (your menu
won’t have anything selected initially and will appear as a black bar
across the top of the page).

Figure 5-5:
You don’t
need any

code at all
to produce a
useful menu
for your site.

 Try selecting various items. The example uses the existing site for each of
the links, but if you want, you can try using other links. Clicking a link will
take you to the desired location. The point of this menu is that you can
create quite a few user interface items that look like they’re coded, but
really aren’t, using CSS. This CSS-only approach will work with most brows-
ers without having to ask the user to enable JavaScript. Most browsers
support the level of CSS required to make this menu system work.

Providing a document outline
A document outline is useful when a page contains a lot of material and you
want the user to navigate it easily. The outline relies on the various tags
you provide. The current method of creating a document outline is to use
the <h1> through <h6> tags. This approach works great when the material
comes from the same page or you have control over the formatting of the
content. It doesn’t work quite so well when the content comes from another
location, which is why the standards groups had to come up with an entirely
new way to do things (see the “Discovering HTML5 Document Outlining”
sidebar for details). The following procedure demonstrates a technique
for adding an outline to a page that already contains a menu. You use the
Navigation example created in the previous section as a starting point.

98 Part I: Getting Started with CSS3

 1. Open the Navigation.HTML file and add the following code to the
end of the <body> section (after the existing menu).
<div id=”DocOutline”>

 Main Heading 1

 Sub Heading 1

 Sub Heading 2

 Main Heading 2

 Sub Heading 3

 Sub Heading 4

</div>

<div id=”DocContent”>

 <h1 id=”MainHeading1”>Main Heading 1</h1>
 <p>Introductory Material</p>
 <h2 id=”SubHead1a”>Sub Heading 1</h2>
 <p>Article</p>
 <h2 id=”SubHead1b”>Sub Heading 2</h2>
 <p>Article</p>
 <h1 id=”MainHeading2”>Main Heading 2</h1>

99 Chapter 5: Using CSS Shortcuts

 <p>Introductory Material</p>
 <h2 id=”SubHead2a”>Sub Heading 3</h2>
 <p>Article</p>
 <h2 id=”SubHead2b”>Sub Heading 4</h2>
 <p>Article</p>
</div>

 The entries consist of a document outline and the associated content. The
outline specifically follows the <h1> and <h2> objects in this example.
There are methods for generating this sort of content automatically, but
all of them require coding. This is one case where using CSS does involve
some manual coding that you wouldn’t have to perform when using other
techniques, such as including JavaScript. However, the advantage is that
the example will work fine with any browser that supports CSS.

 2. Save the HTML file.

 3. Open Navigation.CSS and type the following styles at the end of
the file.
#DocOutline
{
 font-family: Arial, Helvetica, sans-serif;
 font-size: 14px;
 width: 145px;
 height: 800px;
}

#DocOutline ul
{
 margin-bottom: 20px;
 list-style: none;
 margin-left: -40px;
}

#DocOutline ul ul
{
 margin-left: -20px;
}

#DocContent
{
 margin-top: -800px;
 margin-left: 150px;
}

 The main focus is on the document outline where you need to provide for-
matted links to the content found on the remainder of the page. Notice that
the outline is set to a specific height. The reason for this setting is to make
it easier to position the document content once the links are displayed.

100 Part I: Getting Started with CSS3

 The example sets the #DocOutline ul style list-style property
to none. You could just as easily use numbers, letters, or any other
outlining index you prefer. This list will automatically indent half of the
distance of the individual menu elements you created earlier. In order
to place the links at the left side of the page, you must reverse the list’s
indentation by setting margin-left to -40px, which is half the 80px
width of the individual menu elements.

 Each level will require some additional amount of indentation so the
user can see the relative levels of each entry. The #DocOutline ul
ul changes the indentation for the second-level headings. If you had a
third level of headings, you’d create a #DocOutline ul ul ul style to
format it.

 The document content will start after the document outline unless one
of two things happens. First, you can use actual columns as described
in the “Working with Multiple Columns” section, later in this chapter.
However, this functionality requires CSS3. Second, you can use pseudo-
columns. You set the margin-top property value equal to the height
of the document outline. The technique shown in this example will work
with any browser that fully supports CSS. Notice that you must also set
margin-left to a value that equals the width of the document outline
(plus a few pixels for spacing.

 4. Save the CSS file.

 5. Reload the Navigation example.

 You see the document outline and associated content as shown in
Figure 5-6. This outline actually works — you can click links to go to the
various headers presented in the outline.

Figure 5-6:
Using a

document
outline on

complex
pages

makes it
easier to

find specific
content.

101 Chapter 5: Using CSS Shortcuts

Discovering HTML5 document outlining
Document outlining isn’t anything new. HTML
was created to organize content through the
use of various tags. The <h1> through <h6>
tags have existed since early versions of HTML.
However, what has changed over the years is
how these tags are perceived by the browser —
and how add-on software uses these tags when
interacting with the user. In addition, many sites
now mash content together from multiple loca-
tions; how the content was organized originally
on the other sites no longer makes sense when
viewed as a composite with other content from
other sites.

HTML5 adds functionality to make sense of con-
tent that is mashed together from multiple loca-
tions. Instead of using the heading tags alone,
you now have a selection of sectional tags:
<article> (content that is self-contained
and could appear separately from the rest of
the content on the site), <aside> (content,
such as a sidebar, that is related to other con-
tent in the section, but not actually part of that
content), <nav> (a collection of navigational
links of any sort), and <section> (items
such as chapters, headers, and footers). If you
find that you really don’t understand the latest
outlining features completely, reading “HTML5
And The Document Outlining Algorithm”
(http://coding.smashingmagazine.
com/2011/08/16/html5-and-the-
document-outlining-algorithm/)
will help quite a lot.

The change that most developers don’t quite
understand is that all the tags used to outline
and organize material on a page are now part of
the HTML5 specification — and you use these
special tags to describe the outline. If you’re

already familiar with the way HTML4 did things,
reading “Document Outlines” (http://
html5doctor.com/outlines/) pro-
vides you with a quick update that will prove
helpful, especially when it comes time to update
existing pages. You should also check the more
detailed article at https://developer.
mozilla.org/en-US/docs/Web/
HTML/Sections_and_Outlines_of_
an_HTML5_document.

There are also tools available to help you create
better documents. For example, the HTML5
Outliner (http://gsnedders.html5.
org/outliner/) shows how your docu-
ment would look when outlined using HTML5
specifications. You can use this tool to look
for and fix organizational errors. A number of
browsers also come with plug-ins you can use
to inspect the HTML5 view of your document
outline directly in the browser; an example
is HTML5 Outliner for Chrome (https://
chrome.google.com/webstore/
detail/html5-outliner/afoib
pobokebhgfnknfndkgemglggomo).

The reason that you don’t see the HTML5 docu-
ment outlining tags used very often in this book
is that few browsers actually support them yet;
even assistive technologies haven’t caught up.
Before you begin using the new tags in your
next project, you should also read some alterna-
tive viewpoints such as “Don’t Style Headings
Using HTML5 Sections” (www.stubborn
ella.org/content/2011/09/06/
style-headings-using-html5-
sections/). It does pay, at least, to know
about these tags so you can start preparing
your site to use them.

http://coding.smashingmagazine.com/2011/08/16/html5-and-the-document-outlining-algorithm/
http://coding.smashingmagazine.com/2011/08/16/html5-and-the-document-outlining-algorithm/
http://coding.smashingmagazine.com/2011/08/16/html5-and-the-document-outlining-algorithm/
http://html5doctor.com/outlines/
http://html5doctor.com/outlines/
https://developer.mozilla.org/en-US/docs/Web/HTML/Sections_and_Outlines_of_an_HTML5_document
https://developer.mozilla.org/en-US/docs/Web/HTML/Sections_and_Outlines_of_an_HTML5_document
https://developer.mozilla.org/en-US/docs/Web/HTML/Sections_and_Outlines_of_an_HTML5_document
https://developer.mozilla.org/en-US/docs/Web/HTML/Sections_and_Outlines_of_an_HTML5_document
http://gsnedders.html5.org/outliner/
http://gsnedders.html5.org/outliner/
https://chrome.google.com/webstore/detail/html5-outliner/afoibpobokebhgfnknfndkgemglggomo
https://chrome.google.com/webstore/detail/html5-outliner/afoibpobokebhgfnknfndkgemglggomo
https://chrome.google.com/webstore/detail/html5-outliner/afoibpobokebhgfnknfndkgemglggomo
https://chrome.google.com/webstore/detail/html5-outliner/afoibpobokebhgfnknfndkgemglggomo
http://www.stubbornella.org/content/2011/09/06/style-headings-using-html5-sections/
http://www.stubbornella.org/content/2011/09/06/style-headings-using-html5-sections/
http://www.stubbornella.org/content/2011/09/06/style-headings-using-html5-sections/
http://www.stubbornella.org/content/2011/09/06/style-headings-using-html5-sections/

102 Part I: Getting Started with CSS3

Creating Special Effects
You can create so many special effects by using CSS that it would require
a book or two to list them all. The following paragraphs discuss two of the
more interesting special effects. You’ll find a considerable array of special
effects in other examples in this book.

Transforming objects, including graphics
A transform changes the appearance of objects onscreen in a specific way.
For example, you might rotate the object or skew its dimensions. Transforms
make it easy to create unique presentations from common objects — effects
that ordinarily you’d need a designer or graphic artist to create for you. The
following list describes the kinds of transformations you can perform.

 ✓ matrix(a, b, c, d, tx, ty): Skews the object using a matrix
defined by points a, b, c, and d. It then translates the object’s posi-
tion on screen by a value denoted by tx and ty. (You can try the
matrix() transform out at www.w3schools.com/cssref/playit.
asp?filename=playcss_transform_matrix.)

 There are versions of many of these functions that work on three-
dimensional objects. For example, there is a matrix3d() function.
These functions add a z-axis to the equation, so that you can manipulate
three-dimensional objects in three-dimensional space. A full discussion
of precisely how the 3D versions work is outside the scope of this book,
but you can read more at https://developer.mozilla.org/docs/
Web/CSS/transform-function and http://css-tricks.com/
missing-documentation-for-matrix3d-transforms/.

 ✓ translate(tx, ty), translateX(tx), translateY(ty):
Modifies the position of the object on screen by a horizontal amount
defined by tx, a vertical amount defined by ty, or both. (You can try the
translate() transform at www.w3schools.com/cssref/playit.
asp?filename=playcss_transform_translate.)

 ✓ scale(x, y), scaleX(x), scaleY(y): Stretches the object hori-
zontally by the amount specified by x, vertically by the amount specified
by y, or both. (You can try the scale() transform at www.w3schools.
com/cssref/playit.asp?filename=playcss_transform_scale.)

 ✓ rotate(angle), rotateX(angle), rotateY(angle): Rotates
the object by the number of degrees specified in the desired axis. (You
can try the rotate() transform at www.w3schools.com/cssref/
playit.asp?filename=playcss_transform_rotate.)

http://www.w3schools.com/cssref/playit.asp?filename=playcss_transform_matrix
http://www.w3schools.com/cssref/playit.asp?filename=playcss_transform_matrix
https://developer.mozilla.org/docs/Web/CSS/transform-function
https://developer.mozilla.org/docs/Web/CSS/transform-function
http://css-tricks.com/missing-documentation-for-matrix3d-transforms/
http://css-tricks.com/missing-documentation-for-matrix3d-transforms/
http://www.w3schools.com/cssref/playit.asp?filename=playcss_transform_translate
http://www.w3schools.com/cssref/playit.asp?filename=playcss_transform_translate
http://www.w3schools.com/cssref/playit.asp?filename=playcss_transform_scale
http://www.w3schools.com/cssref/playit.asp?filename=playcss_transform_scale
http://www.w3schools.com/cssref/playit.asp?filename=playcss_transform_rotate
http://www.w3schools.com/cssref/playit.asp?filename=playcss_transform_rotate

103 Chapter 5: Using CSS Shortcuts

 Internet Explorer doesn’t support all of the transforms. For example,
you’ll find that Internet Explorer 9 doesn’t support the rotateX() and
rotateY() functions.

 ✓ skew(angleX, angleY), skewX(angleX), skewY(angleY):
Skews the object by the number of degrees horizontally specified by
angleX, the number of degrees vertically specified by angleY, or both.
(You can try the skew() transform at www.w3schools.com/cssref/
playit.asp?filename=playcss_transform_skew.)

The best way to understand these transformations is to see them in action.
The following procedure helps you create a sample application that demon-
strates the transformations you can perform.

 1. Create a new HTML5 file with your text editor.

 2. Type the following code for the HTML page.
<!DOCTYPE html>

<html>
<head>
 <title>Examples of Transforms</title>
 <link rel=”stylesheet” href=”Transforms.CSS” />
</head>

<body>
 <p id=”Matrix”>Matrix</p>
 <p id=”Translate”>Translate</p>
 <p id=”Scale”>Scale</p>
 <p id=”Rotate”>Rotate</p>
 <p id=”RotateY”>Rotate Y</p>
 <p id=”Skew”>Skew</p>
</body>
</html>

 The example demonstrates the transformations listed as paragraphs. You
can try other transformations by modifying the example (a great idea).

 3. Save the file as Transforms.HTML.

 4. Create a new CSS file with your text editor.

 5. Type the following CSS style information.
#Matrix
{
 border: solid;
 border-color: Black;
 border-width: thin;
 font-size: 30px;
 margin: 50px;

http://www.w3schools.com/cssref/playit.asp?filename=playcss_transform_skew
http://www.w3schools.com/cssref/playit.asp?filename=playcss_transform_skew

104 Part I: Getting Started with CSS3

 width: 140px;
 height: 40px;
 transform: matrix(0.866,0.5,0.4,0.866,5,15);
 -ms-transform: matrix(0.866,0.5,0.4,0.866,5,15);
 -webkit-transform: matrix(0.866,0.5,0.4,0.866,5,15);
}

#Translate
{
 border: solid;
 border-color: Black;
 border-width: thin;
 font-size: 30px;
 margin: 50px;
 width: 140px;
 height: 40px;
 transform: translate(20px, 30px);
 -ms-transform: translate(20px, 30px);
 -webkit-transform: translate(20px, 30px);
}

#Scale
{
 border: solid;
 border-color: Black;
 border-width: thin;
 font-size: 30px;
 margin: 50px;
 width: 140px;
 height: 40px;
 transform: scale(1.6, 0.75);
 -ms-transform: scale(1.6, 0.75);
 -webkit-transform: scale(1.6, 0.75);
}

#Rotate
{
 border: solid;
 border-color: Black;
 border-width: thin;
 font-size: 30px;
 margin: 50px;
 width: 140px;
 height: 40px;
 transform: rotate(140deg);
 -ms-transform: rotate(140deg);
 -webkit-transform: rotate(140deg);
}

#RotateY
{

105 Chapter 5: Using CSS Shortcuts

 border: solid;
 border-color: Black;
 border-width: thin;
 font-size: 30px;
 margin: 50px;
 width: 140px;
 height: 40px;
 transform: rotateY(140deg);
 -ms-transform: rotateY(140deg);
 -webkit-transform: rotateY(140deg);
}

#Skew
{
 border: solid;
 border-color: Black;
 border-width: thin;
 font-size: 30px;
 margin: 50px;
 width: 140px;
 height: 40px;
 transform: skew(15deg, 30deg);
 -ms-transform: skew(15deg, 30deg);
 -webkit-transform: skew(15deg, 30deg);
}

 Each of these transforms uses precisely the same paragraph format
so that you can better understand how they work. The use of a border
makes it easier to understand the transform because the combination of
words and an onscreen object convey more information (something to
remember when you create your own test applications).

 Transforms are considered experimental, even though they appear as
part of the specification. In order to use them with Internet Explorer 9+,
you must include the -ms- prefix. Both Safari and Chrome require the
-webkit- prefix. This is why you see each transform listed three times.
The transforms should also work with both Opera and Firefox without
any problem.

 6. Save the file as Transforms.CSS.

 The sample will appear in other chapters, so naming is important.

 7. Load the Transforms example.

 You see the transformation effects shown in Figure 5-7. All these trans-
forms are using the same font, font size, and box size, so the differences
you see are due solely to the transformation taking place. Notice that
the rotateY() transformation actually shows the text backward.

 Try modifying the transform values to see how the changes affect the
output. You’ll be surprised at just how flexible these functions are.

106 Part I: Getting Started with CSS3

Figure 5-7:
Transfor-

mations
produce

special
effects

that create
interesting

pages.

 It’s possible to combine transforms to create even more unusual effects.
Simply separate them with a space. For example, to combine a rotate() with
a skew(), you’d type transform: rotate(25deg) skew(15deg, 30deg);.

Using the attr() function
The attr() function is interesting because it lets you interact with any attri-
bute of an object as part of a style. You see this function used in a number
of unique ways on the Internet, even though it seems to be a well-kept secret
for the most part. One site that demonstrates a quick application that relies
on attr() is The New Hotness: Using CSS3 Visual Effects (http://coding.
smashingmagazine.com/2010/01/25/the-new-hotness-using-css3-
visual-effects/). The following procedure demonstrates the attr()
function in a simpler way so that you can better understand the few examples
online that demonstrate it in a detailed way.

http://coding.smashingmagazine.com/2010/01/25/the-new-hotness-using-css3-visual-effects/
http://coding.smashingmagazine.com/2010/01/25/the-new-hotness-using-css3-visual-effects/
http://coding.smashingmagazine.com/2010/01/25/the-new-hotness-using-css3-visual-effects/

107 Chapter 5: Using CSS Shortcuts

 1. Create a new HTML5 file with your text editor.

 2. Type the following code for the HTML page.
<!DOCTYPE html>

<html>
<head>
 <title>Using the attr() Function</title>
 <link rel=”stylesheet” href=”Attr.CSS” />
</head>

<body>
 <h1>Using the attr() Function</h1>
 <p id=”TestMe”
 TestText=”Hello”>
 World
 </p>
</body>
</html>

 All you have here is a heading and paragraph. Notice that the para-
graph defines a standard attribute, id, and a non-standard attribute,
TestText. The attribute you use for the attr() function need not be
standard — you can define any attribute desired.

Transforms and JavaScript
Many special effects that you see online
are the combination of transforms and
JavaScript. This chapter doesn’t discuss how
to use transforms and JavaScript together,
but there are many interesting sites that dis-
cuss them and provide examples you could
potentially copy onto your own site without
modification. One of the most interesting
examples is 50 Awesome Animations made
with CSS3 (www.1stwebdesigner.
com/css/50-awesome-css3-anima
tions/). A lot of the examples on this site
don’t even require any complex coding because
they rely on third party libraries to perform
the heavy lifting. Another good place to look
for interesting examples is 50 Useful Coding
Techniques (CSS Layouts, Visual Effects and
Forms) (http://coding.smashing

magazine.com/2010/02/18/50-
css-and-javascript-techniques-
for-layouts-forms-and-visual-
effects/), which contains a wealth of useful
techniques you want to know, even if you use
them as a way to look for third-party libraries.

CSS3 can also help things along when you
include transitions with the transforms. The result
is a type of animation that relies more on CSS and
less on coding. However, even in this case, you
need to perform some level of coding in order
to obtain the special effect. (You can see some
uses for these sorts of special effects in Chapter
6.) It’s important to note that these kinds of anima-
tions are different from the movie-like animations
created using technologies such as animated
Graphic Interchange Format (.GIF) files.

http://www.1stwebdesigner.com/css/50-awesome-css3-animations/
http://www.1stwebdesigner.com/css/50-awesome-css3-animations/
http://www.1stwebdesigner.com/css/50-awesome-css3-animations/
http://coding.smashingmagazine.com/2010/02/18/50-css-and-javascript-techniques-for-layouts-forms-and-visual-effects/
http://coding.smashingmagazine.com/2010/02/18/50-css-and-javascript-techniques-for-layouts-forms-and-visual-effects/
http://coding.smashingmagazine.com/2010/02/18/50-css-and-javascript-techniques-for-layouts-forms-and-visual-effects/
http://coding.smashingmagazine.com/2010/02/18/50-css-and-javascript-techniques-for-layouts-forms-and-visual-effects/
http://coding.smashingmagazine.com/2010/02/18/50-css-and-javascript-techniques-for-layouts-forms-and-visual-effects/

108 Part I: Getting Started with CSS3

 3. Save the file as Attr.HTML.

 4. Create a new CSS file with your text editor.

 5. Type the following CSS style information.
#TestMe:before
{
 content: attr(TestText);
}

 The style begins by saying that the output from the style should appear
before the tag referenced by TestMe as an id. It then sets the content
of that area to the current value of the TestText attribute by using the
attr() function.

 6. Save the file as Attr.CSS.

 The sample will appear in other chapters, so naming is important.

 7. Load the Attr example.

 The output is pretty much what you’d expect, Hello World, as shown
in Figure 5-8. The attr() function can make it possible for you to hide
and use all sorts of information in your pages, reuse information in dif-
ferent ways, or even perform debugging tasks.

Figure 5-8:
Use the attr()

function to
output the

value of
attributes.

Working with Multiple Columns
CSS3 provides a new method for working with columns that doesn’t require
you to have a math degree and perform test setups with arcane styles. The
column styles provide the means to create multiple columns on a page with-
out a lot of effort on your part. Depending on the specific style you use, you
can obtain various layouts or simply create a newspaper-type setup where
content flows from column-to-column based on the user’s browser setup.

 As with anything CSS3-specific, you need to test your application with the
browsers that your users intend to use. In addition, this feature is considered
experimental — and you have to jump through a few hoops to make it work
with some browsers. While Internet Explorer and Opera support the column

109 Chapter 5: Using CSS Shortcuts

properties directly, you must prepend -moz- to make them work with Firefox
and -webkit- to make them work with Safari and Chrome. The following list
provides a brief overview of the column properties.

 ✓ column-count: Specifies the number of columns to create. The width
of the columns automatically fluctuates as the user resizes the browser
window (or the browser displays a horizontal scrollbar to make it pos-
sible to scroll across columns when a specific width is set as well).

 ✓ column-fill: Determines how the browser fills the columns (either
filling one column at a time or filling all columns simultaneously with an
even amount of content).

 ✓ column-gap: Creates a gap between columns to make it easier to deter-
mine where one column ends and another begins.

 ✓ column-rule: Creates a rule between columns so the user can see a
physical separator. This property consists of color, style, and width.

 ✓ column-rule-color: Determines with color of the rule used between
columns.

 ✓ column-rule-style: Determines the style of the rule used between
columns.

 ✓ column-rule-width: Determines the width of the rule used between
columns.

 ✓ column-span: Specifies the number of columns that an object can span.

 ✓ column-width: Specifies a column width.

 ✓ columns: Provides a shorthand method for defining both the column-
count and column-width properties.

One of the easiest ways to begin experimenting with columns is to create
some content and then use a newspaper-style layout to present it. The follow-
ing procedure helps you create a multiple column newspaper layout for some
dummy text.

 1. Create a new HTML5 file with your text editor.

 2. Type the following code for the HTML page.
<!DOCTYPE html>

<html>
<head>
 <title>Creating a Newspaper Layout</title>
 <link rel=”stylesheet” href=”NewspaperLayout.CSS” />
</head>

<body>
 <h1>Creating a Newspaper Layout</h1>
 <p id=”Text”>

110 Part I: Getting Started with CSS3

 Lorem ipsum dolor sit amet, consectetuer
 adipiscing elit, sed diam nonummy nibh euismod
 tincidunt ut laoreet dolore magna aliquam erat
 volutpat. Ut wisi enim ad minim veniam, quis
 nostrud exerci tation ullamcorper suscipit
 lobortis nisl ut aliquip ex ea commodo consequat.
 Duis autem vel eum iriure dolor in hendrerit
 in vulputate velit esse molestie consequat, vel
 illum dolore eu feugiat nulla facilisis at vero
 eros et accumsan et iusto odio dignissim qui
 blandit praesent luptatum zzril delenit augue
 duis dolore te feugait nulla facilisi. Nam liber
 tempor cum soluta nobis eleifend option congue
 nihil imperdiet doming id quod mazim placerat
 facer possim assum. Typi non habent claritatem
 insitam; est usus legentis in iis qui facit eorum
 claritatem. Investigationes demonstraverunt
 lectores legere me lius quod ii legunt saepius.</p>
</body>
</html>

 All you have here is a heading and paragraph. The paragraph contains
the dummy text used for content in the newspaper layout.

 If you’re wondering what Lorem ipsum is all about, you can read more
at www.lipsum.com/. In fact, the site provides a dummy-text genera-
tor that won’t distract a viewer’s attention from an underlying layout or
other technical consideration.

 3. Save the file as NewspaperLayout.HTML.

 4. Create a new CSS file with your text editor.

 5. Type the following CSS style information.
#Text
{
 column-count: 3;
 column-rule: 4px ridge Blue;
 column-gap: 20px;

 -moz-column-count: 3;
 -moz-column-rule: 4px ridge Blue;
 -moz-column-gap: 20px;

 -webkit-column-count: 3;
 -webkit-column-rule: 4px ridge Blue;
 -webkit-column-gap: 20px;
}

http://www.lipsum.com/

111 Chapter 5: Using CSS Shortcuts

 The example creates a style that includes three columns, with a blue
rule between columns. Of course, you need to repeat the styles three
times — once for each of the browser requirements.

 6. Save the file as NewspaperLayout.CSS.

 The sample will appear in other chapters, so naming is important.

 7. Load the NewspaperLayout example.

 You see a newspaper-style format as shown in Figure 5-9. This format
will be easier to read when you work with a lot of text on a site. In the
past, you’d have had to work pretty hard to get a layout as nice as this
one, but now all you need is a few simple styles.

Figure 5-9:
It’s easy

to create
a news-

paper style
layout with

 columns.

112 Part I: Getting Started with CSS3

Part II
Making Layouts Fast and

Simple with Libraries

 See an example of how you can access multiple libraries from the Google API and use
them in a single application at www.dummies.com/extras/css3.

http://www.dummies.com/extras/css3

In this part . . .
 ✓ Discover how jQuery makes it easy to add advanced function-

ality to a site
 ✓ Enhance your user interface using jQuery UI widgets and

 special effects
 ✓ Rely on Dynamic Drive to add structure to your site using

 layouts and menus
 ✓ Use the Google API to access all your favorite libraries and

generators from one location

Chapter 6

Creating a Test Site with jQuery
and jQuery UI

In This Chapter
▶ Working with the basic jQuery features
▶ Understanding why jQuery UI is a good addition to your toolbox
▶ Developing applications using the jQuery UI controls
▶ Developing applications using the jQuery UI interactions
▶ Developing applications using the jQuery UI special effects
▶ Defining the basic page layout

T
hird-party libraries are a cornerstone of creating web-based applications
today because most developers (and even many designers) simply don’t

have the time to perform every task required to create a new site by hand.
In fact, it doesn’t make sense to create everything by hand when someone
else already has done most of the work for you. The day of the Application
Programming Interface (API), as libraries are often called, is at hand. This
chapter is about two of the most popular libraries: jQuery and jQuery UI.
Of course, there are many other libraries out there and you’ll work with a
number of them as the book progresses.

Third-party libraries differ in what they can do for you. Both jQuery and jQuery
UI are JavaScript libraries. Up to this point in the book, you haven’t used any
JavaScript at all. In most cases, you’ll use at least some JavaScript or another
language on your site, but, as the examples in previous chapters prove, there
are situations when all you need is CSS to accomplish a task. The jQuery and
jQuery UI examples in this chapter focus on the sorts of tasks that you can’t
perform using CSS, such as discovering what kind of browser a user has.

In order to use some of the features of jQuery UI, you need to know a little
more about the special selectors it uses and the way it interacts with the page.
This chapter provides a short section that presents the essentials of working

116 Part II: Making Layouts Fast and Simple with Libraries

with jQuery UI to produce some really interesting special effects on a page.
More importantly, once you know the way that jQuery UI works, you’ll find that
you can create some pretty amazing pages with very little JavaScript code.

 This book is not a tutorial on using JavaScript. In fact, it would take another
book to perform that task. My book, HTML5 Programming with JavaScript for
Dummies (which you can find at www.dummies.com), provides a detailed
guide for working with JavaScript. The book starts simply and moves through
a number of topics, including using third-party libraries for a wealth of tasks.
You can also find a number of helpful JavaScript tutorials online. The best of
these tutorials is on the W3Schools.com site at www.w3schools.com/js/.
If you really don’t do well with online tutorials, you can watch the JavaScript
video, “Learn JavaScript in 30 Minutes,” at www.youtube.com/watch?v=_
cLvpJY2deo.

Using the jQuery Core Features
The jQuery library (http://jquery.com/) helps you perform non-graphical
tasks, such as detecting a user’s browser, with relative ease. This library is
designed to work with a broad array of browsers and doesn’t rely on any
particular platform to do its work. The library automatically handles browser
and platform differences for you, so you don’t have to worry about whether a
particular bit of CSS requires a -moz- or a -webkit- prefix to work. All you
need to think about is getting your work done.

 The examples in this book show you how to access jQuery directly from the
Internet, so you don’t have to do anything special to use it except provide
the required link on the page (much as you already do for CSS). However, if
you want to use a local copy of jQuery to make your page work faster and to
handle some security issues for your users, you can download a copy of the
jQuery library from http://jquery.com/download/. The API is also fully
documented online at http://api.jquery.com/. You can also get help
with questions about issues not discussed in this book at http://forum.
jquery.com/. Mobile device support is something that many API vendors
haven’t really tackled yet, so your Android (or other mobile device) may not
work well with the examples in this chapter. The list of browsers that jQuery
supports appears at http://jquery.com/browser-support/.

Detecting the user’s browser type
In most cases, developers don’t get to choose a user’s browser. To determine
whether a particular user can work with your application, then, you need first
to detect the user’s browser — and then determine whether that browser is
acceptable.

http://www.dummies.com
http://www.w3schools.com/js/
http://www.youtube.com/watch?v=_cLvpJY2deo
http://www.youtube.com/watch?v=_cLvpJY2deo
http://jquery.com/
http://jquery.com/download/
http://api.jquery.com/
http://forum.jquery.com/
http://forum.jquery.com/
http://jquery.com/browser-support/

117 Chapter 6: Creating a Test Site with jQuery and jQuery UI

 Creating the code required to perform this task by hand isn’t impossible, but
it can be hard. Articles like the one at www.javascripter.net/faq/
browsern.htm tell you how to perform this task, but one look at the code
should tell you that it’s a complex task. (You can see the output from this
example code at www.javascripter.net/faq/browserv.htm.)

jQuery makes it possible to perform the detection with relative ease. The
following example shows one method to detect the name and version of
the user’s browser. It relies on the latest 1.x version of jQuery, which is ver-
sion 1.10.1 at the time of this writing. (You can find complete code for this
example in the \Chapter 06\jQuery folder of the downloadable code as
BrowserDetect.html.)

<!DOCTYPE html>
<html>
 <head>
 <title>Detect a Browser</title>
 <script
 src=”http://code.jquery.com/jquery-latest.js”>
 </script>
 <script
 src=”http://code.jquery.com/jquery-migrate-1.2.1.js”>
 </script>
 </head>
 <body>
 <h1>Browser Information</h1>
 <p id=”name”></p>
 <script language=”JavaScript”>
 var browser =

Pros and cons of accessing libraries online
Many libraries such as jQuery provide both
downloadable and direct Internet access ver-
sions of the code. Each method has pros and
cons that you must consider. This book uses
the Internet access technique because of the
advantages it provides. You gain access to the
most recent version of the library this way to
ensure that the code you’re using has all of the
latest fixes in it. In addition, all you need is the
page source — there is no need to download
the JavaScript code. Trying to send JavaScript
to some clients proves difficult because the
client firewall prevents the transfer.

However, there are also disadvantages to using
the Internet approach that are addressed by
the downloadable code. For instance, a library
vendor can update a library in a way that
makes your application break, or the vendor
may decide to remove the library altogether.
Another problem is that using the Internet
approach means that a heavily loaded server
could slow your application to a crawl — using
a local download doesn’t incur this problem.

http://www.javascripter.net/faq/browsern.htm
http://www.javascripter.net/faq/browsern.htm
http://www.javascripter.net/faq/browserv.htm

118 Part II: Making Layouts Fast and Simple with Libraries

 $.uaMatch(navigator.userAgent).browser;
 $(‘p[id=”name”]’).html(
 “Browser Name: ” + browser + “”);
 </script>
 <p id=”version”></p>
 <script language=”JavaScript”>
 $(‘p[id=”version”]’).html(
 “Version Number: ” + $.browser.version +
 “”);
 </script>
 </body>
</html>

This is an HTML5 page, so it starts with the HTML declaration, <!DOCTYPE
html>. As with the examples in Chapter 1, this example begins with a basic
structure that includes the <html>, <head>, <title>, and <body> tags.

The code begins with the first <script> tag that uses the src attribute to
tell the browser where to find the jQuery library. You can copy this infor-
mation as shown to any page where you want to use jQuery. Anyone who
uses the application will automatically have access to jQuery as long as the
browser can access the Internet. (You can also download a copy of jQuery
for local access from the jQuery site.)

 The latest 1.x version of jQuery doesn’t support the browser detection feature
directly. You can read about this omission at http://api.jquery.com/
jQuery.browser/. In order to make the feature work with anything newer
than jQuery 1.8.3, you must also include the link for the jQuery Migrate library
(http://code.jquery.com/jquery-migrate-1.2.1.js) as shown in
the example.

The <body> of the page starts out with a <h1> tag that contains the page’s
heading. The next step is to provide a place for jQuery to put the browser’s
name. In this case, the example uses a <p> (paragraph) tag that has an id
of name. The first <script> creates a var (variable) named browser and
places the browser’s name in it. The browser name is always provided to
your application as part of the JavaScript navigator.userAgent object,
but working with this object is time-consuming, so this code shows a one-line
method for obtaining the information.

It’s time to display the name onscreen. The $ (dollar sign) is a spe-
cial symbol that refers to the jQuery library, which is also called an
Application Programming Interface (API). The bit of code that says,
$(‘p[id=”name”]’).html, tells jQuery to use the <p> tag with an id value
of name to hold some HTML. This is a kind of selector. You can read about
jQuery selectors in general in the “Selecting elements” section, later in this
chapter, or in specific online at http://api.jquery.com/category/
selectors/.

http://api.jquery.com/jQuery.browser/
http://api.jquery.com/jQuery.browser/
file:///Volumes/Working/Tech/9781118441428/9781118441428%20Text/9781118441428%20Final%20Text/../07 Proofer/02 Fm Proofer/(http:/code.jquery.com/jquery-migrate-1.2.1.js
http://api.jquery.com/category/selectors/
http://api.jquery.com/category/selectors/

119 Chapter 6: Creating a Test Site with jQuery and jQuery UI

You now have a specific tag selected. The code then tells jQuery to create
some text, a , and then place the name of the browser within that
span. All this information appears in the <p> tag after the script executes.

Next comes a second <p> tag. This one has an id attribute of version.
The accompanying script starts out the same as before. The $(‘p[id=
”version”]’).html entry tells jQuery to place some HTML in the <p>
tag with an id attribute of version. In this case, jQuery provides what you
need as a property. All the code has to do is tell jQuery to place the value
in browser.version within the <p> tag to display the browser’s version
number. When you run this example, you see output similar to what’s shown
in Figure 6-1.

Figure 6-1:
Detecting

the browser
name and
version is

made easier
when using

jQuery.

Using feature detection
An alternative to detecting the browser’s name
and version is to detect the features it sup-
ports directly by testing for them. For example,
instead of inferring that a browser supports
Asynchronous JavaScript and XML (AJAX) by
verifying the browser name and version, you
can test the browser’s ability to use AJAX by
executing code that relies on AJAX. In fact, this
is the technique currently recommended by the
makers of jQuery (http://api.jquery.
com/jQuery.support/). The library auto-
matically runs the required tests for you and
then places the results in properties that you
can check. You can check the ajax property to
determine whether the browser supports AJAX.

Although this technique is directly supported in
the latest version of jQuery, there are problems
using it as well. The most important issue to
consider is that the site tells you outright that
the library might have certain detection fea-
tures pulled without notice or without a long
deprecation cycle, which means that your code
could simply stop working at some point. You
could wake up some morning to find that the
ajax property is no longer available and that
your application is failing as a result. The jQuery
testing technique is a poor way to detect the
functionality of the browser that you’re using
because it’s unreliable.

http://api.jquery.com/jQuery.support/
http://api.jquery.com/jQuery.support/

120 Part II: Making Layouts Fast and Simple with Libraries

 A library can detect only the browsers it’s designed to detect. Consequently,
jQuery detects some browsers, but not others. For example, you can’t currently
use it to detect an Android browser because Android isn’t in the list of browsers
supported by jQuery (which focuses on desktop browsers). Most browser
detection methods rely on user agent strings that contain information about the
browser (see http://msdn.microsoft.com/library/ms537503.aspx for
details). To see the user agent string for your browser, check out What’s My
User Agent? (www.whatsmyuseragent.com/). You can generally find lists of
user agent strings for devices online. For example, the Android user agent
strings appear at www.gtrifonov.com/2011/04/15/google-android-
user-agent-strings-2/. With enough knowledge, you can usually modify
third party libraries to detect other browser types, but that topic is well outside
the scope of this book.

Selecting elements
You can use jQuery to perform a vast array of object selections in your appli-
cation, but for the most part, you use the basic selectors. You can read more
about them at http://api.jquery.com/category/selectors/basic-
css-selectors. Here’s a list of basic selectors that you commonly use:

 ✓ All selector (“*”): Selects all the elements in the document.

 ✓ Object selector (object): Selects the specific object types. The most
commonly used object is document.

 ✓ Class selector (“.class”): Selects a specific class as specified by the
class attribute for an element. This selector always appears within
quotes and is preceded by a period.

 ✓ Element selector (“element”): Accesses all the elements with a par-
ticular tag name, such as p for the <p> tag. This selector always appears
within quotes.

 ✓ ID selector (“#id”): Chooses a specific element with the id attribute
value specified. This selector always appears within quotes and is pre-
ceded by a pound sign (#).

 ✓ Multiple selector (“selector1, selector2, selectorN”): Selects
each of the elements specified in the comma delimited list.

One of the more commonly used selectors is the element selector. After you
select an element, you can change it in a number of ways. For example, you
might choose to change the text associated with that element in some way
(later examples will show all sorts of other ways to manipulate output). The
following example shows how to select elements and modify their associated
text. (You can find complete code for this example in the \Chapter 06\
jQuery folder of the downloadable code as SelectingElements.html.)

http://msdn.microsoft.com/library/ms537503.aspx
http://www.whatsmyuseragent.com/
http://www.gtrifonov.com/2011/04/15/google-android-user-agent-strings-2/
http://www.gtrifonov.com/2011/04/15/google-android-user-agent-strings-2/
http://api.jquery.com/category/selectors/basic-css-selectors/
http://api.jquery.com/category/selectors/basic-css-selectors/

121 Chapter 6: Creating a Test Site with jQuery and jQuery UI

<!DOCTYPE html>

<html>
<head>
 <title>Selecting Elements</title>
 <script
 src=”http://code.jquery.com/jquery-latest.js”>
 </script>
</head>

<body>
 <h1></h1>
 <p></p>

 <script type=”text/javascript”>
 $(“h1”).text(“A Sample Header”)
 $(“p”).text(“This is a sample paragraph.”)
 </script>
</body>
</html>

The example begins with simple <h1> and <p> tags that don’t contain any
text. If you displayed this page without the script, you’d see a blank page.
However, with the script in place, the page now contains information as shown
in Figure 6-2. It’s also possible to use the text() method to obtain the current
value of an object of any sort (assuming the object actually contains text).

Figure 6-2:
jQuery

provides a
number of

methods
for select-

ing objects,
including
element

selection.

Changing an element’s CSS
The previous two sections about jQuery have described various mechani-
cal ways in which you can use the library to obtain specific results. The
jQuery library is mostly used to perform these sorts of necessary, but low-
level tasks. You can, however, use jQuery to perform some fancier tasks by

122 Part II: Making Layouts Fast and Simple with Libraries

incorporating CSS. There’s an actual .css() method you can use to access
the CSS associated with an object or to modify the CSS used by that object.
You always see the change made to the CSS because the jQuery changes are
inline, rather than internal or external CSS.

Imagine that you want to create a formatted multiplication table that auto-
matically changes the color of a selected cell to make it easier to see. The
example uses JavaScript to generate the table. Of course, you could also man-
ually generate the table using standard code, but this approach is simpler.
(You can find complete code for this example in the \Chapter 06\jQuery
folder of the downloadable code as NestedLoop.html.)

// Start the table.
document.write(“<table>”);

// Start a heading row.
document.write(“<tr>”);

// Create a heading.
for (var i = 0; i <= 10; i++)
{
 if (i == 0)
 {
 document.write(“<th />”);
 }
 else
 {
 document.write(“<th>” + i + “</th>”);
 }
}

// End the heading row.
document.write(“</tr>”);

for (var i = 1; i <= 10; i++)
{
 // Start a data row.
 document.write(“<tr>”)

 // Create the row header.
 document.write(“<th>” + i + “</th>”);

 for (var j = 1; j <= 10; j++)
 {
 // Add each data element.
 document.write(“<td>” + i * j + “</td>”);
 }

 // End a data row.
 document.write(“</tr>”)

123 Chapter 6: Creating a Test Site with jQuery and jQuery UI

}

// End the table.
document.write(“</table>”);

This code starts by creating a <table> and creating a heading row, <tr>,
for it. The loop simply adds the numbers 1 through 10 to the header using
heading, <th>, tags. After the header row is complete, the code then begins
to create the data rows. Each data row begins with a heading, followed by the
multiplied values. The double loop creates a square table that shows the mul-
tiplied values all the way up to 10 * 10.

In order to make this example pleasant to look at, you’d want to use CSS to
differentiate the rows and columns. The highlighted cell would use a larger
font size and a different font color. In order to make this change, the example
uses the .Selected internal CSS style shown here.

<style type=”text/css”>
 .Selected
 {
 color: blue;
 font-size: 30px;
 font-weight: bold;
 }
</style>

The example now contains a table with multiplied values and a special style for
the selected cell. However, it still lacks any formatting for the rows and there
isn’t any way to select a specific cell so that it will have the required special
formatting. The following code presents one way to accomplish these goals.

// Perform some basic formatting.
$(“th:even”).css(“background-color”, “lightblue”);
$(“th:odd”).css(“background-color”, “lightgreen”);
$(“td:even”).css(“background-color”, “lightgreen”);
$(“td:odd”).css(“background-color”, “lightblue”);
$(“th, td”).css(“width”, “50px”);

// Add a special effect.
$(“td”).mouseover(
 function()
 {
 $(this).toggleClass(“Selected”);
 });
$(“td”).mouseout(
 function()
 {
 $(this).toggleClass(“Selected”);
 });

124 Part II: Making Layouts Fast and Simple with Libraries

The formatting consists of selecting the <th> and <td> elements and then
using a basic filter to choose between odd and even elements. The odd ele-
ments receive one background color, and the even elements receive another.
The code then uses a multiple selector to apply the same width formatting to
each of the cells. By combining selectors and selector filters, you can create
some interesting effects with little programming. It’s important to remember
that this table is programmatically generated, so applying formatting to it
could be difficult.

The special effect starts with the <td> elements. When a user hovers the
mouse pointer over a particular element, the code applies the .Selected
CSS formatting to it. Likewise, when the user places the mouse pointer some-
where else, the effect is toggled back to the original formatting used by the
<td> element. Toggling the formatting is a quick way to create a mouseover
effect. Figure 6-3 shows typical output from this example.

Figure 6-3:
The table
is a little

nicer and
includes
a special

effect now.

Understanding jQuery UI
Although jQuery is interesting, it lacks pizzazz. For the most part, you can’t
use it to create any sort of special visual effect (at least, aside from the
sorts of visual effects you could use CSS to perform). The jQuery UI library
(http://jqueryui.com), on the other hand, works with the user interface.
You use it to add new kinds of interactions, expand the number of controls
at your disposal, create special effects, and perform utilitarian tasks, such as
positioning user interface elements precisely.

All the examples in this section require that you provide a link to the jQuery
UI as well as jQuery. They also use the jQuery Cascading Style Sheet (CSS)
that helps create a pleasant presentation. These external elements make the

http://jqueryui.com/

125 Chapter 6: Creating a Test Site with jQuery and jQuery UI

coding task easier. Make sure you include the following entries in the heading
of the file for each of the examples:

<script
 src=”http://code.jquery.com/jquery-latest.js”>
</script>
<script
 src=”http://code.jquery.com/ui/1.9.2/jquery-ui.js”>
</script>
<link
 rel=”stylesheet”
 href=”http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css” />

You can always download the required files if desired. However, this
approach makes it easier for your application to receive required updates.
The following sections introduce you to jQuery UI and help you understand
how you can use these features to create more interesting applications.

 Using a third-party library doesn’t limit your ability to personalize the
output. A number of sites show how to modify the CSS, for example, to
create some interesting results (see http://benknowscode.wordpress.
com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-
the-basics/ as an example). Chapter 13 demonstrates techniques you can
use to modify the CSS for jQuery and jQuery UI to produce your own custom-
izations. For now, all you really need to know is that many of the effects that
you see in this chapter owe their special nature to the use of CSS.

Using the jQuery UI Controls
Widgets are specialty controls you can use to create special effects on a page.
The advantage of these controls is that they can make your application easier
to use and more appealing as well. The disadvantage of widgets is that they
can be overused or used incorrectly.

 A widget is a good idea only when it materially adds to the usefulness and
accessibility of your application. When you find yourself admiring the pizzazz
that a widget adds to the application — rather than how it makes the user
work faster or with greater ease — reconsider using the widget. Your applica-
tion may work a lot better without it.

HTML5 already comes with a number of useful generic controls of all sorts.
For example, if you need a standard check box for your application, rely on
HTML5 to provide it. The controls described in the following sections are
special in some way. For example, the Accordion widget makes it easy to
focus user attention by hiding unused elements from sight. The jQuery UI

http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/
http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/
http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/

126 Part II: Making Layouts Fast and Simple with Libraries

library does provide access to additional widgets that aren’t discussed in the
sections that follow. Most widgets, such as Button, have HTML5 counter-
parts and therefore aren’t that useful.

Working with Accordion
You use the accordion to hide any page element from view. When a user
selects a category, the elements in that category become visible, and the
elements from all other categories are hidden. The effect is to focus user
attention and make the user more efficient in performing specific tasks. The
following code is all you need to make this feature usable. (You can find
complete code for this example in the \Chapter 06\Widgets folder of the
downloadable code as Accordion.HTML.)

$(function()
 {
 $(“#Configuration”).accordion();
 });

The code is concise, but the secret in this case is the way you create the tags
for your page. Figure 6-4 shows how the form appears to the user. Notice that
the Accordion widget hides from view the settings that the user isn’t focus-
ing on. When the user clicks Background Color, the Foreground Color options
are hidden from view. Likewise, clicking Options reveals the Options controls.

Figure 6-4:
The

Accordion
widget

focuses
user

 attention.

The controls in each area don’t matter to the Accordion widget, but the
HTML5 formatting does. This form also includes a submit button. If you
don’t configure the controls properly, the submit button becomes part of
the accordion effect, and clicking it no longer submits the form. Here’s a con-
densed view of the HTML5 for this example:

127 Chapter 6: Creating a Test Site with jQuery and jQuery UI

<form id=”ConfigForm”
 method=”get”
 action=”Accordion.html”>
 <div id=”Configuration”>
 <h2>Foreground Color</h2>
 <div>
 <input id=”FGRed”
 type=”radio”
 name=”Foreground”
 value=”Red”
 checked=”checked” />
 <label for=”FGRed”>Red</label>

... More inputs and labels ...
 </div>
 <h2>Background Color</h2>
 <div>
 <input id=”BGRed”
 type=”radio”
 name=”Background”
 value=”Red”
 checked=”checked” />
 <label for=”BGRed”>Red</label>

... More inputs and labels ...
 </div>
 <h2>Options</h2>
 <div>
 <input id=”Sounds”
 type=”checkbox”
 name=”Sounds”
 value=”SpecialSounds” />
 <label for=”Sounds”>Use Special Sounds</label>

 <input id=”Effects”
 type=”checkbox”
 name=”Effects”
 value=”SpecialEffects” />
 <label for=”Effects”>Use Special Effects</label>
 </div>
 </div>
 <input id=”ChangeConfig”
 type=”submit”
 value=”Change Configuration” />
</form>

Notice that you must place the headings control groups within a sepa-
rate <div> and then label that <div> as the one you want to use for the
accordion effect. A separate <div> houses the individual controls for a
specific group. The submit button is part of the form, but it’s outside the
Configuration <div>. When you click the Change Configuration button,
you see that the form works as it should — by examining the address field
content. Using the defaults, the resulting URL contains Accordion.html?
Foreground=Red&Background=Red when you click Change Configuration.

128 Part II: Making Layouts Fast and Simple with Libraries

Working with Datepicker
There are situations where HTML5 currently provides a solution for a particu-
lar need, but few vendors have implemented it yet. This is the case with the
date and time support for HTML. Only Opera and Chrome provide support for
the date and time features. For example, if you want to add a date to a form,
you can use the date input type as shown here:

<label for=”Date”>Enter a Date: </label>
<input id=”Date”
 type=”date” />

The default date is today. When the user clicks the field, the application dis-
plays a date picker control, but only when you use Opera or Chrome. Until
the other vendors provide date and time support, it’s still necessary to use
the jQuery UI Datepicker widget to ensure that all of your users can enter
a date with ease. The following code shows how to use the Datepicker
widget. (You can find complete code for this example in the \Chapter 06\
Widgets folder of the downloadable code as Datepicker.HTML.)

$(function()
 {
 $(“#DateEntry”).datepicker();
 })

DateEntry is a standard <input type=”text”> control. When the user
clicks the control, jQuery UI automatically displays a calendar like the one
shown in Figure 6-5.

Figure 6-5:
The

Datepicker
widget
makes

entering
dates much

easier.

129 Chapter 6: Creating a Test Site with jQuery and jQuery UI

Working with Dialog
Both HTML5 and JavaScript make it possible to display dialog boxes. For
example, you can see a combination of an HTML5/CSS3 dialog box that doesn’t
require the use of JavaScript at www.codeproject.com/Tips/170049/
Pure-HTML-5-CSS-3-Modal-Dialog-Box-no-JavaScript. Adding
JavaScript means you have instant access to the alert(), confirm(), and
prompt() functions for limited direct dialog box display. You also have all of
the functionality that JavaScript can provide to create truly amazing custom
dialog boxes. The problem with all of these approaches is that you may need
to write a considerable amount of code to obtain the desired result. On the
other hand, using jQuery UI makes it possible to create these dialog box types
without much coding at all:

 ✓ Basic

 ✓ Animated

 ✓ Modal

 ✓ Modal with confirmation

 ✓ Modal form

 ✓ Modal message

Additionally, even a basic jQuery UI dialog box provides better functionality
than the JavaScript alert() function. You can move the dialog box around,
resize it, and close it by using the X in the upper-right corner. The text can
also be decorated in various ways because it uses standard HTML input. The
following example begins by creating an internal style to use to decorate the
text. (You can find complete code for this example in the \Chapter 06\
Widgets folder of the downloadable code as DialogBox.HTML.)

<style type=”text/css”>
 .Normal
 {
 font-family: Arial, Helvetica, sans-serif;
 color: SaddleBrown;
 background-color: Bisque;
 }
 .Emphasize
 {
 color: Maroon;
 font-style: italic;
 font-size: larger;
 }
</style>

http://www.codeproject.com/Tips/170049/Pure-HTML-5-CSS-3-Modal-Dialog-Box-no-JavaScript
http://www.codeproject.com/Tips/170049/Pure-HTML-5-CSS-3-Modal-Dialog-Box-no-JavaScript

130 Part II: Making Layouts Fast and Simple with Libraries

This code provides a few simple changes to the text — just enough so you
can see the custom CSS at work. The following code creates the dialog box on
screen automatically when you load the page.

<h1>Creating a Simple Dialog Box</h1>
<div id=”DialogContent”
 title=”Simple Dialog Example”
 hidden>
 <p class=”Normal”>
 This is some
 interesting
 text for the dialog box!
 </p>
</div>
<script type=”text/javascript”>
 $(“#DialogContent”).dialog();
</script>

The dialog box requires two elements — a container, such as a <div>, to
hold the caption in the title attribute and a textual element, such as a <p>,
to hold the content. Notice that the paragraph text includes a in this
case to provide emphasis to the word interesting. You can format the
content in any way desired without modifying the call to jQuery UI at all.

The script uses an id selector to access the <div>. It then makes a simple
call to dialog() to display the dialog box on screen. Figure 6-6 shows the
output from this example. Notice that it provides a pleasing appearance and
it contains formatted content, unlike the alert() function, which provides
an austere, square dialog box that lacks any formatting.

Figure 6-6:
Creating
custom

dialog boxes
is easier

when using
jQuery UI.

131 Chapter 6: Creating a Test Site with jQuery and jQuery UI

Working with Progressbar
Users are impatient, and sometimes a process takes a while to complete. A
file downloads only so fast, and some transactions become bogged down on
the server. A progress bar makes it possible for the developer to keep the
user informed about the progress of a task. Modern programming strate-
gies try to keep the user from waiting at all by performing longer tasks in the
background, but sometimes a user can’t proceed until the task is done. This
is the time you need to rely on a progress bar to keep the user from attempt-
ing to stop the process before it completes.

The following example shows how to use a progress bar. In this case, the prog-
ress bar is updated through a timing loop. Each time the timer expires, the
progress bar is updated, and the timer is reinstituted. The result is that the
progress part indicator moves from left to right and that the timer eventually
stops when the indicator moves all the way to right. (You can find complete
code for this example in the \Chapter 06\Widgets folder of the download-
able code as Progressbar.HTML.)

// Configure the progress bar.
$(function()
 {
 $(“#Progress”).progressbar({value: 0});
 })

// Create a variable to hold the timer object.
var Timer;

// Create a variable to hold the total timeout.
var Timeout;

function StartTimer()
{
 // Initialize the timeout.
 Timeout = 0;

 // Set the progress bar maximum value.
 $(“#Progress”).progressbar(
 “option”, “max”, parseInt($(“#StartValue”).val()));

 // Create the timer variable.
 Timer = window.setTimeout(UpdateTimer, 100);
}

function UpdateTimer()
{
 // Get the maximum value.
 var MaxTime =
 $(“#Progress”).progressbar(“option”, “max”);

132 Part II: Making Layouts Fast and Simple with Libraries

 // Check for the end of the timing cycle.
 if (Timeout >= MaxTime)
 return;

 // Update the Timeout value.
 Timeout += 100;

 // Update the percentage completed.
 $(“#PercentDone”).text(
 Math.round((Timeout/MaxTime)*100));

 // Set the progress bar value.
 $(“#Progress”).progressbar(“value”, Timeout);

 // Create the timer variable.
 Timer = window.setTimeout(UpdateTimer, 100);
}

The first task is to create the progress bar itself by calling progressbar().
Notice that you must provide an initial value as input. However, the progress
bar configuration isn’t complete — the call to StartTimer() later will per-
form some additional configuration tasks.

The StartTimer() function is called when the user clicks the Start Timer
button on the form. This function initializes two global variables. Timer is
a timer object used to animate the progress bar. Timeout is the current
elapsed time in milliseconds. This function also configures the max option for
the progress bar. The indicator is a percentage of the current value and the
max value properties. The maximum value is provided by the user through an
<input type=”text”> control, StartValue.

Whenever Timer expires, it calls UpdateTimer(). UpdateTimer() obtains
the maximum time value from the progress bar and places it in MaxTime.
It then verifies that Timeout is less than MaxTime. When Timeout finally
reaches MaxTime, the progress bar has reached 100 percent and it’s time to
stop the timer.

The next step is to update Timeout to the next value. Every iteration
advances Timeout by 100 milliseconds.

After updating Timeout, the example updates the onscreen percentage,
which is stored in a with an id of PercentDone. It also updates the
progress bar’s value attribute so that the bar moves to the next position.

A timer fires only once. To create the next loop of the iteration, the
example must reset Timer. When the next 100 millisecond wait is over,
UpdateTimer() is called again and the process begins anew. Figure 6-7
shows typical output from this example.

133 Chapter 6: Creating a Test Site with jQuery and jQuery UI

Figure 6-7:
Use prog-
ress bars

to show
the user

how far a
process has
 completed.

Working with Slider
Sliders give the user the capability to input a value visually — as part of a
whole. A slider ensures that the user inputs a correct value within a range of
values, so you don’t need to worry about security issues or incorrect values.
As a result, sliders provide a valuable means of allowing variable input. The
following example shows how to use a slider in your application. It begins
with the HTML used to define the location and basic appearance of the slider.
(You can find complete code for this example in the \Chapter 06\Widgets
folder of the downloadable code as Slider.HTML.)

<h1>Using the Slider Widget</h1>
<div id=”Slider”>
 0
 50
</div>
<div>Value: </div>

The slider has a minimum value of 0 and a maximum value of 50. The slider
also uses the following CSS to give the output a more pleasing appearance
and to make it possible to mark the beginning and ending of the scale.

<style type=”text/css”>
 #Slider
 {
 width: 50%;
 margin: 30px;
 }

 #Left
 {

134 Part II: Making Layouts Fast and Simple with Libraries

 position: absolute;
 top: 15px;
 left: -5px;
 }

 #Right
 {
 position: absolute;
 top: 15px;
 left: 99%;
 }
</style>

As you can see, the CSS places the beginning and end of the scale in a par-
ticular position so that it matches the size of the slider. As far as the user
knows, the scale and the slider are one piece, but they’re actually two pieces
in the code. The remaining piece of the code is the script shown here.

$(function()
 {
 $(“#Slider”).slider(
 {
 // Set the maximum slider value.
 max: 50,

 // Perform tasks when the value changes.
 change: function(event, ui)
 {
 // Display the current slider value.
 $(“#Value”).text(
 $(“#Slider”).slider(“value”));
 }
 });
 })

In this case, the code sets the maximum slider value to 50. The minimum
value defaults to 0. However, you can set both the maximum and minimum
values to any starting or stopping position. Even though the example doesn’t
show it, the Slider can have more than one handle, so it can represent a
range. This flexibility means that you can ask the user to input both a starting
and a stopping point.

One of the most commonly used events is change. The example displays the
new value each time the user finishes moving the handle. However, the way in
which you use the output depends on your application. Generally, you use the
output to provide data input or application control. However, it’s a good idea
to display the actual slider value so the user knows the actual input value.
(See Figure 6-8.)

135 Chapter 6: Creating a Test Site with jQuery and jQuery UI

Figure 6-8:
Sliders
make it

possible to
obtain pre-

cise input
in a given

range from
the user.

Working with Tabs
Many developers use tabbed interfaces to reduce application complexity.
If you can focus the user’s attention on one item at a time, you reduce the
potential for errant input. This example provides an alternative to the exam-
ple shown in the “Using the Accordion widget” section, earlier in this chap-
ter. As with that example, you begin with a simple function call. (You can find
complete code for this example in the \Chapter 06\Widgets folder of the
downloadable code as Tabs.HTML.)

$(function()
 {
 $(“#Configuration”).tabs();
 });

The trick for this example is in the HTML tags, just as it was for the
Accordion widget example. There are some important differences in how
you create the two pages to obtain the desired appearance, as shown in the
following code:

<form id=”ConfigForm” method=”get” action=”Tabs.html”>
 <div id=”Configuration”>

 Foreground Color
 Background Color
 Options

 <div id=”Tab1”>
 <input id=”FGRed”
 type=”radio”
 name=”Foreground”
 value=”Red”
 checked=”checked” />
 <label for=”FGRed”>Red</label>

... More inputs and labels ...

136 Part II: Making Layouts Fast and Simple with Libraries

 </div>
 <div id=”Tab2”>
 <input id=”BGRed”
 type=”radio”
 name=”Background”
 value=”Red”
 checked=”checked” />
 <label for=”BGRed”>Red</label>

... More inputs and labels ...
 </div>
 <div id=”Tab3”>
 <input id=”Sounds”
 type=”checkbox”
 name=”Sounds”
 value=”SpecialSounds” />
 <label for=”Sounds”>Use Special Sounds</label>

 <input id=”Effects”
 type=”checkbox”
 name=”Effects”
 value=”SpecialEffects” />
 <label for=”Effects”>Use Special Effects</label>
 </div>
 </div>
 <input id=”ChangeConfig”
 type=”submit”
 value=”Change Configuration” />
</form>

Notice that the <h2> elements are gone in this case. Instead of using head-
ings to define the separation between elements, you provide an unordered
list () instead. The list must contain a href to each of the <div> ele-
ments in the page. There isn’t any difference in the page content. You also
need to provide some CSS to format the control as shown here.

<style>
 #Configuration
 {
 width: 90%;
 text-align: center;
 }
 #Configuration div
 {
 text-align: left;
 }
</style>

In this case, the #Configuration style defines the overall size of the
tabbed interface and the fact that the tabs have centered text. The
#Configuration div changes the content alignment to left. Figure 6-9
shows typical output from this example.

137 Chapter 6: Creating a Test Site with jQuery and jQuery UI

Figure 6-9:
Tabs focus

the user’s
attention,

just as the
accordion

interface
does.

To make a change, you click the tab that contains the information you want
to see. You make changes as normal. Clicking the Change Configuration
button sends the changes to the server. If you test this example by using the
same process you did for the accordion example, you get precisely the same
results — only the interface appearance has changed.

Performing jQuery UI Interactions
The way in which a user interacts with an application is important. When
a set of interactions seems contrived or proves inconvenient, users have
to concentrate too hard on what the application should be able to do and
how to obtain that result, which makes them lose focus on their work goal.
Many business users are currently in the process of moving from desktop
applications to browser-based applications for at least part of their work.
Consequently, these users often anticipate having desktop-like features in
their browser-based application solutions. The following sections describe
some jQuery UI features that help you provide that desktop experience to
your users.

Creating a Draggable Interface
Sometimes a user needs to reposition screen elements to make them easier
to see or work with. Creating an environment in which the user can move
items around need not involve writing reams of code. In fact, all you really
need is a single method called draggable(). The following code shows the
method used to create a draggable paragraph in this example. (You can find
complete code for this example in the \Chapter 06\Interactions folder
of the downloadable code as DragContent.HTML.)

138 Part II: Making Layouts Fast and Simple with Libraries

$(function()
 {
 $(“#MoveMe”).draggable();
 });

This code is interesting because it actually creates a jQuery anonymous func-
tion that extends the jQuery environment rather than working with any par-
ticular page feature. The focus of this call is a paragraph (<p> tag) with an id
of MoveMe. All you need to do is access that member and call draggable()
to make it move around. Try the downloadable example and you find that
you can move the paragraph anywhere you want on the page.

To create a movable box, this example relies on a custom style. The style
creates a border, allows plenty of room for the text, and then centers the text
both horizontally and vertically. Here’s the style used for this example:

#MoveMe
{
 border: solid;
 width: 200px;
 height: 5em;
 text-align: center;
 line-height: 5em;
}

 Many developers experience problems vertically centering text within a <p>
tag. You can find a number of ways to perform this task. However, one of the
easiest ways to get the job done in a platform- and browser-consistent manner
is to use the line-height style as shown in the example. The trick though is
to set the height and line-height styles to the same value — the text will
always appear in the middle.

Creating a Droppable Interface
Sometimes a user needs to drag an item to a container and drop it in the con-
tainer. There are many instances of this process in current applications. For
example, the concept of dragging an item to a trash can and dropping it to
delete it is consistent across all platforms. If you want to send an item to the
printer, you drag its icon to the printer icon and drop it there.

Of course, to create this effect, you must have one item that’s draggable
and another item that’s droppable. The preceding section describes how
dragging works. As with that previous example, this example relies on some
custom CSS to create a particular effect onscreen.

139 Chapter 6: Creating a Test Site with jQuery and jQuery UI

#FillMe
{
 border: solid;
 width: 400px;
 height: 10em;
 text-align: center;
 line-height: 10em;
 position: absolute;
 top: 250px;
 left: 250px;
}
.Filled
{
 background-color: lightblue;
}

There are two states for the droppable container: empty and filled. It starts
out empty and uses the #FillMe style. When the draggable paragraph
is dropped into the droppable paragraph, the style changes to .Filled.
The following code shows how dragging and dropping can work together to
create this desirable user interaction. (You can find complete code for this
example in the \Chapter 06\Interactions folder of the downloadable
code as DropContent.HTML.)

$(function()
 {
 $(“#MoveMe”).draggable();
 $(“#FillMe”).droppable(
 {
 drop: function(event, ui)
 {
 $(this)
 .addClass(“Filled”)
 .html(“Filled!”);
 }
 });
 });

This example uses the same code for the MoveMe <p> tag. A second <p> tag,
with the id of FillMe, acts as a container. When a user drags MoveMe to
FillMe, the code calls the anonymous function associated with the drop
event. Notice how the example begins with the event name, followed by
a colon (:), followed by the anonymous function to handle that event.
Notice how the code uses addClass() to modify the class of FillMe. The
 droppable() method supports these events:

 ✓ create: Indicates that the droppable item has been created.

 ✓ activate: Indicates that a draggable item is active. You can use this
event to change the droppable item style so that the user can see where
to drop an item.

140 Part II: Making Layouts Fast and Simple with Libraries

 ✓ deactivate: Indicates that the user has stopped dragging an item. You
can use this event to change the droppable style back to its original state.

 ✓ over: Fires when the draggable item is over the top of the droppable
item. You can use this event to indicate when the user should release
the mouse to drop the item into the container.

 ✓ out: Fires when the draggable item has moved out of the droppable
item container. You can use this event to tell the user that it’s no longer
possible to drop an item into the container.

 ✓ drop: Tells the droppable item (the container) that it has received a
draggable item.

You can create an event handler for any of the events you want to handle
in your code. In fact, there are several opportunities for special effects that
would focus the user’s attention.

Creating a Resizable Interface
The wide variety and types of screens used to display information make it
necessary to allow the user to resize elements as needed. In most cases, you
can simply allow the user to make the element any size. However, there may
be situations where you need to monitor the amount of resizing so that you
can tailor content to meet the needs of the container. The following example
shows how to resize an object and monitor its size. (You can find complete
code for this example in the \Chapter 06\Interactions folder of the
downloadable code as ResizeContent.HTML.)

$(function()
 {
 $(“#ResizeMe”).resizable(
 {
 minWidth: 200,
 minHeight: 60,
 resize: function(event, ui)
 {
 $(“#Content”)
 .html(“Width: “ +ui.size.width +
 “
Height: “ + ui.size.height);
 }
 });
 });

This example is interesting because it shows how to set properties as well
as respond to events. In this case, the minWidth and minHeight properties
keep the element a specific minimum size — the user can’t make the element
smaller.

141 Chapter 6: Creating a Test Site with jQuery and jQuery UI

The code also responds to the resize event. There’s a special requirement
for resizing you need to know about. The resizing container is separate from
the content element. Here’s the HTML for this example:

<div id=”ResizeMe”>
 <p id=”Content”>
 Resizable Paragraph
 </p>
</div>

The associated style, #ResizeMe, provides a border around the <div>, sets
the starting height and width, and centers the content in the container. When
you want to write content to the screen, you must use the content element,
not the container element. Otherwise the sizing handles will disappear, and
the user won’t be able to resize the element after the first time. In this case,
the current size of the container appears as part of the ui object passed to the
resize event handler. You access the information though the size.width
and size.height properties, as shown in the code.

Creating a Selectable Interface
Making it possible to select from a list of items reduces the chance that the
user will enter incorrect information. Fortunately, HTML5 already comes with
a number of selection controls, but you may find that these controls don’t
quite fulfill your needs at times. In this case, a custom selection technique
implemented with jQuery UI might answer the need. A selection sequence
can consist of a <div> and a series of <p> tags, as shown here. (You can find
complete code for this example in the \Chapter 06\Interactions folder
of the downloadable code as SelectContent.HTML.)

<div id=”Selections”>
 <p id=”Red”>Red</p>
 <p id=”Green”>Green</p>
 <p id=”Blue”>Blue</p>
 <p id=”Purple”>Purple</p>
</div>

Notice that the <div> acts as a container and the <p> tags act as items
within the container. (The example includes CSS styles to format each of
the selectors, such as using a red background for the Red element — a
#Selections style defines the width of the selectors, along with the margin
and padding used to display them.) No matter how you implement your
custom list (and it need not be the arrangement shown), it must have a
container/item arrangement like the one shown here. When you have the
arrangement in place, you can create a selection and tracking mechanism like
the one shown in the following code:

142 Part II: Making Layouts Fast and Simple with Libraries

// Create an array to track the selections.
var Selections = new Array();

// Handle the selects and unselects.
$(function()
 {
 $(“#Selections”).selectable(
 {
 selected: function(event, ui)
 {
 // Verify the item hasn’t already
 // been added.
 if (Selections.indexOf(ui.selected.id) ==
 -1)

 // Add the id of the selected item
 // to the array.
 Selections.push(ui.selected.id);
 },

 unselected: function(event, ui)
 {
 // Find the location of the unselected
 // item in the array.
 var Index =
 Selections.indexOf(ui.unselected.id);

 // Remove that item.
 Selections.splice(Index, 1);
 }
 });
 })

// Display the results.
function ShowResults()
{
 alert(“You have selected: “ + Selections);
}

The Array, Selections, keeps track of the current selection list. To make
the <div>, Selections, selectable, you use the selectable() method. This
example uses two events, selected and unselected, to keep track of the
current selections. When the user selects a new item, the selected event han-
dler verifies that the item doesn’t already appear in Selections, and then it
pushes the new item onto Selections.

The unselected event handler must perform two tasks. First, it must locate
the unselected item using the indexOf() method. Second, it must use
splice() to remove that item from Selections.

143 Chapter 6: Creating a Test Site with jQuery and jQuery UI

This example doesn’t provide any fancy output, but you can see for yourself
how well the selection methodology works. Click Show Selections to display
the list of selected items. The ShowResults() event handler displays a list
of the selections for you. In a production application, you could just as easily
process each of the selected items.

A final piece to this particular application is the need to define one special
style. You must provide a means for the display to register the selected state
of a particular item, which means providing values for the #Selections
.ui-selected style, as shown here:

#Selections .ui-selected
{
 background: black;
 color: white;
}

When a user selects an item, the background turns black with white text so
the user can see a visual change. You could also modify the text as a second
means of helping the user see the selection.

Creating a Sortable Interface
Certain kinds of sorting are easy for computers to do. For example, a com-
puter can put items in alphabetical order much faster than a human can,
especially when the list is long. However, sorts aren’t always logical. You may
want the user to sort a list of items by personal preference or other criteria
that the computer can’t even understand. In these cases, you need a means
of allowing manual sorts — and this example gives you just what you need.
The following example lets a user sort items by unspecified criteria. (You can
find complete code for this example in the \Chapter 06\Interactions
folder of the downloadable code as SortContent.HTML.)

$(function()
 {
 $(“#SortMe”).sortable();
 })

function ShowResults()
{
 // Create the ouput string.
 var Output = “The sort order is:\n “;

 // Locate each of the required items and
 // add them to the string.
 $(“#SortMe p”).each(
 function(index, element)

144 Part II: Making Layouts Fast and Simple with Libraries

 {
 Output += element.innerHTML.substr(74);
 });

 // Display the result.
 alert(Output);
}

The sortable() call is all that you need to do to make the list visibly sort-
able. The user can place the elements, whatever those elements might be, in
any order desired. To make this call work, however, you do need to create a
container — a <div> in this case — and a list of items, specifically <p> tags.
The SortMe id goes with the <div>.

Accessing the items in order is also a requirement. Otherwise there’s no point
in letting the user sort the items. In this case, it’s actually easier to use other
jQuery functionality to obtain the list of elements in the order in which they
appear and process them that way. ShowResults() demonstrates one tech-
nique for performing this task. You begin by creating the appropriate selector,
which begins with the <div>, SortMe, and ends with each <p> tag it contains.
The anonymous function receives both an index and an element argument.
By checking the innerHTML property of the element, you can obtain the mon-
iker for that <p> tag. The result is displayed in a dialog box.

This example also makes use of a special jQuery UI CSS style. This style cre-
ates a double-ended arrow that helps the user understand that each item can
move up or down in the list. You create it using a like this:

You can find a list of these icons at http://jquery-ui.googlecode.com/
svn/tags/1.6rc5/tests/static/icons.html. It’s important to create
icons that match the way your list appears onscreen.

Creating jQuery UI Special Effects
Special effects can add pizzazz to your site. They can turn mundane informa-
tion into something with that special sparkle that people will remember long
after they’ve read the material you provide. Using special effects correctly
can draw the user’s attention to a particular area of the page or help the user
understand a process when using an animated sequence. The point is that
effects are normally an addition to the page, not the main focus of it. Effects
normally don’t present any sort of information, but they can enhance the
impact of information you do present. The following sections describe some
of the more interesting effects that you can create using jQuery UI.

http://jquery-ui.googlecode.com/svn/tags/1.6rc5/tests/static/icons.html
http://jquery-ui.googlecode.com/svn/tags/1.6rc5/tests/static/icons.html

145 Chapter 6: Creating a Test Site with jQuery and jQuery UI

Adding color animations
If you want to perform an actual color animation in your application, you
need to use the animate() method. This method seems to be a work in
progress because the documentation for it isn’t nearly as well-written as the
other documentation for jQuery UI. The method does seem to work for all the
target platforms and browsers for this book, but you’ll want to experiment to
ensure that it will work for every browser you need to target. The color will
actually transition in this case. It’s also possible to control the text colors to
a large degree. The following example shows the most commonly used transi-
tions. (You can find complete code for this example in the \Chapter 06\
Animations folder of the downloadable code as Animate.HTML.)

$(function()
 {
 // Track the normal state.
 var State = true;

 $(“#ChangeColors”).click(
 function()
 {
 if (State)
 {
 // Set to the changed state.
 $(“#SampleText”).animate(
 {
 backgroundColor: “#0000ff”,
 color: “white”,
 borderColor: “#ff0000”,
 height: 100,
 width: 600
 }, 1500);
 }
 else
 {
 // Set to the normal state.
 $(“#SampleText”).animate(
 {
 backgroundColor: “#7fffff”,
 color: “black”,
 borderColor: “#00ff00”,
 height: 50,
 width: 400
 }, 1500);
 }

 // Change the state.
 State = !State;
 }
)
 })

146 Part II: Making Layouts Fast and Simple with Libraries

If you’re thinking that this code looks like it works similar to CSS, it does,
but the animate() method provides a significantly reduced list of features
it can change. You can change many features of the text and the container
that holds it, including both the width and height. However, you can’t change
things like the kind of border used to hold everything — even though you
can change the color of the border. The jQuery UI documentation states that
animate() supports these properties:

 ✓ backgroundColor

 ✓ borderBottomColor

 ✓ borderLeftColor

 ✓ borderRightColor

 ✓ borderTopColor

 ✓ color

 ✓ columnRuleColor

 ✓ outlineColor

 ✓ textDecorationColor

 ✓ textEmphasisColor

The library-supplied examples (those provided by the vendor on the vendor’s
site) show that a few other properties are supported, including width, height,
and borderColor. Use these non-published properties with care. Even though
they work now, they may not be supported in future releases of the library.

Employing class transitions
Using CSS classes can have an interesting effect on the presentation of infor-
mation onscreen. jQuery UI makes it possible to use CSS classes to perform
animations in four different ways:

 ✓ Adding a class

 ✓ Removing a class

 ✓ Switching between classes

 ✓ Toggling a class

In all four cases, the effect doesn’t occur immediately — you provide a time
delay to make the transition between presentations slow enough for the user
to see. (You can find complete code for this example in the \Chapter 06\
Animations folder of the downloadable code as ManageClasses.HTML.)

147 Chapter 6: Creating a Test Site with jQuery and jQuery UI

$(function()
 {
 $(“#ChangeClass”).click(function()
 {
 $(“#SampleText”).addClass(
 “Effect”, 1500, RemoveClass);
 return false;
 });

 function RemoveClass()
 {
 $(“#SampleText”).removeClass(
 “Effect”, 1500, “easeOutBounce”);
 };

 $(“#SwitchClass”).click(function()
 {
 $(“.Normal”).switchClass(
 “Normal”, “Effect”, 1500, “easeInElastic”);
 $(“.Effect”).switchClass(
 “Effect”, “Effect2”, 1500,
 “easeOutElastic”);
 $(“.Effect2”).switchClass(
 “Effect2”, “Normal”, 1500,
 “easeInOutElastic”);
 return false;
 });

 $(“#ToggleClass”).click(function()
 {
 $(“.Normal”).toggleClass(“Effect”, 1500);
 return false;
 })
 })

There are three buttons on the front of the page: Add/Remove Class, Switch
Between Classes, and Toggle Between Classes. Each of these buttons is
assigned an event handler as shown. The RemoveClass() function is a call-
back for the Add/Remove Class button. After the transition for the event han-
dler has ended, the code automatically calls this function.

All of these animations work in precisely the same way — they add or
remove classes to or from the specified element. In this case, a <div> named
SampleText is the target of the animations. The difference between the
method calls is how they perform their task. The addClass() method per-
forms a straightforward addition of a class. You supply the name of the class
to add as the first argument. If the class already exists for the element, noth-
ing happens. Likewise, the removeClass() method removes the specified

148 Part II: Making Layouts Fast and Simple with Libraries

class from the element. Again, you supply the name of the class to remove as
the first argument.

The switchClass() method switches between one class and another. You
can use it to create multiple transitions. For example, this example shows
how to switch between three transitions. The Normal class is replaced with
Effect, Effect is replaced with Effect2, and Effect2 is replaced with
Normal. Consequently, you see the animations rotate between three classes.
You supply the name of the class to remove as the first argument and the
name of the class to add as the second argument.

The toggleClass() method adds or removes a class depending on whether
the class is assigned to the element. In this case, the code adds Effect when
SampleText lacks it and removes Effect when SampleText has it applied.
You supply the name of the class to toggle as the first argument.

 jQuery UI can’t animate all styles. For example, there’s a transition between
having the text left justified and having it centered in this example. This transi-
tion can’t be animated. What you see is that the effect occurs at the end of the
animation. In addition, some effects are animated, but they aren’t animated in
the way you might expect. For example, if an element changes color, the new
color is used throughout the animation, but you see it gradually fade in.

Each of these method calls includes a time delay of 1500 milliseconds. This
value indicates the amount of time in which the animation occurs. The default
setting is 400 milliseconds, which is a little hard for most people to see.
However, this argument is optional, and you don’t have to supply it to make
the method work.

The addClass() method includes another optional argument, a callback
function. The callback function is called when the animation is over. The
example uses the callback function to toggle the effect. However, a callback
could be used for any of a number of purposes. For example, you could use
it to create a validation sequence to ensure that users enter the correct data
for form fields that have incorrect information.

An animation can also use an easing function. This function determines how
the animation appears onscreen. The default setting is to use the swing
easing function, which provides a gentle transition from the starting point
to the end point that most users will appreciate (the animation starts a tiny
bit slow, becomes a bit faster and more linear in the middle, and then ends
a bit slow). However, you might want a little more pizzazz or at least a differ-
ent effect. You can see a list of easing functions at http://api.jqueryui.
com/easings. This example uses a number of different easing functions so
that you get an idea of how they work.

http://api.jqueryui.com/easings/
http://api.jqueryui.com/easings/

149 Chapter 6: Creating a Test Site with jQuery and jQuery UI

Working with advanced easing
Many applications require that you show or hide elements at different points
of application execution. It may be something as simple as not needing the
element at that particular time (such as a progress bar). In most cases, you
simply want the element to go away. Whether the user notices the disappear-
ance is immaterial to the application’s functionality. However, you may want
the user to notice the change in some situations. For example, a user might
select an option that makes other options inaccessible. Using a special effect
to make this more noticeable could be helpful.

The jQuery UI library provides several means of controlling element visibility
in an animated manner. The fact that the element is shown or hidden doesn’t
change, but the way in which the application shows or hides it does. For
example, you could use a slide effect to show that a new element has been
added due to a choice the user has made. There are four main methods of
animating elements by using this technique:

 ✓ Use an effect where the element visually changes.

 ✓ Show a hidden element by using an effect.

 ✓ Hide an element by using an effect.

 ✓ Toggle an element’s visibility by using an effect.

The effect that you choose for working with an element controls how jQuery UI
visually manages it. For example, an explode effect causes the element to break
into pieces, with each piece moving in a different direction off screen. The fol-
lowing keywords define the sorts of effects that you can use (you can find addi-
tional details at http://api.jqueryui.com/category/effects):

blind bounce clip
drop explode fade
fold highlight puff
pulsate scale shake
size slide transfer

In addition to the actual effect, you can use an easing function to make the
effect more pronounced or special in other ways. You can see a list of easing
functions at http://api.jqueryui.com/easings. The following example
shows how to use all four approaches for working with element visibility.
There are actually four buttons used for the example, but element visibility
limits you to seeing just three at a time because you can’t show an element
that’s already visible or hide an element that’s already hidden. (You can find
complete code for this example in the \Chapter 06\Animations folder of
the downloadable code as Visibility.HTML.)

http://api.jqueryui.com/category/effects
http://api.jqueryui.com/easings/

150 Part II: Making Layouts Fast and Simple with Libraries

$(function()
 {
 // Keep track of the element hidden state.
 var Hidden = false;

 $(“#Effect”).click(
 function()
 {
 $(“#SampleText”).effect(
 “bounce”, “easeOutBounce”, 1500);
 });

 $(“#Show”).click(
 function()
 {
 Hidden = false;

 $(“#SampleText”).show(
 “slide”, 1500, ChangeButtonState);
 });

 $(“#Hide”).click(
 function()
 {
 Hidden = true;

 $(“#SampleText”).hide(
 “explode”, 1500, ChangeButtonState);
 });

 $(“#Toggle”).click(
 function()
 {
 Hidden = !Hidden;

 $(“#SampleText”).toggle(
 “scale”, {percent: 0}, 1500,
 ChangeButtonState);
 });

 // Set the button state as needed.
 function ChangeButtonState()
 {
 if (Hidden)
 {
 $(“#Show”).attr(“hidden”, false);
 $(“#Hide”).attr(“hidden”, true);
 }
 else
 {
 $(“#Show”).attr(“hidden”, true);

151 Chapter 6: Creating a Test Site with jQuery and jQuery UI

 $(“#Hide”).attr(“hidden”, false);
 }
 }
 })

The example begins by creating a variable, Hidden, to track the state of the
element. When the element is hidden, the Show button is displayed. Likewise,
when the element is displayed, the Hide button is displayed as well. This
functionality is controlled by a callback function, ChangeButtonState().

The code for the Effect button simply performs an effect on the element,
SampleText. In this case, you see the bounce effect. The performance of
this effect is modified by the easeOutBounce easing function, and the entire
animation lasts 1500 milliseconds. The actual visibility is unchanged, but the
user sees an animation of the element onscreen. You could use this technique
to point out fields that have incorrect information or require additional infor-
mation. Of course, you can also use it to perform any other sort of simple
animation desired — including a looped animation, where the animation is
constantly replayed.

The Show and Hide button code work hand-in-hand to hide or display
SampleText. The Show button uses the slide effect, and the Hide button
uses the explode effect. Both perform the task over 1500 milliseconds.
Notice that both event handlers set the state of Hidden directly because the
state is an absolute based on the task that the button performs. The event
handlers also provide ChangeButtonState() as a callback function. The
animation calls this function after the animation has completed to set the
button state correctly.

The Toggle button works like a combination of the Show and Hide buttons —
the event handler simply toggles the SampleText visual state. Because the
state isn’t known, the value of Hidden is also toggled. In this case, the event
handler calls the scale effect, which requires an additional argument in the
form of percent. Make sure you check the effects to determine whether they
require additional arguments — most don’t. When the animation completes,
the application calls ChangeButtonState() to reconfigure the user interface
as needed.

Performing transforms
It’s possible to use jQuery to perform transformations and these transforma-
tions are often more powerful, yet easier to use, than the native CSS transfor-
mations I discuss in Chapter 5. However, in order to gain this functionality, you
must download a jQuery plug-in — a special kind of library that extends the

152 Part II: Making Layouts Fast and Simple with Libraries

native jQuery functionality. The best plug-in to perform the task is jquery.trans-
form.js (http://louisremi.github.io/jquery.transform.js/index.
html). You can go to this page and see the transformations demonstrated.

The host page doesn’t contain a link for downloading the plug-in, unfortu-
nately. In order to obtain a copy of this plug-in, you go to www.down
scripts.com/jquery.transform.js_javascript-script.html and
click the Click Here to Download link. You receive a .ZIP file containing a
number of files, including the jquery.transform.js file that you must
copy into your application directory. (You must perform the download and
obtain access to jquery.transform.js to work with the example in this
section.) To gain access to this plug-in, you add the following <script> tag
after all of the other jQuery entries (position is important).

<script
 src=”jquery.transform.js”>
</script>

Using this plug-in works much like any other jQuery function call. This
example relies on a <div> that contains a <p> with the required content.
In this case, the example simply rotates the content, but you have access to
all of the usual CSS transformations. The interesting part is the simplicity
of the script used to perform the task. (You can find complete code for this
example in the \Chapter 06\Animations folder of the downloadable code
as Transform.HTML.)

<script type=”text/javascript”>
 $(“#TransformMe”).css(“transform”, “rotate(45deg)”);
</script>

This script simply says to perform a standard CSS transformation of rotating
the TransformMe <div> 45 degrees. In addition to static transformations,
this plug-in also provides animated transformations using the animate()
function with a timing function that defines how long to perform the anima-
tion. It’s also quite easy to combine transformations to create various special
effects. Make sure you try the examples in the test folder of the downloaded
plug-in to see the full range of effects that this plug-in provides.

Defining the Basic Page Layout
You’ll find quite a few more examples throughout this book of working with
jQuery plug-ins, but one requires a special mention. The jQuery UI Layout
Plug-in (http://layout.jquery-dev.net/) makes it incredibly easy to

http://louisremi.github.io/jquery.transform.js/index.html
http://louisremi.github.io/jquery.transform.js/index.html
http://www.downscripts.com/jquery.transform.js_javascript-script.html
http://www.downscripts.com/jquery.transform.js_javascript-script.html
http://layout.jquery-dev.net/

153 Chapter 6: Creating a Test Site with jQuery and jQuery UI

create various kinds of layouts for your site without spending a lot of time.
The layouts can incorporate all sorts of interesting features, such as the abil-
ity to resize partitions dynamically. That’s right; the user can choose how to
make each section of a page in order to focus on the content of interest.

The examples on the site can be complex, but it pays to review them at
http://layout.jquery-dev.net/demos.cfm. This plug-in can help you
create amazingly functional sites with very little programming. Of course, a
simpler example is always welcome. This example demonstrates the simplest
layout you can create using this plug-in. The starting point is to add a refer-
ence to the plug-in library. This is one case where you don’t have to download
anything. (You can find complete code for this example in the \Chapter 06\
Layout folder of the downloadable code as Layout.HTML.)

<script
 src=”http://layout.jquery-dev.net/lib/js/jquery.layout-latest.js”>
</script>

In order to create the panes used for this example, you define <div> tags for
North, South, East, West, and Center panes. Of all the panes, the Center
pane is the only one that’s required.

<div class=”ui-layout-center”>
 Center
</div>
<div class=”ui-layout-north”>
 North
</div>
<div class=”ui-layout-south”>
 South
</div>
<div class=”ui-layout-east”>
 East
</div>
<div class=”ui-layout-west”>
 West
</div>

Notice that each pane has a specific class value associated with it. In order
to create a pane in a particular location, you must use the associated pre-
defined class. Otherwise the layout plug-in won’t recognize the <div> as a
pane. The object within each <div> defines the content for that pane.

The example also requires use of a script to associate the panes with the
plug-in. The following script is all you need to make this example functional.

http://layout.jquery-dev.net/demos.cfm

154 Part II: Making Layouts Fast and Simple with Libraries

<script type=”text/javascript”>
 $(document).ready(
 function ()
 {
 $(‘body’).layout({ applyDemoStyles: true });
 });
</script>

The arguments you supply to the layout() function determine the appear-
ance of the panes. The applyDemoStyles argument provides the simplest
layout method. Figure 6-10 shows the output from this example.

Figure 6-10:
The user

can resize
or toggle

individual
panes in this

layout.

You can perform two tasks with the example. Notice the dark area in the
middle of each line separating the panes. Clicking this dark area will close
that pane. Clicking it again will reopen the pane. When you hover the mouse
cursor over one of the lines, it turns into a double-pointed arrow. This arrow
lets you resize the pane as needed.

Chapter 7

Creating Pages Using
Dynamic Drive

In This Chapter
▶ Developing pages using layouts
▶ Adding menus to pages
▶ Creating nice looking image compositions
▶ Developing usable and friendly forms
▶ Obtaining the free icons

D
ynamic Drive (www.dynamicdrive.com/) is a library composed of
many resources — only some of which appear in this chapter. This

site provides more than an API and it offers selections in more than just
CSS3 or JavaScript. Of course, for this book, what you’re really interested in
is CSS3 — along with perhaps a little JavaScript to perform some additional
tasks. With this in mind, the chapter discusses:

 ✓ Layouts

 ✓ Menus

 ✓ Image management

 ✓ Form management

 ✓ Icon usage

When you get an opportunity, you should also check out the other resources
this site provides (especially the tools). For example, the site provides access
to seven different kinds of calendar widgets you can add to your application
(as of this writing — there may be more by the time you read this). The tools
are really interesting as well. For example, ::Email Riddler (www.dynamic
drive.com/emailriddler/) transforms your e-mail address into a series of
incomprehensible numbers and letters — making it hard for spam harvesters
to grab it. Yet the address is still usable by users of your site.

http://www.dynamicdrive.com/
http://www.dynamicdrive.com/emailriddler/
http://www.dynamicdrive.com/emailriddler/

156 Part II: Making Layouts Fast and Simple with Libraries

Each of the sections that follow will explore a different area of Dynamic Drive.
Most focus exclusively on CSS3, which should amaze you because it turns
out that CSS3 can do more than expected for a simple method of defining
page style. Make sure you check the site relatively often for updates. The new
items appear at www.dynamicdrive.com/new.htm.

Working with Layouts
The layout you use on a site determines its usability. Choose the wrong layout
and the user will have a hard time interacting with your site. Frustrated users
are always just a click away from the next site — one that uses a layout that
works better with the information being presented. Dynamic Drive presents
two basic kinds of layout: two-column and three-column. These two layouts
can be further subdivided into fixed (the column size always remains the
same) and liquid (the column size changes to match the amount of content
displayed). A third layout type supports frames within pages.

This section provides a common set of instructions you can use to work with
any of the layouts that Dynamic Drive provides. All of the layouts provide the
same presentation, which makes them easy to review, compare, and use with
your own code. After you create a page containing a layout, you’ll want to
modify it. The “Modifying the layouts” section, later in this chapter, provides
instructions for performing this task. The following sections describe these
layouts and how to use them in detail.

Developing with fixed layouts
Some content requires that you provide specific positioning and maintain
columns of a particular size. For example, forms require this kind of preci-
sion, because otherwise you can’t be sure that a user can even see which
fields to fill out.

 A fixed column doesn’t change size with the browser. When the browser
window becomes too small to hold the width of the columns, a horizontal
scrollbar appears so that the user can scroll right and left within the content.
Likewise, when the browser window becomes larger than the content width,
the page displays blank areas to the right and left of the two columns.

Fixed columns are typically used when the presentation of the content requires
it. For example, a site with pictures (such as my blog at http://blog.john
muellerbooks.com/) may use a fixed column to ensure the pictures are
always placed correctly on the page. You can find the Dynamic Drive fixed lay-
outs at www.dynamicdrive.com/style/layouts/category/C12/.

http://www.dynamicdrive.com/new.htm
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://www.dynamicdrive.com/style/layouts/category/C12/

157 Chapter 7: Creating Pages Using Dynamic Drive

Developing with liquid layouts
Liquid layouts, also called fluid layouts (the site uses both terms interchange-
ably), rely on content without particular dimensions. It doesn’t matter if news
is printed in a wide format or a tall format. All that really matters is that the
user can access all the words in a story in order to read the information.

 A fluid column is one that automatically resizes to take advantage of the
browser window size. This format works best when the content is mainly text-
based or store sites, such as Amazon.com. Store sites especially want you to
see as much content as possible (hoping to make additional sales). You can
find the Dynamic Drive liquid layouts at www.dynamicdrive.com/style/
layouts/category/C13/.

Using two-column layouts
A two-column layout is great for a site where you want to create a list of links on
either the left or right side of the page and then have a wide area for content on
the other side. For example, many blogs use this type of setup. The two-column
layouts all appear at www.dynamicdrive.com/style/layouts/category/
C9/. Figure 7-1 shows a typical view of the layouts on this page.

Each listing provides an overview of what you can expect as output from the
layout. For example, the first entry is a two-column layout where both col-
umns are fixed.

Figure 7-1:
A listing of

the two-
column

layouts on
the Dynamic

Drive site.

http://www.amazon.com/
http://www.dynamicdrive.com/style/layouts/category/C13/
http://www.dynamicdrive.com/style/layouts/category/C13/
http://www.dynamicdrive.com/style/layouts/category/C9/
http://www.dynamicdrive.com/style/layouts/category/C9/

158 Part II: Making Layouts Fast and Simple with Libraries

The second entry is a repeat of the first, but notice that the narrow column
(the one that typically holds the links) is on the right rather than on the left.
Many forums (such as http://stackoverflow.com/) use this format to
present answers to questions. Placing the links on the right tends to put addi-
tional emphasis on the content because people look on the left side of the
page first (for the most part).

Some of the entries in this list have fluid columns. In every case, the fluid
column contains the content. All that happens, in this case, is that the con-
tent expands to fill the browser window so you can see more information
without scrolling. The left or right pane remains the same size so that the
links (or other content) continue to take up the same amount of space.

Working with layouts
To choose a particular layout, click its link. You see a page that contains a
better presentation of the layout at the top as shown in Figure 7-2. The text
contained in the layout is filler so that you can better judge how the layout
will feel with content in it. You can try resizing the browser to see how the
layout will look at different sizes.

Figure 7-2:
The upper

half of a
layout page

contains a
presenta-
tion of the

layout.

At the bottom of the same page, you see the CSS used to create the page’s
appearance as shown in Figure 7-3. The code appears in an internal CSS
<style> tag, but you can easily move it to an external CSS file if desired.

http://stackoverflow.com/

159 Chapter 7: Creating Pages Using Dynamic Drive

Figure 7-3:
The lower

half of a
layout page

contains the
code used

to create
the layout.

The code provides an entire page you can use for testing. The following steps
tell how to access the code.

 1. Click Expand.

 You see the code area of the page expand to show all of the code used
to create the layout.

 2. Click Select Code.

 The page selects all of the code in the code area for you.

 3. Right-click the highlighted code and choose Copy from the context
menu.

 The precise technique you use varies by browser and platform. For
example, you can press Ctrl+C on Windows systems or Command+C
on Mac systems to perform the same task. The idea is to get the code
placed on the Clipboard.

 4. Open your editor and paste the contents of the clipboard into a new file.

 You see the same example that appeared on the Dynamic Drive site.

 5. Save the new file.

 Use a filename that represents the layout you selected.

 6. Load the file into your browser.

 You see the complete Dynamic Drive example for the layout.

To use the layout on your own page, simply copy the content of the <style>
tag to the page you’re creating. It’s safe to ignore the script at the end of
the <head> section — its only purpose is to fill the page with sample data.

160 Part II: Making Layouts Fast and Simple with Libraries

However, you should make note of the styles used with elements in the page
layout. These styles and their associated <div> tags provide the actual
layout you see onscreen.

Modifying the layouts
It pays to try a few of the layouts to see what you want to do with them
before you begin creating a production project. Copy the source code from
the example on the Dynamic Drive site and place it into files as you expect to
use it. For the purposes of this example, you create an HTML5 file with the
following content obtained from the HTML code shown with the example.
(You can find complete code for this example in the \Chapter 07 folder of
the downloadable code as TwoColumnLayout.HTML.)

<!DOCTYPE html>

<html>
<head>
 <title>CSS Fixed Layout #2.1- (Fixed-Fixed)</title>
 <link rel=”stylesheet” href=”TwoColumnLayout.CSS” />
</head>

<body>
 <div id=”maincontainer”>
 <div id=”topsection”>
 <div class=”innertube”>
 <h1>CSS Fixed Layout #2.1- (Fixed-Fixed)</h1>
 <p>840px</p>
 </div>
 </div>
 <div id=”contentwrapper”>
 <div id=”contentcolumn”>
 <div class=”innertube”>
 <p>Content Column:
 640px</p>
 </div>
 </div>
 </div>
 <div id=”leftcolumn”>
 <div class=”innertube”>
 <p>Left Column: 200px</p>
 </div>
 </div>
 <div id=”footer”>
 <p>Footer</p>
 </div>
 </div>
</body>
</html>

161 Chapter 7: Creating Pages Using Dynamic Drive

 The example adds white space to the code provided on the Dynamic Drive site
for the purposes of making it easier to read and also to show how the structure
is created using the <div> tags. It’s a good idea to do the same thing with any
code you obtain from the site. You want to be sure that you understand how
the layout works before you begin performing any required modifications.

 The example removes the Dynamic Drive scripts because you don’t need them
to fill the sections with random content. However, it does add notes showing
the number of pixels used by default for each of the sections (the Dynamic
Drive example only notes the size of the fixed left column). If you modify the
CSS for this site, you should also change the notes you create about the fixed
column sizes.

The example also uses an external CSS file. Notice the addition of a <link>
tag in the <head>. The CSS for the external file is unchanged from the
<style> tag for the example page as shown here.

body{
margin:0;
padding:0;
line-height: 1.5em;
}

b{font-size: 110%;}
em{color: red;}

#maincontainer{
width: 840px; /*Width of main container*/
margin: 0 auto; /*Center container on page*/
}

#topsection{
background: #EAEAEA;
height: 90px; /*Height of top section*/
}

#topsection h1{
margin: 0;
padding-top: 15px;
}

#contentwrapper{
float: left;
width: 100%;
}

#contentcolumn{
margin-left: 200px; /*Set left margin to LeftColumnWidth*/
}

#leftcolumn{

162 Part II: Making Layouts Fast and Simple with Libraries

float: left;
width: 200px; /*Width of left column*/
margin-left: -840px; /*Set left margin to -(MainContainerWidth)*/
background: #C8FC98;
}

#footer{
clear: left;
width: 100%;
background: black;
color: #FFF;
text-align: center;
padding: 4px 0;
}

#footer a{
color: #FFFF80;
}

.innertube{
margin: 10px; /*Margins for inner DIV inside each column (to provide padding)*/
margin-top: 0;
}

At this point, you can load the page to start thinking about what you’d like
to modify. Figure 7-4 shows the page as it appears without modification after
copying it from the site and separating the HTML from the CSS.

Figure 7-4:
The two-

column
layout used

to create
an example

page.

The first option you’ll want to change is the colors used for the various
objects. Of course, the colors need to match the color scheme for your site.
The templates use hexadecimal color representations. You should modify
them to match those used by other templates on your site (if necessary).

Templates that rely on fixed column widths may require tweaking to work
with the rest of your site. To change the overall width of the page, you modify
the width property of the #maincontainer style. The left pane width is
controlled by the width property of the #leftcolumn style. The content
pane size is the difference between the #maincontainer style width and the

163 Chapter 7: Creating Pages Using Dynamic Drive

#leftcolumn style width. Dynamic Drive tends to use consistent naming, so a
layout that uses the right column for links would have a #rightcolumn style
that you modify to change the width of that column. If you change the size of
the #leftcolumn or #rightcolumn styles, then you also need to change the
margin-left property of the #contentcolumn style to match.

The height of the top section is only 90px. This could cause a problem when
working with a larger header. Change the height property of the #topsection
style to make it compatible with other headers on your site. Likewise, the footer
lacks an actual height, so you may need to modify it by adding a height prop-
erty to the #footer style to ensure each page of your site looks the same.

 These templates also rely on both the (bold) and (emphasis) tags.
Although both tags are still supported by HTML5, there’s a strong warning
with the tag to use it only as a last resort. If you plan long term use of
these templates, it would be a good idea to replace the tag entries with
the or <mark> tags, or better yet, just avoid using the and
 tags completely in favor of CSS formatting. These tags are leftovers from
the days before CSS made it possible to add various forms of emphasis and
bolding using the font-style and font-weight properties. The example
shows the tags intact, but the recommendation is to remove them and use
other kinds of formatting instead.

Using three column layouts
Three-column layouts are commonly used on sites that provide a list of generic
links on one side of the page, content in the middle, and advertising or page-
specific links on the other side. The Dynamic Drive layout pages show one use
of this layout where you see a list of offerings in the left pane, the actual layouts
in the content pane, and a list of sponsors in the right pane. There are variations
on this theme. One example appears on the Electronic Frontier Foundation site
at www.eff.org/about where you see site links in the left pane, information
about EFF in the content pane, and news links in the right pane. You can see a
list of the three column layouts at www.dynamicdrive.com/style/
layouts/category/C10/. As with the two-column layouts, you find a mix
of fixed and fluid layouts when working with the three-column layouts.

Of course, there are more types of three-column layouts than there are of
two-column layouts because more permutations are possible. In some of the
layouts, one of the side columns is fluid, as is the content column. There’s
even a layout where all three columns are fluid, which means that the entire
layout will resize itself to match the current browser window size.

 The one type of three-column layout missing from this site is one in which the
two columns are aligned, one over the top of the other. This form is commonly
used for online documentation, such as the Java 7 API at http://docs.
oracle.com/javase/7/docs/api/ as shown in Figure 7-5.

https://www.eff.org/about
http://www.dynamicdrive.com/style/layouts/category/C10/
http://www.dynamicdrive.com/style/layouts/category/C10/
http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/

164 Part II: Making Layouts Fast and Simple with Libraries

One way around this problem is to use another product, such as the UI
Layout plug-in for jQuery described in the “Defining the Basic Page Layout”
section of Chapter 6. Another alternative is to modify the CSS Fixed Layout
#3.3- (Fixed-Fixed-Fixed) layout shown in Figure 7-6.

Figure 7-5:
A three-
column

layout used
for docu-

mentation
purposes.

Figure 7-6:
The three-

column
layout

provides
three fixed

columns.

165 Chapter 7: Creating Pages Using Dynamic Drive

You don’t need to make any changes to the HTML part of this example. The
HTML5 version of the layout looks like this. (You can find complete code
for this example in the \Chapter 07 folder of the downloadable code as
ThreeColumnHelpLayout.HTML.)

<!DOCTYPE html>

<html>
<head>
 <title>
 CSS Fixed Layout #3.3- (Fixed-Fixed-Fixed)
 </title>
 <link rel=”stylesheet”
 href=”ThreeColumnHelpLayout.CSS” />
</head>

<body>
 <div id=”maincontainer”>
 <div id=”topsection”>
 <div class=”innertube”>
 <h1>
 CSS Fixed Layout #3.3- (Fixed-Fixed-Fixed)
 </h1>
 </div>
 </div>
 <div id=”contentwrapper”>
 <div id=”contentcolumn”>
 <div class=”innertube”>
 <p>
 Content Column: Fixed
 </p>
 </div>
 </div>
 </div>
 <div id=”leftcolumn”>
 <div class=”innertube”>
 <p>Left Column: 180px</p>
 </div>
 </div>
 <div id=”rightcolumn”>
 <div class=”innertube”>
 <p>Right Column: 190px</p>
 </div>
 </div>
 <div id=”footer”>
 <p>Footer</p>
 </div>
 </div>
</body>
</html>

166 Part II: Making Layouts Fast and Simple with Libraries

The CSS starts with the code supplied by the site. In order to modify this
code to provide the format required for help documentation, you need to
make a few small changes. The following procedure tells you how.

 1. Change the margin-left property for the #rightcolumn style to -840px.

 This change makes the right and left columns even.

 2. Change the width property for the #rightcolumn style to 180px.

 This change makes the right and left columns equal widths.

 3. Add a height property value of 250px to both the #leftcolumn and
#rightcolumn styles.

 This change allows both columns to use half the available space for
 content.

 4. Add a margin-top property value of 250px to the #rightcolumn style.

 This change positions the right column below the left column.

 5. Load the resulting page into your browser.

 You see a three-column layout like the one shown in Figure 7-7.

Figure 7-7:
The

modified
three-

column
layout will
serve well

for a docu-
mentation

site.

167 Chapter 7: Creating Pages Using Dynamic Drive

 The Dynamic Drive templates are flexible and can often serve other purposes
with a few small changes. The important thing is to start with a layout that
looks close to what you want to use.

Employing CSS frames
Frame layouts are typically quite simple and are often provided for compat-
ibility with mobile devices. A frame layout consists of one or more static
(fixed) content areas that could contain controls and a fluid content area
used to present information.

The main differentiation between a frame layout and a standard layout is that
the frame layouts contain no header or footer. As a consequence, you can
mash various frames together to create a composite page.

Developers also use frame layouts to hold other content. The frame becomes
a container used to hold content from various sources. The Dynamic Drive
frame layouts appear at www.dynamicdrive.com/style/layouts/
category/C11/. You can find frames with one, two, three, or four static
areas depending on the requirements of your site.

Unlike the other types of layout, frame layouts don’t show you how they
appear in the browser. You must copy the source and create the page locally
to see them. However, you use the same technique as usual to copy and use
the layout. Separating the CSS from the HTML will make working with the
template easier. Figure 7-8 shows the appearance of a sample template. (You
can find complete code for this example in the \Chapter 07 folder of the
downloadable code as CSSFrameLayout.HTML.)

Figure 7-8:
CSS frame
layouts are

incredibly
simple and
work well

with mobile
devices.

 The CSS frame layouts are configured to hide the scrollbars. As a result, any
content that doesn’t fit in the frame is inaccessible. You can change this
behavior by setting the overflow property of the #framecontent style to
scroll. However, changing this setting could also reduce the usability of the
layout with some types of smaller mobile devices.

http://www.dynamicdrive.com/style/layouts/category/C11/
http://www.dynamicdrive.com/style/layouts/category/C11/

168 Part II: Making Layouts Fast and Simple with Libraries

Creating Menus
Most sites use a menu system of some kind. In at least some cases, the menu
system uses image maps or some other technique that isn’t supported by
Dynamic Drive. However, most sites rely on horizontal, vertical, or combina-
tion menus. Over the years, users have gotten used to working with menus,
so using them on a site simply makes sense. A user understands how to use
a menu intuitively, so there’s no learning curve. Of course, poorly defined or
complex menu entries can still confuse users, but the mechanics of the menu
itself are well understood.

Developing horizontal menus
Horizontal menus have selections that appear in a horizontal line. Normally
these menus appear across the top of a content area, but menus can also
appear at the bottom of the content area or any place between. The point is
that a horizontal menu has a particular orientation. For most sites, the horizon-
tal menu represents main site selections, such as going to a list of products or
seeing the about page. Dynamic Drive provides seven pages of horizontal menu
offerings (as of this writing) that provide various special effects. Figure 7-9
shows just part of the first page (which contains seven entries).

Figure 7-9:
Horizontal
menus are
commonly

used for site
selections.

169 Chapter 7: Creating Pages Using Dynamic Drive

The menus all have a special effect. When you click a particular menu
selection, you see a page with a demonstration such as the one shown in
Figure 7-10. In order to see the special effect, you normally have to hover the
mouse pointer over the characters or graphics supplied as part of the menu.
For example, with the example menu, hovering the mouse pointer over one
of the hearts makes the heart spin around to indicate that the heart has been
selected as a menu option.

Notice that the top of the page also includes a description of the menu,
along with a listing of compatible browsers. The description usually contains
some technical notes as well. It’s important to read the technical notes after
reviewing the code to ensure you understand how to implement the menu.

The bottom half of the page contains the code for the example. Unlike the
layouts, the CSS and HTML are placed in separate windows as shown in
Figure 7-11, which means you don’t have to separate them manually. In addi-
tion, the HTML part doesn’t provide a complete page — it’s a fragment that
you’ll need to embed in your own page to test. (You can find this particular
example as a full page in the \Chapter 07 folder of the downloadable code
as HorizontalMenu.HTML.) However, you use the same technique as you
do with the layouts to expand and copy the code when desired.

Notice the link after the code. The example provides one menu that relies on
heart icons. You can click this link to download the icons if desired.

Figure 7-10:
Most menus

have some
special

effect that
activates
during a

mouseover
event.

170 Part II: Making Layouts Fast and Simple with Libraries

Figure 7-11:
The HTML

and CSS for
the example

appear in
separate

windows.

 In some cases, these icons are provided by other sites. The other site may have
made the icons inaccessible and you’ll find that you won’t be able to down-
load them after all (such as the heart-shaped social media icons used for this
example). A way around this problem is to download the icon directly from the
Dynamic Drive site. For example, the RSS icon shown in the example appears at
www.dynamicdrive.com/cssexamples/media/rss-heart.png.

Not all of the menus are a single layer. The Split Drop Down Menu (www.
dynamicdrive.com/style/csslibrary/item/split_drop_down_
menu/) provides two levels of selections A few of these menus rely on
third-party products, such as jQuery. The jQuery Drop Line Menu example
(www.dynamicdrive.com/style/csslibrary/item/jquery_drop_
line_menu/) provides multiple menu levels (up to four levels are shown
in the example). Because this isn’t a pure CSS solution, however, you need
to ensure that the users who access the site will have JavaScript support
enabled in their browsers.

Developing vertical menus
Vertical menus can be used for site redirection. However, many sites use
them for page-specific or topic-specific links. You find the vertical menu
options at www.dynamicdrive.com/style/csslibrary/category/C2/.
There aren’t as many vertical menu options as there are horizontal menus

http://www.dynamicdrive.com/cssexamples/media/rss-heart.png
http://www.dynamicdrive.com/style/csslibrary/item/split_drop_down_menu/
http://www.dynamicdrive.com/style/csslibrary/item/split_drop_down_menu/
http://www.dynamicdrive.com/style/csslibrary/item/split_drop_down_menu/
http://www.dynamicdrive.com/style/csslibrary/item/jquery_drop_line_menu/
http://www.dynamicdrive.com/style/csslibrary/item/jquery_drop_line_menu/
http://www.dynamicdrive.com/style/csslibrary/category/C2/

171 Chapter 7: Creating Pages Using Dynamic Drive

(only three pages’ worth). In addition, you might have a hard time finding
compatible horizontal and vertical menu pairs (the CSS3 shadow menus
come in both horizontal and vertical formats).

The vertical menus work the same as the horizontal menus do. The only dif-
ference is their orientation. The example pages contain the same types of
content and you must insert the HTML code into an existing page, just as you
do with the horizontal menus. The site doesn’t currently provide any multi-
level vertical menus, so if you need more than one menu level, you must use
a horizontal menu or locate a menu on another site.

Performing Image Magic
Graphic effects help sell site content and attract user attention to elements
you want to emphasize. They add pizzazz and help keep the user from click-
ing the link for the next site on a list of similar sites. When used effectively,
graphic effects can help you produce teaching aids and convey information
in a way that text or a static image couldn’t convey. However, implement-
ing image magic in the form of graphic effects is well within the purview of
graphic designers and many developers feel ill-equipped to add it to their
sites. That’s why the CSS image library that Dynamic Drive provides at www.
dynamicdrive.com/style/csslibrary/category/C4/ is so important.
None of these effects are earth-shattering, but some are quite dramatic.

 As with spices used on food, a few graphics go a long way. Filling your site
with special effects may sound like a great idea — the thinking goes that if a
few effects double traffic, then more would be even better — but the reality is
that too many graphic effects are a turnoff, and the images lose their magic.
It’s best to go for a few well-defined graphics effects that make a specific point
than to clutter your site with effects that boggle the user’s mind and draw
attention away from areas of interest.

The graphic effects pages work just like the pages used for layouts and
menus. The top of a selected effect shows the effect and provides both a
description and some explanatory notes about it. The bottom half of the page
contains the code required to implement the special effect. As with menus,
the graphics effects provide separate CSS and HTML sections and the HTML
code is provided as a snippet, rather than a full page.

There are currently two pages of graphic effects on the Dynamic Drive site.
Many of these effects help users see selections. For example, when you use
image bubbles (www.dynamicdrive.com/style/csslibrary/item/
image_bubbles_using_css3_transform_and_transitions/) the image

http://www.dynamicdrive.com/style/csslibrary/category/C4/
http://www.dynamicdrive.com/style/csslibrary/category/C4/
http://www.dynamicdrive.com/style/csslibrary/item/image_bubbles_using_css3_transform_and_transitions/
http://www.dynamicdrive.com/style/csslibrary/item/image_bubbles_using_css3_transform_and_transitions/

172 Part II: Making Layouts Fast and Simple with Libraries

that the user points to with the mouse appears bigger than the other images —
making it possible for the user to be sure of making the right selection. This
type of graphic effect can be useful when implemented correctly — and when
you take the needs of those with accessibility concerns into account.

One of the more interesting special effects is the Before and After (Peel Back)
Image (www.dynamicdrive.com/style/csslibrary/item/before_
and_after_peel_back_image/).You could easily use this particular effect
for more than simply showing an interesting graphic effect. In this case,
image magic could include a teaching aid. It’s possible to provide a problem
scenario. After coming up with an answer, the user hovers the mouse pointer
over the problem to reveal the answer underneath. It would make for an
interesting way to present answers during a teaching session.

Dressing Up Forms
Business runs on forms and it’s likely that your business will require some
forms on its site. The form content is determined by business need, of
course, and most developers can come up with a functional form for just
about any need. After all, developers spend a good deal of time creating
forms for just about every other application need. However, the forms that
Dynamic Drive provides at www.dynamicdrive.com/style/csslibrary/
category/C6/ offer a bit more pizzazz.

There are only three formats provided, along with a few stylish Submit but-
tons you can use in place of the defaults. The form with the most pizzazz
is the Responsive 2 Column Form (www.dynamicdrive.com/style/
csslibrary/item/responsive_2_column_form/) as shown in
Figure 7-12. It features shading and rounded corners to give the form that
special look. The Submit button appears at the bottom of the page — it’s
 relatively large and red, making it a lot easier for the user to see.

 All of these samples focus on design and not on functionality. You need to
consider accessibility requirements and security as part of creating a func-
tional form. For example, it’s essential to define a method for checking user
input to ensure the server receives usable data. These samples are a good
starting point for a completed form, not the entire solution.

http://www.dynamicdrive.com/style/csslibrary/item/before_and_after_peel_back_image/
http://www.dynamicdrive.com/style/csslibrary/item/before_and_after_peel_back_image/
http://www.dynamicdrive.com/style/csslibrary/category/C6/
http://www.dynamicdrive.com/style/csslibrary/category/C6/
http://www.dynamicdrive.com/style/csslibrary/item/responsive_2_column_form/
http://www.dynamicdrive.com/style/csslibrary/item/responsive_2_column_form/

173 Chapter 7: Creating Pages Using Dynamic Drive

Figure 7-12:
Use this

two-column
format to
dress up

your forms.

Using the Free Icons
Although most developers aren’t very good artists, they want their sites
to look nice. To do this, hiring a graphic artist is the best solution for truly
custom art. However, most sites need only two — or possibly three — pieces
of custom art (normally a logo and some sort of heading art to uniquely iden-
tify the site). The rest of the art usually consists of screenshots, clipart, line
art, and photographs. The screenshots are easy to grab and most developers
have used products such as Visio to create line art. Even if the developer
isn’t a good photographer, someone at the organization usually does possess
the required skills, which leaves the clipart.

If you do some research, finding the clipart you need for your site can be rela-
tively easy. For example, some of the example applications on Dynamic Drive

174 Part II: Making Layouts Fast and Simple with Libraries

include downloads for the graphics you see used with them. The “Developing
horizontal menus” section, earlier in this chapter, discusses one such sce-
nario. In this case, you see an array of heart-shaped social media icons.
There are many other examples and you need to look for them as you try the
examples.

Dynamic Drive isn’t the only site that provides free graphics, but it does pro-
vide an interesting array of buttons and icons you can use for your site. You
can view these graphics at www.dynamicdrive.com/style/graphics/.
Figure 7-13 shows an example of the 48 × 48 large icons you can download
(it’s relatively easy to resize icons to make them smaller, but the results
aren’t always perfect).

Figure 7-13:
The

Dynamic
Drive site
provides

access to
some com-
monly used

graphics
you need.

http://www.dynamicdrive.com/style/graphics/

Chapter 8

Using the Google API
In This Chapter
▶ Discovering why using Google API makes your job easier
▶ Working with the Google APIs Explorer
▶ Using multiple libraries in a single project

Y
ou’ve already seen the considerable array of programming-like tasks
that CSS can perform for you. However, you’ve also seen situations

where CSS needs a little help — in the form of JavaScript — to provide a com-
plete solution to a problem. This chapter further explores the combination
of CSS and JavaScript commonly used to create complete solutions through
the use of various Application Programming Interfaces (APIs). The use of
APIs has become incredibly popular because they make developers more
productive, reduce the requirement to maintain massive amounts of software
in-house, and solve a huge array of support issues (not to mention forcing
someone else to foot the bill).

So far, you’ve only looked at two APIs (jQuery and jQuery UI in Chapter 6) and
a library of pre-defined CSS aids (Dynamic Drive in Chapter 7), but a problem
should be apparent: Creating links for each of these APIs individually can
become cumbersome. The Google Content Distribution Network (CDN) (which
includes the Google API described later in this chapter) doesn’t completely
solve this problem, but it does make it possible to obtain access to a number
of these APIs from one location. Instead of wandering all over the Internet
looking for code, then, the Google CDN allows you to go to one central loca-
tion and have a selection of APIs to use. That’s the purpose of this chapter —
to help you understand the benefits of using a centralized code source and
then to explore that source.

Of course, part of the difficulty of using multiple APIs is learning how to
manage them, so this chapter also discusses that requirement. You also find
a discussion of the techniques you can use to help manage your access to the
Google CDN and how to determine which APIs to use on a given occasion. The
interesting part of using multiple APIs is that you get to pick the pieces you

176 Part II: Making Layouts Fast and Simple with Libraries

want and reject everything else. Even though you’re using the same code as
many other people, your distinctive combination of coding elements produces
a unique site that everyone can identify as particular to your organization.

 Most APIs target five browsers: Internet Explorer, Firefox, Chrome, Safari, and
Opera. Of course, some of your users may rely on other browsers. These APIs,
however, are never guaranteed to work on anything other than the five brows-
ers mentioned — unless the vendor specifically mentions another browser
(such as the one used with the Android). In addition, the APIs are normally
tested on desktop platforms with the Mac, Windows, and Linux operating sys-
tems being the main targets. When you need to support other browser types
or other platforms, the best strategy is to avoid the use of APIs completely —
and instead rely on standards-based approaches such as pure CSS (ensuring
that the target platform has a CSS-compliant browser).

Understanding Why Developers
Like the Google API

The Google API actually has two components. The first component provides
access to a number of third-party APIs and it’s the part of the API you dis-
cover in the sections that follow. The second component provides access to
a number of Google services. You discover that component in the “Using the
Google APIs Explorer” section, later in this chapter. For now, it’s important to
focus on the third-party APIs and see what they have to offer you. Of course,
you’ve already worked with two of these APIs in this book — the jQuery and
jQuery UI APIs.

Many developers use multiple libraries when creating an application because
each library has something special to offer. Using the API that best matches
an application requirement makes sense. The more code you can get someone
else to write, the less code you write yourself — and the more time you save.
However, linking your code to all sorts of sites creates speed problems because
each request to a different domain incurs a delay. You can improve application
speed by using a single domain to request access to all the APIs you use.

Most developers also come to the conclusion that making requests from
multiple domains also produces a reliability problem. All it takes is a loss of
contact with one of those domains and your application won’t run. The more
APIs you use, the greater the number of domains — and the higher the prob-
ability of incurring this problem. Using one central domain places your appli-
cation in an all-or-nothing condition that actually reduces the threat of some
other support issues (such as an application that works just well enough to
cause data damage because requests are started, but not completed due to a
lack of library availability).

177 Chapter 8: Using the Google API

However, there are other issues to consider — such as security. Each refer-
ence to a source outside the current page can trigger a security message.
This is a helpful feature of many browsers today, often supported through
a plug-in. Knowing where a page looks for resources can help keep a user’s
machine safe. However, when a lot of messages begin cropping up about sites
unknown to your users, they may throw up their hands and refuse to allow
these external sites access to the page. Consequently, your application fails
because it lacks access to the libraries it needs to work. The answer is to use
a single source to access the libraries you need — a source that the user is
likely to recognize and permit to access the browser page.

The Google CDN found at https://developers.google.com/speed/
libraries/devguide is a series of libraries that you can use to create
better applications. Google maintains all of these libraries on a common
domain, http://ajax.googleapis.com, which means that users don’t
have to think so hard about each library you use in an application. All the
user needs to do is approve use of a single domain. Many developers rely on
the Google APIs site to gain access to libraries such as jQuery. You see it all
the time when working with pages online. The libraries typically found on the
Google CDN include

AngularJS

Chrome Frame

Dojo

Ext Core

jQuery

jQuery UI

MooTools

Prototype

Script_aculo_us

SWFObject

Web Font Loader

When you want to use a particular library on the list, click its link, and Google
displays a script for accessing it. For example, if you want to use jQuery, click
its link to see a snippet similar to this (even though the URL wraps in the
book, it should appear on a single line in your code):

<script
 src=”http://ajax.googleapis.com/ajax/libs/jquery/1.10.1/jquery.min.js”>
</script>

Each library entry includes the link you use to access it from the Google CDN,
a link to the vendor site, and a list of stable versions as shown in Figure 8-1.
Some entries contain a list of unstable versions that you shouldn’t use. Other
entries include notes about the versions so you know about any oddities
you’ll encounter in using them. When the list of supported or unstable ver-
sions is long, you can hover the mouse pointer over an entry to see a full-
version list.

https://developers.google.com/speed/libraries/devguide
https://developers.google.com/speed/libraries/devguide
http://ajax.googleapis.com

178 Part II: Making Layouts Fast and Simple with Libraries

Figure 8-1:
Each entry
provides a

modicum of
information

about the
library.

 None of the third-party libraries that Google supports requires any special
access to Google on your part. Anyone can use these hosted libraries without
any sort of special permission. However, when you work with some of the
Google-specific services, you do need a Google account — and may require
a license in order to implement a solution. It’s important to take note of the
differences between the free services described in this section and the moni-
tored or paid services that Google provides. Developers who confuse the two
may implement solutions that end up costing their organizations money to
place the solution on a public site. (In this book I have tried to separate the
coverage of the two forms of Google’s API support for just this reason.)

Working with AngularJS
AngularJS (http://angularjs.org/) is actually a Google solution, but
one that’s offered freely to the public in the same way that other APIs, such
as jQuery, are offered. This particular library has a lot to offer. View the
various videos on the site (www.youtube.com/user/angularjs) to see
how AngularJS compares to other third-party products, such as jQuery.
The important thing to remember is that AngularJS tends to hide the coding
details from view, which means you really don’t know how the application
code works. In addition, you’re using a model-based approach to writing
your applications, which means that you’re essentially doing things the way
AngularJS wants to do them. This approach is just fine as long as AngularJS
meets your application needs — you’ll have to perform testing to figure out
whether the approach works.

http://angularjs.org/
http://www.youtube.com/user/angularjs

179 Chapter 8: Using the Google API

AngularJS can be part of your solution even if the model-based approach isn’t
exactly for you. The various videos point out this aspect of the product, so
watching them is important. You can combine approaches: You could use
AngularJS in places where the model-based approach works well, and then rely
on something like jQuery where you need extra flexibility or access to visual
elements. Combinations like this can work as long as they allow you to maintain
your ability to write functional code quickly and still achieve a desirable result.
Among AngularJS’s limitations: AngularJS doesn’t allow you to make modifica-
tions to the way the code works through the use of simple plug-ins; plus, it
doesn’t enjoy the support of the development community (as jQuery does).

 Unlike some desktop languages, such as C#, that use a Model-View-Controller
(MVC) approach (see http://msdn.microsoft.com/library/
ff649643.aspx for details) AngularJS uses a Model-View-Whatever approach.
Unfortunately, none of the AngularJS documentation explains this approach
even a little. The best source of information about the MVW approach to mod-
eling applications is at http://code.google.com/p/dark-matter-data/
wiki/MVWOverview. You don’t have to read this really complicated explana-
tion of how things work in the background to use AngularJS, but it can help to
answer questions about what AngularJS actually does for you.

After viewing the AngularJS videos, the best way to work with the product is
to download it to your system and experiment a little. Start with the simple
example shown on the AngularJS site and work your way up.

Working with Chrome Frame
Chrome Frame (https://developers.google.com/chrome/chrome-
frame/) is not an API. It’s simply a plug-in that gives older versions of Internet
Explorer some of the same capabilities of Chrome, including access to open
web technologies and a faster JavaScript engine. The plug-in continues to solve
problems for people who are using old versions of Internet Explorer — but as
more and more users upgrade, the need for the plug-in diminishes. As a result,
this particular feature will be retired in January 2014 (unless Google gives it an
extension). You can read more about this particular feature and its retirement at
http://blog.chromium.org/2013/06/retiring-chrome-frame.html.
The bottom line is that this plug-in is still available if you have a site that’s still
experiencing problems with users who have older versions of Internet Explorer.

Working with Dojo
Dojo is a full-fledged library with features akin to those described for jQuery
in Chapter 6. It includes a whole array of selectors, special effects, behav-
iors, and language helpers. It also provides good support for Asynchronous
JavaScript and XML (AJAX).

http://msdn.microsoft.com/library/ff649643.aspx
http://msdn.microsoft.com/library/ff649643.aspx
http://code.google.com/p/dark-matter-data/wiki/MVWOverview
http://code.google.com/p/dark-matter-data/wiki/MVWOverview
https://developers.google.com/chrome/chrome-frame/
https://developers.google.com/chrome/chrome-frame/
http://blog.chromium.org/2013/06/retiring-chrome-frame.html

180 Part II: Making Layouts Fast and Simple with Libraries

 Which product is better — jQuery or Dojo? That depends on who you talk to:
Each has its adherents, and a considerable number of books, articles, and doc-
umentation exists for both. You can find a simple (mostly unbiased) compari-
son of the two products at http://tech.yes-co.nl/2009/08/25/
jquery-versus-dojo-versus-yui/. A somewhat more biased coding
comparison is at http://moresoda.co.uk/blog/article/dojo-and-
jquery-side-by-side-dom-basics/. What may surprise you about the
coding comparison is how much alike the two products are. From a CSS devel-
opment perspective, you need to be aware that Dojo doesn’t support the rich
functionality of the widgets found in jQuery UI; however, it does offer some
unique offerings not found in jQuery or jQuery UI, including some nice special
effects that could be hard to implement using jQuery.

As with jQuery, you access Dojo by using a simple <script> string. You set
the src attribute as shown here.

<script
 src=”http://ajax.googleapis.com/ajax/libs/dojo/1.9.0/dojo/dojo.js”>
</script>

 Like jQuery, Dojo comes in a number of versions. Your application may rely
on a specific version. To change the version used with the application, simply
change the 1.9.0 part of the URL to another version. The Google API currently
supports versions 1.1.1 to 1.9.0 (the latest version listed on the Dojo site as of
this writing).

The best way to begin learning Dojo is to use the tutorials presented on the
documentation page at http://dojotoolkit.org/documentation/. A
number of authors have also written books about Dojo — most of which are
listed in the Bookshelf section of the documentation page (with direct links
to Amazon when you click the book’s picture).

 Even though Dojo and jQuery look quite a bit alike — and you use them in the
same manner, for the most part — Dojo is actually a framework and jQuery is
a library. A library is code. You call functions directly and the source for those
functions is sometimes available so that you can change the function behav-
ior. Frameworks provide a means of interacting with a behavior, which means
that some tasks aren’t visible to the developer — the developer requests
that the framework perform the task, and the framework determines how to
accomplish it. Some people define a framework as a packaged form of library
that provides structure as well as code. For the most part, you don’t need to
worry about whether a product is a framework or a library — the main con-
cern is discovering how to use the product to create better applications.

http://tech.yes-co.nl/2009/08/25/jquery-versus-dojo-versus-yui/
http://tech.yes-co.nl/2009/08/25/jquery-versus-dojo-versus-yui/
http://moresoda.co.uk/blog/article/dojo-and-jquery-side-by-side-dom-basics/
http://moresoda.co.uk/blog/article/dojo-and-jquery-side-by-side-dom-basics/
http://dojotoolkit.org/documentation/

181 Chapter 8: Using the Google API

Working with Ext Core
The first thing to note is that the following link is to the core product, not to
the full product. You do see an impressive list of features when you view the
Sencha Ext JS site at www.sencha.com/products/extjs/. However, most
of these features are for paying customers — you don’t get them with the core
product. You can find a listing of the core features at http://docs.sencha.
com/core/ and an overview of them at www.sencha.com/blog/ext-core-
30-beta-released/. The list of functions includes access to AJAX support,
animations, and some data connectivity options. Unless you have a special need
to provide a public version of your Ext JS applications, you’ll get a lot more out
of a framework such as Dojo or MooTools — or from a library such as jQuery.

Accessing jQuery
A discussion of jQuery appears in Chapter 6 (and you’ll see this library dis-
cussed later in the book, too). With a simple replacement of the src attri-
bute, you can use the Google CDN version of the library. Here’s an example of
the jQuery link (even though the URL wraps in the book, it should appear on
a single line in your code).

<script
 src=”http://ajax.googleapis.com/ajax/libs/jquery/1.10.1/jquery.min.js”>
</script>

 Your application may depend on a specific version of the jQuery library. If this
is the case, you can access the version you want from the Google CDN. Simply
replace the 1.10.1 part of the URL with the version you want. The Google CDN
hosts all versions of jQuery (including the newer 2.x versions) — except ver-
sions 1.2.4 and 1.2.5, because these two versions weren’t available for very long.

Accessing jQuery UI
As with jQuery, a discussion of jQuery UI appears in Chapter 6. You also find
this library discussed in other chapters. To use this library with the Google
CDN, you replace the src attribute with the appropriate link. Here’s an exam-
ple of the link you use to gain access to this library from the host (even though
the URL wraps in the book, it should appear on a single line in your code).

<script
 src=”http://ajax.googleapis.com/ajax/libs/jqueryui/1.10.3/jquery-ui.min.js”>
</script>

http://www.sencha.com/products/extjs/
http://docs.sencha.com/core/
http://docs.sencha.com/core/
http://www.sencha.com/blog/ext-core-30-beta-released/
http://www.sencha.com/blog/ext-core-30-beta-released/

182 Part II: Making Layouts Fast and Simple with Libraries

 When working with jQuery UI, make sure you work with a compatible version
of jQuery. For example, don’t try to use a 1.2.6 version of jQuery with a 1.10.3
version of jQuery UI — you won’t get very satisfying results. In general, you
want to use matching minor versions. To ensure that your application will
work, you want to use a 1.10 version of jQuery with a 1.10 version of jQuery UI.

 The functionality provided with each version of jQuery UI can vary quite a bit.
Make sure you note which version of jQuery UI you used to develop a particu-
lar application — and then stick with that version unless you verify that there
are no breaking changes in a newer version (always a good idea). Fortunately,
the Google CDN hosts versions of jQuery UI from 1.5.2 to 1.10.3. If you request
the 1.8.3 version, you actually receive the 1.8.4 version because of the short
lifespan of the 1.8.3 version. To use a specific version, simply replace the
1.10.3 part of the URL with the version you want.

Working with MooTools
The opening page for MooTools (http://mootools.net/) says that it’s
targeted at intermediate to advanced developers. This powerful framework
of functions helps you perform all sorts of tasks, including some appealing
special effects and transitions. In addition to the standard core framework,
there’s also a standard server-only framework you can download from
http://mootools.net/download when client functionality isn’t required.
You can see an overview of the functionality this product provides at
http://mootools.net/docs/core.

One of the more important things to know about this particular tool is that
it provides a lot less hand-holding than do other tools mentioned in this
chapter. However, it also provides some superior functionality (provided
you can figure out how to use it). For example, detecting a browser’s name
and functionality is probably easier using MooTools than any other frame-
work or library available. It also comes with built-in support for Adobe Flash
that’s simple to use (see http://mootools.net/docs/core/Utilities/
Swiff for details). You have to use a plug-in to get the required support
with jQuery and Dojo’s method of working with Flash seems convoluted at
best. One of the more interesting classes is Chain (http://mootools.net/
docs/core/Class/Class.Extras), which lets you execute a series of
commands one after another as a single entity.

The Google CDN supports versions 1.1.1 through 1.4.5 of MooTools. As with
other libraries, you can change the link for MooTools to request a specific
version. Here’s an example of the link used to access this framework (even
though the URL wraps in the book, it should appear on a single line in your
code).

http://mootools.net/
http://mootools.net/download
http://mootools.net/docs/core
http://mootools.net/docs/core/Utilities/Swiff
http://mootools.net/docs/core/Utilities/Swiff
http://mootools.net/docs/core/Class/Class.Extras
http://mootools.net/docs/core/Class/Class.Extras

183 Chapter 8: Using the Google API

<script
 src=”http://ajax.googleapis.com/ajax/libs/mootools/1.4.5/mootools-yui-

compressed.js”>
</script>

Working with Prototype
The Prototype framework (http://prototypejs.org/) focuses on help-
ing you create and maintain dynamic content on a site. As such, the docu-
mentation places an emphasis on AJAX and Document Object Model (DOM)
support (http://api.prototypejs.org/). You also find functionality for
checking browser features, but not specifics such as the browser name. This
means you won’t be able to make tweaks to adjust the application output to
compensate for specific browser bugs.

Prototype provides a nice selection of tutorials at http://prototypejs.
org/learn/. There’s no basic Hello World-type example, but the examples
provided should be enough to help any moderately experienced developer
get started quickly. Each tutorial focuses on a different area of Prototype,
such as the creation of new classes or using Prototype with AJAX.

Some Ruby on Rails developers choose Prototype over jQuery and other
products like it because Prototype is easier for them to understand due to
the way in which it is written. In addition, Prototype tends to provide even
treatment of all of the functionality it provides — fit and finish issues such as
function naming are more consistent. The developers of Prototype have also
taken great care to ensure that API calls are consistent and there is definitely
some inconsistency in the jQuery calling syntax (which means you have to
look at the reference to ensure you make the call correctly). You can find a
somewhat biased view of the differences between jQuery and Prototype at
http://thinkrelevance.com/blog/2009/01/12/why-i-still-
prefer-prototype-to-jquery.

The Google CDN supports versions 1.6.0.2 through 1.7.1.0 of Prototype. As
with other libraries, you can change the link for Prototype to request a spe-
cific version. Here’s an example of the link used to access this framework
(even though the URL wraps in the book, it should appear on a single line in
your code):

<script
 src=”http://ajax.googleapis.com/ajax/libs/prototype/1.7.1.0/prototype.js”>
</script>

http://prototypejs.org/
http://api.prototypejs.org/
http://prototypejs.org/learn/
http://prototypejs.org/learn/
http://thinkrelevance.com/blog/2009/01/12/why-i-still-prefer-prototype-to-jquery
http://thinkrelevance.com/blog/2009/01/12/why-i-still-prefer-prototype-to-jquery

184 Part II: Making Layouts Fast and Simple with Libraries

Working with script_aculo_us
If you like Prototype, but you find it a bit limited in the user interface arena,
then you need to look at script.aculo.us (http://script.aculo.us/). You
use this Prototype add-on to create an amazing array of special effects, drag-
and-drop functionality, and AJAX controls. It also provides some additional
support for DOM.

 However, the most interesting feature of all is that this add-on provides unit
testing functionality that you won’t find in many other products. Unit testing
of any kind is sorely lacking with most web development products, so this is a
really nice addition that may make Prototype a framework of choice for your
next development project — especially when working in a large team environ-
ment where unit testing takes on added significance.

The thing you’ll like most about script.aculo.us is that the site contains lots
of demos and example code. Some of the demos provide a bit of fun. For
example, check out the puzzle demo at http://madrobby.github.io/
scriptaculous/puzzle-demo/. The main API reference is at http://
madrobby.github.io/scriptaculous/. This main page provides you
with an overview of the API (with clickable links to all the details) and tells
you how to perform tasks such as getting script.aculo.us downloaded to your
system.

The Google CDN supports versions 1.8.1 through 1.9.0 of script.aculo.us. The
vendor doesn’t list any particular problems with matching your version of
script.aculo.us to the version of Prototype, but testing is always a good idea.
As with other libraries, you can change the link for script.aculo.us to request
a specific version. Here’s an example of the link used to access this frame-
work (even though the URL wraps in the book, it should appear on a single
line in your code).

<script
 src=”http://ajax.googleapis.com/ajax/libs/scriptaculous/1.9.0/scriptaculous.

js”>
</script>

Working with SWFObject
SWFObject (http://code.google.com/p/swfobject/) is a single func-
tion product designed to make working with Flash files exceptionally easy (or
at least easier). It includes functionality for creating and using Flash objects.
You can even choose between static and dynamic publishing methods. The
documentation at http://code.google.com/p/swfobject/wiki/
documentation provides all the details you need for using this small, but
handy, add-on. This utility works with any browser that supports Flash.

http://script.aculo.us/
http://madrobby.github.io/scriptaculous/puzzle-demo/
http://madrobby.github.io/scriptaculous/puzzle-demo/
http://madrobby.github.io/scriptaculous/
http://madrobby.github.io/scriptaculous/
http://code.google.com/p/swfobject/
http://code.google.com/p/swfobject/wiki/documentation
http://code.google.com/p/swfobject/wiki/documentation

185 Chapter 8: Using the Google API

Working with WebFont Loader
WebFont Loader (https://github.com/typekit/webfontloader)
is a utility-type add-on designed to make it easier to work with fonts. For
example, it provides a method for dealing with situations where a font won’t
download due to an Internet error. A set of events makes it possible to moni-
tor font-download progress and success. You can use it to load and access
Google Fonts, Typekit, Ascender, Fonts.com, Fontdeck, and self-hosted web
fonts. In fact, there are separate modules for interacting with each font type.

As discussed in Chapter 3, obtaining access to just the right font is essential
in conveying your message in some cases. Using an add-on like WebFont
Loader makes it easier to manage the font selection and ensure the page
appears as you expect it to appear to the end user. Even if you’re using
another library or framework to perform the bulk of the work on your site,
using this library is quite helpful when appearance is critical.

The documentation for this add-on is a bit sparse. You do get a number of pro-
gramming snippets, but no complete example applications. There are also no
demos of how the product looks in use. One of the more important sections to
look at in the documentation that does exist is Browser Support (https://
github.com/typekit/webfontloader#browser-support). This section
helps you understand what will happen if the host browser doesn’t support
loaded fonts — especially mobile devices with a desktop mode.

Using the Google APIs Explorer
Google offers a wealth of APIs that cover everything from working with Ad
Exchange to presenting driving instructions with Google Maps. In fact, there
are so many APIs that most developers have no idea of just how many of
them exist. That’s why the Google APIs Explorer (https://developers.
google.com/apis-explorer/#p/) is important. It helps you find and
access all the APIs that Google supports.

It isn’t possible to cover all the APIs that Google provides. In fact, there are
entire books on some APIs, such as Google Maps. With this in mind, the fol-
lowing sections provide a scant overview of the Google APIs environment.

Getting a Google account
You can access many Google API features without a Google account.
However, many of the features do require an account and it’s usually easier
to sign up for one at the outset. For example, when using Google Maps, you
must obtain a token to make requests from the web service.

https://github.com/typekit/webfontloader
https://github.com/typekit/webfontloader#browser-support
https://github.com/typekit/webfontloader#browser-support
https://developers.google.com/apis-explorer/#p/
https://developers.google.com/apis-explorer/#p/

186 Part II: Making Layouts Fast and Simple with Libraries

To start the process, all you need to do is go to Google Accounts (https://
accounts.google.com) and click Sign Up. You go to the page shown in
Figure 8-2.

Figure 8-2:
The Google

account
Sign Up

page con-
tains fields

that ask you
questions.

After you answer a number of questions, you click Next Step and follow the
remaining directions. It doesn’t take long to obtain the account and verify
it through your e-mail account. Even if you don’t use the account for other
items, you’ll need it for development purposes.

 In some cases, the documentation for a particular API will recommend that you
obtain two accounts: one for development and another for testing. The reason
for this suggestion is that you could possibly lose data by working with the API.
If you use data in your test account, it’s usually not a problem. However, losing
data in your development account could set back your application develop-
ment efforts. Creating two accounts when necessary is always a good idea.

Obtaining a developer key
To work with many of the APIs, you must obtain a developer key. Google pro-
vides two kinds of keys: paid and free. You need only the free key for experi-
mentation purposes. The paid key does provide considerably more flexibility,

https://accounts.google.com
https://accounts.google.com

187 Chapter 8: Using the Google API

and you’ll likely need it for any full-fledged application you create. However,
for experimentation purposes, the free key works just fine. The Google API
you’re using will tell you about the developer key requirement as part of the
documentation. (Even if it doesn’t tell you, you’ll discover the requirement
the first time you try to make a request). For example, you obtain a devel-
oper key for Google Maps at https://developers.google.com/maps/
licensing. Make sure you understand the terms of service fully before you
begin working with the Google API.

Working with the Google APIs Explorer
Whenever you go to the main Google API Explorer page, you see a listing of
the APIs (as shown in Figure 8-3). In addition, you obtain a short description
of the API, the API version, and whether you’ll have full access to it. Some
APIs have paid support for full access or have some other requirement for
their use. Unfortunately, this page won’t tell you which features are missing
or why the support is limited.

Figure 8-3:
The main

page for the
Google API

Explorer
provides a

list of APIs.

When you click a link for a particular API, you see a page that provides a
short description of the API, a link to the documentation, and a listing of the
calls for that API (as shown in Figure 8-4). The call listing includes a short
description of each API call. The listing is there to help jog your memory
when you’ve forgotten a call.

https://developers.google.com/maps/licensing
https://developers.google.com/maps/licensing

188 Part II: Making Layouts Fast and Simple with Libraries

 Make sure you read the documentation for an API thoroughly before you try
to do anything with it.

Figure 8-4:
Each API
provides

a listing of
the calls it
supports,

plus a short
description.

Clicking on a particular API call displays a page containing additional infor-
mation about that call. In addition, you see a test page for actually executing
the call to see what it does (as shown in Figure 8-5). All you need to do is fill
out the fields and click Execute.

Figure 8-5:
Test each of
the API calls

using the
test page.

189 Chapter 8: Using the Google API

The documentation page provides access to a wealth of resources for work-
ing with the API you’ve selected (as shown in Figure 8-6). Each API starts
with an introduction that tells you all about the API. You find links for getting
started, working with client libraries, and interacting with the community
that uses the API. In addition, each API provides access to a guide describing
how to use the API, a reference containing API specifics, and a connection to
any resources that the API supports.

Figure 8-6:
Gain full

access to all
information
concerning

an API on its
documenta-

tion page.

One of the most important (and probably overlooked) links on the docu-
mentation page, however, is the Terms link. Make sure you understand the
terms for using the API. Unfortunately, some developers run afoul of the legal
requirements and find themselves with a nonworking application as a result.

Creating a Site that Uses
Multiple Libraries

It’s important to create robust applications for your site — applications that
provide fast access to data, consistent output, reliable operation, and still
ensures that the data remains secure. Even at the desktop, creating such an
environment remains elusive. Part of the problem with using multiple libraries
or a combination of libraries and frameworks is that you don’t really know how
the APIs work. As a result, you can’t be sure that the libraries will even work
together until you try them out as a combination. Obviously, you want to per-
form a significant amount of testing. In many cases, you can research the combi-
nation of products online to see how other people have fared when using them.

190 Part II: Making Layouts Fast and Simple with Libraries

 In many cases, it’s far better to use an add-on product with the main library or
framework you want to use. For example, if you work with Prototype, but find
the lack of graphical features problematic, you can use an add-on such as
script.aculo.us. Both of these products are available on the Google CDN. It’s the
need to maintain a viable work environment that keeps developers creating
new plug-ins (pieces of software designed to be injected directly into the host
library and become part of it) and add-ons (pieces of software that extend the
host library and work as additions to it) for products such as jQuery as well.

 Library makers tend not to talk with each other about code compatibility or
breaking changes. Because of this lack of communication, there is always
a risk that libraries that work together fine today will fail to work together
tomorrow. Always research a compatible solution before you resort to using
multiple products together.

When you do decide that you must use two products together, make every
attempt to use each product’s strengths to improve your application’s func-
tionality. In fact, it usually pays to make a checklist of which features you
want to use from each product to ensure your entire team remembers how
you want the application to work. Otherwise you end up with an odd mix of
calls to both libraries for the same type of service. Consistent development is
essential when using multiple products together.

As part of your testing setup, consider how the libraries work together (if
they work together at all). Using multiple libraries will increase code bloat
and possibly cause speed problems. Even if your application works per-
fectly, no one will want to use it if it works too slowly (or consumes too many
resources on the user’s machine).

One strategy for using multiple libraries on one site is to place each library
on a separate page. You can dedicate pages to specific tasks and then use the
library that fits best for that task. A number of developers use this approach
quite successfully. If you decide to mash the pages together into a single
page later, remember to check for compatibility issues. Generally, when you
place the pages in frames and then display multiple frames together, there’s
less chance of a collision, but it pays to be sure.

Using multiple libraries together can greatly increase the flexibility of your
programming environment and improve the usability of your site. You can
gain access to functionality you might not otherwise have. However, always
exercise care in using multiple libraries together to ensure that the tactic
doesn’t backfire on you.

Part III
Working with CSS3

Generators

 See an example of how you can use Komodo Edit to create CSS files at
www.dummies.com/extras/css3.

http://www.dummies.com/extras/css3

In this part . . .
 ✓ Add amazing color combinations to your applications using

ColorZilla
 ✓ Reduce the work required to create interesting, yet usable

themes using ThemeRoller
 ✓ Discover how to create animate GIFs simply using the Dynamic

Drive tools
 ✓ Embellish your site using gradient images created with

Gradient Image Maker
 ✓ Create your own custom micro-buttons using Button Maker

Online

Chapter 9

Managing Colors Using ColorZilla
In This Chapter
▶ Getting ColorZilla support
▶ Using the Color Picker feature
▶ Using the Eyedropper feature
▶ Analyzing the colors used in graphics
▶ Defining color gradients to spruce up a page
▶ Changing an image into CSS form

C
olor is an essential element in creating all sorts of sites. By using color
wisely, you can add pizzazz without expending too much effort on

graphics. Color is also valuable for its ability to communicate ideas to your
site’s visitors. For example, displaying a success message in green better con-
veys the idea of success than would displaying the message in another color;
and a red error message easily draws attention to the fact that something has
gone wrong. However, the successful management of color can sometimes be
difficult — which is where ColorZilla (www.colorzilla.com/) comes into
play. This tool makes it easier for developers to create useful color patterns
on a page without making the page look absurd or reducing the user’s ability
to see details clearly.

 Unfortunately, it’s nearly impossible to find a color management tool that
works with every browser. These tools usually work as plugins, rather than as
strict browser applications written in JavaScript. Most ColorZilla features cur-
rently work only with Firefox and Chrome. Both of those browsers work in a
large number of platforms, so you won’t have any problem using this tool. The
Ultimate Gradient Generator tool, discussed later in this chapter, will work
with other browsers such as Internet Explorer, Safari, and Opera. You can use
the Ultimate Gradient Generator to create gradients online and then simply
copy the code to your application.

http://www.colorzilla.com/

194 Part III: Working with CSS3 Generators

You do get a number of helpful tools with ColorZilla, including an Eyedropper
to grab colors from sites you like, a Color Picker to choose useful color com-
binations, and a Color Analyzer to check your color combinations. There’s
also a special tool for creating gradients, which transition from one color to
another and give your site a nice appeal. There’s even a tool for turning your
images into a CSS form so you can create special effects with them.

Obtaining the Plugin
In order to use most ColorZilla features, you must install the plugin. (The
Ultimate Gradient Generator, discussed later in this chapter, doesn’t require
the plugin.) The plugins used for this chapter are version 2.8 for Firefox and
version 0.5 for Chrome. If you use a newer or different version of the plugin

Dealing with colorblindness
When you’re using color, it’s important to
remember that 8 percent of your male view-
ers and 1⁄2 percent of your female viewers will
have some sort of colorblindness issue (see
the colorblindness FAQ at www.vischeck.
com/faq/ for details). The term colorblind-
ness is actually a misnomer. A more appropri-
ate term would be color-shifted. The viewer
sees a shifted version of the colors on the page,
making some colors appear to look like others.
For example, red and green might both appear
to be a shade of brown (see examples at www.
vischeck.com/examples/). To make
dealing with colorblindness even more difficult,
there are actually three main types of color-
blindness — and not all colorblind people are
colorblind to the same degree. Bottom line: You
need to ensure that your site will be viewable by
the widest possible range of users.

A number of sites provide useful tips on
making your pages work better with those who
have colorblindness. Two of the more useful
sites are http://msdn.microsoft.
com/library/bb263953.aspx and

www.firelily.com/opinions/
color.html. In both cases, you get helpful
tips on color selections that will work for every-
one. One of the best pieces of advice you can
follow is to make sure that every color indication
used to describe an event or condition is also
followed by some other indication. For example,
street signs use different shapes to indicate
conditions in addition to color (red octagon for
stop and yellow triangles for caution).

Just selecting what you might think are the right
colors may not be enough. Sometimes you actu-
ally have to see what the other person is seeing
to do a good job selecting colors. Fortunately,
you can find a number of free colorblindness
simulators online. Two of the better simulators
are at www.etre.com/tools/colour
blindsimulator/ and www.vis
check.com/vischeck/. The Vischeck site
also offers downloadable plugins you can use
to examine pictures on your hard drive before
you include them as part of your page.

http://www.vischeck.com/faq/
http://www.vischeck.com/faq/
http://www.vischeck.com/examples/
http://www.vischeck.com/examples/
http://msdn.microsoft.com/library/bb263953.aspx
http://msdn.microsoft.com/library/bb263953.aspx
http://www.firelily.com/opinions/color.html
http://www.firelily.com/opinions/color.html
http://www.etre.com/tools/colourblindsimulator/
http://www.etre.com/tools/colourblindsimulator/
http://www.vischeck.com/vischeck/
http://www.vischeck.com/vischeck/

195 Chapter 9: Managing Colors Using ColorZilla

(say, for another browser), you may see some differences in the appearance
of the screenshots. A little variation is normal and you shouldn’t worry about
it. Use the following procedure to install the plugin.

 1. Go to the ColorZilla site at www.colorzilla.com/.

 You see the ColorZilla main page shown in Figure 9-1.

Figure 9-1:
The

ColorZilla
main page

provides
access to
the plugin

and the
Ultimate
Gradient

Generator.

 2. Click ColorZilla for Firefox and Chrome.

 You see options for selecting the browser type (as shown in Figure 9-2).
Even though Figure 9-2 shows the Firefox page, the options for working
with Chrome are the same.

 3. Click Firefox if you use the Firefox browser or Chrome if you use the
Chrome browser.

 The installation button that appears below the browser buttons changes
to match the browser you selected.

 4. Click Install ColorZilla 2.8 if you use the Firefox browser or Install
ColorZilla 0.5 if you use the Chrome browser.

 You see a dialog box similar to the one shown in Figure 9-3 for Firefox
that asks your permission to install the plugin. It may also tell you what
the plugin will do. If you don’t see the dialog box, your browser may be
asking for permission to display it.

http://www.colorzilla.com/

196 Part III: Working with CSS3 Generators

Figure 9-2:
ColorZilla
currently
supports

Firefox and
Chrome.

Figure 9-3:
The installer

will tell you
what the

plugin will
do after

installation.

 5. Click Install Now (or Add if you’re using Chrome).

 The installation will proceed. Firefox users may have to restart the
browser (a dialog box will tell you whether this step is necessary) After
a few seconds, you see a ColorZilla Installed page that describes all the
features of the plugin in a little more detail, as shown in Figure 9-4.

 The ColorZilla plugin provides more functionality than you see described in
this chapter. The chapter does provide an overview of the most useful fea-
tures, but you should also review the full list of features at www.colorzilla.
com/firefox/features.html. For example, you can use ColorZilla to

http://www.colorzilla.com/firefox/features.html
http://www.colorzilla.com/firefox/features.html

197 Chapter 9: Managing Colors Using ColorZilla

display element information such as the tag name, class, ID, size, and relative
mouse-pointer position so you know how a particular page is put together.
It’s also possible to use ColorZilla to launch Firebug (http://getfirebug.
com/javascript) when you need to debug the page setup.

After you get the plugin installed, you see a new eyedropper icon in the tool-
bar of your browser. Next to this eyedropper is a drop-down list (menu) of
ColorZilla features you can use (as shown in Figure 9-5). This menu provides
access to all of the ColorZilla features discussed in this chapter.

Figure 9-4:
The

ColorZilla
Installed

page is
confirma-

tion that
everything

went as
expected.

Figure 9-5:
Use the

drop-down
list asso-

ciated
with the

ColorZilla
icon to
access

 features.

http://getfirebug.com/javascript
http://getfirebug.com/javascript

198 Part III: Working with CSS3 Generators

Choosing Colors with the Color Picker
The Color Picker is actually a two-function tool. The way in which you inter-
act with it depends on how involved you want to get with color selections.
You can create a completely customized view or you can let ColorZilla help
you make a selection based on predefined palettes. The first option, creating
a custom color, is described in the next section. The second option, using a
predefined palette, is discussed in the second section that follows.

Using the Color Picker
The first item on the ColorZilla menu is the Color Picker. When you select
this option, you see a dialog box (like the one shown in Figure 9-6) where you

The effects of device type and calibration on color
The color you see on your computer screen
might not be the one that everyone else sees.
Of course, there are differences in how each
person perceives color. In addition, someone
with colorblindness will never see the same
colors that you see. However, these physical
differences aside, you must consider two other
factors in the color equation: device type and
calibration.

Different device types present colors differ-
ently because they generate it differently. For
example, LCD monitors come in a variety of
types and each type uses a different technol-
ogy to create color. In addition, backlighting
affects the presentation of color on a display.
If you want to know about the different moni-
tor types, check out the presentations at
http://lifehacker.com/5992723/
know-the-difference-between-
types-of-computer-monitors-
and-pick-the-best-one and
http://lifehacker.com/5994223/
the-difference-between-lcd-

led-plasma-and-oled-tvs-
explained-as-fast-as-possible.

No matter what kind of monitor you have, it
requires calibration before you can see color
on it accurately. People assume that the moni-
tor is calibrated at the factory (and it is), but
the lighting and other factors that affect color
perception are different in the factory than
where you work. In addition, the color output
will change as the monitor ages. You can invest
in a really fancy color calibration application,
but there are a number of free methods you
can use to ensure that the color you see is as
close as possible to what everyone else sees.
The first (if you’re using Windows) is to use the
Calibrate Display Color utility as described at
http://windows.microsoft.com/
en-us/windows7/calibrate-your-
display. If you want to ensure that the color
on the screen also matches what people will
see when they print your page, use the tech-
nique described at www.wikihow.com/
Calibrate-Your-Monitor.

http://lifehacker.com/5992723/know-the-difference-between-types-of-computer-monitors-and-pick-the-best-one
http://lifehacker.com/5992723/know-the-difference-between-types-of-computer-monitors-and-pick-the-best-one
http://lifehacker.com/5992723/know-the-difference-between-types-of-computer-monitors-and-pick-the-best-one
http://lifehacker.com/5992723/know-the-difference-between-types-of-computer-monitors-and-pick-the-best-one
http://lifehacker.com/5994223/the-difference-between-lcd-led-plasma-and-oled-tvs-explained-as-fast-as-possible
http://lifehacker.com/5994223/the-difference-between-lcd-led-plasma-and-oled-tvs-explained-as-fast-as-possible
http://lifehacker.com/5994223/the-difference-between-lcd-led-plasma-and-oled-tvs-explained-as-fast-as-possible
http://lifehacker.com/5994223/the-difference-between-lcd-led-plasma-and-oled-tvs-explained-as-fast-as-possible
http://windows.microsoft.com/en-us/windows7/calibrate-your-display
http://windows.microsoft.com/en-us/windows7/calibrate-your-display
http://windows.microsoft.com/en-us/windows7/calibrate-your-display
http://www.wikihow.com/Calibrate-Your-Monitor
http://www.wikihow.com/Calibrate-Your-Monitor

199 Chapter 9: Managing Colors Using ColorZilla

can work through color selections in a number of different ways. In many
respects, the initial view of the Color Picker looks just like any other color
picker you’ve used in the past.

Using the Color Picker saves you time. With it, you can enter colors directly
by using the characteristics described at these links:

 ✓ Hue, saturation, and value (see www.greatreality.com/color/
ColorHVC.htm for details)

 ✓ Red, green, blue (see http://dba.med.sc.edu/price/irf/Adobe_
tg/models/rgbcmy.html for details)

 ✓ Hexadecimal color value (see www.w3schools.com/html/html_
colors.asp for details)

 ✓ Lab color space (see www.hidefcolor.com/color-management/
lab-color-space/ for details)

 ✓ Cyan, magenta, yellow, key (see http://searchcio-midmarket.
techtarget.com/definition/CMYK for details)

From this dialog box, you receive two different versions of CSS-specific
output (both the rgb() function and the hsl() function). In addition, you
also get a color name. When there’s no precise color name for the color
you’ve created, the Name field is left blank.

Figure 9-6:
The Color

Picker
makes it
easy to

choose col-
ors based

on a number
of criteria.

http://www.greatreality.com/color/ColorHVC.htm
http://www.greatreality.com/color/ColorHVC.htm
http://dba.med.sc.edu/price/irf/Adobe_tg/models/rgbcmy.html
http://dba.med.sc.edu/price/irf/Adobe_tg/models/rgbcmy.html
http://www.w3schools.com/html/html_colors.asp
http://www.w3schools.com/html/html_colors.asp
http://www.hidefcolor.com/color-management/lab-color-space/
http://www.hidefcolor.com/color-management/lab-color-space/
http://searchcio-midmarket.techtarget.com/definition/CMYK
http://searchcio-midmarket.techtarget.com/definition/CMYK

200 Part III: Working with CSS3 Generators

 Of course, some of the best features are hidden from view. Click Options and
you see a single option named Color Picker Type. The Color Picker defaults to
what is called a smooth color picker type. This setup lets you choose any color
available, making it hard to choose a specific color at times. To gain more con-
trol over your color choice, select the Discrete option. The display will change
as shown in Figure 9-7. Each color is now in a distinct block — making it a lot
easier to choose a specific color every time you use Color Picker.

Figure 9-7:
Use the

Discrete
option

to make
choos-

ing colors
easier.

You may also see a color that you like on a page somewhere. In this case,
click Sample Color from Document (the icon that looks like an eye dropper)
and then click on the color you want to use from the page. The Color Picker
will automatically display the values used to create that color.

Using the Palette Browser
Using the Picker tab will be too much work for many people. It’s a lot easier
if the tool helps you choose a specific color. That’s where the Palettes tab
(shown in Figure 9-8) comes into play. The Palettes tab provides several
methods for organizing and categorizing colors to make them a lot easier to
work with. (You can also access this tab immediately by selecting the Palette
Browser option on the menu.)

201 Chapter 9: Managing Colors Using ColorZilla

Figure 9-8:
The Palettes

tab helps
you orga-

nize and
categorize

colors.

The two drop-down lists help you make good color choices. The first drop-
down list contains methods for organizing the color selections. By default,
you can choose colors based on

 ✓ Favorites

 ✓ History

 ✓ Hues and Brightness

 ✓ Hues and Saturations

 ✓ System CSS Colors

 ✓ W3C Named Colors

 ✓ Colors by Hue

 ✓ Web Named Colors

 ✓ Web Safe Colors

 ✓ X Named Colors

 The .GPL files that hold the palette selections are actually written using a text
editor. You can create your own palettes if you want to, using any of the exist-
ing .GPL files as a template. Click the Palettes Folder icon (the folder between
the two drop-down lists) to gain access to the .GPL files on your system. You
can also create a list of personal favorites by clicking Add to Favorites when-
ever you see a color you like.

202 Part III: Working with CSS3 Generators

The default display shows the colors as thumbnails. Selecting the List option
shows the colors as a list that includes a larger color sample, hexadecimal
value, and named value (when available). Figure 9-9 shows a typical view of
this display option.

Figure 9-9:
Some devel-
opers prefer
the list view

because
it provides
additional

information.

There are three links at the bottom of the selection area that you should
know about as well. Clicking any of these links will open a page in your
browser. However, the browser window doesn’t gain focus automatically, so
it may appear that nothing has happened. Check your browser for the new
page. Here’s a list of what these links do:

 ✓ permalink: Shows the permanent link for the palette option you’ve
selected.

 ✓ save in web services: Provides a method for sending the selected
palette to your account or to someone else’s account online. You can
choose from one of the following services:

	 •	del.icio.us

	 •	digg

	 •	facebook

	 •	netscape

203 Chapter 9: Managing Colors Using ColorZilla

	 •	technorati

	 •	blinklist

	 •	blogmarks

	 •	live

	 •	google	bookmarks

	 •	stumbleupon

	 •	furl

	 •	yahoo!	myweb

	 •	newsvine

	 •	reddit

	 •	ma.gnolia

	 •	tailrank

 ✓ more palettes: Displays a wealth of other palettes you can download to
your system and use.

Grabbing Colors Using the Eyedropper
The Eyedropper menu option displays a plus-sign mouse cursor. As you move
the mouse cursor around a page, a bar at the top of the page displays the cur-
rent color value and other information, as shown in Figure 9-10. (The additional
information includes the mouse cursor’s position and the CSS style name.)

Figure 9-10:
Use the

Eyedropper
to select

colors from
the page.

204 Part III: Working with CSS3 Generators

When you click a particular color, the Eyedropper copies the information you
see to the Clipboard. The bar will display the message “Copied to Clipboard”
for a few seconds, and then the bar will disappear. The output sent to the
Clipboard is the hexadecimal color value. (Choose a different copy option on
the Options➪Auto Copy menu if you want to receive something other than
a hexadecimal color value.) You don’t see all of the other information that
appears on the bar when you paste the value into an editor.

 The default ColorZilla option is to display the Eyedropper. You don’t have
to choose a menu option to activate this particular feature — just click the
Eyedropper icon in your browser instead.

The Eyedropper doesn’t work with linked images or icons in many cases.
When you see the Eyedropper mouse icon change to some other icon, such
as a pointing hand, then you know that color isn’t accessible by Eyedropper.
This problem occurs most often with images used to depict items you would
click for additional information. The best option is to hover the mouse cursor
over the item you want to interact with and see whether the cursor changes.
If the cursor remains the same (as shown in Figure 9-10), then you can prob-
ably access that color value.

Working with the Color Analyzer
You might see a page that has great color combinations and not want to
spend hours figuring those colors out one at a time. The Color Analyzer
makes it possible to full list all the colors used on a site.

 This utility works with the CSS colors, not the colors used for images. As a
result, you see the colors used for a menu, but not the colors used for a logo. If
you want to obtain the colors used in the logo, employ the Eyedropper instead.

Performing the analysis
To perform an analysis, choose the Webpage DOM Color Analyzer option
from the menu. The bottom half of the browser window will open with a new
pane that contains the color analysis from the current page (as shown in
Figure 9-11).

However, you don’t just get the color analysis. Hover the mouse cursor over
a particular color and you see where that color is used on the page (as shown
in Figure 9-12). In this case, black is used to outline just about every object
on-screen. Even though the screenshot doesn’t show it, you also see a tooltip
containing the color information for the color you selected.

205 Chapter 9: Managing Colors Using ColorZilla

Figure 9-11:
The color

analysis
tells you

precisely
which CSS
colors are
used on a

page.

Figure 9-12:
Selecting

a color
automati-

cally shows
you where
the color is

used.

 Notice the little X in the upper-right corner of the black square in Figure 9-12.
Clicking this X will hide the color from view. The reason you might want to do
this is to keep the color from being part of the palette you eventually use for
your own site. You might choose to work with another color as a replacement,
but still want to use the majority of the color selections.

Seeing the details
Scroll the analysis page down and you find details of the color usage (as shown
in Figure 9-13). Each color has its own entry in the list, so you can see specifi-
cally where each color is used.

206 Part III: Working with CSS3 Generators

Figure 9-13:
The analysis

includes
specific

details
about each
color’s use.

The color entries provide quite a bit of information. The entry begins with
the CSS style name, followed by the property that the color affects. The
output tells you how the color is selected and you even see where the color
appears in the .CSS file.

Each of the file entries is actually a link. When you click on this link, ColorZilla
displays the precise location of the color usage in the .CSS file, in the upper
pane of the browser, by opening a new tab (as shown in Figure 9-14).

Note: Any link marked inline attribute won’t open a corresponding
location in the original HTML file — this feature only works on .CSS files.

Figure 9-14:
 You can

check the
CSS by

clicking the
appropriate

color link
to it.

207 Chapter 9: Managing Colors Using ColorZilla

Saving the output
After you’re satisfied with the results of your analysis and selections, you can
save the choices you’ve made. There are three methods for accomplishing
this task:

 ✓ save as colorzilla palette: Displays a Palette Name dialog box where you
type the name of the palette as you want to save it on your hard drive.
Click OK and you see a Palette Saved dialog box that you can clear by
clicking OK. The palette will now appear as one of the selections on the
Palettes tab of the ColorZilla Color Picker dialog box, as discussed in the
“Using the Palette Browser” section, earlier in this chapter.

 ✓ permalink: Shows the permanent link for the palette option you’ve
selected. The URL for this link contains the hexadecimal values for each
of the colors; here’s an example:
http://colorzilla.com/colors/1E62D0+337FED+2F84EA+3D94F6+000000+5555

55+666666+6A6A6A+DDDDDD+FFFFFF?source-url=www.colorzilla.
com%2Ffirefox%2Ffeatures.html&post=1

 The formatting of the URL in this manner means you can send it to
anyone and your recipient can reconstitute the color selections based
on the URL alone.

 ✓ save in web services: Provides a method for sending the selected pal-
ette to your account or to someone else’s account online. This option
provides the same functionality as the feature described in the “Using
the Palette Browser” section, earlier in this chapter.

Creating a Gradient
Gradients are commonly used for presenting special effects on pages because
they have a lot of pizzazz and don’t require code to accomplish their task.
Any browser that supports CSS3 can display dazzling gradients without much
effort — and the user isn’t exposed to any sort of potential virus or other
hacking trick (so far). You can find a discussion of gradients in Chapter 4,
which shows you how to create your first gradient by hand. In that chapter
I show you what other people have done to create interesting displays. This
section takes a middle road between creating the gradient by hand and rely-
ing on others to do all the work.

http://colorzilla.com/colors/1E62D0+337FED+2F84EA+3D94F6+000000+555555+666666+6A6A6A+DDDDDD+FFFFFF?source-url=www.colorzilla.com%2Ffirefox%2Ffeatures.html&post=1
http://colorzilla.com/colors/1E62D0+337FED+2F84EA+3D94F6+000000+555555+666666+6A6A6A+DDDDDD+FFFFFF?source-url=www.colorzilla.com%2Ffirefox%2Ffeatures.html&post=1
http://colorzilla.com/colors/1E62D0+337FED+2F84EA+3D94F6+000000+555555+666666+6A6A6A+DDDDDD+FFFFFF?source-url=www.colorzilla.com%2Ffirefox%2Ffeatures.html&post=1

208 Part III: Working with CSS3 Generators

The Ultimate Gradient Generator (www.colorzilla.com/gradient-
editor/) can create some truly interesting effects for you and it’s more flex-
ible than many of the other generators you find online. However, it still won’t
produce the amazing results found on sites such as http://lea.verou.me/
css3patterns/. These sorts of patterns are the work of dedicated artists
who are willing to hand-code the gradients. Even so, you might be surprised
at the sorts of gradients you can create, given a little time to play around with
the settings on this site. The following sections will get you started.

Developing a basic gradient
Many online tools provide little help with getting a gradient together — but
that’s not the case with Ultimate Gradient Generator. As shown in Figure 9-15,
this tool begins with a series of presets. Just select one of the blocks in the
Preset list and you already have a gradient that works. It may not work per-
fectly for your needs, but it will give you a good start.

Figure 9-15:
The Ultimate

Gradient
Generator

comes with
all sorts

of useful
 presets.

http://www.colorzilla.com/gradient-editor/
http://www.colorzilla.com/gradient-editor/
http://lea.verou.me/css3patterns/
http://lea.verou.me/css3patterns/

209 Chapter 9: Managing Colors Using ColorZilla

Two basic ways of tweaking the resulting gradient are (1) to modify its size
and (2) to change its orientation. For example, you can start with the Blue
Gloss Default present, modify the size, and change to a radial format to create
the gradient shown in Figure 9-16. The result is quite a bit different — despite
not having changed the colors at all.

Figure 9-16:
Little

changes
can make

a big
 difference.

When you’re finally satisfied with the changes you make, you can copy
the resulting CSS directly to a project. Adding comments so that you know
what the CSS is doing is always a good idea, so make sure you check the
Comments option (as shown in Figure 9-17). If you plan to support Internet
Explorer 9 users, make sure you check the IE9 Support option. Choose a
color format option as well. (When your gradient includes transparent areas,
you must choose one of the options that allow transparency.) When you’ve
finished selecting options, hover the mouse cursor over the code and a Copy
button appears. Click this button to copy the CSS to the Clipboard. At this
point, you can copy it to your project for testing.

 When using specific kinds of effects, such as radial gradients, the Ultimate
Gradient Generator will also supply you with a script or other requirements
to make the gradient work in older browsers. This is especially true when
working with Internet Explorer 9. If you don’t add this special support, users
of older browsers will see a less spectacular, but equally nice, gradient.
For example, the radial gradient will default to a kind of linear gradient as
required.

210 Part III: Working with CSS3 Generators

Figure 9-17:
Use the

Copy fea-
ture to copy

the CSS to
your project.

Adding special effects
You have access to a number of special effects when creating gradients
using Ultimate Gradient Generator. The first is to change colors and add
color stops. A color stop signifies a change in color. Notice the color bar in
Figure 9-15 has four tabs on the bottom. These tabs control the colors used
and where each color starts and ends.

When you click one of the tabs, you see the little triangle above the square
tab turn from white to black. In addition, the settings in the Stops area
change, as shown in Figure 9-18.

Figure 9-18:
Change indi-

vidual stop
settings

using the
Stops area’s

features.

211 Chapter 9: Managing Colors Using ColorZilla

To change a color, click inside the Color field. You see a color picker (similar
to the one shown in Figure 9-6) that you can use to select a new color. Set the
color you want and click OK to change the color of the selected stop.

To change the stop position, either type a new value in the Location field or
slide the stop along the bar. As you change the setting, you see modifications
to the output of the gradient.

You can also click Delete to remove a color stop you don’t want. To add a new
color stop, hover the mouse near the bottom of the color bar. You see the
cursor change to a pointing hand with a plus sign. Click wherever you want to
add the new stop along the color bar and then configure the stop as needed.

The second special effect is the use of transparency. Look again at Figure 9-15
and you see two tabs at the top of the bar. These tabs control transparency.
When you click one of these tabs, its triangle turns black, just as the color
tabs do. However, in this case, the upper settings of the Stops area become
active, as shown in Figure 9-19.

Figure 9-19:
Opacity

modifies
the appear-

ance of your
gradient by
making the

background
visible.

The default setting makes the gradient opaque, which means that the user
can’t see through it. However, you can adjust the opacity to allow some of
the background to show through — or make the gradient transparent so the
user can only see the background in a particular area onscreen. As with color
stops, you can add or delete transparency stops as needed to produce a par-
ticular effect.

Saving the result
It’s important to save the gradients you want to use again. To save a gradient
locally, you can type a name in the Name field (located under the Presets)
and click Save. The new gradient appears in the Presets list.

212 Part III: Working with CSS3 Generators

You can also click the unique link entry in the Permalink area of the page.
This creates a new tab that shows your gradient. The URL will provide details
about the custom gradient you created so someone else can reproduce it.

Converting an image to CSS
A special feature of the Ultimate Gradient Generator is the capability to turn
your existing image into a CSS gradient that you can use on your site. This is
an interesting way to define some complex gradients with little effort; note,
however, that this feature works best with images like the one in Figure 9-20.
Even if you provide a complex graphic, the resulting gradient will use only the
colors on the left side of the image. Anything after the first color is ignored.
(You can find the image for this example in the \Chapter 09 folder of the
downloadable code as MyGradient.JPG.)

Figure 9-20:
Use an

image that
will trans-

late well into
a gradient.

Refer to the bottom of Figure 9-17 to find the Import from Image button.
Click this button and you see the bottom of the CSS area expand to include
the form shown in Figure 9-21. You can obtain images from a location online
or from your local hard drive. When you want to use your hard drive as a
resource, click Browse to display a File Upload dialog box, locate the file, and
then click Open.

Figure 9-21:
Fill in this

form to use
an image

to generate
CSS.

213 Chapter 9: Managing Colors Using ColorZilla

After you provide a source for the image, click Import. The Ultimate Gradient
Generator imports the file and creates the CSS required to mimic the image
and its applied gradient. You can then make tweaks and changes as needed
to produce the desired result. After you’re done, you can save the CSS as
usual and include the gradient in your application.

After you provide a source for the image, click Import. The Ultimate Gradient
Generator imports the file and creates the CSS required to mimic the image
and its applied gradient as shown in Figure 9-22. You can then make tweaks
and changes as needed to produce the desired result. After you’re done, you
can save the CSS as usual and include the gradient in your application.

Figure 9-22:
After

importing
the image,

you can see
the gradient
and associ-

ated CSS.

214 Part III: Working with CSS3 Generators

Chapter 10

Creating Themes Using
ThemeRoller

In This Chapter
▶ Getting started with ThemeRoller
▶ Working with ThemeRoller
▶ Using predefined themes directly
▶ Developing your own custom themes
▶ Placing themes on your system for local use

T
hemeRoller (http://jqueryui.com/themeroller/) is a special kind
of tool and plugin for jQuery that makes it possible to create a theme

for your site. A theme is a mixture of fonts, color, and graphic styles that
gives your site a particular feel. You can use ThemeRoller to perform tasks
such as defining the appearance of buttons when a user hovers the mouse
cursor over them. The output of ThemeRoller is a custom version of jQuery
and jQuery UI that meets requirements that you specify. So you get the same
combination of CSS and JavaScript that you’d get when using these two
libraries, but the result meets your specific needs far better.

Of course, you may not want to take the time to create a theme entirely by hand,
even if the process is automated using various screens on the ThemeRoller site.
The ThemeRoller site also includes a number of predefined themes you can
use. These themes are designed to meet most people’s needs and to provide
a balanced and aesthetically pleasing appearance. As a consequence, you
may want to check out ThemeRoller even if you have no desire to create a
custom theme.

http://jqueryui.com/themeroller/

216 Part III: Working with CSS3 Generators

Understanding ThemeRoller
jQuery and jQuery UI are relatively complex libraries that provide a substan-
tial amount of customization. The problem is that many developers have no
idea how to perform the required customization and probably wouldn’t have
time to do it if they did. The overall purpose of ThemeRoller is to simplify
the task of customizing the appearance of the effects and widgets provided
by these two libraries so that you can achieve a distinct appearance without
a lot of work. In fact, there are methods of using these libraries so you don’t
have to do any work at all.

However, using ThemeRoller has other, less obvious benefits. For example,
by using ThemeRoller you can give your users access to multiple themes
without much additional work at all. All you really need to do is provide a
means of selecting a different link site for the required theme — the one
that the user wants. Providing access to multiple themes makes it possible
to address all sorts of user needs, such as making it possible for colorblind
users to see the page with greater ease.

 Using ThemeRoller also helps you better understand jQuery and jQuery UI.
The themes you create include demonstrations of all major features so that
you can see them at work. It helps to see the features using the theme that
you’ve chosen so that it’s easier to make tweaks. One of the handier features
is a listing of the framework icons, as shown in Figure 10-1. You can hover
your mouse cursor over an icon to see what it is called as part of jQuery UI.

Figure 10-1:
The frame-
work icon

listing is
a way to

see what’s
available
and what

it’s called.

217 Chapter 10: Creating Themes Using ThemeRoller

 jQuery and jQuery UI become even more powerful when you add other plugins
to them. These libraries are popular enough that you can probably find a
plugin for every need. Check out the list of plugins at http://plugins.
jquery.com/. The themes you create with ThemeRoller will work with all of
the available plugins unless the plugin implements some special (breaking)
functionality.

Using the ThemeRoller Interface
The ThemeRoller interface consists of the main page and a number of con-
figuration pages, as shown in the examples in this chapter. The main page
contains links to other jQuery UI functionality along the top, a ThemeRoller-
specific menu along the left side, and examples of the various jQuery UI wid-
gets in two columns on the right (as shown in Figure 10-2).

Figure 10-2:
The main

page
provides

access
to the

various con-
figuration
features.

The ThemeRoller menu shown in Figure 10-3 contains general options across
the top (such as creating custom themes using the Roll Your Own option).
The menu content changes depending on the tab you select. Figure 10-3
shows the content of the Roll Your Own tab, which I explain in the “Creating
Custom Themes” section, later in this chapter. I discuss the Gallery options
in the “Working with Predefined Themes” section, also later in this chapter.

http://plugins.jquery.com/
http://plugins.jquery.com/

218 Part III: Working with CSS3 Generators

Figure 10-3:
The

ThemeRoller
menu

content
changes

depending
on the tab
selected.

The Help tab provides an overview of the purpose of ThemeRoller. It also
provides links to the two main ways you can use ThemeRoller: to create
custom themes or to use predefined themes. Later in the help section, you
see information regarding plugin usage and the recommendation to read
the CSS-specific information about jQuery UI before creating a new plugin.
All plugin developers are supposed to test any of their applications that use
themes to ensure that they work with ThemeRoller.

 It’s important to read the Help tab because otherwise you might end up
spending hours attempting to fix an unfixable problem. For example, the Help
tab tells you that the rounded corners won’t work in Internet Explorer ver-
sions 6 and 7 because these versions don’t provide the required support. The
corners will still appear, but they’ll be square instead of round. Without check-
ing the Help tab, you might spend all day trying to correct this problem.

Working with Predefined Themes
The folks at jQuery UI realize that not everyone is an artist. For that matter, not
everyone has a good sense of which colors go together. Most developers don’t
have the schooling required to know which rules to follow when creating a

219 Chapter 10: Creating Themes Using ThemeRoller

theme. With this in mind, ThemeRoller provides a wealth of predefined themes.
You can use these themes knowing that they provide you with a reasonably
well-balanced page appearance and that the results will be aesthetically pleas-
ing to your users. The following section describes predefined themes in more
detail.

Viewing the predefined themes
To see the list of predefined themes, select the Gallery tab of the ThemeRoller
menu shown in Figure 10-3. You see a listing of the themes by name as shown
in Figure 10-4. Notice that each theme entry includes a snapshot of the theme,
the theme name, and two buttons for downloading or editing the theme as
needed. There are currently 24 predefined themes from which to choose
(although the screenshot shows only two of the 24 possibilities).

Figure 10-4:
Each pre-

defined
theme

provides a
quick view

of how
the theme

appears
onscreen.

The iconic view of the theme only gives you a taste of how it will appear
onscreen. If you really want to see the theme fully, select it by clicking its
entry in the list. When you do so, the page changes so that you can see how
the theme affects the overall appearance of the page.

 In some cases, you find that the iconic view of a theme is misleading. For
example, look at the Le Frog (green) theme in the Gallery list. The icon would
lead you to believe that everything about this theme is green. However, only
the widgets are affected by this choice as shown in Figure 10-5.

220 Part III: Working with CSS3 Generators

Figure 10-5:
Some theme

icons are
misleading,
so it pays to

view each
theme fully.

Accessing the predefined themes directly
After you find the predefined theme that best matches your requirements,
you can add it to your application. The easiest way to perform this task is to
use the quick access URLs. You see a sample of them at the bottom of the
ThemeRoller page as shown in Figure 10-6.

Figure 10-6:
Use the

quick
access

URLs to add
a predefined

theme
to your

 application.

The only problem is that the URL for the themes doesn’t change — it always
shows the URL for the Smoothness theme. In order to use a theme in your
application, you must have the correct URL for it, and the URL isn’t available

221 Chapter 10: Creating Themes Using ThemeRoller

on the ThemeRoller website. The following list presents the theme names fol-
lowed by the requisite URL for that theme when using jQuery UI 1.10 — you
add this URL to your code in order to use that theme in your application.

 ✓ UI lightness: http://code.jquery.com/ui/1.10.3/themes/
ui-lightness/jquery-ui.css

 ✓ UI darkness: http://code.jquery.com/ui/1.10.3/themes/
ui-darkness/jquery-ui.css

 ✓ Smoothness: http://code.jquery.com/ui/1.10.3/themes/
smoothness/jquery-ui.css

 ✓ Start: http://code.jquery.com/ui/1.10.3/themes/start/
jquery-ui.css

 ✓ Redmond: http://code.jquery.com/ui/1.10.3/themes/
redmond/jquery-ui.css

 ✓ Sunny: http://code.jquery.com/ui/1.10.3/themes/sunny/
jquery-ui.css

 ✓ Overcast: http://code.jquery.com/ui/1.10.3/themes/
overcast/jquery-ui.css

 ✓ Le Frog: http://code.jquery.com/ui/1.10.3/themes/le-frog/
jquery-ui.css

 ✓ Flick: http://code.jquery.com/ui/1.10.3/themes/flick/
jquery-ui.css

 ✓ Pepper Grinder: http://code.jquery.com/ui/1.10.3/themes/
pepper-grinder/jquery-ui.css

 ✓ Eggplant: http://code.jquery.com/ui/1.10.3/themes/
eggplant/jquery-ui.css

 ✓ Dark Hive: http://code.jquery.com/ui/1.10.3/themes/
dark-hive/jquery-ui.css

 ✓ Cupertino: http://code.jquery.com/ui/1.10.3/themes/
cupertino/jquery-ui.css

 ✓ South Street: http://code.jquery.com/ui/1.10.3/themes/
south-street/jquery-ui.css

 ✓ Blitzer: http://code.jquery.com/ui/1.10.3/themes/blitzer/
jquery-ui.css

 ✓ Humanity: http://code.jquery.com/ui/1.10.3/themes/
humanity/jquery-ui.css

http://code.jquery.com/ui/1.10.3/themes/ui-lightness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/ui-lightness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/ui-darkness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/ui-darkness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/start/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/start/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/redmond/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/redmond/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/sunny/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/sunny/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/overcast/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/overcast/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/le-frog/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/le-frog/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/flick/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/flick/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/pepper-grinder/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/pepper-grinder/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/eggplant/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/eggplant/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/dark-hive/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/dark-hive/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/cupertino/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/cupertino/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/south-street/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/south-street/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/blitzer/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/blitzer/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/humanity/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/humanity/jquery-ui.css

222 Part III: Working with CSS3 Generators

 ✓ Hot Sneaks: http://code.jquery.com/ui/1.10.3/themes/
hot-sneaks/jquery-ui.css

 ✓ Excite Bike: http://code.jquery.com/ui/1.10.3/themes/
excite-bike/jquery-ui.css

 ✓ Vader: http://code.jquery.com/ui/1.10.3/themes/vader/
jquery-ui.css

 ✓ Dot Luv: http://code.jquery.com/ui/1.10.3/themes/dot-luv/
jquery-ui.css

 ✓ Mint Choc: http://code.jquery.com/ui/1.10.3/themes/
mint-choc/jquery-ui.css

 ✓ Black Tie: http://code.jquery.com/ui/1.10.3/themes/
black-tie/jquery-ui.css

 ✓ Trontastic: http://code.jquery.com/ui/1.10.3/themes/
trontastic/jquery-ui.css

 ✓ Swanky Purse: http://code.jquery.com/ui/1.10.3/themes/
swanky-purse/jquery-ui.css

The basic way for declaring a theme in your application works for every pre-
defined theme that ThemeRoller provides. All you need to do is add the fol-
lowing code to your style sheet. Just replace the theme URL in the following
code with URL for the theme you want to use.

<link
 rel=”stylesheet”
 href=”http://code.jquery.com/ui/1.10.3/themes/ui-lightness/jquery-ui.css” />

Creating Custom Themes
The 24 predefined themes provide a broad range of color, text, and other
choices. However, it’s possible to create a significantly greater number of
themes by using the custom approach. You could start with the default
theme setup and work from there, but the best approach is to find a pre-
defined theme that looks close to what you want and modify it instead. Not
only will you do less work this way, but you may find that there aren’t that
many features to change once you have a predefined theme in mind. The fol-
lowing sections help you create a custom theme using ThemeRoller.

http://code.jquery.com/ui/1.10.3/themes/hot-sneaks/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/hot-sneaks/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/excite-bike/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/excite-bike/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/vader/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/vader/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/dot-luv/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/dot-luv/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/mint-choc/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/mint-choc/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/black-tie/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/black-tie/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/trontastic/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/trontastic/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/swanky-purse/jquery-ui.css
http://code.jquery.com/ui/1.10.3/themes/swanky-purse/jquery-ui.css

223 Chapter 10: Creating Themes Using ThemeRoller

Choosing a predefined theme
as a starting point
Select any of the predefined themes located on the Gallery tab. When you
find the theme you want to modify, click Edit. (Refer to Figure 10-4 to see the
Edit button on the right side of each theme entry.) ThemeRoller automati-
cally takes you to the Roll Your Own tab. However, the tab’s settings will con-
tain the values required to create whatever theme you’ve selected.

Performing the configuration
Each theme consists of a number of settings. (Refer to Figure 10-3.) By chang-
ing a particular setting, you control the appearance of all the jQuery UI
features, including all of the widgets. Each of these settings has a number of
subsettings you can use to control the overall appearance of your theme. The
following list provides an overview of these settings.

 ✓ Font Settings: Determines the overall appearance of text in the theme.
You can choose the font family, weight, and size of the font.

 ✓ Corner Radius: Determines the size of the rounded corners used for the
various elements. This setting won’t affect a browser that doesn’t sup-
port rounded corners, such as Internet Explorer 7.

 ✓ Header/Toolbar: Specifies the settings for the background and border
used for all headers and toolbars.

 When working with the background, you can choose the background
color, texture, and percentage of coverage. A texture specifies how the
background is patterned, such as the use of diagonals or diamonds.
Clicking the texture field automatically displays a pictorial list of accept-
able textures (as shown in Figure 10-7) — just choose the texture you
want to try. Selecting the right texture can add pizzazz to your site.

 The border settings control the border, text, and icon colors. When you
click one of these fields, you see a color selection dialog box (as shown
in Figure 10-8). However, you can also type a specific color value, using
hexadecimal notation.

224 Part III: Working with CSS3 Generators

Figure 10-7:
Select the

texture you
want to use

from the
pictorial list.

 ✓ Content: Provides the same background and border selections as those
provided by the Header/Toolbar settings. The difference is that these
settings affect the page content, rather than headings and toolbars.

 ✓ Clickable: default state: Provides the same background and border
selections as those provided by the Header/Toolbar settings. The dif-
ference is that these settings affect controls that are in the default state,
rather than headings and toolbars.

 ✓ Clickable: hover state: Provides the same background and border selec-
tions as those provided by the Header/Toolbar settings. The difference
is that these settings affect controls that are in the hover state (when
the mouse cursor is placed over the top of the control), rather than
headings and toolbars.

225 Chapter 10: Creating Themes Using ThemeRoller

Figure 10-8:
Choose the
colors you

want to use
with your

page.

 ✓ Clickable: active state: Provides the same background and border selec-
tions as those provided by the Header/Toolbar settings. The difference
is that these settings affect controls that are in the active (selected)
state, rather than headings and toolbars.

 ✓ Highlight: Provides the same background and border selections as those
provided by the Header/Toolbar settings. The difference is that these set-
tings affect anything the user has highlighted onscreen, rather than head-
ings and toolbars.

 ✓ Error: Provides the same background and border selections as those
provided by the Header/Toolbar settings. The difference is that these
settings affect error messages (including content), rather than headings
and toolbars.

226 Part III: Working with CSS3 Generators

 ✓ Modal Screen for Overlays: Defines the way in which overlays appear on
screen. An overlay is information that is presented over the top of existing
content in much the way a dialog box displays over the top of an applica-
tion. The settings control the background and overlay appearance.

 The background settings set the color, texture, and percentage of cover-
age of the background. The textures used for an overlay are completely
different from those used for other elements, so you need to check them
carefully. In every other respect, the background settings work the same
as those used for the Header/Toolbar settings.

 The Overlay Opacity setting controls how well you can see the under-
lying content. In most cases, ThemeRoller provides a modicum of
show-through to give the page a glasslike appearance (found in some
operating systems today). However, you can change this setting to pro-
vide various special effects. Setting this value too low tends to prove
distracting for the reader because the original content is seen too easily.

 ✓ Drop Shadows: Modifies the appearance of drop shadows, which tend
to give some page elements a 3D effect. You can control the background
and the overall appearance of the drop shadow. The background con-
trols are precisely the same as those used with Modal Screen Overlays.

 The overall appearance of the drop shadow is defined by the shadow
opacity, thickness, and offset from the shadowed element, as shown in
Figure 10-9. You can also control the rounding of the shadow corners
(when the feature is supported by the browser).

Figure 10-9:
Control

the drop
shadows’

charac-
teristics to

obtain spe-
cial effects.

 After you modify all of the settings you want to change, you can save the
page’s URL for later use. In fact, it’s always a good idea to save the URL so you
can create multiple versions of your custom theme (such as development and
production versions). However, the URL won’t let you use the theme within an
application. In order to use a custom theme that you create, you must down-
load the theme and use it with the application locally.

227 Chapter 10: Creating Themes Using ThemeRoller

Downloading Themes to Your System
It’s possible to use predefined themes directly from the ThemeRoller site.
Downloading a predefined theme to your site will improve the speed of your
application because the server won’t have to fetch the required files each
time a user makes a request. However, if you want to use a custom theme, you
must create and then download it for use on your site. In both cases, using
a downloaded copy of the theme reduces potential security risks because
everything needed for the application is downloaded from a single domain.
The use of a single domain makes it possible for the administrator to lock
down the browser better and reduce the risk of cross-site scripting problems.

Downloading a predefined theme
In order to obtain some additional speed from your application and to
reduce the potential for security issues, you might decide to download the
predefined theme to your system. The following steps help you perform this
task. (Even though the steps show the UI lightness theme, the same steps
work for any theme you want to download.)

 1. Click Download under the theme you want to use.

 Figure 10-4 shows predefined theme entries. You can see the Download
button on the left side of each theme entry. ThemeRoller displays the
Download Builder page shown in Figure 10-10.

 2. Select the version of the theme you want to use.

 The default version is the best option in most cases. However, you may
need to download an older version to support older applications.

 3. Select the features you want to use from the library.

 In most cases, you want to leave all the feature options checked when
downloading a development version of the theme — because you don’t
know, at the outset, which features you really need. When you complete
the development process, you can create a smaller version of the theme
by selecting only those features that your application actually uses. The
smaller version will download faster so that the user sees results quicker.

 4. (Optional) Type a value in the CSS Scope field.

 The scope makes it possible to override internal CSS styles using an
external .CSS file. You can read more about the use of scope at http://
css-tricks.com/saving-the-day-with-scoped-css/ and
http://updates.html5rocks.com/2013/03/What-s-the-CSS-
scope-pseudo-class-for.

http://css-tricks.com/saving-the-day-with-scoped-css/
http://css-tricks.com/saving-the-day-with-scoped-css/
http://updates.html5rocks.com/2013/03/What-s-the-CSS-scope-pseudo-class-for
http://updates.html5rocks.com/2013/03/What-s-the-CSS-scope-pseudo-class-for

228 Part III: Working with CSS3 Generators

Figure 10-10:
The

Download
Builder

helps you
customize
the kind of
download
you want.

 Some developers have complained that the scoping feature doesn’t work
completely in ThemeRoller. You can see one such example at http://
bugs.jqueryui.com/ticket/8095.

 5. Click Download.

 You see a download dialog box for your browser and platform. The
file you receive is an archive that contains all the special features you
requested during the configuration process.

Downloading a custom theme
In order to use a custom theme with your application, you must download it.
There aren’t any URLs you can use to access the theme from the ThemeRoller
site. The following procedure helps you download a custom theme.

 1. Click Download Theme in the ThemeRoller menu.

 ThemeRoller displays the Download Builder page shown in Figure 10-10.

 2. Select the version of the theme you want to use.

 The default version is the best option in most cases. However, you may
need to download an older version to support older applications.

http://bugs.jqueryui.com/ticket/8095
http://bugs.jqueryui.com/ticket/8095

229 Chapter 10: Creating Themes Using ThemeRoller

 3. Select the features you want to use from the library.

 Because this is a custom theme, you need to download all of the features
for development purposes to ensure you have a complete setup. Unlike
a predefined theme, a custom theme makes it harder to go back later
and obtain items that at first you thought you wouldn’t need but ended
up requiring. Yes, you can use the URL you saved during the creation
process to reproduce the theme, but this means keeping the URL in a
location that you can remember. When you come up with versions of
the theme that you want to keep, saving them at the outset is always a
better idea.

 4. Type a name for your theme in the Theme Folder Name field.

 Select a unique name for your theme that reflects the design or pur-
pose of the theme. Otherwise you may end up with a number of custom
themes that are hard to identify later.

 5. (Optional) Type a value in the CSS Scope field.

 The scope makes it possible to override internal CSS styles using an
external .CSS file. You can read more about the use of scope at http://
css-tricks.com/saving-the-day-with-scoped-css/ and
http://updates.html5rocks.com/2013/03/What-s-the-CSS-
scope-pseudo-class-for.

 Some developers have complained that the scoping feature doesn’t work
completely in ThemeRoller. You can see one such example at http://
bugs.jqueryui.com/ticket/8095.

 6. Click Download.

 You see a download dialog for your browser and platform. The file
you receive is an archive that contains all of the special features you
requested during the configuration process.

Adding Custom Themes to Your Projects
A custom theme isn’t much good unless you use it in an application.
However, before you use it in a custom application, it pays to become famil-
iar with the appearance and functionality of the theme. The archive you
download contains a customized version of jQuery, jQuery UI, and the CSS
used to implement the theme. It also includes an overview of the theme you
created, as well as individual examples of the various widgets. The following
sections provide an overview of the contents of your archive and also show
how to add the resulting theme to an application.

http://css-tricks.com/saving-the-day-with-scoped-css/
http://css-tricks.com/saving-the-day-with-scoped-css/
http://updates.html5rocks.com/2013/03/What-s-the-CSS-scope-pseudo-class-for
http://updates.html5rocks.com/2013/03/What-s-the-CSS-scope-pseudo-class-for
http://bugs.jqueryui.com/ticket/8095
http://bugs.jqueryui.com/ticket/8095

230 Part III: Working with CSS3 Generators

Viewing the index.html file
The topmost file in the archive is index.html. It provides you with an over-
view of the theme, along with some additional information about it. The first
thing you should do after downloading the theme is to open this file to see
how it looks on your local system. Figure 10-11 shows how the Le Frog theme
looks as a custom download.

Figure 10-11:
Review the
theme you
created as

an overview
before

looking at
specifics.

The top of the page contains instructions for working with the custom theme.
In addition, it contains links to the locations of the various files you need.
You can also find these links at the top of index.html. In fact, it’s a great idea
to simply copy the links from index.html to your own project.

After the introductory material, you see a quick example of each of the wid-
gets that the theme supports. The widgets are only there for show — you
can’t actually do anything with them. However, viewing the widgets will tell
you whether you have everything at least started correctly. If not, you can
always make additional changes.

231 Chapter 10: Creating Themes Using ThemeRoller

Viewing the interactive demos
The development-bundle folder contains a lot of useful material. One of
the first pieces you should look at is the contents of the development-
bundle\demos folder, which contains examples of how to use the various
jQuery UI features with your theme. Unfortunately, none of these examples
actually use the theme you created unless you modify them to do so. For
example, the custom-icons.html example in the development-bundle\
demos\accordion folder shows how to perform this task, but doesn’t use
your theme by default as shown in Figure 10-12.

Figure 10-12:
The

examples
are nice
but don’t

demonstrate
functionality

using your
theme.

Fortunately, it’s easy to modify the example so that it does appear with your
theme in place. The following procedure tells you how to modify the custom-
icons.html example — other examples follow the same pattern.

 1. Remove the existing jQuery, jQuery UI, and style tags.

 You need to remove the general tags shown here for this example.
<link rel=”stylesheet”
 href=”../../themes/base/jquery.ui.all.css”>
<script src=”../../jquery-1.9.1.js”></script>
<script src=”../../ui/jquery.ui.core.js”></script>
<script src=”../../ui/jquery.ui.widget.js”></script>
<script src=”../../ui/jquery.ui.accordion.js”>
</script>
<script src=”../../ui/jquery.ui.button.js”></script>
<link rel=”stylesheet” href=”../demos.css”>

232 Part III: Working with CSS3 Generators

 2. Add the updated jQuery, jQuery UI, and style tags shown here.

 Make sure you use the links provided in index.html. Because this
example is several layers deep in the hierarchy, you must add ../ for
each folder level that the example is below the main level (normally
three levels, as shown here).
<script
 src=”../../../js/jquery-1.9.1.js”>
</script>
<script
 src=”../../../js/jquery-ui-1.10.3.custom.js”>
</script>
<link
 rel=”stylesheet”
 href=”../../../css/le-frog/jquery-ui-1.10.3.custom.css” />

 3. Reload the page.

 You see the themed output. Figure 10-13 shows a typical example of
what themed output might look like.

Figure 10-13:
Seeing

examples
using your

theme
is really
 helpful.

233 Chapter 10: Creating Themes Using ThemeRoller

Looking at the documentation
It’s helpful to have documentation for your theme. You can find basic
jQuery and jQuery UI documentation in the development-bundle\docs
folder of the theme. Each of the files contains information about a particular
widget, effect, or other library feature. For example, when you open accor-
dion.html, you see information about the accordion widget (as shown in
Figure 10-14).

Figure 10-14:
Most help

files tell
you about

options,
methods,

and events.

The top half of the page contains links to specifics about a particular topic.
For example, if you want to find out more about the active option, you
click its link on the page. (Figure 10-15 shows typical content.) You see a
short description of the feature, any required type information, and a coding
example.

234 Part III: Working with CSS3 Generators

Figure 10-15:
The docu-
mentation

provides
enough

details for
most devel-

opers to
work with

the option,
method, or

event.

Adding a custom theme
to your own project
Seeing the vendor samples and working through the documentation are help-
ful, but most developers want to see a theme in action. Part IV of this book
contains a number of jQuery and jQuery UI examples you can work with.
In every case, the only thing you really need to modify is the <style> link.
However, to ensure that the example works completely and reliably, you
need to modify the jQuery and jQuery UI links as well. Copy the Accordion.
HTML example to the same folder you’ve used for your theme. The following
code shows the tags you should use to replace those used in Part IV when
using the Le Frog theme (make sure you include the appropriate changes for
your theme).

<script
 src=”js/jquery-1.9.1.js”>
</script>
<script
 src=”js/jquery-ui-1.10.3.custom.js”>
</script>
<link
 rel=”stylesheet”
 href=”css/le-frog/jquery-ui-1.10.3.custom.css” />

235 Chapter 10: Creating Themes Using ThemeRoller

Load the example in your browser to see if the changes have worked. In most
cases, you’ll see something like the example shown in Figure 10-16.

Figure 10-16:
The updated

example:
Something’s

not quite
right.

The first thing you should notice is that the jQuery UI control does indeed
use the new theme. However, the submission button doesn’t use the style.
This is because the example used a standard <input> button to perform
the task. When working with themes, you need to use the full assortment of
jQuery UI controls. You can fix this problem by adding a jQuery UI button to
the script, as shown here in bold:

<script language=”JavaScript”>
 $(function()
 {
 $(“#Configuration”).accordion();
 $(“input[type=submit]”).button();
 });
</script>

The page will now present the correct appearance. Because you haven’t
attached any jQuery UI behaviors to the button, it will continue to work as it
did before.

236 Part III: Working with CSS3 Generators

Chapter 11

Using the Dynamic Drive Tools
In This Chapter
▶ Working with images
▶ Working with icons
▶ Working with animations
▶ Adding gradients to images for special effect
▶ Creating unique buttons
▶ Providing ribbon rules
▶ Interacting with other Dynamic Drive tools

D
ynamic Drive (www.dynamicdrive.com/) is a JavaScript library that
provides a wealth of tools to make your job easier, while also enhanc-

ing overall site appearance, speed, reliability, and security. The focus of this
site is on appearance. However, some features, like the Image Optimizer, also
make it possible to create a better experience for the user — which trans-
lates into better reliability. Any time you can create a better experience, you
make it less likely that your user will click away from your site and go some-
where else. In the competitive Internet environment, the user experience is
what matters most.

Unlike jQuery and many of the other libraries described in the book, Dynamic
Drive focuses mainly on graphics, which is an area where many developers
lack skills. You can use features such as Image Optimizer to improve the
apparent speed of your site. In some respects the graphics will download
faster, but in other ways, the focus is on making the image appear to down-
load faster by providing incremental feedback the user can see. Incremental
display means displaying the graphic a piece at a time so the user gets con-
stant feedback and knows the site is making progress toward loading every-
thing to make it functional.

 Graphics are an important part of most sites today because they provide
aesthetic appeal and convey information that’s hard to convey by using text.
However, too many graphics can actually become distracting and cause your
message to disappear. In addition, some special-needs users won’t be able to

http://www.dynamicdrive.com/

238 Part III: Working with CSS3 Generators

appreciate the graphics. For them, you need to provide text alternatives — or
even a method for eliminating the graphics in some cases. The point is, don’t
become so entranced with graphics that they become the message. Instead,
make sure your graphics accent the site as a whole, so that you present the
message you want to convey.

Dynamic Drive can also help you create more interesting tools. For example,
this chapter discusses techniques for creating more interesting buttons and
also shows how to add a ribbon to your application. Ribbon rules provide
separation between page elements and make the page easier to use. Both fea-
tures provide an interesting way to use graphics in an unusual way.

The remainder of this chapter provides a quick overview of some other tools
that Dynamic Drive has to offer. There’s a wealth of them and a single chapter
can’t discuss them all. One of the more interesting tools discussed here is
the Email Riddler — used to make it a lot harder for spam harvesters to gain
access to your e-mail address.

You can access all of the Dynamic Drive tools from the main page shown in
Figure 11-1.

Figure 11-1:
The

Dynamic
Drive site
provides

access to a
wide variety

of tools.

239 Chapter 11: Using the Dynamic Drive Tools

Managing Images with Image Optimizer
The Image Optimizer makes it possible to create images that load quickly and
efficiently. A user is less likely to click away from your site when it’s speedy,
so optimizing the images is always a good idea. Even small changes in per-
ceived speed (if not actual speed) can make a difference. To access the Image
Optimizer, click Image Optimizer on the Web Tools menu of the main page.
You see a page similar to the one shown in Figure 11-2.

Figure 11-2:
Use the

Image
Optimizer to

make your
site faster.

You can provide the URL of an image online or the location of an image on
your hard drive as your input (using the correct field). Click the Browse
button to make it easier to find an image on the hard drive. You’ll see a File
Upload dialog box you can use to locate the file on your hard drive. The maxi-
mum file size that Image Optimizer will accept is 2.86 MB. If your file is larger
than this size, you need to crop or resize it before uploading it.

 ✓ Cropping removes part of the image without affecting image quality.

 ✓ Resizing maintains the entire image, but reduces image quality as a result.

 With the Image Optimizer you can convert an image to another type. The
image type you use determines just how much optimization that the Image
Optimizer can provide. However, when working with a lossy file format, such
as Joint Photographic Experts Group (.JPG), it also determines the quality of

240 Part III: Working with CSS3 Generators

the image the user sees. A lossy file format is one that sacrifices some content
in order to make the file smaller. When image quality suffers too much, the
user becomes frustrated and leaves your site despite the improvement in page
download speed. The example begins with a 1.05MB .JPG image. The follow-
ing list shows the optimized sizes for each output file type. (You can find the
image for this example in the \Chapter 11\Image Optimizer folder of the
downloadable code as FallWoods.JPG along with all of the variations shown
in the list so you can compare quality.)

 ✓ .GIF (8 color): 794 KB

 ✓ .GIF (4 color): 530 KB

 ✓ .GIF (2 color): 284 KB

 ✓ .JPG (quality 80): 1.03 MB

 ✓ .JPG (quality 70): 943 KB

 ✓ .JPG (quality 60): 783 KB

 ✓ .JPG (quality 50): 633 KB

 ✓ .JPG (quality 40): 589 KB

 ✓ .JPG (quality 30): 486 KB

 ✓ .JPG (quality 20): 380 KB

 ✓ .JPG (quality 10): 239 KB

 ✓ .PNG (8 color): 975 KB

 ✓ .PNG (4 color): 634 KB

To perform the image optimization, choose an image type from the Convert
To field, optionally check Show All Results, and click Optimize (as shown in
Figure 11-3). The optimization process can require a few minutes to complete.
What you see as output is the original image and some suggested alternative
images. In this case, you see Graphic Interchange Format (.GIF) output, which
saves size by reducing the color depth. The Portable Network Graphics (.PNG)
also saves space by changing the color depth; .JPG saves space by reducing
image quality. Each of the image entries will tell you how much smaller the
converted image is and what you can expect to save in download size.

To save a particular version of the optimized image to disk, right-click the
image and choose Save Image As from the context menu. Provide a filename
for the image and click Save to complete the process.

 Some image conversions can produce special effects that look quite nice on a
site. For example, changing an input image to a two-color .GIF file can create
a nice abstract look that works well for a background image. Try various con-
versions to determine whether any of the effects will be useful on your site (in
addition to saving download time).

241 Chapter 11: Using the Dynamic Drive Tools

Figure 11-3:
Image

Optimizer
outputs
sample
images

using the
file format

you request.

Creating Icons Using FavIcon Generator
A favorites icon is one that appears in the browser’s address field when
people access your site. The icon can also appear on tabs and also in the
user’s favorites list. Using a favorites icon can help people remember your
site and make it easier to find in a list of sites. Of course, site branding is an
essential part of giving a site a special feel. The FavIcon Generator takes any
.BMP, .GIF, .JPG, or .PNG file you own and turns it into an icon you can
associate with your site. When working with .BMP or .PNG files, you can also
create transparent areas so that the icon can have something other than a
square shape.

To access the FavIcon Generator, you click FavIcon Generator on the Web
Tools menu of the main page. Figure 11-4 shows how the page appears when
you access it.

Provide the name of a compatible graphics file on your hard drive to use for
the favorites icon. You can use any file up to 150 KB in size. As an option,
you can also choose to include both a desktop icon and a large icon with the
resulting favorites icon. After you make your selections, you see the output.
Figure 11-5 shows typical output for the example in this section. (You can
find the image for this example in the \Chapter 11\FavIcon Generator
folder of the downloadable code as TestImage.GIF.)

242 Part III: Working with CSS3 Generators

Figure 11-4:
Create a

Favorites
icon to

brand your
site and
make it

easier to
remember.

Figure 11-5:
The output

will include
whatever
icons you
chose to

create.

243 Chapter 11: Using the Dynamic Drive Tools

Click Download FavIcon to obtain a copy of the result in icon (.ICO) format.
When you select other icon sizes, all three icons appear in the single file. The
browser or operating system will select the correct size for a particular need.

The More Information on FavIcon section of the page tells you how to use
your icon to brand your page. All you need to do is add a tag to your page so
that the browser knows which icon to display. The change isn’t immediate
and it does take time for many browsers to recognize the icon.

Creating Animations with Animated Gif
Many sites use animation to good effect. Text conveys an abstract level of
meaning, graphics can make the meaning more concrete, but the use of good
animation can communicate in ways that text and standard graphics can’t.
The addition of motion has a huge impact on how the viewer sees the infor-
mation. The Animated Gif tool helps developers create simple animations.
You access it by clicking Animated Gif on the Web Tools menu of the main
page. Figure 11-6 shows how the tool appears when you first access it.

Figure 11-6:
Use the

Animated
Gif tool

to create
graphics
that have

motion.

 Of course, animated GIFs can also be a lot of fun. There are people out there
who create animated GIFs to entertain, generate a laugh, or to dress up just
about anything having to do with the Internet. For example, you can find
a wide range of free animated GIFs at www.gifs.net/gif/, http://
heathersanimations.com/, http://gifgifs.com/, and www.amazing-
animations.com/ (amongst many others). The point of using this tool is to
create an animated GIF for special circumstances that the free libraries don’t
support.

http://www.gifs.net/gif/
http://heathersanimations.com/
http://heathersanimations.com/
http://gifgifs.com/
http://www.amazing-animations.com/
http://www.amazing-animations.com/

244 Part III: Working with CSS3 Generators

 Animations are actually a series of still pictures that are presented one at a
time at a specific speed. There are complex applications that can perform all
sorts of special effects, vary the time between transitions, and do other things
that would make your hair stand on end. Complex applications are for profes-
sional developers. All you need is a series of images to use this tool, which
makes it simple enough for developers.

You can create the images using any tool you want, such as Paint. In fact,
the images need not be drawn at all. An animated GIF could actually consist
of a series of screenshots showing the transition from a starting point to
a final result. The point is that you display a series of images, in a specific
order, to produce a result that appears to have some type of motion. The
example, shown in Figure 11-7 is a simple box with circles in it. The animation
occurs when each of these circles turns red in turn. You could use it as part
of a progress indication. (You can find the series of images for this example
in the \Chapter 11\Animated Gif folder of the downloadable code as
Progress01.PNG through Progress06.PNG.)

Figure 11-7:
The

example
animates

this simple
drawing.

To create an animated GIF, click Browse, select the first image in the series
in the File Upload dialog box, and then click Open. You perform this task for
each image in the series until you’ve uploaded all the images. Figure 11-8
shows how the example appears at this point. (If you make a mistake and
upload an image in the wrong place, simply click the X for that image’s
square to remove it from the sequence.)

You need to decide how large to make your GIF and how fast the animation
should run. These settings usually require a little trial and error. Try the set-
tings you think will work and then click MakeGif. What you’ll see is a sample
of the GIF on screen. When you’re happy with the result, click the Download
Image link that appears next to the GIF.

245 Chapter 11: Using the Dynamic Drive Tools

Figure 11-8:
Add all of

the images
you want to

use to the
page.

Of course, now that you have an animated GIF, you’ll want to see it on a
page. All you need to provide is the standard tag — the animation is
built into the file you downloaded. The following code shows how to create
a test page for this example. (You can find complete code for this example
in the \Chapter 11\Animated Gif folder of the downloadable code as
TestAnimation.HTML.)

<!DOCTYPE html>

<html>
<head>
 <title>Test an Animated GIF</title>
</head>

<body>
 <h1>Test an Animated GIF</h1>

</body>
</html>

246 Part III: Working with CSS3 Generators

Generating Images Using
Gradient Image Maker

You’ve already seen a number of other programs described that create
gradient images. It seems as if every site provides one. The Dynamic Drive
Gradient Image Maker is different, though: It actually creates an image file,
rather than creating CSS that eventually creates an image on screen. The
difference is important. Using an image means that the browser only needs
to support images — something that every browser out today can do — but
when using CSS, you need to know that the host browser actually supports
the required level of CSS. You access Gradient Image Maker by clicking
Gradient Image on the Web Tools menu of the main page. Figure 11-9 shows
how the tool appears when you first access it.

Figure 11-9:
Gradient

Image
Maker

sports a
simple

interface
and outputs

actual
images.

The Gradient Image Maker sports a simplified interface. All you do is select
the kind of gradient you want to create (horizontal, vertical, or diagonal),
define the gradient size, and choose the colors you want to use. When

247 Chapter 11: Using the Dynamic Drive Tools

 choosing a color, you can either click in an area in the color selector or you
can type the hexadecimal code for the color you want to use. There’s little
flexibility in using this tool. It’s specifically designed to provide a simple,
quick means of creating a gradient.

When you’re satisfied with the gradient, choose an image output format.
The JPEG format will generally produce smaller files, while the PNG format
will generally produce higher-quality files. Click Get Full Size Image and you
see another tab open with the gradient image you requested. Right-click the
image and choose Save Image As from the context menu to save the image to
your hard drive.

There’s a trick to using the image as a background. HTML supports a back-
ground attribute for the <body> tag. Supposedly this attribute is deprecated
and you shouldn’t rely on it being available forever. However, it still works
in every browser targeted by this book (and on all platforms). The following
code uses the background attribute, and will display a page with the gradi-
ent as a background image in the size requested. (You can find complete
code for this example in the \Chapter 11\Gradient Image Maker folder
of the downloadable code as TestGradient.HTML.)

<!DOCTYPE html>

<html>
<head>
 <title>Testing a Gradient Image</title>
</head>

<body background=”Gradient.JPG”>
 <h1>Testing a Gradient Image</h1>
 <p>Some Sample Text</p>
</body>
</html>

This technique does have the advantage of not using any form of CSS to dis-
play the image, but it’s somewhat risky as future changes are made to how
HTML works in browsers. For now, however, it appears that every browser
on the planet still supports this particular method of displaying a background
image (when some won’t use the CSS method). Figure 11-10 shows how the
gradient looks in action.

248 Part III: Working with CSS3 Generators

Figure 11-10:
A gradi-

ent image
can work
in places

where CSS
might not

work.

The current way to use the image is to apply it using CSS. In this case, you
apply it using the background property for the body style, as shown here.
(You can find complete code for this example in the \Chapter 11\Gradient
Image Maker folder of the downloadable code as TestGradient2.HTML.)

<!DOCTYPE html>

<html>
<head>
 <title>Testing a Gradient Image</title>
 <style type=”text/css”>
 body
 {
 background: url(“Gradient.JPG”);
 background-size: 80px 80px;
 }
 </style>
</head>

<body>
 <h1>Testing a Gradient Image</h1>
 <p>Some Sample Text</p>
</body>
</html>

 The advantage of this approach is that you can control the background size,
origin, and other features. Using CSS, whenever possible, greatly increases
the flexibility of using a gradient image. However, if you’re going to use CSS
anyway, it often pays to apply the gradient itself by using CSS. The main
advantage of using an image over pure CSS is that you can quickly swap one
image for another, using any of a number of techniques to change the page
appearance, without writing any new code.

249 Chapter 11: Using the Dynamic Drive Tools

Generating Controls Using
Button Maker Online

Many sites use micro buttons to make it possible to perform tasks such as
creating a Really Simple Syndication (RSS) feed for the site. These buttons
pop up all over the place — you see them mainly on informational sites, but
they appear other places as well. A micro button is either 80 × 15 pixels or
88 × 31 pixels in size. It normally contains two pieces of text in a bicolored
button; it can use several color combinations, but the text itself is a single
color.

The Button Maker Online tool makes it possible to generate these micro
buttons quickly and efficiently. You access Button Maker Online by clicking
Button Maker on the Web Tools menu of the main page. Figure 11-11 shows
how the tool appears when you first access it.

Figure 11-11:
Use Button

Maker
Online to

create micro
buttons for

your site.

250 Part III: Working with CSS3 Generators

Creating the button
Even though the form looks quite complicated, you can create a micro
button relatively fast. The following procedure leads you through the task of
creating a micro button. (You can find the image for this example in the
\Chapter 11\Button Maker Online folder of the downloadable code as
MyButton.GIF.)

 1. Choose a size for the button in the Button Size field.

 The button size determines how much text can appear in the micro
button. You should set the size before changing anything else because
the size of the button also modifies how the other changes appear
onscreen.

 2. (Optional) Check the Rounded Corners option when desired (and
available).

 The Rounded Corners option is only available when working with an
88 × 31 button.

 3. (Optional) Check the Use Two Rows for Text option when desired (and
available).

 The Two Rows for Text option is only available when working with an
88 × 31 button.

 4. Choose a base color or check Base Color is Transparent.

 The base color appears behind all of the other elements of the button. A
transparent base will allow the background to show through. The base
color always results in a square image, even if you check the Rounded
Corners option.

 5. Choose a border color or check Border Color is Transparent.

 The border color defines the outside of the actual button, but there’s a
1-pixel border between the edge of the border and the end of the base,
so that a colored base will always show through. Choosing the Rounded
Corners option results in a border with rounded corners.

 6. Choose an option in the Font drop-down list box.

 The tool provides access to two different fonts. The Sans-Serif option
works best when using an 88 × 31 button with a vertical bar.

 7. Choose a bar color or make the bar transparent.

 The button always uses a vertical bar for 80 × 15 buttons, but can use
either a vertical or horizontal bar for 88 × 31 buttons. The name of the
bar option changes to match the bar’s orientation.

251 Chapter 11: Using the Dynamic Drive Tools

 8. Type a value in the Left Side Text field.

 The button can hold about ten characters worth of text total when work-
ing with a single row of text with a vertical bar. Each row can accommo-
date about 19 characters worth of text (38 characters total) when using
two rows of text.

 9. Set the Left Side Text field background and foreground colors.

 You can use the Color Picker or type the hexadecimal value into the
appropriate fields.

 10. Type a value in the Right Side Text field.

 11. Set the Right Side Text field background and foreground colors.

 You can use the Color Picker or type the hexadecimal value into the
appropriate fields.

 12. (Optional) Set the Vertical Bar Position when desired (and available).

 The Vertical Bar Position setting is only enabled when the button uses
a vertical bar. Two row text uses the entire width of the button for
each row.

 13. Click Update.

 You see all the changes you made to the button.

 14. Make any required changes and click Update after each change.

 Eventually the button will look precisely as you want it to look.

 15. Right-click the button and choose Save Image As from the context
menu.

 You see a Save Image dialog box.

 16. Type the name you want to use for the button and click Save.

 The button is ready for use.

Using the button
At this point, you have a wonderful new micro button to try. There are a
number of ways to use a micro button. For example, some people include
them within an anchor (<a>) tag. However, for the purposes of this example,
you’ll see how to use a micro button inside a regular button. (You can find
complete code for this example in the \Chapter 11\Button Maker
Online folder of the downloadable code as TestButton.HTML.)

252 Part III: Working with CSS3 Generators

<!DOCTYPE html>

<html>
<head>
 <title>Testing a Micro Button</title>
 <style type=”text/css”>
 #MicroTest
 {
 border: none;
 background-color: transparent;
 }
 </style>
</head>

<body>
 <h1>Testing a Micro Button</h1>
 <button id=”MicroTest”
 onclick=”alert(‘Clicked!’)”>

 </button>
</body>
</html>

In this case, the .GIF file containing the button image appears as part of an
 tag within a <button> tag. The <button> tag provides access to the
onclick attribute, which is used to react to a user click with an alert()
function call. You see a dialog box containing the word Clicked!

Of course, you also have a problem with the button appearing onscreen. The
internal style, #MicroTest, makes the button disappear by changing its
border to none and setting the background-color to transparent. As a
result, all you see is the micro button (as shown in Figure 11-12).

Figure 11-12:
Micro but-
tons add a

bit of pizzazz
to your site,

along with
a familiar

appearance.

253 Chapter 11: Using the Dynamic Drive Tools

Adding Pizzazz Using Ribbon Rules
Ribbon rules are colorful graphic rules that have replaced the standard HTML
rule on many sites. The graphic rule adds an accent to the site and makes it
appear a bit more finished. You access Ribbon Rules Generator by clicking
Ribbon Rules on the Web Tools menu of the main page. Figure 11-13 shows
how the tool appears when you first access it.

Figure 11-13:
Using rib-
bon rules
will dress

up your site
and make it

look more
finished.

Creating the ribbon rule
Generating a ribbon requires that you specify the color and spacing to use
for the ribbon element. The choice for color is to use a randomly generated
sequence based on a base color, or to use specific color choices. The spacing
is either random within the range you specify, or a specific size for each color
choice.

 The user selected colors and sequence spacing require a little extra care
when you use them. First, make sure that any hexadecimal values you input
are preceded by the pound sign (#) or else the ribbon will appear black when
you generate it. Second, the color choices you make will appear exactly in the
sequence you make them in the output ribbon. If you plan to use the ribbon
in a repeating manner, create a sequence and spacing that works together.
Testing shows that a spacing of 26 works great — you end up with an even
repeating sequence that will look great on the page.

254 Part III: Working with CSS3 Generators

After you make your choices, click Generate. Ribbon Rules Generator will
create a ribbon rule for you and display it under the form. You can use the
ribbon as it appears, or make changes for a different look. To save the ribbon
you’ve created, right click its entry on the page and choose Save Image As
from the context menu. Provide a name for the image and click Save to
complete the action. (You can find the images for this example in the
\Chapter 11\Ribbon Rules Generator folder of the downloadable
code as UserRule.GIF and RandomRule.GIF.)

Using the ribbon rule
You can use the image containing the ribbon rule anywhere you can use any
other image. However, most people will use the ribbon rule as part of a style.
The following code shows one example of how you could use the ribbon
rules created by this example. (You can find complete code for this example
in the \Chapter 11\Ribbon Rules Generator folder of the download-
able code as TestRibbonRule.HTML.)

<!DOCTYPE html>

<html>
<head>
 <title>Test the Ribbon Rules</title>
 <style type=”text/css”>
 #Area1
 {
 margin: 5px;
 padding: 5px;
 border-style: solid;
 border-width: 6px;
 border-image:url(UserRule.GIF) 960 10 repeat;
 }

 #Area2
 {
 margin: 5px;
 padding: 5px;
 border-style: solid;
 border-width: 6px;
 border-image:url(RandomRule.GIF) 960 10 repeat;
 }
 </style>
</head>

255 Chapter 11: Using the Dynamic Drive Tools

<body>
 <h1>Test the Ribbon Rules</h1>
 <div id=”Area1”>
 <h2>This is Area 1</h2>
 <p>This area uses the user-selected settings.</p>
 </div>
 <div id=”Area2”>
 <h2>This is Area 2</h2>
 <p>This area uses the random settings.</p>
 </div>
</body>
</html>

You saw this same technique applied to the graphics in Chapter 4. However,
this time you use them to create a rule on a page. The page contains two
areas. The first displays a ribbon rule created with user-specific settings; the
second displays a ribbon rule created by using random settings. Of course,
there are infinite possibilities in creating ribbon rules — these examples are
simply representative of what you can do. Figure 11-14 shows typical output
from this example.

Figure 11-14:
Ribbon

rules can
rely on any

combination
of random
and user-
specified
settings.

256 Part III: Working with CSS3 Generators

Accessing the sample scripts
The main page of the Dynamic Drive site con-
tains a listing of scripts categorized by type. For
example, if you click Date and Time, you see an
entire list of scripts that have something to do
with date and time. Each of the entries in the
list provides the script name, which browsers
can use it, whether it was user-submitted, and
a short description.

Clicking a specific entry takes you to another
page that tells you more about the script. Most
of the scripts include a running example so
you can see how the script works. After that,
you see a box containing the source code
and directions for using the script in your own
application. What is most important is that the
majority of these scripts include a nicely written
description of precisely how the script works,

so you can learn more about scripting while you
improve your site with the functionality that the
script provides.

In most cases, the scripts you access on this
site provide enough information that you can
use the script even if you don’t fully understand
how it works. Dynamic Drive tries to make
things as easy as possible so you can create
a nice-looking site while you also develop new
skills. Make sure you understand the terms of
service for using the scripts at www.dynamic
drive.com/notice.htm. For the most
part, you’re allowed to make needed changes
and use the scripts as needed on your site, but
you can’t send the modified scripts to other
people to use. The rules seem simple and fair.

http://www.dynamicdrive.com/notice.htm
http://www.dynamicdrive.com/notice.htm

Part IV
Modifying Pre-Built Content

for a Unique Look

 See examples of how you can create table-like effects using CSS3 and HTML5 tags at
www.dummies.com/extras/css3.

http://www.dummies.com/extras/css3

In this part . . .
 ✓ Discover where vendors typically hide the CSS for a library or

generator
 ✓ Decide which modification techniques and tools will work best

for your library or generator
 ✓ Create special effects for the jQuery and jQuery UI features
 ✓ Use modified forms of the Dynamic Drive scripts to enhance

your applications

Chapter 12

Understanding CSS for Libraries
and Generators

In This Chapter
▶ Discovering how libraries and generators use CSS
▶ Viewing the CSS used by libraries and generators
▶ Determining which elements to modify
▶ Using modification aids

T
he third-party libraries and generators in this book have had one thing
in common — they all rely on CSS in some way to accomplish their work.

So far, the book has demonstrated that using CSS makes it possible to format
page content and perform programming-like tasks. The third-party products
you’ve examined all make your job easier by creating an environment in which
you can focus on output, rather than on the means to obtain that output.

You’ve also been subject to the whims of each product’s developer because
each product forces you to perform tasks in a specific way. This chapter
helps you solve that problem, at least partially, by viewing and modifying
the CSS used by these third-party products in order to see output in the way
you’d prefer. For example, you might want to see rounded corners on con-
trols, rather than square corners, and this chapter tells you how to make that
sort of change. Of course, changes go beyond the visual to behavior so that
you can obtain new functionality from existing libraries by augmenting the
behaviors they provide.

Working with text-based programming environments makes it a lot easier
for you to see how things work and then make modifications as needed.
Browser-based applications are more accessible than compiled applications
at the desktop (where the closed environment makes seeing how anything
works nearly impossible). An open environment also makes it possible to
find people (such as other developers) who will help you make modifications

260 Part IV: Modifying Pre-Built Content for a Unique Look

and even locate third party aids. The chapter helps you understand the need
for community support when making changes to products — when enough
people request a change, the change often gets incorporated into the product
as a permanent feature.

 The emphasis in this chapter is on modification and tweaking. Nudging a library
or generator in a desired direction is completely different from rewriting it. When
you find yourself spending a lot of time delving into third-party code, it’s time
to think about whether the library or generator actually does meet your needs.
There’s no lack of third-party products out there, so settling for a solution that
doesn’t really meet your needs shouldn’t be an option. In addition, making too
many modifications makes updating to the next version of the library cumber-
some or impossible. Always work with the library or generator and make as few
modifications or tweaks as needed to produce acceptable results.

Finding the CSS for a
Library or Generator

There are a number of ways to find the CSS for a library or generator. The
easiest way is for the developer to provide it to you directly. For example,
when you work with jQuery UI, you must include a link to the CSS as part
of using the library. This means you know where the CSS is located, and by
viewing the URL, you can see how it works. As an example, check out the link
for jQuery UI:

<link
 rel=”stylesheet”
 href=”http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css” />

The href attribute points you to the CSS for the library. When you plug this
URL into your browser, you see something like the code shown in Figure 12-1.

When a vendor doesn’t provide the link to you directly, you can often find
information about the product on another site. There’s strong support from a
variety of sources for tweaks on third-party libraries and generators. In many
cases, all you really need to do is find the right support group, site, or forum
(such as Stack Overflow, http://stackoverflow.com/)..

Your browser can also help you locate both the JavaScript and CSS used for
a third-party product. Most browsers include a feature for viewing the page
source. When working with Firefox, for instance, you right-click the page and
choose View Page Source from the context menu. The source viewer will
often turn references to external files into links that you can click and view.

http://stackoverflow.com/

261 Chapter 12: Understanding CSS for Libraries and Generators

Figure 12-1:
Many librar-

ies provide
you with a
link to the

CSS used to
give them
a special

look.

Unfortunately, the browser’s source viewer might not be up to the task of
telling you everything about the page. In this case, a third-party tool can help
you locate and access both JavaScript and CSS files. For example, when work-
ing with Firefox, you can obtain a copy of JSView (http://jsview.soft
pedia.com/) — an add-on that will tell you which JavaScript and CSS files
are attached to the current file (you can use this utility with Windows, Mac,
and Linux systems). You can select the file you want to view from a drop-
down list box, as shown in Figure 12-2. The figure shows the ExternalCSS.
HTML example from Chapter 1; JSView correctly tells you that it has one CSS
file attached, ExternalCSS.CSS.

Figure 12-2:
JSView

makes it
possible to
determine

what is
attached to
the current

page.

http://jsview.softpedia.com/
http://jsview.softpedia.com/

262 Part IV: Modifying Pre-Built Content for a Unique Look

In order to view the CSS, you select its entry from the list. The code usually
opens in whatever program your browser provides for viewing source code.
Using a third-party tool like this makes it possible to locate all of the external
links quickly and reliably. In addition, you can open more than one of the
external links at a time.

 It’s important to understand that real people, often individuals or small
companies, create these libraries and generators. If you can’t find any other
source of information about the library or generator — and really do need
to make modifications or tweaks for some specific purpose — try contacting
the makers of the product you’re using. They’re obviously interested in their
product and would likely want to hear your ideas (a few won’t, but that’s the
exception, rather than the rule). The best thing to remember is to try to locate
another source of information first and only then ask for help from the prod-
uct’s creator. However, don’t be afraid to contact the product’s creator — the
worst that can happen is that the person will say no.

Viewing the CSS
Once you’ve found the CSS online, you’ll want to view it. In at least some
cases, the CSS will use plenty of white space and could include comments.
For example, when you view the standard version of jquery-ui.css, you
see a fully commented file with plenty of white space, as shown in Figure 12-3.

Figure 12-3:
The stan-

dard version
of the jQuery

UI CSS file
is easy to

read.

263 Chapter 12: Understanding CSS for Libraries and Generators

On the other hand, trying to view some JavaScript or CSS files can prove
nearly impossible. For example, when viewing jquery-1.4.2.min.js, you
see the mass of undecipherable text shown in Figure 12-4. The browser can
read this text without any problem whatsoever, but any developer attempt-
ing to read it will encounter problems.

Figure 12-4:
Some

CSS and
JavaScript

files are not
so easy to

read.

You could handle the problem in a number of ways, but the easiest method
is to use a third-party utility such as JavaScript Beautifier Online (http://
jsbeautifier.org/). All you do is copy the code from the browser’s
code viewer, paste the code into the page, select the settings you want to
use, and then wait a few seconds (often less) while the utility automatically
adds whitespace so you can see what is happening with the code. Figure 12-5
shows the output from jquery-1.4.2.min.js. Even though this utility is
called JavaScript Beautifier Online it works fine with all sorts of files. Just give
it a try whenever you need to see packed source code.

 After you make the code readable with a product such as JavaScript Beautifier
Online, you can copy it out and place it on your local drive. As you work
through the file you can add your own comments. The idea is to become thor-
oughly familiar with whatever code you’re working with before you make any
decisions about modifications or tweaks. In addition, you need to be able to
talk with anyone who knows more about the file in an intelligible manner.

http://jsbeautifier.org/
http://jsbeautifier.org/

264 Part IV: Modifying Pre-Built Content for a Unique Look

Figure 12-5:
Make the

source code
readable

using a
third-party

utility.

Deciding What to Modify or Tweak
Some libraries and generators produce perfect (or close enough) results
immediately and don’t require any sort of modification or tweaking, but the
reality is that you don’t find them often enough. In many cases, you must
make some sort of major change (a modification) or at least a small change (a
tweak) for the library or generator to work as expected. For most developers,
the issue of what to modify (or tweak) comes down to asking two important
questions:

 ✓ When should I modify? The answer to this question is based on a
balance. You must decide whether the issue surrounding a particular
library or generator is severe enough to cause users problems. Yes,
there are fit and finish issues that you might consider, but the press-
ing matter is whether the problem is severe enough to cause delays
in entering data or could cause the user to enter data incorrectly. The
goal is to determine whether a problem will distract the user, or cause
some other definable problem that could result in reduced productivity,
increased security breaches, or significant down time.

265 Chapter 12: Understanding CSS for Libraries and Generators

 ✓ How long should I modify? Once you determine that the problem
must be fixed, you also need to consider how long to spend fixing it.
Developers can experience problems with letting go of a problem after
investing a significant amount of time in it. The goal of using a third-
party library or generator is to save time. If you’re not saving time, then
the library or generator simply isn’t a good fit for you and you need to
look elsewhere. This may seem like a simplistic way to view things, but
many projects are derailed when the developer fails to realize that the
library or generator isn’t meeting the goals set for it by the developer.

Most developers will make certain kinds of modifications to libraries and to
the output of generators because these changes are small, fast, and produce
large returns in user efficiency. Here’s a list of the most common changes you
find described in various places (both in books and online).

 ✓ Graphical changes that make controls and other objects easier to use

 ✓ Presentation modifications that make the selections or other functional-
ity clearer

 ✓ Content alterations that give the user precise selections or options

 The one thing you want to avoid is making changes in how something works —
making the library do something that it was never intended to do by modifying
the base library code, rather than extending it or adding functionality through
CSS changes. When you get to this point, you’re taking over for the library or
generator developer and that’s a losing proposition for any developer. For one
thing, you don’t have access to the developer’s source code. For another, you
must keep the goal of working with the library or generator in mind so that you
actually do save time.

Locating Modification Aids
Modification aids, tools or code that augment the base functionality of a
library, come in many forms. You’ve already seen some of these aids in
action in previous chapters. For example, Chapter 10 explores the use of
ThemeRoller, which is merely a modification aid for jQuery UI in that it
extends the functionality provided by jQuery UI. ThemeRoller is also a tool
because it makes it possible to create something entirely new (in the form
of unique themes) using a wizard-type interface. Some modifications require
coding or other low-level techniques that appear in the chapters that follow
this one. The following sections provide some pointers on finding and using
modification aids that will meet your specific needs.

266 Part IV: Modifying Pre-Built Content for a Unique Look

Searching for modification aids
Most of the modification aids you find are created by interested third par-
ties who had a problem similar to the one you encountered. These third
parties publish their answers to the problem so that you don’t have to rein-
vent the wheel. Of course, you have to be willing to look for the solution.
Unfortunately, this requires spending some time with your favorite search
engine, locating the solutions that might fit and then reading about them one
at a time.

 To reduce the time spent looking for solutions; make sure you define search
terms carefully. In fact, it’s important to consider the order of the search terms.
Developing a technique and then trying several searches with it will eventually
save you time and effort. For example, when working with Google, you can use
the site: attribute in a search line to look for entries on your favorite site. If
you want to look for something on Microsoft Developer Network (MSDN), you
use search term site:msdn.microsoft.com to limit the search (where
search term is the definition of the solution you need). The advanced search
page (www.google.com/advanced_search) also provides access to a
number of filters you can use.

Using other developer solutions
Some of the solutions you find are quite refined and combine controls to
create a special setup. For example, look at the Ben’s Sandbox solution
(http://bseth99.github.io/projects/jquery-ui/3-jquery-ui-
spinner-extensions.html) — shown in Figure 12-6 — for enhancing a
jQuery UI Spinner with a Slider to make it easier for the user to see a specific
selection range. Making changes like this will reduce the number of input
errors that a user makes and will also reduce the time required to make the
entry. Instead of typing numbers, the user can choose a number using the
slider.

Developers are also constantly creating articles that will help you create
some interesting modifications or tweaks of existing libraries of gen-
erators. For example, the article entitled, “Exploring the New jQuery UI
Spinner – Beyond the Basics” at http://benknowscode.wordpress.
com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-
the-basics/ describes how to define a spinner that displays letters instead
of numbers, as shown in Figure 12-7.

http://www.google.com/advanced_search
http://bseth99.github.io/projects/jquery-ui/3-jquery-ui-spinner-extensions.html
http://bseth99.github.io/projects/jquery-ui/3-jquery-ui-spinner-extensions.html
http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/
http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/
http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/

267 Chapter 12: Understanding CSS for Libraries and Generators

Figure 12-6:
Enhance-

ments often
involve

combining
controls.

Figure 12-7:
Many arti-

cles you find
will contain
interesting
ideas that

you can use.

Notice that the spinner is at the top and bottom of the control. In fact, the
spinner looks nothing like the jQuery version of the spinner, yet all you’re
doing is modifying the CSS for the control. This particular example is so inter-
esting that I describe it in more detail in Chapter 13 (and implement it in a
different way).

268 Part IV: Modifying Pre-Built Content for a Unique Look

 It’s important to realize that modification is a process. As a result, looking
for articles that discuss this process is always a good idea. For example, the
article entitled, “Tips for Developing jQuery UI 1.8 Widgets” (http://www.
erichynds.com/blog/tips-for-developing-jquery-ui-widgets)
helps you avoid the errors that many developers make when extending jQuery
UI by creating a new widget.

Getting answers from other professionals
If you can’t seem to find an answer anywhere for your question on how to
perform a particular modification or tweak, there are many places where
professionals go to get answers. One of the better places to ask is the Stack
Overflow site (http://stackoverflow.com/). You generally get an
answer quickly and the initial answers work quite a bit of the time (when an
answer doesn’t work, the forum members are usually interested enough to
continue discussing your question).

Make sure you verify that the question hasn’t been asked before by searching
for it on the forum first. When using some of these forums, you need to define
search criteria to ensure you find the answer as quickly as possible. When
working on Stack Overflow, you define a set of tags at http://stackover
flow.com/tags to locate a specific answer.

http://www.erichynds.com/blog/tips-for-developing-jquery-ui-widgets
http://www.erichynds.com/blog/tips-for-developing-jquery-ui-widgets
http://stackoverflow.com/
http://stackoverflow.com/tags
http://stackoverflow.com/tags

Chapter 13

Modifying the jQuery
and jQuery UI CSS

In This Chapter
▶ Viewing the jQuery and jQuery UI CSS
▶ Developing new controls
▶ Executing special control effects
▶ Defining additional graphics
▶ Extending jQuery and jQuery UI with plug-ins
▶ Using code to create a few added effects

j
Query and jQuery UI are two of the most popular libraries used to enhance
browser-based applications for good reason — they both provide signifi-

cant functionality in small, well-documented packages. Using these two librar-
ies alone can give you most of the functionality any developer could want.
However, the wealth of available third-party tweaks, modifications, add-ons,
and plugins suggests that many other developers think jQuery and jQuery UI
could use something more. That’s what this chapter is all about — obtaining
a bit more from jQuery and jQuery UI. The simple act of modifying the CSS
associated with jQuery and jQuery UI can create some amazing effects.

Of course, you don’t want to simply plunge in and start making changes
to any library. It’s important to make measured changes that obtain the
result you want with the fewest modifications to the way the library works.
Otherwise you risk altering the library in a way that causes problems with
future versions of the library. Breaking changes (those that cause the library
to work incorrectly in the future) are one of the biggest problems with any
change you make.

270 Part IV: Modifying Pre-Built Content for a Unique Look

This chapter reviews a number of common modifications that people make
to the jQuery and jQuery UI libraries. Of course, the most common is a
specialized form of an existing control — one that uses the basic control,
but augments it in some way. For example, you may decide that the control
should be coupled with another control to make it easier to use (as with the
spinner-and-slider combination discussed in Chapter 12). You may also want
to create special application effects based on control state or output. Adding
graphics is another common change. The point is that you have a number of
ways to modify how jQuery and jQuery UI work so that they better fit your
application’s requirements.

 Most of the examples in this chapter use some amount of JavaScript that’s
based on the jQuery (http://api.jquery.com/) and jQuery UI (http://
api.jqueryui.com/) examples. Many developers simply copy and paste
code they find online in order to reproduce an effect without really under-
standing JavaScript at a low level. This approach does work, but it’s more
helpful if you know how to write applications using JavaScript — at least at
the novice level (to gain that knowledge, you can read my book on JavaScript
entitled, HTML5 Programming with JavaScript For Dummies). The explanations
in this chapter are complete enough that most people with at least a little
coding experience should be able to follow them. However, you can use the
code in your application by simply copying and pasting it as needed.

Looking at the jQuery and jQuery UI CSS
Most of the changes you make to jQuery and jQuery UI involve modifications
of the CSS. You can perform this task in a number of ways. For example, you
can create an internal style that modifies the behavior of the default style.
When your application uses external styles, the style overrides must appear
later than the jQuery and jQuery UI styles in the list of styles. The following
sections discuss some essentials you must know before overriding a style.

Understanding the basic layout
The makers of jQuery and jQuery UI do a good job of documenting the inter-
nals of their library. From a CSS perspective, the material found at http://
api.jqueryui.com/theming/css-framework/ tells you about the
styles used to create the output you’ve seen in various places in the book.
Figure 13-1 gives you a good idea of how the initial page of documentation is
laid out.

http://api.jquery.com/
http://api.jqueryui.com/
http://api.jqueryui.com/
http://api.jqueryui.com/theming/css-framework/
http://api.jqueryui.com/theming/css-framework/

271 Chapter 13: Modifying the jQuery and jQuery UI CSS

Figure 13-1:
Start with

the CSS
documen-

tation to
discover

how to
make modi-

fications.

One of the first things you notice on this page is that the developers recom-
mend you use ThemeRoller (see Chapter 10 for details) to make your changes
whenever possible. However, there are many cases where ThemeRoller
simply won’t do the job, so you need to make the modifications in a more tra-
ditional manner. The list that follows describes each of the classes and their
range of effects. I’ve divided the classes into two files with a number of styles
within each file:

 ✓ jquery.ui.core.css: Contains all of the styles that affect structural ele-
ments in some way. These include

	 •	Layout helpers: Determines the overall layout of objects onscreen;
makes it possible to interact with assistive technologies; and pro-
vides a method for resetting the layout as needed.

	 •	Interaction cues: Defines when an object is disabled.

	 •	Icons: Specifies the icon state.

	 •	Overlays: Determines the size and position of overlays.

 ✓ jquery.ui.theme.css: Defines any styles that affect thematic elements,
such as color, fonts, and backgrounds. These include

	 •	Component containers: Specify the appearance of content within
various object containers. The containers normally include the
overall object, object headers, and object data (specified as con-
tent within the styles).

272 Part IV: Modifying Pre-Built Content for a Unique Look

	 •	Interaction states: Determine the appearance of an object when
specific interaction states occur. The four interaction states are:
default (when nothing is happening with the object), hover
(when the mouse cursor is over the object), active (when the user
is actually performing a task with the object), and focus (when the
user has selected the object, but isn’t doing anything with it).

	 •	Interaction cues: Determine the appearance of an object that’s in
a particular state to help the user understand the object’s status.
The interaction cues are: highlight (the object or content is
selected for interaction); error (an error has occurred with an
object); error text (an error has occurred with content, usually
text, within an object); disabled (the object or content are dis-
abled); primary (an object is the primary or first-level object in a
hierarchy of objects); and secondary (an object is the secondary
or second-level object in a hierarchy of objects).

	 •	Icons: Define the state and positioning of the icons used with an
object. The state and positioning are controlled separately. The
state information determines whether the icon is part of a header
or the content. In addition, it determines formatting based on the
status of the icon: default, hover, active, highlight, error,
and error text. Icons are positioned individually based on icon
name, such as .ui-icon-carat-1-n.

 The icons are actually defined in block format as part of the states
and images section of the icons portion of the file.

 You can see the widget-specific icon images at http://code.
jquery.com/ui/1.9.2/themes/base/images/ui-
icons_222222_256x240.png.

 The default icon images appear at http://code.jquery.
com/ui/1.9.2/themes/base/images/ui-icons_
888888_256x240.png.

 You can find the active icon images at http://code.jquery.
com/ui/1.9.2/themes/base/images/ui-icons_454545_
256x240.png and those used for highlighting at http://
code.jquery.com/ui/1.9.2/themes/base/images/ui-
icons_2e83ff_256x240.png.

 When an application experiences an error, you see the list of
icons at http://code.jquery.com/ui/1.9.2/themes/base/
images/ui-icons_cd0a0a_256x240.png.

	 •	Corner radius: Creates rounded corners on the various objects.

	 •	Overlays: Determines the formatting of content within overlays
and the formatting of the overlay shadow (so that you can see
there’s an object behind the object in the front).

http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_222222_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_222222_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_222222_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_888888_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_888888_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_888888_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_454545_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_454545_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_454545_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_2e83ff_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_2e83ff_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_2e83ff_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_cd0a0a_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_cd0a0a_256x240.png

273 Chapter 13: Modifying the jQuery and jQuery UI CSS

 In order to better understand how things work, it’s a good idea to look at the
actual files. You can find the first file at a location such as http://code.
jquery.com/ui/1.9.2/themes/base/jquery.ui.core.css where
http://code.jquery.com/ui/ is the base URL, 1.9.2 is the version of
jQuery or jQuery UI in question, and themes/base/jquery.ui.theme.css
is the specific file location. To obtain a copy of the CSS for a different version
of jQuery or jQuery UI, simply change the version number part of the URL. The
second file is found at a location such as http://code.jquery.com/
ui/1.9.2/themes/base/jquery.ui.theme.css. Figure 13-2 shows what
you’ll see when looking at jquery.ui.core.css.

Figure 13-2:
Checking

the individ-
ual CSS files

helps you
understand
how things

work.

Viewing the files provides details on how the various styles are constructed,
so you can make modifications safely. In addition, the files often contain
notes. For example, when you look at jquery.ui.theme.css, you find that
one of the styles is actually deprecated (no longer supported), as this note
tells you:

/* ui-icon-seek-first is deprecated, use ui-icon-seek-start instead */

The style is commented out so that you can’t use it. However, the note is still
important because it tells you which style to use instead.

http://code.jquery.com/ui/1.9.2/themes/base/jquery.ui.core.css
http://code.jquery.com/ui/1.9.2/themes/base/jquery.ui.core.css
http://code.jquery.com/ui/1.9.2/themes/base/jquery.ui.theme.css
http://code.jquery.com/ui/1.9.2/themes/base/jquery.ui.theme.css

274 Part IV: Modifying Pre-Built Content for a Unique Look

Defining reasonable changes
Because the jQuery and jQuery UI API is so well documented, there’s a ten-
dency to think it’s possible to modify anything about these libraries. However,
changing the way anyone’s code works can result in unforeseen consequences.
For example, a change may make sense in your mind, but actually cause the
library to break and behave in an unacceptable way. In general, you need to
consider the smallest amount of change that will accomplish a given purpose.
For example, rather than making a coding change, try to use the programming-
like functionality provided by CSS to obtain the change you want.

In some cases, you want to substitute your own art to obtain an effect.
For example, you may choose to use custom icons for your application. In
this case, you must create an icon file that precisely matches the one used
for jQuery and jQuery UI. The number of icons, the icon size, and the icon
arrangement must match precisely in order to make the change work. With
this in mind, look at the icons at http://code.jquery.com/ui/1.9.2/
themes/base/images/ui-icons_222222_256x240.png. As shown in

Picturing the use of jquery-ui .css
In the examples in Chapter 6, notice that
none of the examples uses either jquery.
ui.core.css or jquery.ui.theme.
css. That’s because these files are actually
incorporated into http://code.jquery.
com/ui/1.9.2/themes/base/
jquery-ui.css. This single file actually
contains a number of CSS files:

 ✓ jquery.ui.core.css

 ✓ jquery.ui.accordion.css

 ✓ jquery.ui.autocomplete.css

 ✓ jquery.ui.button.css

 ✓ jquery.ui.datepicker.css

 ✓ jquery.ui.dialog.css

 ✓ jquery.ui.menu.css

 ✓ jquery.ui.progressbar.css

 ✓ jquery.ui.resizable.css

 ✓ jquery.ui.selectable.css

 ✓ jquery.ui.slider.css

 ✓ jquery.ui.spinner.css

 ✓ jquery.ui.tabs.css

 ✓ jquery.ui.tooltip.css

 ✓ jquery.ui.theme.css

The use of a single file makes it easier for
developers to interact with jQuery and jQuery
UI. However, when working through changes
you want to make to the library, it’s usually
easier to view the individual CSS file. Otherwise
you’d have to wade through a lot of styles and
wouldn’t get the full picture of how these vari-
ous styles interact because the structure that
jQuery and jQuery UI provide is collapsed into
this single file.

http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_222222_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/images/ui-icons_222222_256x240.png
http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css
http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css
http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css

275 Chapter 13: Modifying the jQuery and jQuery UI CSS

Figure 13-3, the icons are arranged in a specific manner — they don’t follow
one after the other and you can see they are grouped according to type. Yes,
you can use your own art, but only as long as the art matches the mechani-
cal specifications of the original art. (The icons are a little hard to see on
the actual page, so viewing them at the bottom of the ThemeRoller page at
http://jqueryui.com/themeroller/ is helpful.)

Figure 13-3:
When sub-

stituting your
own icons,
make sure

the icon
size and

arrangement
matches.

At some point, you’ll want a change that you can’t provide through new art
or an updated CSS. In this case, you need to create a plugin. For example, you
may want to modify a behavior that you simply can’t modify without adding
code. Reasonable changes include adding new behaviors or allowing a widget
to accept a new type of input from the user. What you want to avoid is com-
pletely rewriting the widgets, behaviors, or other jQuery and jQuery UI fea-
tures so that the result becomes something completely different from what
the authors originally intended. This approach will almost certainly result in
failure (if not now, then with a future update to either jQuery or jQuery UI).

Avoiding potential error conditions
Ensure that you’re familiar with the area of jQuery or jQuery UI that you want
to modify before you make any sort of changes to it. This means acquainting
yourself with the way in which the library performs tasks and uses resources.
When you design an alternative resource, such as a list of icons, the resource
must precisely match the mechanical attributes (size, order, and content)
of the original resource. In addition, you need to test carefully to ensure the
new resource behaves as you expect it to. Some changes can cause undesir-
able side effects. For example, making an icon one pixel too wide or too high
will cause problems in using that icon with the library.

http://jqueryui.com/themeroller/

276 Part IV: Modifying Pre-Built Content for a Unique Look

 Sometimes you do need to resort to coding in order to meet your objective.
However, it would be an error to modify the .JS or .CSS files directly. Always
modify an external file to obtain the results you want. Fortunately, the authors
of jQuery and jQuery UI provide a well-documented method for extending the
functionality these libraries provide through the use of plugins. The “Working
with Plug-ins” section, later in this chapter, discusses various techniques you
can use to work with existing plugins. If you really do need to write new code,
the “Finishing with the Coded Bits” section, at the end of this chapter, pro-
vides advice on how to create your own plugin.

Of course, the sage advice for working with someone else’s code is to test
heavily after you make a change. Test as many different situations as you
can and look for odd quirks that tend to pop up as the result of changes you
make. The library should work precisely as it did before, but with the added
functionality you’ve provided in place.

Defining a Specialized Control
All the jQuery UI widgets lend themselves to customization. Most of the
changes you make deal with using built-in features correctly. You can also
work with the CSS that jQuery UI employs to format the widgets to produce
special effects. Of course, if nothing else, you can always use JavaScript to
modify the actual widget behavior as needed. The point is that you can change
widgets (such as Spinner) to meet specific needs without having to reinvent
the wheel. The modifications are usually short and easy to do, which means
you don’t have to start from scratch with an idea you have to code by hand.

 Spinners are popular because you can use them to control user input in a
number of ways. The idea is to provide control for data that’s normally vari-
able, so you can’t use something like a drop-down list box. One of the most
interesting uses of spinners is shown on the Ben Knows Code site at http://
benknowscode.wordpress.com/2012/10/18/exploring-the-new-
jquery-ui-spinner-beyond-the-basics. In this case, the author shows
how to perform tasks such as moving the location of the arrows and creating
an alphabetical spinner. The example in this section plays off the example on
this site, but it’s a bit more straightforward and easier to understand. Once
you understand the example in this section, you can go to the Ben Knows
Code site and understand that example right away.

Spinners normally deal with numeric input. However, you might have a need
for alphabetic input instead. To create an alphabetic input, you need to give
the appearance of letters without actually using letters, because the Spinner
widget works only with numbers. The following example takes a standard
jQuery UI Spinner widget and transforms it to use letters instead of numbers.

http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/
http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/
http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/

277 Chapter 13: Modifying the jQuery and jQuery UI CSS

(You can find complete code for this example in the \Chapter 13\
Spinner folder of the downloadable code as Spinner.HTML.)

$(function()
 {
 var CurrentValue = 65;

 var ThisSpinner = $(“#Spinner”).spinner(
 {
 // Set the minimum to the code for A
 // and the maximum to the code for Z.
 min: 65,
 max: 90,

 // When the user starts to spin the spinner,
 // convert the value to a number and hide the
 // text from view.
 start: function(ui, event)
 {
 ThisSpinner.spinner(“value”, CurrentValue);
 $(“#Spinner”).css(“color”, “transparent”);
 },

 // When the user stops spinning the spinner,
 // save the numeric value, convert it to a
 // letter and display the text onscreen.
 stop: function(ui, event)
 {
 CurrentValue =
 ThisSpinner.spinner(“value”);
 ThisSpinner.spinner(“value”,
 String.fromCharCode(CurrentValue));
 $(“#Spinner”).css(“color”, “green”);
 }
 });
 });

 When you see a section of code in a jQuery or jQuery UI application that
begins $(function(){}), it means that the application should wait until the
page is fully loaded and ready for use before doing any processing. All of the
code in this chapter (and the vast majority of examples you see online for that
matter) begins by telling jQuery or jQuery UI to wait until the page is ready for
use. The code between the curly brackets ({}) defines what you want jQuery
or jQuery UI to do after the page is ready.

The code begins by creating a variable, CurrentValue, that tracks the
numeric value of the spinner. The value, 65, is the numeric equivalent of the
letter A. So the spinner starts with a value of A, but it stores this value as the
number 65.

278 Part IV: Modifying Pre-Built Content for a Unique Look

Creating the spinner, ThisSpinner, comes next. You must set minimum and
maximum values that reflect the numeric values of A and Z. This same tech-
nique can work for any series of letters. You could just as easily use lower-
case letters, if desired. For that matter, any series will work, including special
characters. It’s even possible to use this approach for enumerated values.

The simplest approach provides handlers for the start and stop events.
When the user clicks one of the two arrows, it starts a spin event. The
change occurs, and then the spin stops. For the spinner to work correctly,
the value attribute must contain a numeric value. The code sets value to
CurrentValue, which is the code that equates to the currently selected letter.
However, at this point, you can see the numeric value as text in the spinner,
which is distracting. To keep this from happening, the event handler also sets
the text color to transparent, so the user can’t actually see the text onscreen.

 Make sure you think about how you set the colors for hidden items. There’s
a tendency with some developers to set the hidden item’s color to the back-
ground color, but the background color can change. Even though many ref-
erences don’t actually state it, one of the recognized colors is transparent,
which means no color at all. Always use transparent objects when you want to
hide something.

The stop event handler stores the new spinner value in CurrentValue. It
then converts the numeric value from a number, such as 65, to a letter, such
as A (as shown in Figure 13-4). The code then changes the text color to green
so the user can see the letter onscreen.

Figure 13-4:
The example

application
asks the

user to enter
the first

letter of his
or her last

name.

This example also changes a few of the widget styles. These styles are listed
as part of the jQuery UI CSS file at http://code.jquery.com/ui/1.9.2/
themes/base/jquery-ui.css. In this case, you don’t want the user to be
able to type more than one character, so the width of the widget is changed
to accept just one letter. In addition, the text color is changed to green, as
shown here:

http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css
http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css

279 Chapter 13: Modifying the jQuery and jQuery UI CSS

.ui-spinner
{
 width: 45px;
}

.ui-spinner-input
{
 color: green;
}

Using a combination of events and CSS lets you create all sorts of custom
effects with any of the jQuery UI widgets. All you need to do is experiment a
little to create some really interesting output.

Creating Specialized Control Effects
A specialized effect is any sort of activity that a control (widget) isn’t
designed to handle at the outset. For example, it’s possible to use XML files
(or databases) to hold just about anything related to a browser-based appli-
cation. By adding XML functionality to an existing control, such as a tabbed
interface, you can modify how that control works. The effect is that you can
make changes to the user interface by modifying the XML, rather than work-
ing directly with the page code. There are many ways in which to generate
XML, so this technique adds a significant amount of flexibility to the user
interface.

In this example, you see how to create a jQuery UI tabbed interface by using
data stored in an XML file. In addition, this example relies on jQuery to get
the XML file rather than relying on handwritten code to perform the task.
What you’re doing is combining features found in jQuery UI with those found
in jQuery to create a composite control. The code you create using jQuery is
shorter than handwritten code; somewhat easier to understand; and, most
important of all, more likely to work with browsers that you didn’t originally
test as part of the initial application design.

Developing the page code
The following code shows the jQuery method of creating a tabbed interface.
(You can find complete code for this example in the \Chapter 13\XMLTab
folder of the downloadable code as XMLTab.HTML.)

280 Part IV: Modifying Pre-Built Content for a Unique Look

$(function()
 {
 // Create variables to hold temporary data.
 var TabHeads = “”;
 var TabContent = “”;

 // Obtain the XML data file and process it.
 $.get(“XMLTabData.xml”, function(data)
 {
 // Locate each Heading entry and use it to
 // create a tab heading.
 $(data).find(“Heading”).each(function()
 {
 TabHeads +=
 “<a href=’” +
 $(this).attr(“href”) +
 “’>” + $(this).attr(“caption”) +
 “”;
 });

 // Append the data to the heading area.
 $(“#Headings”).append(TabHeads);

 // Locate each Content entry and use it to
 // create the tab content.
 $(data).find(“Content”).each(function()
 {
 TabContent +=
 “<div id=’” + $(this).attr(“id”) +
 “’>” + $(this).text() + “</div>”;
 });

 // Append the data to the tab content area.
 $(“#Tabs”).append(TabContent);

 // Complete the process by displaying the
 // tabs.
 $(“#Tabs”).tabs();
 });
 });

The code begins by creating two variables: TabHeads and TabContent, to
contain the data used to fill in the tabbed interface. This information is even-
tually added to two HTML tags, as shown here:

<div id=”Tabs”>
 <ul id=”Headings” />
</div>

281 Chapter 13: Modifying the jQuery and jQuery UI CSS

The get() method obtains the XML file, XMLTabData.XML, and places
the content in data. What data contains is a fully formed XML file that’s
passed to an anonymous function (one that has no name) that you define
as: function(data){}. The function is executed when the data retrieval is
complete, so it acts as a callback for an asynchronous data read.

The XML file is described in the “Creating the XML file” section later in this
chapter. All you need to know for the moment is that the XML file contains
<Heading> elements that contain the data used to create the tab entries, as
well as <Content> elements that contain the data placed within each tab (as
shown in Figure 13-5). In this case, Tab 1 would be a heading and “This is
some content for Tab 1.” would be content for that tab.

Figure 13-5:
Dynamic tab

configura-
tion is just
as easy as

creating
dynamic

menus.

All of the heading information appears within the <Heading> elements.
So, the code asks jQuery to find() each of the <Heading> elements and
process them one at a time using the each() method. The each() method
creates a loop that automatically provides access to individual <Heading>
elements through the this variable. Tab headings are stored in an unordered
list (), Headings, that’s already part of the HTML for the example page.

 The content for each tab appears in <div> elements that are appended after
the element, Headings. The content could be anything — including
controls as used for the previous tabbed-interface example (demonstrated in
the section on using the Tabs widget in Chapter 6). The most important issue
to consider is how to store information in the XML file. Be sure you escape
any tags so that they’re not misinterpreted as XML elements.

As with the headings, the code uses find() to locate each of the <Content>
elements in the XML file and convert them to the HTML required to create
the tab content. The each() method creates the loop used to process each
element one at a time.

282 Part IV: Modifying Pre-Built Content for a Unique Look

Creating the XML file
In order to make this example work, you need an XML file named
XMLTabData.XML. This file has a specific format that you must follow to
make the example work properly. Here’s the XML file used for this example:

<?xml version=”1.0” encoding=”UTF-8”?>
<Tabs>
 <TabData>
 <Heading id=”Tab1”
 href=”#Tabs1”
 caption=”Tab 1” />
 <Heading id=”Tab2”
 href=”#Tabs2”
 caption=”Tab 2” />
 <Heading id=”Tab3”
 href=”#Tabs3”
 caption=”Tab 3” />
 </TabData>
 <TabContent>
 <Content id=”Tabs1”>
 This is some content for Tab 1.
 </Content>
 <Content id=”Tabs2”>
 This is some content for Tab 2.
 </Content>
 <Content id=”Tabs3”>
 This is some content for Tab 3.
 </Content>
 </TabContent>
</Tabs>

Notice that the file has a root element named <Tabs> that contains child ele-
ments: <TabData> and <TabContent>. These child elements contain the
<Heading> and <Content> data used to fill in the tabbed interface. There’s
one <Heading> element for each <Content> element. The actual content
can be anything you want it to be, as long as it follows the structure shown in
the example.

Working with Added Graphics
On a website, graphics can take many forms. For example, you can have a
free-standing piece of static art used for a logo or some other purpose. The
chapter has already discussed using alternative art with jQuery and jQuery
UI, such as replacement icons for the various controls. This section discusses
graphics used in an interactive way, which many sites do. In this case, the

283 Chapter 13: Modifying the jQuery and jQuery UI CSS

example relies on a master/detail view where a tab provides the mechanism
to group like graphics and entries in the content section provide access to
individual graphics within the category.

There are many situations where you need to provide a master/detail view.
Of course, the most common use for such a view is in database applications
where you present data such as the orders associated with a particular
client. The view is also used in many other places; the Windows Explorer and
Mac Finder applications, for example, use a master/detail view in present-
ing the folder hierarchy in one pane and the content of the selected folder in
the other. The example application shows categorized data and the details
of that data. Like every other master/detail view you’ve ever seen, the cat-
egories and their associated content appear in the left pane and the selected
item appears in the right, as shown in Figure 13-6.

Figure 13-6:
A category/
detail view

provides
a useful

method of
presenting

information
to the user.

What you’re actually seeing here is a combination of the jQuery UI Accordion
widget and the Selectable interaction — both of which are discussed in
Chapter 6. The following sections break the application into pieces to make it
easier to understand.

Creating the HTML
As with any other jQuery UI example, this one relies on a framework of HTML
tags to support the widgets. The following code shows how to create the
HTML for the application shown in Figure 13-6. (You can find complete code

284 Part IV: Modifying Pre-Built Content for a Unique Look

for this example in the \Chapter 13\CategoryDetail folder of the down-
loadable code as CategoryDetail.HTML.)

<div id=”Categories”>
 <h2>Flowers</h2>
 <div>
 <ol id=”FlowerSelect” class=”Selections”>
 <li id=”Cactus”>Cactus
 <li id=”Nanking”>Nanking Cherry

 </div>
 <h2>Seasons</h2>
 <div>
 <ol id=”SeasonSelect” class=”Selections”>
 <li id=”Nanking”>Nanking Cherry
 <li id=”Mountain”>Mountain View
 <li id=”Harvest”>Squash Harvest
 <li id=”Snow”>First Snow

 </div>
 <h2>Gardening</h2>
 <div>
 <ol id=”SeasonSelect” class=”Selections”>
 <li id=”Nanking”>Nanking Cherry
 <li id=”Harvest”>Squash Harvest

 </div>
 <div id=”DrawingContainer”>

 </div>
</div>

The left pane consists of a series of three <h2> and <div> pairs, with the
<h2> tag defining the tab headings and the <div> defining the tab content.
Each tab content area contains a list of potential choices as an unordered list.

The right pane consists of a <div> and combination. The <div> has
an id of DrawingContainer, whereas the has an id of Drawing.
These two tags act together to display the image that the user has selected.

Designing the CSS styles
There are a number of considerations for this application from a style per-
spective. However, the most pressing need is to provide a means of display-
ing the graphics in a way that the user would expect, despite the manner in
which the tags are defined. Normally, these components would appear one
over the other. You need to create some CSS in order to obtain the required
appearance. Here’s the CSS for this example:

285 Chapter 13: Modifying the jQuery and jQuery UI CSS

<style>
 h1
 {
 text-align: center;
 }

 #Categories
 {
 width: 220px;
 }

 .Selections .ui-selected
 {
 background: blue;
 color: white;
 }

 .Selections
 {
 margin: 0;
 padding: 0;
 width: 150px;
 list-style-type: none;
 }

 #DrawingContainer
 {
 width: 533px;
 height: 400px;
 border: solid;
 position: absolute;
 left: 250px;
 top: 80px;
 }

 #Drawing
 {
 width: 523px;
 height: 390px;
 margin: 5px;
 }
</style>

Notice that the width of Categories is such that the DrawingContainer
can appear to the right of it. The Selections are set up to fit fully in
Categories. When setting the width of Selections, you must account for
the indent that jQuery UI automatically provides as part of the Accordion
widget. The most important part of the DrawingContainer setup is the left
setting, which must be configured to accommodate the Accordion widget
to the left of it. The size of Drawing is such that the application can maintain

286 Part IV: Modifying Pre-Built Content for a Unique Look

the aspect ratio of the images it will display. With some additional work, you
could allow for images of multiple sizes to fit easily within the space — the
example images are all the same size.

Developing the required code
The example requires surprisingly little code to perform its work. That’s
because jQuery UI does most of the heavy lifting for you. The act of display-
ing the image is surprisingly easy because of the way the tag works.
Here’s all the code you need to make this example work:

$(function()
 {
 // Create an Accordion as a means to
 // organize the data.
 $(“#Categories”).accordion();

 // Choose a particular image based on the
 // user’s selection. Display it using the
 // src attribute of the tag.
 $(“.Selections”).selectable(
 {
 selected: function(event, ui)
 {
 switch(ui.selected.id)
 {
 case “Cactus”:
 $(“#Drawing”).attr(
 “src”, “CactusBlossom.jpg”);
 break;
 case “Nanking”:
 $(“#Drawing”).attr(
 “src”, “NankingCherry.jpg”);
 break;
 case “Mountain”:
 $(“#Drawing”).attr(
 “src”, “MountainView.jpg”);
 break;
 case “Harvest”:
 $(“#Drawing”).attr(
 “src”, “SquashHarvest.jpg”);
 break;
 case “Snow”:
 $(“#Drawing”).attr(
 “src”, “FirstSnow.jpg”);
 break;
 }
 }
 });
 });

287 Chapter 13: Modifying the jQuery and jQuery UI CSS

A production application might perform some additional work with the input
handling, but testing will show you that the application is fully functional
now, and there’s little the user can do to cause the application to crash.
The trick is in the ui.selected.id. Each of the selections has a unique id
value that the switch statement can capture. All that you need to do then is
modify the src attribute of the tag to match the desired drawing.

Working with Plug-ins
Plug-ins extend libraries to perform tasks that the original author didn’t con-
sider or that require some special level of expertise to implement. You can
find a vast array of plug-ins for jQuery and jQuery UI. It really does pay to
search for a plug-in should you need to do something that jQuery or jQuery
UI don’t do natively.

In this case, the example extends one of the widgets. Users need to enter
time values as well as date values. The jQuery UI library comes with a
Datepicker widget (see http://jqueryui.com/datepicker), which
is fine but not quite enough for modern applications where users have to
modify the time independently of the date. Fortunately, there’s a solution
in the form of a third-party plugin on the Trent Richardson site at http://
trentrichardson.com/examples/timepicker. To use this plugin, you
add the following reference to your code. (You can find complete code for
this example in the \Chapter 13\Timepicker folder of the downloadable
code as Timepicker.HTML.)

<script
 src=”http://trentrichardson.com/examples/timepicker/jquery-ui-timepicker-

addon.js”>
</script>

All you need to do is add a simple <input> tag to your code and provide
an id value for it. This widget has a number of forms. For example, you can
request both a date and time if desired. The simplest form is to request the
time by using the following code:

$(function()
 {
 $(“#TimeSet”).timepicker();
 })

As with most widgets, you can configure the Timepicker by using various
options — and they’re considerable. There aren’t any events to handle
except those provided natively by jQuery UI. The default settings present a
24-hour clock, but you can override the presentation and use a 12-hour clock,
if desired. Figure 13-7 shows typical output from this example.

http://jqueryui.com/datepicker/
http://trentrichardson.com/examples/timepicker/
http://trentrichardson.com/examples/timepicker/

288 Part IV: Modifying Pre-Built Content for a Unique Look

Figure 13-7:
Users

now have
an easy

method for
adding time

values to
forms.

Viewing the plug-ins on Unheap
There are many locations online with one, two,
or even twenty jQuery or jQuery UI plug-ins.
However, few sites have the number of plug-
ins supported by Unheap (www.unheap.
com/). At the time of this writing, you can
find 699 different plug-ins listed on this site,
which are listed over 47 pages. You can
find all sorts of interesting plug-ins, such as
TextFit (http://strml.github.io/
examples/jquery.textFit.html), a
plug-in that helps you fit text into a container
without doing a lot of measurement work
yourself. The ScrollTo plug-in (http://
i n d i v i d u a l 1 1 . g i t h u b . i o /
Scroll-To/) creates a smooth scrolling
setup so users don’t see the usual jittery inter-
face every time the page scrolls for some reason.
There are whole categories of plug-ins devoted
to just one widget, such as the Accordion
(www.unheap.com/section/naviga-
tion/accordion/). If you want to include
social media on your site, you can find a number
of plug-ins to do that, too (www.unheap.com/
section/other/social-rss/). The
point is that if you want a single site to explore
for plug-ins, this would be a good choice.

Hovering the mouse cursor over an entry tells
you more about it and displays two buttons:

 ✓ Demo: Click this button to access the demo
that each of the plug-ins provide so you
can try it before downloading it. Many of
the plug-in demo pages include coding
examples so you can see how the author
implemented a particular behavior. Most
demos rely on JavaScript, so you must
enable JavaScript support to see the demo
work.

 ✓ Launch: After you decide to use a particular
plug-in, click Launch to gain access to it.
The browser will go to a page where you
can download the plug-in and the latest
documentation for it.

Trying to find what you need could be daunting
on such a large site. Fortunately, the content is
organized into categories, such as Interface,
and subcategories, such as Layout. All you
need to do is click the grouping level that makes
the most sense for the kind of plug-in you need.

http://www.unheap.com/
http://www.unheap.com/
http://strml.github.io/examples/jquery.textFit.html
http://strml.github.io/examples/jquery.textFit.html
http://individual11.github.io/Scroll-To/
http://individual11.github.io/Scroll-To/
http://individual11.github.io/Scroll-To/
http://www.unheap.com/section/navigation/accordion/
http://www.unheap.com/section/navigation/accordion/
http://www.unheap.com/section/other/social-rss/
http://www.unheap.com/section/other/social-rss/

289 Chapter 13: Modifying the jQuery and jQuery UI CSS

Finishing with the Coded Bits
There’s a small chance that you’ll encounter a situation where you can’t
modify an existing jQuery or jQuery UI feature by using either CSS or
JavaScript — and can’t locate a useful plug-in either. In these cases, you have
to create a plug-in of your own. Creating a plug-in means writing JavaScript
code that extends or overrides existing jQuery or jQuery UI functionality.
You can’t create one in any other way. For example, there’s no automated
tool you can use to define what you’d like the plug-in to do and have the tool
write some or all of the code for you. Creating plug-ins is strictly a manual
process.

Fortunately, you can get quite a bit of help directly from the jQuery site.
There’s an actual page devoted to creating plug-ins at http://learn.
jquery.com/plugins/. However, even in this case, the first topic of discus-
sion is techniques for finding and using existing plug-ins. The wealth of exist-
ing plug-ins really is that bountiful.

If you want to get right into creating a plug-in, you can read the “How to
Create a Basic Plugin” topic at http://learn.jquery.com/plugins/
basic-plugin-creation/ as a starting point. Essentially, a plugin is noth-
ing more than a special kind of function. Once the function is attached to a
page, you can access the features it provides just as you would any normal
jQuery or jQuery UI feature. The tutorial discusses all sorts of techniques
you can use to create a basic plug-in. Once you complete this tutorial and
have had some practice creating a basic plug-in of your own, you can move
on to the advanced tutorial at http://learn.jquery.com/plugins/
advanced-plugin-concepts/. A final tutorial at http://learn.
jquery.com/plugins/stateful-plugins-with-widget-factory/
discusses techniques for writing plug-ins that track state information.

 Experienced developers will emphasize the importance of not reinventing the
wheel. When it comes to writing plug-ins, make sure you check out the code of
other developers, especially for plug-ins that perform the same sorts of tasks
that your plug-in will perform. Because all plug-ins are written in JavaScript,
you can generally see the entire listing by accessing the .JS file used to hold
the plug-in. Tracing through the plug-ins you use with a debugger will also
help you understand them better and make creating your own plug-in signifi-
cantly easier.

http://learn.jquery.com/plugins/
http://learn.jquery.com/plugins/
http://learn.jquery.com/plugins/basic-plugin-creation/
http://learn.jquery.com/plugins/basic-plugin-creation/
http://learn.jquery.com/plugins/advanced-plugin-concepts/
http://learn.jquery.com/plugins/advanced-plugin-concepts/
http://learn.jquery.com/plugins/stateful-plugins-with-widget-factory/
http://learn.jquery.com/plugins/stateful-plugins-with-widget-factory/

290 Part IV: Modifying Pre-Built Content for a Unique Look

Chapter 14

Modifying the Dynamic Drive CSS
In This Chapter
▶ Defining the script categories
▶ Finding the CSS you want to change
▶ Making simple changes to Dynamic Drive
▶ Using menus to your advantage

Y
ou first encountered Dynamic Drive (www.dynamicdrive.com/) in
Chapter 11. Dynamic Drive is actually a set of tools and scripts that

make it possible for you to add all sorts of special functionality to your appli-
cation. Chapter 11 provides the highlights of the tools that appear on this
site. This chapter focuses on the scripting examples and how you can modify
them to meet your specific needs. It’s important to realize that these script-
ing examples are designed along the same lines as extensions for APIs such
as jQuery (http://jquery.com/) and jQuery UI (http://jqueryui.
com/). Dynamic Drive doesn’t provide a pure API environment for you to use.

This chapter doesn’t discuss all of the script categories in detail. For exam-
ple, Dynamic Drive provides access to a number of game scripts. These
scripts are interesting and fun, but a developer is unlikely to use such a
script in an application, so this chapter doesn’t discuss that category in
detail. Instead, you’ll find some general techniques you can use for any of the
Dynamic Drive scripts, which make it easier to adapt any of the scripts to a
particular need.

Some script categories do require special attention. For example, Dynamic
Drive provides more than a few menu scripts you can modify to meet particu-
lar needs. This chapter provides details about making modifications to these
special script categories so that you have a better idea of how you can use
them in an application.

 In most cases, Dynamic Drive labels the source of their scripts. For example,
if a script was submitted by a user, then the write-up about it tells you that it
was user-submitted. When you see a script that doesn’t include source infor-
mation, you can normally assume that it was provided directly by Dynamic

http://www.dynamicdrive.com/
http://jquery.com/
http://jqueryui.com/
http://jqueryui.com/

292 Part IV: Modifying Pre-Built Content for a Unique Look

Drive; you can verify that this is so by reviewing the source code. Always
ensure that the scripts you use in an application come from a reliable source,
especially when working with a script submitted by a user. Unfortunately,
this often means going through user-submitted scripts line-by-line looking for
potential sources of problems.

Understanding the Script Categories
The Dynamic Drive scripts appear in several categories. Each category con-
tains a number of scripts that meet specific needs. For example, you may need
a pop-up calendar, rather than one that sits statically on the page. Dynamic
Drive provides the Calendars category, whose scripts address both needs.

 Each of the script entries provides you with the script name, the browser
name and version it was tested under, whether the script was submitted by a
user, and a short description of what the script does. The browser information
uses abbreviations, such as FF1+ IE5+ Opr7+, to indicate (respectively) that
the script will work on Firefox 1 and above, Internet Explorer 5 and above, and
Opera 7 and above. Some scripts will also have an updated icon next to them
to indicate that the script has changed or a new icon to indicate that the script
has been added recently. The following list describes the kind of scripts that
you can expect to find in each of the categories.

 ✓ Calendars: All of these scripts are user submitted. They include a
number of basic, dynamic, and pop-up calendars. At least one entry is
designed to make it easier for the user to input a date by typing it, rather
than selecting it with a mouse.

 ✓ Date & Time: Most of these scripts were created by Dynamic Drive. They
include a number of digital and analog clock examples. A few of the digital
examples also include date as part of the output, so that you can see days,
hours, minutes, and seconds since a particular event occurred (as an
example). At least one of the examples presents the date in text format.

 ✓ Document Effects: Many of these scripts were created by Dynamic Drive.
Each script provides a method for interaction with document content in
a special way. For example, you can find numerous ways to present docu-
ments using a tabbed or list-selectable interface. However, some of the
scripts actually present a special effect, such as adding snow or autumn
leaves to a page. A few scripts are quite practical, such as the magnifying-
glass script that makes it easy to zoom in on page content.

 A few of the scripts in this category are marked with the wizard icon.
What this means is that you make selections, submit the changes, and
the page generates a script to perform the required task. In short, the
page offers a kind of scripted tool that you can customize.

293 Chapter 14: Modifying the Dynamic Drive CSS

 ✓ Dynamic Content: Most of these scripts were created by Dynamic Drive.
The purpose of these scripts is to present page content in unique ways.
For example, you can display longer page content as a slideshow so that
the user can move from one topic to the next with ease. There are also
scripts to display messages and ads of various sorts. You can even see
an example of how to create a notepad application for storing textual
information input by the user for later use. All of these techniques rely
on some combination of Inline Frames (IFrames) and Asynchronous
JavaScript and XML (AJAX) to perform their work.

 Some of the examples include images that could be copyrighted.
Dynamic Drive normally provides you with some level of assurance
that an image is acceptable to use, but it’s always better to be safe than
sorry. Use your own images for page content whenever possible, or
obtain an image that you’re certain is acceptable to use.

 ✓ Form Effects: Most of these scripts were created by Dynamic Drive. All
of the scripts deal with forms in some way. You can find controls that
provide hints, display the progress of a submission, and perform various
kinds of validation. There are even examples of predefined content con-
trols, such as one that asks the user to accept the terms of using a par-
ticular feature. A few of the scripts are form-specific versions of scripts
that appear in other categories, such as a pop-up calendar used to input
dates into forms.

 ✓ Games: All of these scripts are user-submitted. The games are incred-
ibly simple and do demonstrate some gaming theory (such as the use of
statistics in deciding game actions), but really aren’t much fun. You can
choose from old favorites like tic-tac-toe or newer-style games like Cross
Browser Snake.

 ✓ Image Effects: Many of these scripts were created by Dynamic Drive.
You can find scripts to perform a variety of tasks, such as creating on-
page effects such as flying planes. A few of the scripts perform special
effects, such as displaying a reflected image of an original image. The
most practical scripts perform tasks such as magnifying images so
that viewers can see them with greater ease. The following subcatego-
ries provide access to additional scripts that perform special effects
on images for the most part: Image Slideshows, Image Galleries and
Viewers, and Mouseover Images.

 ✓ Links & Tooltips: Most of these scripts were created by Dynamic Drive.
In most cases, each of these scripts enhances the presentation of infor-
mation through a tooltip of some sort. For example, you can hover the
mouse cursor over a link and see both a picture and a description of
where that link leads. Some scripts provide special effects, such as to
change the color of a link dynamically when you hover the mouse cursor
over it. A few of the scripts deal with other controls, such as buttons,
making them easier to use or to present the user with additional infor-
mation when the mouse cursor hovers over the control.

294 Part IV: Modifying Pre-Built Content for a Unique Look

 ✓ Menus & Navigation: Most of these scripts were created by Dynamic
Drive. An essential part of most applications today is the capability to
select features or to move to new locations. Menus and navigation fea-
tures make it possible to turn a cumbersome page into one that’s easily
used. For example, you can find scripts to present menu selections in an
accordion format. The CSS Based subcategory provides you with access
to menus and navigational aids that rely on CSS to perform all or most
tasks. The Multi-level Menus subcategory provides access to menus that
allow you to make multiple levels of selections (menus and submenus).

 ✓ Mouse & Cursor: Most of these scripts were submitted by users. Each
script changes the appearance of the mouse pointer or cursor in some
way. Some of the more interesting scripts add colorful mouse trails
to make it easier for someone using a mobile device to see the mouse
cursor in bright light. Specialized cursors provide a cue to the user that
the application mode has changed in some way.

 ✓ Scrollers: Most of these scripts were created by Dynamic Drive. A
scroller is a box or other control used to display some bit of text or a
graphic out of a larger sampling of text or graphics. For example, you
might see the latest headlines with just one headline presented at a time
in the scroller box. Every few seconds a new headline will scroll into
view. Scrollers are useful for ads, headlines, or other sorts of change-
able text where you want to present the user with a random sampling of
information.

 ✓ Text Animations: Many of these scripts were created by Dynamic Drive.
Each script seeks to provide a new manner in which you can display
text onscreen. The goal of many of these animations is to emphasize the
text in a specific manner so the user doesn’t miss it. There’s even a spe-
cial effect that’s based on the presentation of textual information in the
movie The Matrix (see http://thematrix101.com/ for details).

 ✓ User/System Preference: Most of these scripts were created by Dynamic
Drive. In all cases, the script changes how the browser and application
work or the manner in which they present information onscreen. For
example, you can find style-sheet switchers that let a user choose from
multiple style-sheet options. There are also scripts that disable certain
browser features (such as the use of right-click), or that detect host
system functionality, such as the characteristics of the display. The
whole idea is to make it possible to control the application environment,
either automatically or through user selections.

 ✓ Window and Frames: Most of these scripts were created by Dynamic
Drive. Both windows and frames act as containers for content. The
manner in which you create and display a window or frame affects the
user’s perception of the content that appears within that window or
frame. These scripts perform tasks such as displaying modeless win-
dows or using animated effects to present information onscreen.

http://thematrix101.com/

295 Chapter 14: Modifying the Dynamic Drive CSS

 ✓ XML and RSS: All of these scripts were created by Dynamic Drive. The
basic purpose behind these scripts is to make it easier to display XML
or Really Simple Syndication (RSS) information onscreen — generally
within a small text box. The user then has the option of clicking a link (in
most cases) to see additional information about the topic at hand.

 ✓ Other: Most of these scripts were created by Dynamic Drive. These
scripts generally perform some useful task that doesn’t fit within the
other categories described in this list. For example, there’s a special
script for playing sound effects; you’ll also find scripts that create inter-
esting scrollbars. If you didn’t see a script you need in one of the other
categories, this is the place to look.

Locating the CSS for a Particular Feature
Many of the scripts provided on the Dynamic Drive site work with jQuery
and jQuery UI. They’re extensions of a sort that help you use these two APIs
with greater efficiency. As a result, the tips and techniques described in
Chapter 13 also apply to many of the Dynamic Drive scripts. The location of
the jQuery and jQuery UI CSS doesn’t change.

Some of the scripts provide custom CSS files that you must download and
place on your system in order to use the script, as shown in Figure 14-1.
These links can be hard to see at times. In this case, you’re looking for the
anylinkcssmenu.css link in Step 1.

Dynamic Drive tends not to provide a hosted link that you can use to access
either the CSS or associated script. You can choose to modify the custom CSS
directly, or provide changes to the CSS with internal or inline CSS modifica-
tions as described in the “Adding Modifications” section, later in this chapter.
The important thing to remember is that you need the downloaded file to
make the script work properly.

 Make sure you look carefully at all of the materials for a particular Dynamic
Drive script. In many cases, you see a Customization section like the one
shown in Figure 14-2. This section provides insights on how you can custom-
ize the script to meet specific needs. In at least a few cases, you even see mul-
tiple examples of the effects that you can produce with the script by making
a particular change. (You can see a better example of the customizations for
the AnyLink CSS Menu v2.3 at www.dynamicdrive.com/dynamicindex1/
anylinkcss.htm.)

http://www.dynamicdrive.com/dynamicindex1/anylinkcss.htm
http://www.dynamicdrive.com/dynamicindex1/anylinkcss.htm

296 Part IV: Modifying Pre-Built Content for a Unique Look

Figure 14-1:
Download

any CSS
files

required
to use the

script.

Figure 14-2:
Make sure

you read
any cus-

tomization
materials
provided
with the

script.

297 Chapter 14: Modifying the Dynamic Drive CSS

Adding Modifications
Most of the Dynamic Drive examples include a mix of CSS and JavaScript. In
general, you change the CSS to obtain just the right appearance and add the
JavaScript to modify the functionality in some way. Most developers use the
example functionality as-is or with just minor changes, but the CSS is another
matter. An example that presents a look similar to the one you want is a good
place to start, but most people will want to customize the appearance of the
output to match the specifics of their sites.

 When working with Dynamic Drive examples that use jQuery or jQuery UI,
make sure you check out the changes you can make in Chapter 13. These
changes help you customize the output even further. The example in the sec-
tions that follow doesn’t rely on jQuery or jQuery UI; it works exclusively with
a Dynamic Drive example so you can see how to make the modifications for
Dynamic Drive more clearly.

In this case, you’re working with the LCD Clock example that appears at www.
dynamicdrive.com/dynamicindex6/lcdclock.htm. This example is
designed to work with Firefox 1 and above, Internet Explorer 5 and above,
and Opera 7 and above. However, testing shows that it also works just
fine with newer versions of Chrome. (You can find complete code for this
example in the \Chapter 14\LCDClock folder of the downloadable code as
LCDClock.HTML.)

Obtaining the example
Before you can work with the example, you need to create it on your system.
The Dynamic Drive site shows how the LCD clock will look and provides you
with the code, but it doesn’t provide an actual example. In addition, you can
modify the example in various ways to make it easier to work with. The follow-
ing steps help you create the example so you can get started working with it.

 1. Create a new HTML 5 page using your favorite text editor or IDE and
save it as LCDClock.HTML.

 2. Change the <title> tag as shown here:
<title>Modifying an LCD Clock</title>

 3. Add an <h1> tag to the page body as shown here:
<h1>Modifying an LCD Clock</h1>

http://www.dynamicdrive.com/dynamicindex6/lcdclock.htm
http://www.dynamicdrive.com/dynamicindex6/lcdclock.htm

298 Part IV: Modifying Pre-Built Content for a Unique Look

 4. Click Select All in the Step 1 portion of the Dynamic Drive page.

 You see the CSS code for the example highlighted.

 5. Copy the highlighted text to the clipboard, and then paste it within
the <head> section of the example page.

 The editor adds to CSS code to the <head> section.

 6. Click Select All in the Step 2 portion of the Dynamic Drive page.

 You see the JavaScript code for the example highlighted.

 7. Copy the highlighted text to the clipboard, and then paste it within
the <body> section of the example page.

 The editor adds the JavaScript code to the <body> section.

 8. Save the modified LCDClock.HTML and load it in your browser.

 You see the simple output shown in Figure 14-3.

Figure 14-3:
The LCD

clock will
accurately
display the

current time
for you.

Making the example more flexible
The example works, but it’s definitely only an example — not something you’d
use in a production environment. The example assumes that everything should
appear within a single file. However, when working in a production environ-
ment, you may want to use the clock on each page that needs it, which means
being able to access the code from a central location. The following steps help
you convert the example into something you can use on multiple pages.

 1. Create a new CSS file, using your favorite text editor or IDE, and save
it as LCDClockSource.CSS.

 2. Cut the .styling style from LCDClock.HTML and paste it into
LCDClockSource.CSS.

 The editor moves the code as requested.

 3. Save LCDClockSource.CSS.

299 Chapter 14: Modifying the Dynamic Drive CSS

 4. Remove the <style> tag and any remaining content from LCDClock.
HTML.

 5. Create a <link> tag in the <head> area of LCDClock.HTML as follows:
<link
 rel=”stylesheet”
 href=”LCDClockSource.CSS” />

 This link tag creates a connection between LCDClock.HTML and
LCDClockSource.CSS so that the LCD clock can use the required
styles.

 6. Create a new JavaScript file using your favorite text editor or IDE and
save it as LCDClockSource.JS.

 7. Cut all of the JavaScript code from the <body> section of LCDClock.
HTML except for the window.onload=show statement and paste it
into LCDClockSource.JS.

 The editor moves the code as requested.

 8. Modify the show() function name in LCDClockSource.JS to read
showLCDClock().

 A simple function name such as show() isn’t very useful in a production
environment because you might have multiple functions by that name.
Using showLCDClock() reduces the chance of a duplicate function name.

 9. Modify the call to setTimeout(“show()”,1000) to read setTimeout
(“showLCDClock()”,1000).

 This function call provides automatic updates of the time. If you find
that the clock isn’t updating automatically, check this piece of code to
ensure you made the correct change.

 10. Save LCDClockSource.JS.

 11. Modify the <script> tag that appears in the <body> of LCDClock.
HTML so that it calls the correct function after the window loads, like
this:
<script>
<!--
 window.onload=showLCDClock();
//-->
</script>

 12. Add a <script> tag to the <head> of LCDClock.HTML as follows:
<script
 src=”LCDClockSource.JS”>
</script>

300 Part IV: Modifying Pre-Built Content for a Unique Look

 13. Save the modified LCDClock.HTML and load it in your browser.

 You see the simple output shown in Figure 14-3.

The modified example works precisely the same as before. However, it now
uses external files to perform tasks with less effort. Whenever you want to
use the LCD clock on any page, you begin by adding the required <link> and
<script> tags to the <head> of the file, like this:

<script
 src=”LCDClockSource.JS”>
</script>
<link
 rel=”stylesheet”
 href=”LCDClockSource.CSS” />

These two tags provide connectivity to the resources needed to make the
LCD clock work. You then need to add a and a <script> tag to the
<body> of the page, like this:

<script>
<!--
 window.onload=showLCDClock();
//-->
</script>

The is used as a container for the clock. The <script> tells the
browser to start the clock when the window loads.

Modifying the JavaScript
The clock currently displays hours and minutes, but not seconds. This sec-
tion discusses what you need to do to modify the code in LCDClockSource.JS
to provide a seconds output in the time display.

 Modifying the JavaScript for any of the Dynamic Drive scripts is risky because
it makes updating the scripts hard. Dynamic Drive does provide script
updates occasionally, so make modifications with care. If you do perform an
update, you’ll need to add your changes back into the updated source code
and test it fully.

In order to make the desired change, you need to modify the output code
for this example. The output code consists of several if statement levels as

301 Chapter 14: Modifying the Dynamic Drive CSS

shown here (reformatted to make the script easier to read and to also make it
fit easily in the book).

if (standardbrowser)
{
 if (alternate==0)
 document.tick.tock.value=
 hours+” : “+minutes+” “+dn
 else
 document.tick.tock.value=
 hours+” “+minutes+” “+dn
}
else
{
 if (alternate==0)
 clockobj.innerHTML=
 hours+” : ”+
 minutes+” “+”<sup style=’font-size:1px’>”+
 dn+”</sup>”
 else
 clockobj.innerHTML=
 hours+” : ”+
 minutes+” “+”<sup style=’font-size:1px’>”+
 dn+”</sup>”
}

The first if statement tests whether the user has a standard browser — one
that doesn’t require any special formatting commands. When you view the
example, you’ll notice that the colon between the hours and minutes flashes
on and off with each second. The alternate setting tests for this state and
causes the code to alternate between two output settings (one with and one
without the colon).

Adding the seconds to the output requires several steps. First, you must add
a variable that contains the current number of seconds. You can add this
code anywhere before the if statement, but it’s best if you add it with the
hours and minutes variables that already appear in the code, as shown
here in bold.

var hours=Digital.getHours()
var minutes=Digital.getMinutes()
var seconds=Digital.getSeconds()

Second, you need to handle the situation where the seconds are a single
digit. The example always uses a two-digit minutes and seconds output. You
can add this if statement immediately after the if statement that handles
the minutes, as shown here in bold.

302 Part IV: Modifying Pre-Built Content for a Unique Look

if (minutes<=9)
 minutes=”0”+minutes
if (seconds<=9)
 seconds=”0”+seconds

Third, you need to modify the output code so that it displays the seconds. This
means changing the if statements you saw earlier to include the seconds.

However, this example has two other problems that you need to fix. First, the
AM/PM output is too small to see. It appears as a dash in Figure 14-3. Second,
the code as written overrides the CSS so that you now need to make messy
changes to the JavaScript in order to do something as simple as use a differ-
ent color scheme. The changes that follow not only add the seconds, but also
fix these two problems:

if (standardbrowser)
{
 if (alternate==0)
 document.tick.tock.value=
 hours+” : “+minutes+” : “+seconds+” “+dn
 else
 document.tick.tock.value=
 hours+” “+minutes+” “+seconds+” “+dn
}
else
{
 if (alternate==0)
 clockobj.innerHTML=
 hours+” : “+
 minutes+” : “+
 seconds+” “+”<sup style=’font-size:50%’>”+
 dn+”</sup>”
 else
 clockobj.innerHTML=
 hours+
 “ : ”+
 minutes+
 “ : ”+
 seconds+” “+”<sup style=’font-size:50%’>”+
 dn+”</sup>”
}

The main addition is the seconds variable you created earlier. With each
tick of the clock, the display is updated so that you see the hours, minutes,
and seconds.

The original code attempted to set the font color to match the background to
hide the colon. Unfortunately, this approach works only when the background

303 Chapter 14: Modifying the Dynamic Drive CSS

and the colon remain the same color. To make this example CSS-friendly, you
still display the colon, but use transparent text to do it. Using transparent text
lets the background show through so that the user doesn’t actually see the
colon.

Instead of setting a specific font size for the AM/PM output, the example fol-
lows the original author’s intent by making the superscripted value half the
size of the other text. No matter how you scale the text, the AM/PM output
will scale with it. Save the LCDClockSource.JS file and reload the page. You’ll
see the seconds displayed as shown in Figure 14-4.

Figure 14-4:
The LCD

clock display
includes the

seconds
now.

Modifying the CSS
The CSS for this example controls the appearance and size of the clock. Make
sure you follow the techniques discussed in the previous “Modifying the
JavaScript” section to fix some problems this example has that makes it CSS
unfriendly before you read this section. Once you do have the script fixes in
place, you can change the CSS as needed to make the clock appear any way
you want. For example, try configuring the clock like this:

.styling
{
 background-color:Beige;
 color:DarkBlue;
 font: bold 22px Arial;
 padding: 4px;
 border: double;
}

You get a completely different look. Figure 14-5 shows what you can expect
as output in this case. Notice that the colons disappear every other cycle, as
anticipated, even though the background color has changed.

304 Part IV: Modifying Pre-Built Content for a Unique Look

Figure 14-5:
Change

the CSS to
modify the

appearance
of the clock.

Working with Menus
Dynamic Drive provides all sorts of different scripting examples (as
described in the “Understanding the Script Categories” section, earlier in
this chapter). However, one of the most commonly used features of any API
is the menus. A developer needs to provide some means for people to get
from one location to another on a site — to make it possible to review vari-
ous resources that the site provides. With this in mind, the following sec-
tions discuss some of the things you can do using the Dynamic Drive menus
found in the CSS-based Menu Scripts category (www.dynamicdrive.com/
dynamicindex1/indexb.html). The techniques described in the following
section will also work with scripts found in other categories, but the focus is
on menus because everyone needs to create a menuing system for their sites
at one point or another.

Defining a specialized menu
Split button menus offer one way to give your site a special look (as shown
in Figure 14-6 later in this section). The split button tells viewers that the
default menu selection is what they see at the moment, but that other selec-
tions are available. Simply clicking the split button takes the viewer to the
default site. However, clicking the down arrow next to the button shows the
other options and the viewer can easily select any of them as an alternative
to a default.

This type of menu isn’t limited to just directing people to other locations. It
can also act as a kind of input field for a form. The button shows the default
selection for that field. However, you can also choose one of the alternatives
if they work better. The point is that split button menus provide a specialized
approach to menu development.

The example in this section relies on the Split Menu Buttons v1.2 example
shown at www.dynamicdrive.com/dynamicindex1/splitmenu
buttons.htm. The following steps get you started using this specialized

http://www.dynamicdrive.com/dynamicindex1/indexb.html
http://www.dynamicdrive.com/dynamicindex1/indexb.html
http://www.dynamicdrive.com/dynamicindex1/splitmenubuttons.htm
http://www.dynamicdrive.com/dynamicindex1/splitmenubuttons.htm

305 Chapter 14: Modifying the Dynamic Drive CSS

menu and offer suggestions on modifications you might want to make to
it. (You can find complete code for this example in the \Chapter 14\
SplitButton folder of the downloadable code as SplitButton.HTML.)

 1. Download the splitmenubuttons.js file found in the Step 1 section of
the Dynamic Drive page, and then place it in the folder you want to
use for your test page.

 2. Download the splitmenubuttons.css file found in the Step 1 section of
the Dynamic Drive page, and then place it in the folder you want to
use for your test page.

 3. Create a new HTML 5 page using your favorite text editor or IDE, and
then save it as SplitButton.HTML.

 4. Change the <title> tag as shown here:
<title>An Example of Using a Split Button Menu</title>

 5. Click Select All in the Step 2 portion of the Dynamic Drive page.

 You see the header code for the example highlighted.

 6. Copy the highlighted text to the clipboard, and then paste it within
the <head> section of the example page.

 The editor adds the code to the <head> section. If you look carefully at
this code, you find a link to splitmenubuttons.css and a script refer-
ence to splitmenubuttons.js. This example also relies on jQuery, so
you find a script reference to jquery.min.js.

 The code also includes a script for creating the split buttons that uses
jQuery syntax. You won’t need to modify this script as long as you
follow a few simple rules in creating your menu. The steps that follow
discuss these rules.

 7. Create links for each of the top menu entries in the <body> section of
the page as follows:
<a href=”SplitButton.HTML”
 class=”splitmenubutton”
 data-showmenu=”Home”
 data-splitmenu=”false”
 data-menucolors=”Brick,Brick”>Home
<a href=”Products.HTML”
 class=”splitmenubutton”
 data-showmenu=”Products”
 data-splitmenu=”false”
 data-menucolors=”Indigo,Red”>Products
<a href=”About.HTML”
 class=”splitmenubutton”
 data-showmenu=”About”
 data-menucolors=”Indigo,Red”>About

306 Part IV: Modifying Pre-Built Content for a Unique Look

 Each of these entries is a top-level menu button for the page. When the
user displays the page, it shows Home, Products, and About as three
buttons. Each of the buttons will go to a specific location when clicked.
However, you can substitute # for the href attribute if you don’t want a
button to do anything when clicked.

 The class must appear as splitmenubutton in every case. You can
find the CSS for this class in the splitmenubuttons.css file.

 The data-showmenu attribute defines which submenu to use. You
must define a name, even if you don’t intend to use a submenu with a
particular button. In this example, the Home button won’t include any
submenus.

 The data-splitmenu attribute specifies whether a button should show
the down arrow as part of the button or as a separate button. This exam-
ple shows both cases. The default setting is true, which means the arrow
appears as a separate button.

 You use the data-menucolors attribute to specify the colors used for
the default background color and the selected color. The default color
is DarkRed, but most developers will want to override the defaults to
obtain a specific look.

 8. Create a submenu for the Products menu, using the following code:
<ul id=”Products” class=”splitdropdown”>
 Product 1
 Product 2
 Product 3
 Product 4
 Product 5

 A submenu is simply an unordered list. Each of the list items contains
an anchor that points to the location you want the viewer to go. The
unordered list must have an id attribute value that matches the data-
showmenu attribute value. In addition, the first level of unordered lists
in a submenu must use the splitdropdown class.

 9. Create a submenu for the About menu, using the following code:
<ul id=”About” class=”splitdropdown”>
 Our History
 <li class=”separator”>
 Privacy Statement

 Contact Us

 By Telephone
 By Mail

307 Chapter 14: Modifying the Dynamic Drive CSS

 By E-mail

 Webmaster
 Support

 This menu is a little more complex. If you want to create submenus of
your submenus, simply place the corresponding unordered list within
the list item as shown. The Contact Us submenu actually contains three
levels of menu options.

 Add the class=”separator” attribute when you want to add a little
extra space between menu items. Using this attribute makes it possible
for users to see relations between menu items with greater ease.

 10. Save the modified SplitButton.HTML and load it in your browser.

 You see the simple output shown in Figure 14-6.

Figure 14-6:
A split but-

ton menu
can provide

a nice
appearance

on a page.

Notice, in Figure 14-6, that the Home button appears like any other button,
but it lacks a down arrow because it doesn’t have an associated menu.
Clicking this button will take you to the home page.

 As with any CSS-based menu, you can make a number of changes to the
appearance of these menus. For example, it’s possible to change the arrows
to something other than the simple triangle shown. Of course, you need to
know the values used to present various arrow types. You can see a list of
typical Unicode arrows at www.ssec.wisc.edu/~tomw/java/unicode.
html#x2190.

http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2190
http://www.ssec.wisc.edu/~tomw/java/unicode.html#x2190

308 Part IV: Modifying Pre-Built Content for a Unique Look

Developing menus with graphics
The split button setup described in the “Defining a specialized menu” section
of the chapter uses two different styles for arrows:

 ✓ The span.innerspan.downarrow::after style (note the two colons)
is for arrows that appear as separate buttons.

 ✓ The .splitmenubutton span.innerspan.downarrow:after style
(note the single colon) is for arrows that appear as part of a single button.

You set the content attribute to the value of the Unicode arrow you want
to use (or any other symbol for that matter). Here are examples of styles you
can use with the example application.

<style type=”text/css”>
 span.innerspan.downarrow::after
 {
 content: ‘\21D3’;
 }
 .splitmenubutton span.innerspan.downarrow:after
 {
 content: ‘\21B3’;
 }
</style>

Reload the page after you make the changes. Figure 14-7 shows typical
results. The Products button now uses a right-pointing down arrow — the
About button uses a double downward arrow.

Figure 14-7:
The menu

you create is
completely
flexible, so

you can
change

features like
the arrows.

 You can also change the right-pointing arrow used for submenus. Simply
change the .rightarrow:after style to whatever Unicode character you
want to use. For example, if you want to use a white right-pointing triangle,
then you’d change the content attribute to ‘\25B9’. If you want to use a
larger triangle, then use ‘\25B6’ or ‘\25B7’ instead.

309 Chapter 14: Modifying the Dynamic Drive CSS

Creating specialized menu effects
The menu created in the previous two sections is nice, but there are still
some fit-and-finish changes you can make. One that’s especially important
is to define the title attribute for each of the menu entries. For example, you
might simply use title=”Go to the Home Page” for the Home button.
Adding the title attribute provides the viewer with a tooltip when hover-
ing the mouse cursor (as shown in Figure 14-8) and also provides input for
people using screen readers.

Figure 14-8:
Adding
tooltips

make the
menu even

easier
to use.

The menu doesn’t provide a quick method for changing the text color or
 anything about the font used to display it. As with other examples in the
book, you can use various kinds of CSS changes to affect the appearance of
text in the menu. The buttons rely on the .splitmenubutton style to create
the text appearance; the submenus rely on the ul.splitdropdown li a
style. Try making these changes to the example styles and you’ll see the
interplay between the various split button menu elements.

.splitmenubutton
{
 color: Yellow;
}
ul.splitdropdown li a
{
 color: DarkOrchid;
 background: Lavender;
}

 It’s possible to modify the split button menu to meet any need you might have.
The important thing to remember is to make as many changes as possible out-
side of the original files. Making changes to the files will cause you problems at
some point because Dynamic Drive will likely make updates to the examples.

310 Part IV: Modifying Pre-Built Content for a Unique Look

Part V
The Part of Tens

 Enjoy an additional Part of Tens article about ten sites with unique designs at
www.dummies.com/extras/css3.

http://www.dummies.com/extras/css3

In this part . . .
 ✓ Discover places you can go to find CSS libraries to make your

work easier
 ✓ Find the CSS generator of your dreams
 ✓ Create amazing layouts that tantalize your viewers
 ✓ Obtain useful resources you can use as your CSS knowledge

grows

Chapter 15

Ten Phenomenal Places
to Find Libraries

A
 number of chapters in this book discuss some of the more popular
libraries that are available for use by developers. jQuery, jQuery UI,

Dynamic Drive, and many others provide Application Programming Interfaces
(APIs), which are libraries of programming routines, to use in creating your
application. Because APIs provide a significant advantage over writing code
by hand or using just the libraries that come with a particular programming
product, their use is only going to increase.

This chapter presents ten libraries that you haven’t seen in other areas of
the book. What you find here is a listing of some of the better offerings for
developers online. However, the chapter also serves to help you find good
libraries on your own. By looking at how these libraries are put together and
presented to the developer, you gain insights into what makes one library
merely good and another library great.

Animating Page Elements
with Animate.css

There are many ways to add animation to pages using CSS. The Animate.
css library (http://daneden.me/animate/) provides access to a host of
animation effects. Each of the effects is carefully categorized on the page, as
shown in Figure 15-1. To see how a particular effect will appear, click its entry
and then watch the “I fight for the user” block to see how the effect works.

http://daneden.me/animate/

314 Part V: The Part of Tens

Figure 15-1:
Use

Animate.css
to add spe-
cial effects

to your
page.

The author tells you how to mix the library with jQuery, but you can use
it with any other JavaScript library as well. You make the effects work by
adding the animated class, followed by the name of the special effect you
want to use, such as class=”animated flip” when you want to use the
flip effect.

Click Download on Github to obtain the entire library of animations at
https://github.com/daneden/animate.css. This site also makes it pos-
sible to interact with other people who are using the library — and to obtain
additional files, such as the README, associated with the library. The feature
complete animate.min.css version of the library is significantly smaller
than the full version that most developers will use when creating applications,
so you may want to download this file for your production system.

Tell me about your favorite library
I’m always on the lookout for the next phenome-
nal library for my coding needs. If you find such
a library and don’t see it presented in the book,
share the wealth with me by writing to John@
JohnMuellerBooks.com. I’d love to hear
about the library and what makes it completely
different from other offerings found in the book.

I often discuss reader input of this sort on my
blog at http://blog.johnmueller
books.com/. Just check out the entries
for this book at http://blog.john
muellerbooks.com/categories/
263/developing-with-css3-for-
dummies.aspx.

https://github.com/daneden/animate.css
mailto:John@JohnMuellerBooks.com?subject=Share the Wealth
mailto:John@JohnMuellerBooks.com?subject=Share the Wealth
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/categories/263/developing-with-css3-for-dummies.aspx
http://blog.johnmuellerbooks.com/categories/263/developing-with-css3-for-dummies.aspx
http://blog.johnmuellerbooks.com/categories/263/developing-with-css3-for-dummies.aspx
http://blog.johnmuellerbooks.com/categories/263/developing-with-css3-for-dummies.aspx

315 Chapter 15: Ten Phenomenal Places to Find Libraries

 The library is really large and few developers will use all of the special effects,
so you can also download a smaller version of the library. Simply click Create
Custom Build and the associated wizard (shown in Figure 15-2) will help you
create a custom version of the CSS library to use with your specific applica-
tion. Check the animations you want to use and then click Build at the bottom
of the page to complete the process. It’s a good idea to get a reduced-size ver-
sion of the animations for use with your site to enhance overall application
performance.

Figure 15-2:
The wizard

makes it
easy to get

just the
Animate.css
features you

want.

Locating a Library Using CSSDB.co
A number of places online don’t actually have libraries of their own, but they
do host other people’s libraries. An example of such a site for jQuery appears
in Chapter 13 in the form of Unheap (www.unheap.com/). Knowing where to
look for a library can be quite hard; search engines don’t always provide the
best results, so you need a site such as CSSDB.co (http://cssdb.co/) to
get the libraries lined up in one location so you can review them.

Each of the entries on this site include the library name, a short description,
some library statistics (the stars indicate the number of positive votes),
and a link you can use to download the library as shown in Figure 15-3. The
libraries are sorted in most popular order by default. However, you can also
search for new libraries — a helpful feature when you’re already familiar with
the offerings on this site. In addition, you can submit your own library and
join the group — making it far easier for other developers to find your code.

http://www.unheap.com/
http://cssdb.co/

316 Part V: The Part of Tens

Figure 15-3:
Find the

library of
your dreams

using the
entries on

this hosted
site.

Combining CSS3 and JavaScript
with JSter

Library hosting sites have a certain feel to them. Some sites are exclusive to
a particular technology, while others cater to a variety of technologies, and
still others combine technologies. The JSter site (http://jster.net/tag/
css3) helps you locate combined CSS3 and JavaScript libraries to accom-
plish specific tasks.

This site offers a number of features as shown in Figure 15-4. You see the
library name, a short description, and statistics such as the GitHub stars
(rating), GitHub forks (number of versions), and JSter rating so you know more
about the library’s popularity. Each of the library entries also has tag links
associated with it so that you can better categorize the library offering and find
other libraries of the same type. Some libraries have special notes associated
with them, such as whether the library author has made recent improvements.

Unlike many hosting sites of this sort, JSter also offers a blog that discusses
libraries. In many cases, this means that you not only find the short descrip-
tion of a library, but also a longer write-up about it. It’s also possible to get
the latest news about issues concerning library developers and the general
programming community, so even if you don’t download any of the libraries,
it would be worth the time to read the blog.

http://jster.net/tag/css3
http://jster.net/tag/css3

317 Chapter 15: Ten Phenomenal Places to Find Libraries

Figure 15-4:
Locate

combined
CSS and

JavaScript
offerings on

JSter.

Developing Background Animations
with Animatable

Most animation libraries concentrate on foreground elements of a page.
The Animatable library (http://leaverou.github.io/animatable/)
focuses on backgrounds and borders instead. You can find all sorts of inter-
esting special effects, such as a background that gives the appearance of
moving. The default page setup displays the special effect when you hover
the mouse cursor over a particular effect (as shown in Figure 15-5). However,
you can also choose to display all of the effects at once.

To obtain details about each effect, click its associated box. A pop-up dialog
box appears that contains additional information about the animation so you
can reproduce it yourself.

The really interesting thing about these examples is that they’re simple to
implement. All you modify is the settings for a single CSS3 property to obtain
the effect. The two values described for the target property are all you need
to produce the effect.

http://leaverou.github.io/animatable/

318 Part V: The Part of Tens

Figure 15-5:
Background

and border
effects

can give
your page

special
emphasis.

Easing Your Way into a Transition
with Easings

The introduction to this site tells you the main reason you’d want to use
the animation it provides. Most real world events don’t happen in linear
 fashion — the action speeds up or slows down at certain points during the
transition. Easings (http://easings.net/) helps you create natural-looking
transitions from one state to another. You have access to a number of easing
effects, as shown in Figure 15-6.

To add a particular easing to your application, simply click the effect you
want to use, such as easeInSine. The resulting page provides you with the
JavaScript, Sassy Cascading Style Sheet (SCSS) (see http://sass-lang.
com/ for more information about SCSS), and CSS3 syntax for creating the
effect. All you need to do is copy the code to your application.

http://easings.net/
http://sass-lang.com/
http://sass-lang.com/

319 Chapter 15: Ten Phenomenal Places to Find Libraries

Figure 15-6:
Using eas-
ing effects
to give an
animation

a more
natural

appearance.

Transitioning Elements Using Morf.js
There are many ways to animate items using easings. A transition can follow
a natural or mathematical path, or it can provide a specialized effect that’s
entertaining, but clearly not natural. The Morf.js page (www.joelambert.
co.uk/morf/) provides access to a number of specialized transitional
effects. The effects are divided into native and custom categories as shown in
Figure 15-7.

To see a particular effect, click its entry on the page. The square at the top of
the page will demonstrate the effect for you. At the bottom of the page, you
see a Generated Animated CSS field that contains the code required to repro-
duce the special effect. The code is pure CSS; all you need to do is copy it to
your application.

 This particular site seems to work best when using Chrome. Yes, you can get
it to work with other browsers, but this is one situation where there’s a dis-
tinct advantage in using one browser over another.

http://www.joelambert.co.uk/morf/
http://www.joelambert.co.uk/morf/

320 Part V: The Part of Tens

Figure 15-7:
Specialized

transition
effects can

add interest
to a page.

Creating Full Interactive
Applications with YUI

The Yahoo! User Interface (YUI) library (http://yuilibrary.com/) is a
full-featured development — API akin to jQuery and jQuery UI combined in
some respects, and richer than these libraries in others. This is a complex
API designed to handle the needs of larger applications. In fact, you actually
do need to go through the tutorials, examples, and user guides supplied at
http://yuilibrary.com/yui/docs/ to really use this product. In short,
this is the kind of library you use when you need to create a high-end, highly
interactive application.

User interface support in YUI revolves around the concept of a skin. You add
skinning support to your application and then extend it as needed to make
use of various controls. The array of controls is rich, so you likely won’t
need to use any other library with this one. In addition, the library provides
graded browser support for a wide range of browsers (see http://yui
library.com/yui/environments/ for details).

You find a huge number of examples on the site (see http://yuilibrary.
com/yui/docs/examples/) that demonstrate all sorts of tasks that devel-
opers normally perform. When learning to use this library, it’s a good idea to

http://yuilibrary.com/
http://yuilibrary.com/yui/docs/
http://yuilibrary.com/yui/environments/
http://yuilibrary.com/yui/environments/
http://yuilibrary.com/yui/docs/examples/
http://yuilibrary.com/yui/docs/examples/

321 Chapter 15: Ten Phenomenal Places to Find Libraries

look for an example that could perform the task you want to perform — and
then extend it as needed to meet your needs.

 As with any other programming technology aid, you need to consider the
tradeoffs when using specific libraries. YUI is a great library for high-end
development that requires the complex and flexible environment it provides.
The reason many sites use products such as jQuery is that these libraries are
simple and easy to debug. Always weigh the costs before you get too involved
with a particular library.

 Smart developers use an Integrated Development Environment (IDE) with a
product such as YUI. The main reason to use an IDE is to reduce complexity
and make it possible to work with the library without constantly referring
to the documentation. A number of IDEs will work with YUI; however, most
developers seem to prefer using Komodo Edit (see Chapter 16 for details) or
JSEclipse (http://jseclipse.softpile.com/).

Displaying Tooltips Using HINT.css
Tooltips are an essential communication technique for your application. Users
like to see something pop up when they hover the mouse over a field or other
part of the page where they have a question. Using tooltips correctly makes
your application much easier to use. Of course, the easiest way to create
tooltips is to rely on the title attribute provided by HTML. However, the
title attribute is extremely limited. Using HINT.css (http://kushagra
gour.in/lab/hint/) makes it possible to create tooltips wherever you want
on the page — and to format those tooltips so they’re incredibly easy to see.

As with any CSS library, you have full control over how your tooltips appear
when using HINT.css. You can display them in any position around the ele-
ment and in any color. A tooltip can have sharp or rounded edges. In addi-
tion, you can control features such as the text size, font, and anything else
you can imagine so that the tooltips are truly customized.

Ridding Yourself of Browser Differences
with Normalize.css

 Many of the chapters in this book have discussed differences in how brows-
ers work with CSS3. Yes, most CSS3 features are standardized to the point that
you can create some incredibly interesting applications, but there are just

http://jseclipse.softpile.com/
http://kushagragour.in/lab/hint/
http://kushagragour.in/lab/hint/

322 Part V: The Part of Tens

enough differences that it would be nice to get rid of them if possible. Using
Normalize.css (http://necolas.github.io/normalize.css/) can help
you overcome many of the issues you face when using CSS3 features such as
transformations. This unique solution relies on a small CSS file to perform its
work. The post at http://nicolasgallagher.com/about-normalize-
css/ tells you more about just what Normalize.css can do for you.

Ensuring Your Application Works with
Mobile Devices Using Skeleton

Most users today want applications that work everywhere — and work
about the same in every location and with every device. Of course, that’s a
really tall order, because various devices have differing browsers, operating
systems, form factors, and all sorts of other differences. Even with browser-
based applications, it’s hard to create an application that works equally well
on mobile and desktop devices. However, Skeleton (www.getskeleton.
com/) can help you create applications that work at any size.

The technology behind Skeleton is CSS3-based, so you don’t need to worry
about whether a client can run scripts. In addition, the author has tested
Skeleton on a number of platforms, so you have a better idea of whether it
will work for you. The main requirement is that the client browser supports
CSS3. The current implementation works on:

 ✓ Chrome (Mac/PC)

 ✓ Firefox 3.0 and above (Mac/PC)

 ✓ Safari

 ✓ Internet Explorer 7 and above

 ✓ iPhone (Retina)

 ✓ Droid (Charge/Original)

 ✓ iPad

http://necolas.github.io/normalize.css/
http://nicolasgallagher.com/about-normalize-css/
http://nicolasgallagher.com/about-normalize-css/
http://www.getskeleton.com/
http://www.getskeleton.com/

Chapter 16

Ten Phenomenal Places
to Find Generators

C
hapter 15 discusses libraries, which are collections of code you can use
in your application. This chapter discusses generators, which are tools

you can use to create, interact with, or test code. These tools include a wide
range of specific types, including wizards, designers, Integrated Development
Environments (IDEs), and a host of other items.

The following sections provide you with a quick overview of a number of
truly amazing tools that help you generate code in some way. The idea is to
create code that you can’t readily obtain from a library. Perhaps you have a
unique need or the code just doesn’t lend itself to inclusion in a library.

It’s important to review each tool carefully because each tool has special
characteristics. I also try to categorize the tool and help you understand
why you might need a tool of this type. Even if you don’t think the tool will
work for you (and everyone has unique needs), reading about these tools will
make you better about finding tools that do meet your needs and provide the
special features you require to do a great job of writing browser-based appli-
cations of your own.

Creating Animations Using Stylie
Getting an animation just right can be difficult. Each developer has different
skills and ways of viewing tasks. Stylie (http://jeremyckahn.github.
io/stylie/) is designed for developers who are more visually oriented.
(See Figure 16-1.) You choose a starting and ending point for the animation,
using the X and Y values. The R value determines the amount of rotation
that the animated object performs. You can choose how long the animation
occurs using the time values. In addition, the X, Y, and R values can each
have an animation effect associated with them.

http://jeremyckahn.github.io/stylie/
http://jeremyckahn.github.io/stylie/

324 Part V: The Part of Tens

Figure 16-1:
Use Stylie
to visually

design ani-
mations for

your site.

 Many animations move in more than one direction. Click the plus sign (+) to add
another direction. This direction also has X, Y, and R values and you can set its
duration and special effects as well. In short, you can use this interface to create
incredibly complex animation effects that go in more than one direction.

Tell me about your favorite tool
Most developers are tool addicts. We just can’t
help ourselves. A tool that looks even margin-
ally useful is tried and tested to see if it saves
time and effort, or at least does something
interesting that we might need later. As with
any developer, I’m always on the lookout for
the next useful tool. Of course, I don’t want a
repeat of several other tools on the market —
I want something unique. If you find such a
tool and don’t see it presented in the book,

share the wealth with me by writing to John@
JohnMuellerBooks.com. I’d love to hear
about the tool and what it does. Make sure you
emphasize the tool’s unique functionality. I often
discuss reader input of this sort on my blog at
http://blog.johnmuellerbooks.
com/. Just check out the entries for this book
at http://blog.johnmuellerbooks.
com/categories/263/developing-
with-css3-for-dummies.aspx.

mailto:John@JohnMuellerBooks.com?subject=Share the Wealth
mailto:John@JohnMuellerBooks.com?subject=Share the Wealth
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/categories/263/developing-with-css3-for-dummies.aspx
http://blog.johnmuellerbooks.com/categories/263/developing-with-css3-for-dummies.aspx
http://blog.johnmuellerbooks.com/categories/263/developing-with-css3-for-dummies.aspx

325 Chapter 16: Ten Phenomenal Places to Find Generators

The Motion tab defines characteristics of the animation, such as how
many times you want the animation to execute (you can choose to make the
execution an infinite loop) and how the object you’re animating should inter-
act with the animation path. This is also the tab you use to define the easing
used to make the animated effect flow smoothly. A straight line animation is
simple, but the easing becomes important when you start working with ani-
mations that move in more than one direction.

After you finish configuring your animation, you click the CSS tab, which con-
tains the CSS you use to create the animated effect in your application. The
CSS tab lets you choose a name for the animation class. You can also select
which vendors to include as part of the CSS and the animation quality level.
The HTML tab contains sample tags you need to complete the animation.
This is where you’d need to make modifications to include the object you
want to animate in place of the simple circle supplied by Stylie.

Designing CSS Styles Using CSSDesk
Most IDEs used to create HTML, CSS, and JavaScript files lack a designer
interface, where you can immediately see the results of any code you create.
Instead, you need to load the page to determine whether the coding changes
you make actually create the effect you want. CSSDesk (http://cssdesk.
com/) makes it possible to write code and immediately see the effect it has
on the output (as shown in Figure 16-2).

Figure 16-2:
See your

code
changes

take effect
as you make

them with
CSSDesk.

http://cssdesk.com/
http://cssdesk.com/

326 Part V: The Part of Tens

The right pane shows the output as you make it. The default setup shows a
simple Hello World example within a <div> element, but the editor works
fine with any HTML code you provide. The HTML code appears in the upper
left pane, while the CSS code appears in the lower left pane.

 The main focus of this editor is creating the user interface for your applica-
tion. However, you can modify the HTML pane to include <head> and <body>
elements. Styles you create in the <head> section will appear in the output,
just as if you had created them in a standard document. Some scripting func-
tionality will work, other functionality won’t. Inline scripts will generally work
as anticipated, but don’t expect anything even moderately complex to work as
expected. For example, creating a button like this:

<input type=”button”
 onclick=”alert(‘Hello’)”
 value=”Say Hello” />

produces the expected output, but calling an external function may not. In
short, the JavaScript support is limited, so you might not always see the
anticipated result when working with external libraries such as jQuery.

Making Applications Run Faster
with yepnope.js

Part of the problem with browser-based applications is that you request
a single resource from a library and end up with the entire library loaded.
The process is slow, cumbersome, error-prone, and simply inefficient. You
can use yepnope.js (http://yepnopejs.com/) to help overcome these
issues. When working with yepnope.js, you provide a condition that the
product then tests, and then loads resources only as needed to support a
specific condition. You can use this product with CSS3 or JavaScript files.

Fortunately, the yepnope.js tool goes further than simply loading resources
based on conditions. For example, some applications will mindlessly call a
script with the same input parameters multiple times when only one output
is possible using a particular set of inputs. The multiple calls can prove espe-
cially time-consuming when calling another URL. You can use yepnope.js
to keep events like this from occurring. The tool helps make the application
code smarter so high-latency calls are avoided whenever possible.

Another problem with scripts is that they can continue to run, even when
there’s no hope that they’ll ever complete. After a while, the user clicks the
Back button or goes to a different site. You can add timeouts for scripts

http://yepnopejs.com/

327 Chapter 16: Ten Phenomenal Places to Find Generators

 individually with yepnope.js so that it becomes possible to detect the time-
outs and handle them as errors. With this capability in place, it’s potentially
possible to recover from scripts that continue running when they shouldn’t.

 The central focus of yepnope.js is the yepnope() function. It provides a
syntax that looks like this:

yepnope([{
 test : /* A condition you want to test */,
 yep : /* Tasks performed when true. */,
 nope : /* Tasks performed when false */,
 both : /* Tasks performed every time */,
 load : /* Resources loaded every time */,
 callback : /* A function to call during processing */,
 complete : /* A function to call after processing */
}, ...]);

The basic idea is that you create a scenario where tasks are performed
based on specific needs so that the application doesn’t spend time perform-
ing unnecessary tasks (and wasting both time and resources as a result).
Of course, yepnope.js provides more functionality than presented in this
overview, but the short version is that this is a smart resource loader.

Generating Templates Using Initializr
There are many ways to create the templates you need to produce applica-
tions. If you’re just starting out with HTML5, CSS3, and JavaScript develop-
ment, the Initializr (www.initializr.com/) template generator may be
precisely what you need. It helps you create three basic types of templates
(as shown in Figure 16-3), based on the answers you provide to the wizard.

Of course, you may not know which of the templates to use. Click the Demo
button under each of the template types to give them a try in your browser.
The site will load a page that helps you understand how that particular tem-
plate works.

Once you decide on a particular template, you click its button and the
page expands to show the wizard inputs you need to provide (as shown in
Figure 16-4). If you need help with the options, click the Docs button beneath
the template button for the template you chose.

The final step is to click Download It!. The download will provide you with
everything needed to create the template look you requested. You can then
fill the template with content and upload it to your site.

http://www.initializr.com/

328 Part V: The Part of Tens

Figure 16-3:
Initializr
reduces
the work

required to
start new

projects that
use HTML 5,

CSS3, and
JavaScript.

Figure 16-4:
Provide any

answers
that the wiz-
ard requires

to create
the template

you want.

329 Chapter 16: Ten Phenomenal Places to Find Generators

Optimizing Applications to Work with
Older Browsers with Modernizr

There are many different browsers and browser versions in use today. You
can get some idea of just how many by looking at NetMarketShare (www.
netmarketshare.com/browser-market-share.aspx?qprid=
2&qpcustomd=0). Many people refuse to give up their old browsers for any
reason. For example, at the time of this writing, 6.13 percent of people are
still using Internet Explorer 6. Catering to this group would mean not using
a wealth of libraries, special effects, and newer coding techniques. In fact,
it would be hard to create anything close to a modern application. This is
where Modernizr (http://modernizr.com/) comes into play. You use
Modernizr to optionally perform tasks and include application features based
on the browser that the user has installed. As a consequence, users with
newer browsers can enjoy the full functionality that your site has to offer, but
you can also include users with older browsers (just not at the same func-
tionality level, in many cases).

 The creators of yepnope.js (described in the “Making Applications Run
Faster with yepnope.js” section, earlier in this chapter) and Modernizr have
worked to make their products highly compatible. You can use these two
products together to create applications that are incredibly flexible, browser-
and browser version-inclusive, and yet quite fast and resource-frugal.

Modernizr performs its task by using a number of techniques — not just the
highly unreliable navigator.userAgent property — to detect a user’s
browser. It detects a wealth of browser features, and helps you avoid prob-
lems when a browser lacks a particular feature, using a yepnope.js para-
digm. In fact, it checks for over 40 features that developers commonly use
within their applications. You can read more about what Modernizr checks —
and how it performs those checks — at http://modernizr.com/docs/.

Enhancing Selector Support
Using Selectivizr

The CSS3 selector support in older browsers is nearly nonexistent. Of
course, you have to have great selector support to make most special effects
work properly. The answer to the problem is to use Selectivizr (http://
selectivizr.com/) to overcome these issues. This tool is specifically

http://www.netmarketshare.com/browser-market-share.aspx?qprid=2&qpcustomd=0
http://www.netmarketshare.com/browser-market-share.aspx?qprid=2&qpcustomd=0
http://www.netmarketshare.com/browser-market-share.aspx?qprid=2&qpcustomd=0
http://modernizr.com/
http://modernizr.com/docs/
http://selectivizr.com/
http://selectivizr.com/

330 Part V: The Part of Tens

designed to help with problems that crop up in Internet Explorer versions 6
through 8 — and it works with a number of libraries, including

 ✓ jQuery

 ✓ dojo

 ✓ prototype

 ✓ Yahoo!

 ✓ DOMAssistant

 ✓ MooTools

 ✓ NWMatcher

 Even with this tool, you don’t get complete selector support. Fortunately, the
Selectivizr site provides a list of selectors and tells you which selector types
it supports for a given library. With this knowledge, you can usually overcome
any selector issues when working with older browsers.

Designing Unusual List Presentations
with Liffect

Developers use lists for a number of tasks when creating a page. For example,
lists play an important part in creating many menus. Another purpose for
lists is to display content. You can display all of the content at once, or make
the content special by presenting one item at a time. The purpose of Liffect
(http://ademilter.com/lab/liffect/) is to make it possible to create
special effects for lists.

This tool generates custom code for animating your content list. All you do
is define the kind of animation you want, the time the animation requires to
complete, the delay between items, and whether you want items selected
randomly (as shown in Figure 16-5). At the bottom of the page are selections
for the kind of browsers you want to support.

After you make your selections, click Generate. The utility outputs the HTML,
CSS3, and JavaScript code required to create the animated sequence. Of
course, you still have to provide the content by modifying the HTML code (or
providing some automated method for generating it). Otherwise all you need
to do is copy and paste the resulting code to your application.

http://ademilter.com/lab/liffect/

331 Chapter 16: Ten Phenomenal Places to Find Generators

Figure 16-5:
Liffect

generates
CSS and

JavaScript
to display

list content
as an

animation.

Editing Code Using Komodo Edit
Yes, you can create any browser-based application you want by using a
simple text editor. Any editor that outputs text without any formatting will
work just fine. In fact, any method you have of producing pure text output
will work. However, most developers opt for an environment that’s friendlier
and easier to use — often in the form of an IDE. Using an IDE provides you
with helpful information, such as the properties available when you’re work-
ing with CSS or the inputs required for a JavaScript call.

Komodo Edit (www.activestate.com/komodo-edit) provides good sup-
port for CSS3, HTML5, JavaScript and a host of other languages, including
Perl, PHP, Python, Ruby and Tcl. The editor works on Windows, Macintosh,
and Linux systems. The paid version of this product supports additional lan-
guages and a wealth of additional features, but the free version is perfectly
usable for JavaScript coding. The biggest lack in the free version is a debug-
ger, but you can easily use the debugger that comes with your browser to
make up the difference.

http://www.activestate.com/komodo-edit

332 Part V: The Part of Tens

Engineering Layer Effects
Using LayerStyles

Creating the right appearance for a layer can be hard. A layer is composed
of the outer shadow, border, and inner shadow of the elements (such as a
<div>) that you create. LayerStyles (http://layerstyles.org/) makes it
possible to visually design the layer effects that you create. You perform that
task using a control panel (as shown in Figure 16-6).

Figure 16-6:
Create and

manage
layer effects

to produce
just the right
appearance

on a page.

The control panel helps you modify all of the characteristics of the layer
effect, including the source of light. All of the effects appear on a square in
the center of the page, which you can see by moving the control panel to
a more convenient location (simply click the title bar and drag the control
panel anywhere you want to see it on the page).

When you finish creating your layer effect, you can click the CSS tab that
appears in the lower-left corner of the page. This act displays a window that
shows the code required to create the layer effect you designed. Simply click
Copy to copy the information to the Clipboard. You can then paste the code
into your IDE for use in your application. The resulting CSS should work fine
with Internet Explorer, Firefox, Chrome, and most other browsers that sup-
port CSS3.

http://layerstyles.org/

333 Chapter 16: Ten Phenomenal Places to Find Generators

Testing Your Font Stacks Using
FFFFALLBACK

In Chapter 3 I discuss a common problem that developers have in working
with fonts — the issue of font support on the client system. In that chapter,
you see one solution to the problem, but the solution may not produce pre-
cisely the result you want in everyday operation. In some cases, you want
to create a custom font stack so that your page appears precisely as you
want it to appear to the end user. Another solution to this problem is to use
FFFFALLBACK (http://ffffallback.com/) — a tool that makes it pos-
sible to try various font combinations on the target page.

The page contains instructions for using this tool. You simply drag the book-
marklet to the toolbar of your browser, where it becomes a clickable button.
Go to the site you want to modify, and then click the FFFFALLBACK button.
The tool analyzes the CSS on the page and creates a clone of the page. You’ll
also see a tool on the cloned page that you can use to test various fonts (as
shown in Figure 16-7). To change the font, type the font name and press Enter
in the field supplied.

Figure 16-7:
Define

custom font
stacks for

your site to
convey the

message
you want.

The fallback font you choose appears in an alternative color, below and to
the right of the original font. To see just the fallback font, click Fallback.
Likewise, to see just the original font, click Web Font.

 This particular tool only works with webkit browsers such as Firefox, Chrome,
and Safari. It doesn’t work with other browsers, including Internet Explorer
and Opera.

http://ffffallback.com/

334 Part V: The Part of Tens

Chapter 17

Ten Quick Ways to Produce
a Great Layout

T
his book discusses a lot of CSS-related techniques and tactics — but
when you consider everything that CSS is used for today, it still comes

down to a matter of layout. Creating a layout that helps the user navigate the
site and actually see the content you’re trying to present is essential. When
you look online, you see that there are many kinds of layouts used to present
information — some work better than others do.

 The precise layout you create depends on just how fancy you want to get —
and whether the content will be used on multiple devices (such as a combina-
tion of PCs and smartphones). However, most people will want either a fixed
or a fluid (also called a liquid) layout. That’s because most business sites
online use one of these two layouts to good effect. The layout type defines the
reaction of the page to client characteristics, such as the size of the screen,
but doesn’t determine issues such as the number of columns. Designers com-
monly group these layouts into two major and six minor layout types:

 ✓ Classic layouts:

	 •	Absolute: Each element is placed at a specific location on the page,
no matter how much space is available.

	 •	Fixed-width: The content consumes a fixed amount of space on the
page, no matter how much space is available.

 ✓ Modern layouts:

	 •	Fluid (liquid): Each element is assigned a percentage of the avail-
able space and content flows as needed.

	 •	Elastic: The size of the content and the availability of space deter-
mine the amount of space allocated for each element.

	 •	Adaptive: The size of the screen determines whether a fixed or
fluid layout is used to display content.

	 •	Responsive: The content is allowed to flow to match the size of the
screen without regard to placement of elements.

336 Part V: The Part of Tens

A designer needs to know all the details of the various layouts and then cre-
ates the CSS required to implement a particular layout determined by cus-
tomer needs and content type. Most developers don’t have time to ascertain
all of these details and create a custom layout. This chapter helps you get
past these details and create a layout quickly that simply looks good — that
everyone feels matches the content format, consumer needs, and viewer
expectations.

Learning the Layout Properties
No matter how you interact with CSS layouts, you’ll eventually need to know
what the properties are and how to interact with them. Even when you work
with a generator, the generator will produce code that relies on those prop-
erties; if you don’t know what the properties do, you won’t be able to make
required tweaks to the generated code. You can use a tutorial, such as the
one on the W3Schools site (www.w3schools.com/css/), but an article
often serves the purpose better.

The article entitled, “Master the New CSS Layout Properties” at www.net-
magazine.com/tutorials/master-new-css-layout-properties
provides precisely what you need in a short space. This article covers such
diverse topics as vendor prefixes and the use of the various column proper-
ties. It gets you going quickly, even if you’re using a generator to produce
your code. If you find later on that you don’t quite know every required prop-
erty, you can always fall back on the W3Schools site (or an alternative that
provides similar information).

Creating Basic Layouts Using CSS
Layout Generator

The CSS Layout Generator (www.cssportal.com/layout-generator/)
helps you create fixed or liquid layouts by filling out questions in a form as
shown in Figure 17-1. You tell the wizard the version of HTML to use, what
sort of layout you want, the specifics of the content area, and some aesthet-
ics, such as the background color.

Once you’re finished filling out the form, you click Create Layout. The wizard
generates the layout you requested and displays it onscreen. Figure 17-2
shows a sample layout; yours may differ, depending on the settings you
define.

http://www.w3schools.com/css/
http://www.netmagazine.com/tutorials/master-new-css-layout-properties
http://www.netmagazine.com/tutorials/master-new-css-layout-properties
http://www.cssportal.com/layout-generator/

337 Chapter 17: Ten Quick Ways to Produce a Great Layout

Figure 17-1:
Define the
layout you

want to
create by

answering a
few simple
questions.

Figure 17-2:
The wizard

displays the
result of the
choices you

make.

At this point, you need to determine whether the layout will work. Try resiz-
ing your browser to see how the layout will work with various device types.
If you like the layout, then click Download Layout — otherwise you click the
Back button on your browser and make additional changes. What you receive
is a .ZIP file containing the HTML and CSS needed to create your layout. You
can use these files as templates for customizing the content.

338 Part V: The Part of Tens

Getting Help Understanding CSS Layouts
with Learn CSS Layout

This book provides everything most developers need to work through the
vagaries of page layout and design using CSS. However, there are times when
you’re part of a larger team and may need to interact with designers and art-
ists who really do love designing everything from scratch. In these situations,
you sometimes need to bone up on your CSS layout terminology so that you
can talk with these other groups intelligently. One of the better quick tutori-
als is Learn CSS Layout (http://learnlayout.com/). It provides you with
the essentials you need to know without burdening you with all of the details.

There are several features that recommend this tutorial. For one thing, it
comes in several languages, including English, German, French, Spanish,
Portuguese, and several Oriental languages. You’re also not stuck performing
the tutorial one step at a time. Click Table of Contents and you see a listing of
topics that tutorial covers, so you can skip to just the information you really
need to know.

 This particular tutorial is good at telling what’s happening, why it needs to
happen, and how to create an effect at a basic level. It doesn’t provide busi-
ness essentials or recommendations on when to use a particular technique.
You won’t find a list of best practices in this tutorial. The advantage of this
tutorial is that it’s both simple and fast — you get essential information fast.

Using a Reset to Overcome Errors
One of the worst scenarios you can encounter is when the amazing page you
have labored over turns out to work only in a few browsers, and you have to
listen to a host of users complain about the resulting site compatibility prob-
lems. Fortunately there are resets out there to help address this problem.

A reset is a special kind of style sheet that helps reduce or eliminate the
differences between browsers. With a reset, even though you can’t make
your site’s appearance on every browser look precisely the same, you can
make the differences so small that no one will notice any errors. There are a
number of good resets online. Here are a few you should review for potential
inclusion in your project:

 ✓ CSS:resetr: http://cssresetr.com/

 ✓ CSS Reset: www.css-reset.com/

http://learnlayout.com/
http://cssresetr.com/
http://www.css-reset.com/

339 Chapter 17: Ten Quick Ways to Produce a Great Layout

 ✓ CSS Tools: Reset CSS: http://meyerweb.com/eric/tools/css/
reset/index.html

 ✓ Eric Meyer’s CSS Reset: http://meyerweb.com/eric/
thoughts/2011/01/03/reset-revisited/

 ✓ HTML5 Reset Stylesheet: http://html5doctor.com/html-5-
reset-stylesheet/

 ✓ normalize.css: http://necolas.github.io/normalize.css/

 ✓ Yahoo! Developer Reset: http://developer.yahoo.com/yui/
reset/

 ✓ YUI Reset: http://yuilibrary.com/yui/docs/cssreset/

 It’s possible to roll your own reset. However, you need to make sure you
understand the essentials of performing the task. You can find the instructions
for developing your own reset at http://net.tutsplus.com/tutorials/
html-css-techniques/weekend-quick-tip-create-your-own-
resetcss-file/.

Creating Mobile-Friendly Layouts with
the 960 Grid System

There are many different conventions in creating layouts. Developers are
trying to standardize layouts to some extent because it’s hard creating a
layout that works everywhere without some standardization. The 960 Grid
System (http://960.gs/) is an effort to standardize the layouts used for
content. The advantages of this system include the ability to create incred-
ibly complex mobile-friendly layouts. When you click the Big ol’ DOWNLOAD
button :) — well, that’s what it’s called —, you receive a .ZIP file containing
the plug-ins and templates required to lay out your own 960 Grid System
pages.

In addition to the software, the site shows you vendors who’ve used the 960
Grid System for their pages and these aren’t small vendors either. The list of
960 Grid System adherents include Sony, Fedora, the Sacramento International
Airport, and many others. Just looking at how others have used these layouts
can prove helpful to a developer.

http://meyerweb.com/eric/tools/css/reset/index.html
http://meyerweb.com/eric/tools/css/reset/index.html
http://meyerweb.com/eric/thoughts/2011/01/03/reset-revisited/
http://meyerweb.com/eric/thoughts/2011/01/03/reset-revisited/
http://html5doctor.com/html-5-reset-stylesheet/
http://html5doctor.com/html-5-reset-stylesheet/
http://necolas.github.io/normalize.css/
http://developer.yahoo.com/yui/reset/
http://developer.yahoo.com/yui/reset/
http://yuilibrary.com/yui/docs/cssreset/
http://net.tutsplus.com/tutorials/html-css-techniques/weekend-quick-tip-create-your-own-resetcss-file/
http://net.tutsplus.com/tutorials/html-css-techniques/weekend-quick-tip-create-your-own-resetcss-file/
http://net.tutsplus.com/tutorials/html-css-techniques/weekend-quick-tip-create-your-own-resetcss-file/
http://960.gs/

340 Part V: The Part of Tens

Finding Articles and Blog Posts
Discussing Layouts

It’s important to realize that other developers have had the same problem
you’re having now — finding just the right layout without spending hours
doing it. In most cases, it pays to have someone else do the work for you.
What this means is finding articles and blog posts that list resources you
can use when you’re in a hurry. The best policy is to create a folder in your
browser to store a list of sites that provide these resources so you can turn
to them immediately when you need them. Here are some places you can
look for information on free layouts:

 ✓ Mashable: http://mashable.com/2013/04/26/css-boiler-
plates-frameworks/

 ✓ Noupe: www.noupe.com/css/css-layouts-40-tutorials-tips-
demos-and-best-practices.html

 ✓ Smashing Magazine: http://coding.smashingmagazine.
com/2007/01/12/free-css-layouts-and-templates/

 ✓ Web Designer Spot: www.webdesignerdepot.com/2012/04/15-
great-html5-and-css3-generators/

Obtaining Free Layouts Through
Design Shack

There are many places online that will provide you with a free layout. In fact,
it might be possible to write an entire book whose only purpose is to explore
and evaluate these sites. The problem with most of these sites is that the
layouts are either old (making them incompatible with modern devices) or
the code is poorly explained. As a result, you spend a lot of time looking at a
resource you really can’t use.

Design Shack has put out an article that discusses and helps you evaluate
715 different layouts (http://designshack.net/articles/css/715-
awesomely-simple-and-free-css-layouts/). The focus of these lay-
outs is to create something simple that you can combine with other layouts
or simply build upon as needed to make your site design work. Most impor-
tantly, the author takes time to discuss the design criteria used to choose the
layouts, so you get a little essential education along with the layout you need

http://mashable.com/2013/04/26/css-boilerplates-frameworks/
http://mashable.com/2013/04/26/css-boilerplates-frameworks/
http://www.noupe.com/css/css-layouts-40-tutorials-tips-demos-and-best-practices.html
http://www.noupe.com/css/css-layouts-40-tutorials-tips-demos-and-best-practices.html
http://coding.smashingmagazine.com/2007/01/12/free-css-layouts-and-templates/
http://coding.smashingmagazine.com/2007/01/12/free-css-layouts-and-templates/
http://www.webdesignerdepot.com/2012/04/15-great-html5-and-css3-generators/
http://www.webdesignerdepot.com/2012/04/15-great-html5-and-css3-generators/
http://designshack.net/articles/css/715-awesomely-simple-and-free-css-layouts/
http://designshack.net/articles/css/715-awesomely-simple-and-free-css-layouts/

341 Chapter 17: Ten Quick Ways to Produce a Great Layout

to create that page the boss needed yesterday. Each of the entries contains a
site name, description of the layout types on that site, and some examples of
the layouts as shown in Figure 17-3.

Figure 17-3:
Design

Shack helps
you locate

simple
layouts that

are quite
 flexible.

To use a particular layout, click the link associated with it. You’ll go to the
site that sponsors the layout where you can interact with and download it for
use in your project. The important thing to remember is that all of these sites
focus on simplicity and flexible designs so that you don’t have to perform a
lot of rework. On the other hand, if you really are looking for a pre-made com-
plex design of a certain type, this site won’t help you.

Getting a Really Complex Design
Through Free CSS Templates

Sometimes you really do need a complex setup and you need it today. You
don’t have time to go through any sort of a design process, but the resulting
page has to look professional and convey the kind of message you want to
present. Fortunately, Free CSS Templates (www.templatemo.com/) pres-
ents a wealth of professionally designed layouts that are ready for immediate
use, as shown in Figure 17-4.

http://www.templatemo.com/

342 Part V: The Part of Tens

Figure 17-4:
Free CSS

Templates
specializes

in more
complex

professional
designs.

These designs are really beautiful and fully functional. To use a template,
simply click on its entry. You’re taken to another page where you see a
button for a live demo. Click Live Demo and test out the design to deter-
mine whether it meets your needs. If you find that it does, click Download
on the original page. What you receive is a .ZIP file containing the site you
just tested. If the template you viewed online contains an About Us menu
item and associated page, the template you download will contain the same
resources. You also get all of the art displayed on the page. In short, all you
really need to do is substitute the content you want to provide and your site
is ready for use.

 There’s a hidden caveat using sites such as this one. The designs are indeed
beautiful and you really don’t have to do any design work. The problem you
can encounter is that the designs tend to be inflexible unless you want to per-
form a lot of work to modify them. If you want to add another page, then you
have to work through the code provided by Free CSS Templates to make the
modification — and that can often take more time than if you had designed
the page from scratch. The point is to make sure the template contains all the
pages you want at the outset so the reworking is eliminated or at least reduced.

It’s also important to realize these templates come with pre-defined con-
tent. You need to remove all that content before you start adding your own
content. Fortunately, removing the old content isn’t hard, but again, make
sure you remove the content first and then add your content. Otherwise you
might end up with an unfortunate mix that only serves to confuse the people
using your site.

343 Chapter 17: Ten Quick Ways to Produce a Great Layout

 An alternative use for sites such as this one is as a teaching tool. You can get
ideas from studying the templates and code, and then incorporate the parts
you like into your own templates. By studying the code, you discover new
techniques that you’ll find useful when creating your own site. Learning by
emulating what other professionals do is a time honored technique that the
best developers use at some point in their careers.

Relying on a CSS Framework
A CSS framework provides a standardized set of concepts, practices, and
tools for dealing with the problem of using CSS to create a great layout. The
main reason to use a framework is to obtain a unique design without expend-
ing a lot of effort to do it. When you find that all of the free online tools, pre-
defined layouts, and CSS generators simply don’t meet your needs, you can
use a CSS framework to reduce the work you have to perform.

There are many different frameworks online and only a few of them will meet
your specific needs. The problem with most CSS frameworks is that they
assume you’re a designer and you have designer level tools. In some cases,
it may actually be easier to call in a designer, rather than trudge through the
requirements of using a CSS framework. However, the following CSS frame-
works do provide a modicum of support for the developer and you may find
one or two of them that meet your needs and prove simple enough to use
without a huge investment in new software.

 ✓ Blueprint: www.blueprintcss.org/

 ✓ BlueTrip: http://bluetrip.org/

 ✓ Bootstrap: http://twitter.github.io/bootstrap/

 ✓ Compass: http://compass-style.org/

 ✓ Elastic CSS: http://elasticss.com/

 ✓ Foundation: http://foundation.zurb.com/

 ✓ GroundworkCSS: http://groundwork.sidereel.com/

 ✓ Gumby: http://gumbyframework.com/

 ✓ Kube: http://imperavi.com/kube/

 ✓ Susy: http://susy.oddbird.net/

 ✓ Toast: http://daneden.me/toast/

 ✓ Unsemantic: www.unsemantic.com/

http://www.blueprintcss.org/
http://bluetrip.org/
http://twitter.github.io/bootstrap/
http://compass-style.org/
http://elasticss.com/
http://foundation.zurb.com/
http://groundwork.sidereel.com/
http://gumbyframework.com/
http://imperavi.com/kube/
http://susy.oddbird.net/
http://daneden.me/toast/
http://www.unsemantic.com/

344 Part V: The Part of Tens

Using Best Practices to Enhance
Your Layouts

The use of best practices helps you avoid errors that other people have
already made and resolved. That’s what a best practice is all about — avoid-
ing mistakes. In the case of CSS, a lot of people have made a host of mistakes
over the years — resulting in sites that are nearly unusable. Consequently,
the best way to improve your layouts is to discover what the best practices
are — and then employ them on your own site.

The article, “30 CSS Best Practices for Beginners” by Glen Stansberry
(http://net.tutsplus.com/tutorials/html-css-techniques/30-
css-best-practices-for-beginners/) is an outstanding place to start.
The author includes all sorts of useful tips and hints that anyone can use. For
example, the author emphasizes the need to make your CSS readable so you
can easily modify it later. Of course, that’s probably the easiest of the best
practices; the author also considers issues such as the use of frameworks
and resets.

http://net.tutsplus.com/tutorials/html-css-techniques/30-css-best-practices-for-beginners/
http://net.tutsplus.com/tutorials/html-css-techniques/30-css-best-practices-for-beginners/

Index
• Symbols and
Numerics •
, (commas), separating tags with, 24
{ } (curly braces)
$ (dollar signs), 118
> (greater-than signs), separating

tagswith, 24
(hashtags)
color attribute, using with, 15, 57
hexadecimal color values, using with, 253
jQuery, using with, 277
styles, using with, 15

- (hyphens), using with attribute
selectors, 32

+ (plus signs), separating tags with, 24
“ (quotes), using with spaces, 16
~ (tildes), separating tags with, 24
“30 CSS Best Practices for Beginners”

(Stansberry), 344
960 Grid System website, 339

• A •
Accordion widget, 126–127
:active state selector, 38
AddClass() method, 147–148
addClass() method, 139
add-ons, 190
Adobe Flash. See Flash
:after pattern selector, 34
AJAX (Asynchronous JavaScript and XML)

Dojo support, 179
Dynamic Drive techniques, 293
Ext Core support, 181
overview, 119
Prototype support, 183
script.aculo.us support, 184

ajax property, 119
alert() method, 129–130

alt property, 62
AngularJS (Google library)

Google CDN, accessing with, 177
jQuery, combining with, 179
online resources, 178–179
overview, 178–179

animate() method
overview, 145
properties supported, 146
transformations, using with, 152

Animate.css library, 313–315
animated class, 314
Animated Gif tool

images, creating, 244
online resources, 243
test page, creating, 245

animations
adding with animate() method,

145–146
advantages of, 243
browser support, 11–13
colors, 145–146
creating with Animated Gif, 243–245
images, creating, 244
lists, 330–331
online resources, 107, 243, 317–320
overview, 244
Stylie generator, 323–325
test page, creating, 245
transitions, 243–245

API (Application Programming Interface).
 See also Google API

browsers targeted, 176
CDN, solving problems with, 175
CSS, avoiding with, 176
definition, 115
Dynamic Drive, using, 155
jQuery, using, 118
multiples, advantages of using, 175–176
overview, 175

arrows, creating, 36

346 CSS3 For Dummies

Asynchronous JavaScript and XML (AJAX)
Dojo support, 179
Dynamic Drive techniques, 293
Ext Core support, 181
overview, 119
Prototype support, 183
script.aculo.us support, 184

attr() method
example, 107–108
online resources, 106
overview, 106
text, hiding, 108

attribute selectors. See also individual
selectors by name

browser issues, solving, 329–330
categories, 23
color control, 31
event selectors, 37–38
formatting issues, 32
importance of, 329
inheritance rules, 86–87
jQuery, commonly used, 120
:not selector usage, 25
overview, 22–23
Selectivizr tool, using for, 329–330
specific versus generic, 87
state selectors, 23, 38–40
tag separator signs, 24
tags, working with, 24

[Attribute] selector, 29
[Attribute$=Value] selector, 29
[Attribute*=Value] selector, 29
[Attribute^=Value] selector, 29
[Attribute|=Value] selector, 29
[Attribute~=Value] selector, 29
[Attribute=Value] selector, 29
attributes. See also individual attributes by

name
name pairs, 15
:not selector usage, 25
selector names, 28–29
selectors, using with, 23
value pairs, 15

aural style sheets
aural properties, 58–60
benefits of, 10, 45

overview, 58
testing with readers, 58

author’s website, 324
azimuth aural property, 58

• B •
 tag, 163
background property, 247–248
background-attachment property, 79
background-color attribute, 15
background-image property, 44, 75–76
background-position property, 79
background-repeat property, 44, 80
backgrounds. See also graphics
background property, using, 247–248
browsers, compatibility, 74
CSS, designing with, 44
GIF files, using for, 240
images, adding, 21
images, multiple, 77–78
images, positioning, 78–79
images, resizing, 80–81
images, single, 75–76
linear gradients, using, 70–72
online resources, 71–75
overview, 69–70
patterns, creating, 71
url() method, 44

background-size property, 44, 80
basic box model

borders, controlling, 41
margins, setting, 41–42
overview, 40
padding, controlling, 41
regions described, 41

:before pattern selector, 34
Ben’s Sandbox, 266–267
blink: feature, 51–52
block tags, 91–92
BMP file format, 241
body styles, 88–90
<body> tag

inheritance rules, 90–91
properties, controlling with, 43

border-color property, 43

347347 Index

#BorderContainer style, 82
border-image property, 83
border-image-generator, 83
border-radius property, 42
borders, creating, 65–66
border-width property, 42
bottom property, 78
Bring Your Own Device (BYOD), 10
<browser> variable, 118
browsers

API, using with, 176
background patterns, viewing, 74
border issues, 81
color names, standard, 57
column prefixes, 108–109
columns, fixed versus liquid, 156–157
compatibility, online resources, 23,

321–322, 338–339
compatibility strategies, 11–12, 116
CSS features supported, 9–10
CSS3 standards, advantages of, 10
detection of, 116–120, 182, 329
Dynamic Drive script verifications,

291–292
font considerations, 47, 51
HTML5 issues, 101
measurements, relative versus absolute,

19–20
mobile device support, 116
navigation techniques, 93–97
Normalize.css, compatibility solutions,

321–322
online resources, 117–118
optimizing applications for, 329
resets, 338–339
scripts, controlling with, 294
special effects and CSS, 8
text effects, cautions, 52
transform prefixes, 105
version detection, 12
web safe fonts, 47–49

<button> method, 252
buttons

Accordion widget, using with, 126–127
forms, creating, 172
micro buttons, creating, 250–251
micro buttons, using, 251–252

online resources, 174
ThemeRoller, using with, 215
themes, applying to, 235
transitions, using with, 146–148

BYOD (Bring Your Own Device), 10

• C •
calendar scripts, 292
calibration, monitors, 198
cascading

advantages of, 87
definition, 9
example, 25–28
overview, 86–87

Cascading Style Sheets. See CSS3
CDN (Google Content Distribution

Network). See also individual libraries
by name

advantages of, 175
libraries, linking to, 177
libraries included, 177
libraries, paid versus free, 178
online resources, 177
permissions needed, 178
reliability, increasing with, 176
security, enhancing with, 177

centering techniques for images, 66–67
change method, 134
ChangeButtonState() method, 151
:checked state selector, 38
Chrome Frame (Google library), 177, 179
class attribute

advantages of, 21
selectors, using with, 28

class transitions, 146–148
class=”separator” attribute, 307
.ClassName selector, 28
code

browsers, finding with, 260–261
href attribute, finding with, 260
libraries and generators, tweaking,

259–260
online resources, 263–264
streamlining, 326–327
tweaking choices, 264–265
viewing, 262–264

348 CSS3 For Dummies

Color Analyzer (ColorZilla)
CSS file information, 206
limitations of, 204
output saving options, 207
overview, 204
usage details, understanding, 205–206
webpage, analyzing, 204–205

color attribute
hashtags, using, 15
hexadecimal values, using, 15
names versus hexadecimal values, 31
online resources for names, 31

Color Picker (ColorZilla)
colors, entering directly, 199
online resources, 199
overview, 198
Palette Browser versus, 200
samples, finding colors from, 200
smooth versus Discrete options, 200

colorblindness
color selection, importance of, 194
color-shifted versus, 194
online resources, 194
perception issues, 55

colors. See also gradients
Color Analyzer (ColorZilla), 204–207
Color Picker (ColorZilla), 198–200
custom palettes, creating, 207
custom palettes, saving and sharing,

200–203, 207
defining, methods for, 55–56
device type, effects upon, 198
Eyedropper (ColorZilla), grabbing colors

with, 203–204
hiding items with, 278
monitor calibration, 198
names, obtaining, 199
names versus hexadecimal values, 31, 57
online resources, 55–57, 199
overview, 55, 193
Palette Browser (ColorZilla), 200–203
samples, finding colors from, 200
screen references, avoiding for, 56
selection types, 201
value systems supported, 56–57

web safe color palette, 56
webpages, analyzing colors on, 205–206

color-shifted. See colorblindness
ColorZilla

browser compatibility, 193
Color Analyzer, 204–207
Color Picker, 198–200
debugging help, 197
Eyedropper, grabbing colors with,

203–204
eyedropper icon, using, 197
Firebug, launching from, 197
online resources, 193–194, 196–197
overview, 193–194
Palette Browser, using, 200–203
plug-in installation, 194–197
samples, finding colors from, 200

column-count property, 109
column-fill property, 109
column-gap property, 109
column-rule property, 109
column-rule-color property, 109
column-rule-style property, 109
column-rule-width property, 109
columns

browser prefixes, 108–109
Dynamic Drive, creating with, 158–160
Dynamic Drive, modifying with, 160–163
example, 109–111
layouts, fixed versus liquid, 156–157
layouts, frames, 167
layouts, three-column, 163–167
layouts, two-column, 157–158
online resources, 110, 167
overview, 108

columns property, 109
column-span property, 109
column-width property, 109
commas (,), separating tags, 24
compatibility

browser differences, solving, 321–322
online resources, 23
strategies for, 11–12, 116

#Configuration style, 136
confirm() method, 129

349349 Index

containers
graphics, using with, 65–66
resizing, 68

content attribute, 308
Content Distribution Network (CDN). See

also individual libraries by name
advantages of, 175
libraries, linking to, 177
libraries included, 177
libraries, paid versus free, 178
online resources, 177
permissions needed, 178
reliability, increasing with, 176
security, enhancing with, 177

<content> tag, 281
#contentcolumn style, 163
corners, rounding, 42
cropping images, 239
crossorigin property, 62
.css() method, 122
CSS code. See code
CSS files. See also external style sheets

colors, analyzing, 205–206
creating, naming, saving, 18
gradients, converting to, 212–213
HTML, modifying, 298–300
inheritance rules, 86–87
internal styles, overriding, 227, 229
jQuery, viewing, 273
scope feature, 229

CSS frames, 167–168
CSS frameworks, 343
CSS generators. See generators
CSS Layout Generator, 336–337
CSS layouts. See layouts
CSS modules. See modules
CSS Reset website, 339
CSS Tools: Reset CSS website, 339
CSS3 (Cascading Style Sheets). See also

online resources
APIs, avoiding, 176
browser prefixes, 105, 108–109
browser support, 8–12
cascade effects, 9
CSSDesk generator, 325–326
Dynamic Drive, downloading for, 295–296

Extended Box Model, 13
features, new, 9–10
generic attribute names, using, 15
Marquee module, 13
modules, using, 10, 12–13
need for, 9–10
online resources, 36, 155–156
overview, 7–10
separating content from presentation, 7
special characters, 36
special effects, creating, 7–8
standardizing organizations, 8
standards, additions to, 8

CSS3 Gradient Generator, 72
CSSDB.co website, 315–316
CSSDesk, 325–326
CSS:resetr website, 339
cue-after aural property, 58
cue-before aural property, 58
curly braces ({ })

jQuery, using with, 277
styles, using with, 15

customizing. See also jQuery modifications
breaking changes, issues with, 269,

274–275
common adjustments, 265
community resources, using, 259–260, 268
CSS code, finding, 260–261
CSS code, viewing, 262–264, 273
CSS files, 298–300
CSS versus JavaScript, 297
developer solutions, advantages of,

266–267
external style sheets versus main

code, 276
JavaScript, 300–303
menus, CSS-based, 307
online resources, 260–264, 266
overview, 259–260, 264–265
plug-ins, using for, 275–276
reasonable, definition of, 274–275
resources, matching, 275
rewriting versus, 260
third-party products, 265–266
tweaking versus, 264
XML files versus page code, 279

350 CSS3 For Dummies

• D •
data-menucolors attribute, 306
data-showmenu attribute, 306
data-splitmenu attribute, 306
date & time scripts, 292
DateEntry control, 128
Datepicker widget, 132
debuggers, 14
deprecated attributes, 62–63
Design Shack website, 340–341
developer keys, 186–187
dialog() method, 130
dialog box widgets

example, 129–130
HTML5 versus JavaScript, 129
jQuery UI, creating with, 129

disabilities. See special needs
:disabled state selector, 38
<div> tag, 65
#DocOutline style, 100
Document Object Model (DOM), 86
document outlines

creating, 97–100
HTML5, creating with, 101

Dojo (Google CDN library)
Flash, issues with, 182
jQuery versus, 180
overview, 177, 179
special effects included, 180

dollar signs ($), 118
DOM (Document Object Model), 86
draggable() method, 137–138
droppable() method

events supported, 139–140
overview, 138–139

Dynamic Drive
advantages of, 237
Animated Gif, 243–245
Button Maker Online, 249–251
CSS files, downloading, 295–296
FavIcon Generator, 241–243
Gradient Image Maker, 246–248
graphic special effects, 171–172
Image Optimizer, 239–241

layouts, creating, 158–160
layouts, modifying, 160–163
main page screenshot, 238
menu creation, horizontal, 168–170
menu creation, split-button, 304–307
modifying, CSS versus JavaScript, 297
online resources, 155–157, 167, 170, 174
overview, 155–156, 291
restrictions on use, 256
Ribbon Rules Generator, 253–254
sample script listing, 256
scripts, categories of, 292–295
scripts, downloading, 295–296
scripts, modifying, 291
scripts, verifying origins, 291–292

• E •
each() method, 281
easing techniques

advanced easing, 149–151
animations, using, 148
online resources, 149
overview, 148–149, 237–238

Easings website, 318–319
easOutBounce method, 151
editors. See text editors
Electronic Frontier Foundation (EFF), 164
elements. See tags
elevation aural property, 58
 tag, 163
Embedded OpenType (.EOT), 50
:empty state selector, 38
ems, 20
:enabled state selector, 38
EOT (Embedded OpenType), 50
epilepsy precautions, 51–52
Eric Meyer’s CSS Reset website, 339
event selectors
:focus, 37
:hover, 37
example, 36–38
overview, 36

event trapping, 23
Ext Core (Google CDN library), 177, 181

351351 Index

external style sheets
example, 24–28
inheritance rules, 86–87
internal style sheets versus, 90
<link> tags, connecting with, 87
<link> tags, using, 18
location of, 15
overview, 17, 87
resets, 338–339
themes codes, adding, 222

Eyedropper (ColorZilla)
browser, choosing from, 204
color samples, obtaining, 200
color values, accessing with, 203
linked images, problems with, 204
menus, using, 197
mouse interaction with images, 204
overview, 203–204

• F •
FavIcon Generator

favorites icons, creating, 241–243
output file choices, 243
overview, 241
source files, 241

favorites icons
branding with, 242–243
browsers, recognition by, 243
FavIcon Generator, creating with, 241–243

FFFFALLBACK website, 333
#FillMe style, 139
find() method, 281
Firebug, 197
:first-child pattern selector, 34
:first-letter pattern selector, 34
:first-line pattern selector, 34
:first-of-type pattern selector, 34
Flash

Dojo issues, 182
MooTools support, 182

float property, 65
@font-face style

overview, 49
properties (optional and required), 49–51

:focus selector, 37

font-family attribute
classifications, defining, 46
description, 49
multiple-entry order, 16
overview, 15

fonts. See also web safe fonts
CSS properties, 46
custom stacks, creating, 333
fallback technique, 48, 333
families, defining, 46
online resources, 46, 49
serif and sans-serif, 48
sizing techniques, 46–47
style keywords, 47
variant keywords, 47
WebFont Loader, accessing with, 185
weight, defining, 47
.WOFF fonts, 49–51

font-size attribute, 16
font-size property

overview, 15
sizing techniques, 46–47

font-stretch property, 50
font-style property

browser considerations, 47
keywords, 50
warning about, 163

font-variant property, 47
font-weight property

overview, 47, 50
warning about, 163

#footer style, 163
footnotes, 20
foregrounds. See also graphics

borders, creating, 65–66
image file, creating, 62–63
images, centering, 66–67

forms
Dynamic Drive, creating with, 172–173
online resources, 172
overview, 172
scripts for, 293
split button menus, using with, 304

frame layouts, 167–168
#framecontent style, 167

352 CSS3 For Dummies

frameworks, 180, 343
Free CSS Templates website, 341–342

• G •
galleries, 293
generators

Animated Gif, 243–245
Button Maker Online, 249–253
ColorZilla overview, 193–194
CSS Layout Generator, 336–337
CSSDesk, 325–326
definition, 323
FavIcon Generator, 241–243
FFFFALLBACK, 333
Gradient Image Maker, 246–248
Image Optimizer, 239–241
Initializr, 327–328
LayerStyles, 332
Liffect, 330–331
Modernizr, 329
modifying output of, 259
Ribbon Rules Generator, 253–256
Selectivizr, 329–330
Stylie, 323–325
ThemeRoller overview, 215–217
tweaking output of, 259–260
Ultimate Gradient Generator overview,

208–209
yepnope.js, 326–327

get() method, 281
GIF (Graphics Exchange Format) files, 240
Google accounts

advantages of, 185
multiple accounts, using, 186
setting up, 185–186

Google API
APIs, accessing multiple, 176–177
components of, 176
paid versus free, 178

Google APIs Explorer
APIs, finding and accessing, 185
APIs, working with, 187–189
developer key, free versus paid, 186–187
Google account, setting up, 185–186
overview, 185
Terms link, viewing, 189

Google CDN (Content Distribution
Network). See also individual libraries
by name

advantages of, 175
libraries, linking to, 177
libraries included, 177
libraries, paid versus free, 178
online resources, 177
permissions needed, 178
reliability, increasing with, 176
security, enhancing with, 177

GPL files, 201
gps programming, 10, 45
gradient generators

CSS3 Gradient Generator, 72
Ultimate Gradient Generator, 193,

208–213
Gradient Image Maker

advantages of, 246, 248
output file choices, 247
overview, 246–247
using background property, 247–248

gradients. See also Ultimate Gradient
Generator

creating, 70–71
CSS3 Gradient Generator, 72
definition, 194
Gradient Image Maker, 246–248
online resources, 73–75
overview, 70, 207–208
saving, 211–212
transparent color, using, 211

graphics. See also backgrounds; special
effects; transforms

animations, adding with animate()
method, 145–146

animations, creating, 243–245
attr() method, using, 106–108
border-image-generator, 83
borders, creating, 65–66
borders, repetitive, 81–84
button downloads, 174
captions, adding, 68–69
containers, using with, 65–66
cropping versus resizing, 239
CSS gradients, converting to, 212–213
CSS3 Gradient Generator, 72

353353 Index

Dynamic Drive, creating with,
171–172, 237

file conversion alternatives, 240–241
icon downloads, 174
image files, creating, 63–64
Image Optimizer, using, 239–241
images, centering, 66–67
 tag, 61
incremental displays, 237
interactive, creating, 282–286
lossy file format, definition, 240
master/detail view, 283
menus, using with, 308
online resources, 62, 72–75, 83
optimizing downloads, 237, 239–241
overview, 61–62, 170
patterns, advantages of CSS3, 74
patterns, obtaining, 73
permissions, 178, 293
ribbon rules, definition, 253
screenshots, 173
text alternatives, providing, 237–238
Ultimate Gradient Generator, 193,

208–211
unicode characters, 307–308
value of, 105
warning about using, 237–238

Graphics Exchange Format (.GIF)
files, 240

greater-than sign (>), 24

• H •
<h1> tag

inheritance rules, 90
selecting as object, 21

hanging-punctuation property, 52
hashtags (#)
color attribute, using with, 15
hexadecimal color values, using with, 253

<heading> tag, 281
height property, 63
hexadecimal color values, 31, 57
hiding, 278
HINT.css, 321
:hover selector, 37

href attribute
finding CSS code with, 260
matching filenames in, 18

HSL (Hue Saturation Lightness) color
method, 56, 199

hsl() method, 56, 199
HSLA (Hue Saturation Lightness Alpha)

color method, 57
hsla() method, 57
HTML files, modifying with CSS, 298–300
html style, 91–92
<html> tag, 91–92
HTML5

date and time support, 128
document outlines, creating, 101
text, creating, 14–15

HTML5 Programming with JavaScript
For Dummies (Mueller), 116

HTML5 Reset Stylesheet website, 339
Hue Saturation Lightness Alpha (HSLA)

color method, 57
Hue Saturation Lightness (HSL) color

method, 56, 199
hyphens (-), 32

• I •
ICO format, 241–243
icons

color sampling, 200
droppable interfaces, using with, 138
Dynamic Drive, downloading from,

169–170
Eyedropper, use within, 204
favorites icons, creating, 241–243
jQuery, customizing, 274–275
jQuery, downloading from, 144
online resources, 272
resizing, 174
ThemeRoller, viewing in, 275

id (tag identifier) attribute, 28
#id selector, 28
IDE (Integrated Development

Environment), 321. See also Komodo
Edit

354 CSS3 For Dummies

IETF (Internet Engineering Task Force), 8
if statements, 300–301
IFrames (Inline Frames), 293
Image Optimizer

cropping versus resizing, 239
file conversion alternatives, 240–241
images, uploading, 239
main page screenshot, 239
overview, 239

#ImageContainer height property, 68
#ImageContainer style, 83
images. See also special effects; transforms

animations, adding with animate()
method, 145–146

animations, creating, 243–245
attr() method, using, 106–108
background, adding, 21
background, multiple, 77–78
background, positioning, 78–79
background, resizing, 80–81
background, single, 75–76
border-image-generator, 83
borders, creating, 65–66
borders, repetitive, 81–84
button downloads, 174
captions, adding, 68–69
containers, using with, 65–66
cropping versus resizing, 239
CSS gradients, converting to, 212–213
CSS3 Gradient Generator, 72
Dynamic Drive, creating with,

171–172, 237
file conversion alternatives, 240–241
icon downloads, 174
image files, creating, 63–64
Image Optimizer, using, 239–241
images, centering, 66–67
 tag, 61
incremental displays, 237
interactive, creating, 282–286
lossy file format, definition, 240
master/detail view, 283
menus, using with, 308

online resources, 62, 72–75, 83
optimizing downloads, 237, 239–241
overview, 61–62, 170
patterns, advantages of CSS3, 74
patterns, obtaining, 73
permissions, 178, 293
ribbon rules, definition, 253
screenshots, 173
text alternatives, providing, 237–238
Ultimate Gradient Generator, 193, 208–211
unicode characters, 307–308
value of, 105
warning about using, 237–238

 tag
attribute listing, 62–63
deprecations, 62–63
graphics, using with, 61

impairments. See special needs
incremental displays, 237
index.html file, viewing, 230
indexOf() method, 142
inheritance rules

example, 87–92
overview, 86–87

Initializr website, 327–328
Inline Frames (IFrames), 293
inline style

inheritance rules, 88
jQuery changes, 122
overview, 86

<input> tag, 287
Integrated Development Environment

(IDE), 321. See also Komodo Edit
interactive documents, 38
interfaces. See user-friendly interfaces
internal styles

definition, 15
external style sheets versus, 90
inheritance rules, 88–90
overriding with external .CSS file, 229
overview, 86

Internet Engineering Task Force (IETF), 8
ismap property, 63

355355 Index

• J •
JavaScript
alert() method versus Dialog

widget, 129
code, locating and viewing, 261
CSS versus, 97, 99
Dynamic Drive, 237
Dynamic Drive scripts, modifying in,

300–303
images, centering, 66
images, locating, 62
jQuery modifications, 270
libraries, 115, 316–317
navigator.userAgent object, 118
online resources, 116, 155–156, 263–264
plug-ins, creating custom, 289
tables, generating, 122
transforms, combining with, 107

Jaws (screen reader), 58
JPG (Joint Photographic Experts Group),

239–240
jqueri.ui.css

classes, overview of, 271–274
CSS files included, 274

jQuery. See also ThemeRoller
AJAX versus browser detection, 119
AngularJS, combining with, 179
browser detection, 12, 118
description, 115
dollar sign symbol use, 118
Google CDN, accessing with, 181
Google CDN, included in, 177
Migrate library, 118
online resources, 116, 119–120, 125, 164
overview, 115–116, 269
plug-ins, creating custom, 289
plug-ins downloading, 151–153, 288
selection example, 121
selectors, commonly used, 120
styles, documentation, 270–271
tags, changing CSS in, 121–123
themes, documenting, 233
Unheap website, 288
versions, accessing, 273

jQuery modifications
consequences, unforseen, 274–275
CSS classes and styles, 272–273
CSS files, individual versus jqueri.

ui.css, 274
external style sheets versus main

code, 276
icons, customizing, 274–275
JavaScript, using with, 270
layouts, styles for, 271
online resources, 270
overview, 269–270
plug-ins, using for, 275–276
reasonable, definition of, 274–275
resources, matching, 275
styles, documentation, 270–271
styles, overriding, 270
ThemeRoller, using for, 271
themes, styles for, 271–272

jQuery Plug-ins
creating custom, 289
downloading, 151–153, 288

jQuery UI. See also special effects; user-
friendly interfaces; widgets

compatability issues, 182
date and time support versus HTML5, 128
description, 115
Google CDN, accessing with, 181
Google CDN, included in, 177
layouts, creating, 152–154
online resources, 151–153
overview, 124–125, 137, 269
plug-ins, creating custom, 289
plug-ins, downloading, 151–153, 288
styles, documentation, 270–271
themes, creating custom, 222–226
themes, documenting, 233
themes, downloading custom, 228–229
themes, downloading predefined,

227–228
themes, using predefined, 218–222
Unheap website, 288
user-friendly applications, creating, 137
versions, accessing, 273
versions, issues with, 182

356 CSS3 For Dummies

jQuery UI modifications
interactive graphics, CSS style code,

283–286
interactive graphics, HTML code, 283–285
interactive graphics, jQueri UI code, 286
interactive graphics, usefulness, 282–283
overview, 269
widgets, customizing, 270, 279–282
XML files, using with, 279–282

JSter website, 316–317
JSView, 261

• K •
Komodo Edit

advantages of, 14, 331
free versus paid versions, 331
YUI, using with, 321

• L •
:lang selector, 29
large value, 15
:last of-type pattern selector, 34
:last-child, 23
layers

CSS, creating with, 69–70
designing visually, 332

LayerStyles website, 332
layout() method, 154
layouts

basic box model, 40–43
columns, multiple, 108–111
Design Shack, finding with, 340–341
dummy-text generator, 110
Dynamic Drive, creating with, 155–156,

158–160
Dynamic Drive, modifying with, 160–163
Dynamic Drive, three-column, 163–167
Dynamic Drive, two-column, 157–158
fixed versus liquid, 156
frame layouts, 167–168
jQuery UI, creating with, 152–154
mobile-friendly, creating, 339
online resources, 156–157, 167, 336,

338–344

overview, 156, 335–336
properties, learning, 336
standardizing, efforts at, 339
templates, professional, 341–342
tutorials, 338

Learn CSS Layout tutorial, 338
“Learn JavaScript in 30 Minutes” video, 116
left property, 78
#leftcolumn style, 162–163, 166
 tag, 96
libraries. See also Dynamic Drive; jQuery;

jQuery UI; ThemeRoller
AngularJS, 178–179
Animatable, 317–318
Animate.css, 313–315
animations library, 317–318
CSSDB.co, locating with, 315–316
Dojo, 179–180
Easings, 318–319
Ext Core, 177, 181
frameworks versus, 180
Google API, 175–178
Google APIs Explorer, locating with,

185–189
HINT.css, 321
images, centering, 66
JavaScript, 115, 316–317
jQuery Plug-ins, 151–153
jQuery UI, 124–125
JSter, locating with, 316–317
modifying output of, 259
MooTools, 182–183
multiple, advantages and disadvantages,

189–190
paid versus free, 178
Prototype, 183
script.aculo.us, 184
SWFObject, 184
third-party solutions, 11, 115–116,

259–260
Web Font Loader, 185
Yahoo User Interface, 320–321

Liffect website, 330–331
linear gradient() method, 70–73
line-through value, 31
:link state selector, 38

357357 Index

<link> tag
href attribute, 18
rel attribute, 18
style sheets, connecting, 87

links
Color Analyzer (ColorZilla), to .CSS

files, 206
columns, using with, 157–158, 161–163
Dynamic Drive scripts, 293
external style sheets, associating, 87
finding, 261–262
Google CDN libraries, 177
HTML to CSS, 65, 90
icons, providing, 169
jQuery, providing for, 116, 118, 120–121
menus, using with, 170
modifying all to match, 234–235
navigational, 99–101
Palette Browser (ColorZilla), to web

sharing services, 202–203
permalink color options, 207
problems with, 175–176
state selectors, using with, 23, 38–39

lists, animating, 330–331
<list-style> tag, 96
Lorem ipsum site, 110
lossy file formats, 240

• M •
#maincontainer style, 162
#MainMenu style, 96
margin-bottom property, 78
margin-left property, 78, 163
margin-right property, 78
margin-top property, 78
<mark> tag, 163
Mashable website, 340
“Master the New CSS Layout Properties”

article, 336
master/detail view, 283
matrix() transform, 102
MaxTime() method, 132
measurements

absolute versus relative, 19–20
ems, advantages of using, 20
inherited default sizes, 20

menus
document outlines, adding, 97–101
Dynamic Drive scripts, 294
graphics, using with, 308
horizontal, creating, 168–170
icon downloads, 170
importance of, 304
overview, 168
shortcut techniques, 93–97
single level versus drop down, 170–171
special effects, 309
split button, creating, 304–307
split button, uses for, 304
vertical, creating, 170–171

methods. See individual methods by name
micro buttons, 249
minHeight property, 140
minWidth property, 140
#MicroTest style, 252
mobile device support

frame layouts, using, 167
jQuery library, 116
layouts, creating, 339
Skeleton website, 322

Modernizr website, 329
modifications

breaking changes, issues with, 269,
274–275

common adjustments, 265
community resources, using, 259–260, 268
CSS code, finding, 260–261
CSS code, viewing, 262–264, 273
CSS files, 298–300
CSS versus JavaScript, 297
developer solutions, advantages of,

266–267
external style sheets versus main

code, 276
JavaScript, 300–303
jQuery, CSS classes and styles, 272–273
jQuery, customizing icons, 274–275
jQuery, individual CSS files versus

jqueri.ui.css, 274
jQuery, layout styles, 271
jQuery, overriding styles
jQuery, overview, 269–270
jQuery, style documentation, 270–271

358 CSS3 For Dummies

modifications (continued)
jQuery, theme styles, 271–272
jQuery, unforseen consequences, 274–275
jQuery, using ThemeRoller for, 271
jQuery, using with JavaScript, 270
menus, CSS-based, 307
online resources, 260–264, 266, 270
overview, 259–260, 264–265
plug-ins, using for, 275–276
reasonable, definition of, 274–275
resources, matching, 275
rewriting versus, 260
third-party products, 265–266
tweaking versus, 264
XML files versus page code, 279

modules
Animations, 13
Backgrounds and Borders, Level 3, 13
Basic Box Model, 12
Basic User Interface, Level 3, 13
Color, Level 3, 13
definition, 10
Fonts, Level 3, 12
Marquee, 13
Multi-column Layout, 13
online resources, 12–13
overview, 12–13
Selectors, Level 3, 12
Speech, 13
Text, Level 3, 13
Transforms, 13
Values and Units, Level 3, 12

monitor calibration, 198
monospace fonts, 48–49
MooTools (Google CDN library), 177, 182
Morf.js website, 319–320
morphing, 319–320
mouseover effect

Dynamic Drive scripts for, 293
event selectors, using for, 23
example, 36–38
format toggling, 124

• N •
navigation techniques

document outlines, adding to menus,
97–101

menu system, 93–97

online resources, 96, 101
overview, 93

navigator.userAgent
browser detection, 118
reliability issues, 329

960 Grid System website, 339
Normalize.css website, 321–322, 339
:not selector, 25
Noupe website, 340
:nth of-type() pattern selector, 34
:nth-child() pattern selector

definition, 34
input choices, 36

:nth-last of-type() pattern
selector, 34

:nth-last-child() pattern selector, 34

• O •
onclick attribute, 252
online resources. See also generators;

websites
AJAX detection, 119
animated GIFs, 243
animations, 107, 181, 243, 313–314,

317–320
attr() method demo, 106
best practices, 344
border-image-generator, 83
browser compatibility, 11, 179, 321–322
browser detection, 117–118, 182, 329
browser user agent strings, 120
buttons, 174
BYOD information, 10
code, viewing, 263–264
color names, 31, 57, 199
colorblindness, 55, 194
colors, 193, 199, 202–203
companion to book, 4
CSS3 standards, 8
deprecated attributes, 63
document outlines, 101
dummy-text generator, 110
easing techniques, 149
editors, 331
epilepsy precautions, 51–52
fonts, 46, 333
forms, 172–173
frame layouts, 167

359359 Index

frameworks, 343
gradient generator, 72
gradient patterns, 73–75
graphics, buttons, 174
graphics, icons, 144, 170, 174
graphics patterns, 73
hexadecimal color values, 57
icons, 144, 173–174, 272
JavaScript image access, 62
JavaScript libraries, 237, 316
JavaScript tutorials, 116
jQuery, CSS modifications for, 125
layers, 332
layouts, 156–157, 336, 338–344
libraries, 155–157, 177, 180, 315–316
lists, 330–331
menu systems, 96
mobile device support, 322
modifying and tweaking, 260–264, 266
module listing, 10, 12–13
monitor calibration, 198
optimizing applications, 329
plug-ins, 151–153, 164, 217, 287–289
resets, 338–339
screen reader, 58
script.aculo.us, 184
selectors, 23, 329–330
source code for book, 3
special characters, 36
special effects, 182
SWFObject, 184
templates, 327
tooltips, 321
transforms, 102–103
web safe resources, 49, 56
WebFont Loader, 185
widgets, 266–268, 278

:only of-type pattern selector, 34
:only-child pattern selector, 34
OTF (OpenType Font), 50
overflow property, 167
overlays, 226

• P •
<p> tag

definition, 15
inheritance rules, 88–90
selecting as object, 21

padding property, 65
Palette Browser (ColorZilla)

browser links, 202–203
color choices, linking to, 202
color choices, organizing options, 201
display options, 202
GPL file editing, 201
Hues and Brightness list, 201
overview, 200
palettes, download links, 203
palettes, saving custom, 207
sharing, links for, 202–203, 207
thumbnails versus list display, 202

pattern selectors. See also individual
selectors by name

attribute selectors, combining with, 34
example, 35–36
overview, 23, 33

patterns
advantages of CSS3, 74
backgrounds, creating, 71
CSS3 Gradient Generator, 72
online resources, 71–75

pause-after aural property, 58
pause-before aural property, 59
permalink, 202, 207
permissions

Dynamic Drive, 256
Google APIs Explorer, 189
images, Dynamic Drive, 293
third-party libraries, 178

pitch aural property, 59
pitch-range aural property, 59
play-during aural property, 59
plug-ins

browser issues, 193
Chrome Frame, 179
colorblindness resources, 194
ColorZilla, 194–197
custom, creating, 289
definition, 190
HTML5 outline viewers, 101
jQuery layouts, 164
jQuery plug-in libraries, 217
jQuery themes, 215–217
jQuery transforms, 151–153
modifying with, 276
MooTools, 182
online resources, 287–289

360 CSS3 For Dummies

plus signs (+), 24
PNG (Portable Network Graphics) files, 240
progressbar() method, 132
Progressbar widget

example, 131–132
overview, 131

prompt() method, 129
Prototype (Google CDN library)

overview, 177, 183
script.aculo.us, adding graphics with, 190
script.aculo.us, matching versions

with, 184
pseudo-columns, 100
punctuation-trim property, 52–53

• Q •
quotes (“), 16

• R •
Really Simple Syndication (RSS) feeds

display scripts for, 295
icon for, 170

Red Green Blue Alpha channel (RGBA)
color method, 56

Red Green Blue (RGB) color method, 56
rel attribute, 18
RemoveClass() method, 147–148
Request for Comment (RFC), 8
resets

definition, 338
online resources, 338–339

resize event handler, 141
#ResizeMe style, 141
resizing images, 239
RFC (Request for Comment), 8
RGB (Red Green Blue) color method, 56
rgb() method, 56, 199
RGBA (Red Green Blue Alpha channel)

color method, 56
rgba() method, 56
ribbon rules

creating, 253–254
definition, 253
random versus user-selected settings, 255
spacing suggestion, 253
styles, using with, 254

Ribbon Rules Generator, 253–254
ribbons, generating, 253–254
richness aural property, 59
right property, 78
rightarrow:after style, 308
#rightcolumn style, 163, 166
:root selector, 24
rotate() transform, 102–103
RSS (Really Simple Syndication) feeds

display scripts for, 295
icon for, 170

• S •
sans-serif fonts, 48
Scalable Vector Graphics (SVG), 50
scale() transform, 102
scope feature, 227, 229
screenshots, 173
script.aculo.us (Google CDN library)

Google CDN, accessing with, 177
Prototype, matching versions with, 184

<script> tag, 118
scrollbars, creating, 295
scrollers, 294
security

forms, creating, 172
Google CDN, addressing with, 177
jQuery, addressing with, 116
sliders, addressing with, 133

selectable() method, 142
.selected style, 123–124
::selection state selector, 38
#Selections style, 141–143
Selectivizr website, 329–330
selector filters, 124
selectors. See also individual selectors by

name
browser issues, solving, 329–330
categories, 23
color control, 31
event selectors, 37–38
formatting issues, 32
importance of, 329
inheritance rules, 86–87
jQuery, commonly used, 120
:not selector usage, 25
overview, 22–23

361361 Index

Selectivizr tool, using for, 329–330
specific versus generic, 87
state selectors, 23, 38–40
tag separator signs, 24
tags, working with, 24

Sencha Ext JS website, 181
serif fonts, 48
shortcut techniques

overview, 85
site navigation, 93–97

show() method, 299
ShowResults() method, 143–144
site branding, 241
size.width property, 141
Skeleton website, 322
skew() transform, 102–103
skins, 320–321
Slider widget, 132–135
slideshows, 293
Smashing Magazine website, 340
sortable() method, 144
sorting by preferences, 143–144
sound effects, 295
spaces

quotes, using with, 16
tags, separating with, 24
values, using in, 16

 property, 88, 130
span.innerspan.downarrow::after

style, 308
speak aural property, 59
speak-header aural property, 59
speak-numeral aural property, 60
speak-punctuation aural property, 60
special characters, 36
special effects. See also gradients; widgets

Before and After, 172
animations library, 313–314
basic box model, working with, 41–42
buttons, using with, 146–148
class transitions, 146–148
color animations, 145–146
corners, rounding, 42
creating, 7–8
document interaction scripts, 292
Dynamic Drive, creating with, 171–172
easing effects, 318–320
easing techniques, 149–151
font effects support, 10

font-size attribute, using, 16
format toggling, 124
gradient controls, 210–211
image bubbles, 171–172
image effects, 293
list animations, 330–331
menus, 309
micro buttons, 249–251
morphing, 319–320
mouse and cursor scripts, 294
mouseover, 23, 124
overview, 144
scrollers, 294
slideshows, 293
sound effects, 295
special needs, adjusting for, 85–86
text effects, 52–55, 294
themes, using in, 223–226
tooltips, 321
transforming objects, 102–106
transforms, 151–152
transitions, 318–320
windows and frames scripts, 294

special needs
aural style sheets, 10, 45, 58–60
color blindness, considering, 55
font and color changes, 7
 tag deprecations, 62
site adjustments, 85–86
special effects, using, 85–86
text alternatives, providing, 237–238

specialized controls
Accordion, 126–127
calendar, 155
customizing, 270, 279–282
Datepicker, 128
dialog boxes, 129–130
jQuery UI, modifying, 279–282
online resources, 278
overview, 125–126
Progressbar, 131–133
Slider, 133–135
specialized effects, creating with XML

files, 279–282
spinners, creating, 266–268
spinners, customizing, 270, 276–279
Tabs, 135–137
TimePicker plugin, 287–288
Unheap website, 288

362 CSS3 For Dummies

speech-rate aural property, 60
splice() method, 142
.splitmenubutton span.innerspan.

downarrow:after style, 308
src property, 49–50, 63
Stack Overflow forum, 260, 268
Stansberry, Glen, 344
StartTimer() method, 132
state selectors. See also individual selectors

by name
example, 38–40
overview, 23, 38

stress aural property, 60
 tag, 163
style sheets

example, 24–28
inheritance rules, 86–87
internal style sheets versus, 90
<link> tags, connecting with, 87
<link> tags, using, 18
location of, 15
overview, 17, 87
resets, 338–339
themes codes, adding, 222

<style> tag, 15–17
styles
attr() method, using, 106–108
aural style sheets, 10
background additions, 21
CSSDesk generator, 325–326
definition, 13
external style sheets, 15
inheritance rules, 86–87
internal styles, 15
jQuery, documentation, 270–271
jQuery, modifying, 270–274
ribbon rules, using with, 254

Stylie website, 323–325
submit button, 127
SVG (Scalable Vector Graphics), 50
SWFObject (Google CDN library), 177, 184
SwitchClass() method, 148

• T •
<table> tag, 123
Tabs widget, 135–137
tag identifier (id) attribute, 28

tags. See also individual tags by name
:not selector usage, 25
programming difficulties, 7
selectors, using with, 23

:target state selector, 38
<td> tag, 124
templates

adjusting, 160–163
Initializr, creating with, 327–328
layouts, creating, 327–328
layouts, professional, 341–342
palettes, saving as, 201

testing
AJAX support, 119
animations, test page creation, 245
API calls, 188
browser detection, 116–120
feature detection, 119
font usability, 51
Google accounts, using multiple, 186
if statements, using, 300–301
layouts, 158–159
modifications, 276
multiple library use, 189–190
screen readers, using, 58
script.aculo.us, unit testing with, 184
transforms, 152
unit testing, 184

text
animation scripts, 294
bi-directional flow support, 10
decoration, adding, 51–52
epilepsy precautions, 51–52
font effects support, 10
fonts, defining, 46–47
graphics, adding to, 68–69
inherited default sizes, 20
transparent color, using, 250–252, 278,

302–303
web safe fonts, 47–49

text editors
.css files, creating, 18
CSS requirements, 14
dedicated, advantages of, 14
Komodo Edit, 14

text-align attribute, 17, 88–89
text-align-last property, 53
text-decoration property, 17, 31, 51–52

363363 Index

text-emphasis property, 53
text-emphasis-color property, 53
text-emphasis-style property, 53
text-justify property, 53–54
text-outline property, 54
text-overflow property, 54
text-shadow property, 54, 76
text-wrap property, 54
<th> tag, 123
ThemeRoller

configuration settings list, 223–226
custom themes, adding to projects,

234–235
custom themes, configuration settings,

223–226
custom themes, creating, 222–226
custom themes, documenting, 233
custom themes, downloading process,

228–229
custom themes, interactive demo use,

231–232
custom themes, overview, 222
icons, viewing in, 275
index.html file, viewing, 230
Internet Explorer, compatibility

issues, 218
jQuery, simplifying tasks for, 216
jQuery modifications, 271
multiple themes, accessing, 216
overview, 215, 217–218
predefined themes, downloading

advantages, 227
predefined themes, downloading process,

227–228
predefined themes, overview, 218–219
predefined themes, previews, 219–220
predefined themes, URL access, 220
predefined themes, URL code list, 221–222
URLs, custom, 226
URLs, quick access codes, 220–222

themes
background images, 69
custom, adding to projects, 234–235
custom, creating and saving, 222–226
custom, documenting, 233
custom, downloading process, 228–229
custom, interactive demo use, 231–232

custom, viewing index.html file, 230
definition, 215
downloading, advantages of, 227–228
predefined, using, 218–222

third-party products. See also tweaking
advantages of, 11, 115–117
code, viewing, 262–263
CSS, modifying within, 259–260
CSS, viewing within browsers, 260–261
libraries and generators, 115–116,

259–260
links, locating with, 261–262
locating, 185–189, 266, 315–317
plug-ins, 287–288
searching for, 107

tildes (~), 24
Timeout() method, 132
timeouts, 326–327
TimePicker plugin, 287–288
timing loop, 131
title attribute, 130
<title> tag, 15
ToggleClass() method, 148
toggling, 124
tooltips, 321
top property, 78
#topsection style, 163
<tr> tag, 123
transforms

browser prefixes, 105
combining, 106
example, 103–105
JavaScript, combining with, 107
jQuery Plug-in downloads, 151–152
jQuery UI versus CSS3, 151
online resources, 102–103
overview, 102
types of, 102–103

transitions
animations, 243–245
class transitions, 146–148
color animations, 145–146
easing techniques, 148–151, 237–238, 318
gradients, color, 194
gradients, linear, 70–72
morphing, 319–320
transforms, combining with, 107

364 CSS3 For Dummies

translate() transform, 102
transparent color

buttons, using for, 250–252
gradients, using with, 209–211
text, using for, 278, 302–303

Trent Richardson website, 287
TTF (TrueType Font), 50
tutorials

CSS layouts, 338, 340
Dojo, 180
JavaScript, 116
plug-ins, 289
Prototype, 183
resets, 339
W3Schools website, 336
YUI, 320

tweaking
breaking changes, issues with, 269,

274–275
common adjustments, 265
community resources, using, 259–260, 268
CSS code, finding, 260–261
CSS code, viewing, 262–264, 273
developer solutions, advantages of,

266–267
external style sheets versus main

code, 276
modification aids, locating, 266
modification aids, overview, 265
modifying versus, 264
online resources, 260–264, 266
overview, 259–260, 264–265
plug-ins, using for, 275–276
reasonable, definition of, 274–275
resources, matching, 275
rewriting versus, 260
XML files versus page code, 279

• U •
ui.selected.id property, 286–287
 tag, 96
Ultimate Gradient Generator. See also

gradients
browser compatibility, 193, 209
color stops, adding, 210
CSS code, copying, 209–210

gradients, saving, 211–212
images, converting to CSS, 212–213
options, selecting, 209
presets, modifying, 209
presets, starting with, 208
transparency, controlling, 211

Unheap website, 288
unicode characters

arrows, creating, 307
fonts, defining with, 48–50
graphics, changing with, 308

unicode-range property, 50
unordered list (tag), 96
unselected event handler, 142
UpdateTimer() method, 132
url() method

background color, replacing with, 76
colors, obtaining, 71
images, obtaining, 44

URLs
custom themes, saving, 226
theme code listing (ThemeRoller),

221–222
usemap property, 63
user-friendly interfaces. See also jQuery UI

draggable, 137–138
droppable, 138–140
overview, 137
resizable, 140–141
selectable, 141–143
sortable, 143–144

• V •
values

inherited default sizes, 20
relative versus absolute, 18–19
standardized units of measure, 19–20
using ems, 20

version attribute, 119
Vischeck website, 194
<visibility> property, 96–97
vision issues, 10, 45
:visited state selector, 38
voice-family aural property, 60
volume aural property, 60

365365 Index

• W •
W3C (World Wide Web Consortium), 8
W3C Schools website, 23
Web Designer Spot website, 340
Web Font Loader (Google CDN library),

177, 185
Web Open Font Format (WOFF), 49–51
web safe color palette, 56
web safe fonts

monospace, 48–49
online resources, 49
overview, 47–48
serif and sans-serif, 48

Webpage DOM Color Analyzer (ColorZilla)
.CSS file information, 206
limitations of, 204
output saving options, 207
overview, 204
usage details, understanding, 205–206
webpage, analyzing, 204–205

websites
960 Grid System, 339
AngularJS, 178–179
Animatable, 317–318
Animate.css, 313–315
author’s website, 324
Ben’s Sandbox, 266–268
Chrome Frame, 179
ColorZilla, 193
CSS Layout Generator, 336–337
CSS Reset, 338
CSS Tools: Reset CSS, 339
CSSDB.co, 315–316
CSS:resetr, 338
Design Shack, 340–341
Dojo, 180
Dynamic Drive, 155–158
Easings, 318–319
Eric Meyer’s CSS Reset, 339
Ext Core, 181
FFFFALLBACK, 333
Free CSS Templates, 341–342
Google accounts, 186
Google CDN, 177
HINT.css, 321
HTML5 Reset Stylesheet, 339
Initializr, 327–328

JavaScript Beautifier Online, 263
Jaws, 58
jQuery, 116
JSter, 316
Komodo Edit, 331
LayerStyles, 332
Liffect, 330–331
Mashable, 340
Modernizr, 329
MooTools, 182
Morf.js, 319–320
Normalize.css, 321–322, 339
Noupe, 340
Prototype, 183
Selectivizr, 329–330
Sencha Ext JS website, 181
Skeleton, 322
Skeleton website, 322
Smashing Magazine, 340
Stack Overflow forum, 260, 268
Stylie, 323
Trent Richardson site, 287
Unheap, 288
Web Designer Spot, 340
Yahoo! Developer Reset, 339
Yahoo User Interface, 320–321
yepnope.js, 326–327
YUI Reset, 339

widgets
Accordion, 126–127
calendar, 155
customizing, 270, 279–282
Datepicker, 128
dialog boxes, 129–130
jQuery UI, modifying, 279–282
online resources, 278
overview, 125–126
Progressbar, 131–133
Slider, 133–135
specialized effects, creating with XML

files, 279–282
spinners, creating, 266–268
spinners, customizing, 270, 276–279
Tabs, 135–137
TimePicker plugin, 287–288
Unheap website, 288

width property, 63
WOFF (Web Open Font Format), 49–51

366 CSS3 For Dummies

word-break property, 55
word-wrap property, 55
World Wide Web Consortium (W3C), 8

• X •
XML files

creating, 282
definition, 279
display scripts for, 295
get() method, retrieving with, 281
specialized widget effects, using with,

279–281

• Y •
Yahoo! Developer Reset, 339
Yahoo User Interface (YUI), 320–321
yepnope.js website, 326–327
YUI Reset website, 339

• Z •
z-index support, 10

About the Author
John Paul Mueller is a freelance author and technical editor. He has writing
in his blood, having produced 93 books and over 300 articles to date. The
topics range from networking to artificial intelligence and from database
management to heads-down programming. Some of his current books include
a Windows 8 quick reference guide, an HTML5 and JavaScript program-
ming book, and an Entity Framework 5 programming manual. His technical
editing skills have helped more than 63 authors refine the content of their
manuscripts. John has provided technical editing services to both Data
Based Advisor and Coast Compute magazines. He’s also contributed articles
to magazines such as Software Quality Connection, DevSource, InformIT, SQL
Server Professional, Visual C++ Developer, Hard Core Visual Basic, asp.netPRO,
Software Test and Performance, and Visual Basic Developer. Be sure to read
John’s blog at http://blog.johnmuellerbooks.com/.

When John isn’t working at the computer, you can find him outside in the
garden, cutting wood, or generally enjoying nature. John also likes making
wine and knitting. When not occupied with anything else, he makes glycerin
soap and candles, which comes in handy for gift baskets. You can reach John
on the Internet at John@JohnMuellerBooks.com. John is also setting up a
website at www.johnmuellerbooks.com. Feel free to take a look and make
suggestions on how he can improve it.

http://blog.johnmuellerbooks.com/
http://www.johnmuellerbooks.com/

Dedication
This book is dedicated to a gem of a friend who once was lost and now is
found, Debbie Patenaude.

Author’s Acknowledgments
Thanks to my wife, Rebecca, for working with me to get this book completed.
I really don’t know what I would have done without her help in researching
and compiling some of the information that appears in this book. She also did
a fine job of proofreading my rough draft. Rebecca keeps the house running
while I’m buried in work.

Russ Mullen deserves thanks for his technical edit of this book. He greatly
added to the accuracy and depth of the material you see here. Russ is always
providing me with great URLs for new products and ideas. However, it’s the
testing Russ does that helps most. He’s the sanity check for my work. Russ
also has different computer equipment from mine, so he’s able to point out
flaws that I might not otherwise notice.

Matt Wagner, my agent, deserves credit for helping me get the contract in
the first place and taking care of all the details that most authors don’t really
consider. I always appreciate his assistance. It’s good to know that someone
wants to help.

A number of people read all or part of this book to help me refine the
approach, test the coding examples, and generally provide input that all
readers wish they could have. These unpaid volunteers helped in ways too
numerous to mention here. I especially appreciate the efforts of Eva Beattie,
Glenn Russell, Osvaldo Téllez Almirall, Muhammad Kharbush, Omar Garcia,
and William Wonneberger, who provided general input, read the entire book,
and selflessly devoted themselves to this project.

Finally, I would like to thank Steve Hayes, Christopher Morris, Barry Childs-
Helton, and the rest of the editorial and production staff at Wiley for their
assistance in bringing this book to print. It’s always nice to work with such a
great group of professionals.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes
Senior Project Editor: Christopher Morris
Senior Copy Editor: Barry Childs-Helton
Technical Editor: Russ Mullen
Editorial Assistant: Anne Sullivan
Sr. Editorial Assistant: Cherie Case
Cover Image: ©iStockphoto.com/Hakki Arslan

Project Coordinator: Sheree Montgomery
Layout and Graphics: Carrie A. Cesavice
Proofreader: Barbara Arany
Indexer: BIM Indexing & Proofreading Services

http://www.dummies.com/go/mobile
http://www.dummies.com/go/iphone/apps

	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with CSS3
	Chapter 1: Understanding CSS3
	Defining Why You Need CSS3
	Understanding How Browser Support Affects You
	Obtaining an Overview of the CSS Modules
	Understanding Styles
	Creating External Styles
	Defining the CSS Units of Measure

	Chapter 2: Performing Basic Tasks
	Working with Selectors
	Understanding Layout Using the Basic Box Model
	Designing Backgrounds

	Chapter 3: Working with Fonts and Colors
	Using Fonts
	Understanding Web Safe Fonts
	Producing Text Effects
	Adding Colors
	Understanding Aural Style Sheets

	Chapter 4: Working with Graphics
	Understanding the Tag
	Working with Foreground Images
	Adding Background Images
	Positioning Graphics
	Working with Repetitive Images

	Chapter 5: Using CSS Shortcuts
	Understanding Style Inheritance
	Cascading Styles — Using Multiple Styles Together
	Using Additional Basic User Interface Features
	Creating Special Effects
	Working with Multiple Columns

	Part II: Making Layouts Fast and Simple with Libraries
	Chapter 6: Creating a Test Site with jQuery and jQuery UI
	Using the jQuery Core Features
	Understanding jQuery UI
	Using the jQuery UI Controls
	Performing jQuery UI Interactions
	Creating jQuery UI Special Effects
	Defining the Basic Page Layout

	Chapter 7: Creating Pages Using Dynamic Drive
	Working with Layouts
	Creating Menus
	Performing Image Magic
	Dressing Up Forms
	Using the Free Icons

	Chapter 8: Using the Google API
	Understanding Why Developers Like the Google API
	Using the Google APIs Explorer
	Creating a Site that Uses Multiple Libraries

	Part III: Working with CSS3 Generators
	Chapter 9: Managing Colors Using ColorZilla
	Obtaining the Plugin
	Choosing Colors with the Color Picker
	Grabbing Colors Using the Eyedropper
	Working with the Color Analyzer
	Creating a Gradient

	Chapter 10: Creating Themes Using ThemeRoller
	Understanding ThemeRoller
	Using the ThemeRoller Interface
	Working with Predefined Themes
	Creating Custom Themes
	Downloading Themes to Your System
	Adding Custom Themes to Your Projects

	Chapter 11: Using the Dynamic Drive Tools
	Managing Images with Image Optimizer
	Creating Icons Using FavIcon Generator
	Creating Animations with Animated Gif
	Generating Images Using Gradient Image Maker
	Generating Controls Using Button Maker Online
	Adding Pizzazz Using Ribbon Rules

	Part IV: Modifying Pre-Built Content for a Unique Look
	Chapter 12: Understanding CSS for Libraries and Generators
	Finding the CSS for a Library or Generator
	Viewing the CSS
	Deciding What to Modify or Tweak
	Locating Modification Aids

	Chapter 13: Modifying the jQuery and jQuery UI CSS
	Looking at the jQuery and jQuery UI CSS
	Defining a Specialized Control
	Creating Specialized Control Effects
	Working with Added Graphics
	Working with Plug-ins
	Finishing with the Coded Bits

	Chapter 14: Modifying the Dynamic Drive CSS
	Understanding the Script Categories
	Locating the CSS for a Particular Feature
	Adding Modifications
	Working with Menus

	Part V: The Part of Tens
	Chapter 15: Ten Phenomenal Places to Find Libraries
	Animating Page Elements with Animate.css
	Locating a Library Using CSSDB.co
	Combining CSS3 and JavaScript with JSter
	Developing Background Animations with Animatable
	Easing Your Way into a Transition with Easings
	Transitioning Elements Using Morf.js
	Creating Full Interactive Applications with YUI
	Displaying Tooltips Using HINT.css
	Ridding Yourself of Browser Differences with Normalize.css
	Ensuring Your Application Works with Mobile Devices Using Skeleton

	Chapter 16: Ten Phenomenal Places to Find Generators
	Creating Animations Using Stylie
	Designing CSS Styles Using CSSDesk
	Making Applications Run Faster with yepnope.js
	Generating Templates Using Initializr
	Optimizing Applications to Work with Older Browsers with Modernizr
	Enhancing Selector Support Using Selectivizr
	Designing Unusual List Presentations with Liffect
	Editing Code Using Komodo Edit
	Engineering Layer Effects Using LayerStyles
	Testing Your Font Stacks Using FFFFALLBACK

	Chapter 17: Ten Quick Ways to Produce a Great Layout
	Learning the Layout Properties
	Creating Basic Layouts Using CSS Layout Generator
	Getting Help Understanding CSS Layouts with Learn CSS Layout
	Using a Reset to Overcome Errors
	Creating Mobile-Friendly Layouts with the 960 Grid System
	Finding Articles and Blog Posts Discussing Layouts
	Obtaining Free Layouts Through Design Shack
	Getting a Really Complex Design Through Free CSS Templates
	Relying on a CSS Framework
	Using Best Practices to Enhance Your Layouts

	Index
	About the Author

