

by Adam Fowler

NoSQL For
Dummies®

NoSQL For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
 permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written
 permission of the Publisher. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN
IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
 products, visit www.wiley.com.

Library of Congress Control Number: 2014954658

ISBN 978-1-118-90574-6 (pbk); ISBN 978-1-118-90562-3 (epub); ISBN 978-1-118-90578-4 (epdf)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction .. 1

Part I: Getting Started with NoSQL 5
Chapter 1: Introducing NoSQL: The Big Picture .. 7
Chapter 2: NoSQL Database Design and Terminology .. 27
Chapter 3: Evaluating NoSQL ... 59

Part II: Key-Value Stores .. 95
Chapter 4: Common Features of Key-Value Stores .. 97
Chapter 5: Key-Value Stores in the Enterprise ... 105
Chapter 6: Key-Value Use Cases .. 111
Chapter 7: Key-Value Store Products .. 117
Chapter 8: Riak and Basho .. 133

Part III: Bigtable Clones ... 139
Chapter 9: Common Features of Bigtables ... 141
Chapter 10: Bigtable in the Enterprise .. 153
Chapter 11: Bigtable Use Cases .. 165
Chapter 12: Bigtable Products ... 171
Chapter 13: Cassandra and DataStax .. 193

Part IV: Document Databases 199
Chapter 14: Common Features of Document Databases .. 201
Chapter 15: Document Databases in the Enterprise ... 213
Chapter 16: Document Database Use Cases ... 221
Chapter 17: Document Database Products .. 233
Chapter 18: MongoDB ... 251

Part V: Graph and Triple Stores 257
Chapter 19: Common Features of Triple and Graph Stores 259
Chapter 20: Triple Stores in the Enterprise .. 275
Chapter 21: Triple Store Use Cases ... 283
Chapter 22: Triple Store Products ... 293
Chapter 23: Neo4j and Neo Technologies ... 309

Part VI: Search Engines .. 315
Chapter 24: Common Features of Search Engines ... 317
Chapter 25: Search Engines in the Enterprise .. 327
Chapter 26: Search Engine Use Cases ... 335
Chapter 27: Types of Search Engines .. 341
Chapter 28: Elasticsearch ... 353

Part VII: Hybrid NoSQL Databases 359
Chapter 29: Common Hybrid NoSQL Features ... 361
Chapter 30: Hybrid Databases in the Enterprise ... 369
Chapter 31: Hybrid NoSQL Database Use Cases .. 375
Chapter 32: Hybrid NoSQL Database Products ... 381
Chapter 33: MarkLogic .. 389

Part VIII: The Part of Tens .. 399
Chapter 34: Ten Advantages of NoSQL over RDBMS .. 401
Chapter 35: Ten NoSQL Misconceptions .. 407
Chapter 36: Ten Reasons Developers Love NoSQL ... 413

Index .. 419

Table of Contents
Introduction ... 1

Foolish Assumptions ... 2
Icons Used in This Book ... 3
Beyond the Book ... 4
Where to Go from Here ... 4

Part I: Getting Started with NoSQL 5

Chapter 1: Introducing NoSQL: The Big Picture .7
A Brief History of NoSQL .. 8

Amazon and Google papers .. 8
What NoSQL means today .. 11

Features of NoSQL ... 11
Common features ... 12
Not‐so‐common features ... 17
Enterprise NoSQL .. 18

Why You Should Care about NoSQL ... 20
Recent trends in IT .. 20
Problems with conventional approaches ... 21
NoSQL benefits and precautions ... 26

Chapter 2: NoSQL Database Design and Terminology 27
Managing Different Data Types .. 28

Columnar... 30
Key‐value stores ... 32
Triple and graph stores .. 33
Document .. 36
Search engines ... 37
Hybrid NoSQL databases .. 38
Available NoSQL products .. 38

Describing NoSQL .. 39
Applying Consistency Methods ... 42

ACID ... 42
BASE .. 44
Choosing ACID or BASE? ... 45
Availability approaches .. 45
Developing applications on NoSQL ... 48
Polyglot persistence .. 48

vi NoSQL For Dummies

Polyglot persistence explained .. 49
The death of the RDBMS? ... 50

Integrating Related Technologies .. 51
Search engine techniques ... 52
Business Intelligence, dashboarding, and reporting 53
Batch processing with Hadoop Map/Reduce 54
Hadoop HDFS .. 55
Semantics .. 56
Public cloud .. 57

Chapter 3: Evaluating NoSQL .59
The Technical Evaluation ... 59

Which type of NoSQL is for you? ... 61
Search features... 61
Scaling NoSQL .. 65
Keeping data safe ... 67
Visualizing NoSQL .. 69
Extending your data layer ... 71

The Business Evaluation ... 72
Developing skills .. 73
Getting value quickly ... 73
Finding help .. 73
Deciding on open‐source versus commercial software 74
Building versus buying .. 75
Evaluating vendor capabilities ... 76
Finding support worldwide .. 76
Expanding to the cloud ... 77

Getting Support .. 77
Business or mission‐critical features .. 78
Vendor claims .. 78
Enterprise system issues .. 79
Security ... 80
Preparing for failure .. 88
Scaling up .. 89
Acceptance testing .. 92
Monitoring .. 92

Part II: Key-Value Stores .. 95

Chapter 4: Common Features of Key-Value Stores97
Managing Availability .. 98

Trading consistency .. 98
Implementing ACID support ... 99

vii Table of Contents

Managing Keys ... 99
Partitioning ... 100
Accessing data on partitions .. 101

Managing Data .. 101
Data types in key-value stores ... 102
Replicating data ... 103
Versioning data .. 103

Chapter 5: Key-Value Stores in the Enterprise 105
Scaling ... 105

Simple data model — fast retrieval ... 107
In‐memory caching .. 107

Reducing Time to Value .. 107
Using simple structures .. 108
Complex structure handling ... 108

Chapter 6: Key-Value Use Cases .111
Managing User Information .. 111

Delivering web advertisements .. 112
Handling user sessions ... 112
Supporting personalization .. 113

High‐Speed Data Caching .. 114

Chapter 7: Key-Value Store Products .117
High‐Speed Key Access ... 118

Caching data in memory ... 118
Replicating data to slaves ... 118
Data modeling in key‐value stores ... 119
Operating on data .. 120
Evaluating Redis ... 120

Taking Advantage of Flash ... 121
Spending money for speed ... 121
Context computing .. 121
Evaluating Aerospike ... 122

Using Pluggable Storage ... 123
Changing storage engines ... 123
Caching data in memory ... 124
Evaluating Voldemort .. 124

Separating Data Storage and Distribution .. 125
Using Berkeley DB for single node storage..................................... 125
Distributing data .. 126
Evaluating Oracle NoSQL .. 126

Handling Partitions .. 128
Tolerating partitions ... 128
Secondary indexing ... 129
Evaluating Riak ... 130

viii NoSQL For Dummies

Chapter 8: Riak and Basho .133
Choosing a Key‐Value Store ... 133

Ensuring skill availability .. 134
Integrating with Hadoop Map/Reduce .. 134
Using JSON .. 135

Finding Riak Support (Basho) .. 136
Enabling cloud service .. 136
Handling disasters ... 137
Evaluating Basho.. 137

Part III: Bigtable Clones ... 139

Chapter 9: Common Features of Bigtables . .141
Storing Data in Bigtables .. 142

Using row keys ... 142
Creating column families .. 142
Using timestamps .. 143
Handling binary values.. 143

Working with Data ... 143
Partitioning your database ... 144
Clustering .. 145
Denormalizing .. 146

Managing Data .. 148
Locking data ... 148
Using tablets ... 148
Configuring replication ... 149

Improving Performance .. 150
Compressing data .. 150
Caching data ... 150
Filtering data... 151

Chapter 10: Bigtable in the Enterprise .153
Managing Multiple Data Centers .. 153

Active-active clustering ... 154
Managing time .. 154

Reliability .. 156
Being Google ... 156
Ensuring availability .. 157

Scalability ... 158
Ingesting data in parallel ... 159
In-memory caching .. 159

ix Table of Contents

Indexing ... 160
Aggregating data .. 162
Configuring dynamic clusters .. 163

Chapter 11: Bigtable Use Cases . .165
Handling Sparse Data .. 165

Using an RDBMS to store sparse data ... 166
Using a Bigtable .. 167

Analyzing Log Files .. 168
Analyzing data in-flight .. 168
Building data summaries .. 169

Chapter 12: Bigtable Products .171
Managing Tabular Big Data .. 172

Designing a row key ... 172
Distributing data with HDFS ... 176
Batch processing Bigtable data ... 177
Assessing HBase .. 179

Securing Your Data .. 179
Cell-level security ... 180
Assessing Accumulo .. 183

High-Performing Bigtables .. 184
Using a native Bigtable .. 184
Indexing data .. 184
Ensuring data consistency .. 185
Assessing Hypertable .. 186

Distributing Data Globally .. 187
Substituting a key-value store .. 188
Inserting data fast .. 189
Replicating data globally... 190
Assessing Cassandra ... 190

Chapter 13: Cassandra and DataStax .193
Designing a Modern Bigtable ... 193

Clustering .. 194
Tuning consistency.. 194
Analyzing data .. 195
Searching data .. 195
Securing Cassandra ... 196

Finding Support for Cassandra .. 197
Managing and monitoring Cassandra .. 197
Active‐active clustering ... 197

x NoSQL For Dummies

Part IV: Document Databases 199

Chapter 14: Common Features of Document Databases 201
Using a Tree‐Based Data Model ... 202

Handling article documents ... 204
Managing trades in financial services ... 204
Discovering document structure ... 205
Supporting unstructured documents .. 206

Document Databases as Key‐Value Stores ... 208
Modeling values as documents .. 208
Using value information .. 208

Patching Documents ... 209
Supporting partial updates ... 209
Streaming changes ... 210
Providing alternate structures in real time 211

Chapter 15: Document Databases in the Enterprise 213
Sharding .. 214

Key-based sharding ... 214
Automatic sharding ... 214

Preventing Loss of Data .. 215
Replicating data locally ... 216
Using multiple datacenters ... 217
Selectively replicating data .. 217

Managing Consistency .. 218
Using eventual consistency .. 219
Using ACID consistency .. 219

Chapter 16: Document Database Use Cases .221
Publishing Content .. 221

Managing content lifecycle ... 222
Distributing content to sales channels ... 223

Managing Unstructured Data Feeds .. 225
Entity extraction and enrichment .. 225

Managing Changing Data Structures ... 226
Handling variety ... 227
Managing change over time .. 228

Consolidating Data .. 229
Handling incoming streams .. 229
Amalgamating related data ... 230
Providing answers as documents .. 231

xi Table of Contents

Chapter 17: Document Database Products .233
Providing a Memcache Replacement .. 233

Ensuring high-speed reads ... 234
Using in-memory document caching ... 234
Supporting mobile synchronization .. 235
Evaluating Couchbase ... 235

Providing a Familiar Developer Experience ... 236
Indexing all your data .. 236
Using SQL .. 237
Linking to your programming language .. 238
Evaluating Microsoft DocumentDB ... 239

Providing an End-to-End Document Platform .. 240
Ensuring consistent fast reads and writes 241
Supporting XML and JSON .. 242
Using advanced content search ... 243
Securing documents .. 244
Evaluating MarkLogic Server .. 246

Providing a Web Application Back End .. 247
Trading consistency for speed ... 248
Sticking with JavaScript and JSON .. 249
Finding a web community ... 249
Evaluating MongoDB ... 249

Chapter 18: MongoDB .251
Using an Open-Source Document Database ... 251

Handling JSON documents ... 252
Finding a language binding ... 252
Effective indexing ... 253

Finding Support for MongoDB ... 254
MongoDB in the cloud ... 254
Licensing advanced features .. 255
Ensuring a sustainable partner .. 256

Part V: Graph and Triple Stores 257

Chapter 19: Common Features of Triple and Graph Stores259
Deciding on Graph or Triple Stores .. 260

Triple queries ... 260
Graph queries ... 262
Describing relationships ... 263
Making a decision .. 263

xii NoSQL For Dummies

Deciding on Triples or Quads .. 264
Storing RDF ... 265
Querying with SPARQL .. 267
Using SPARQL 1.1 ... 268
Modifying a named graph ... 268

Managing Triple Store Structures ... 269
Describing your ontology ... 269
Enhancing your vocabulary with SKOS... 271
Describing data provenance... 272

Chapter 20: Triple Stores in the Enterprise .275
Ensuring Data Integrity ... 275

Enabling ACID compliance .. 276
Sharding and replication for high availability 277
Replication for disaster recovery .. 278

Storing Documents with Triples .. 278
Describing documents .. 279
Combining queries ... 280

Chapter 21: Triple Store Use Cases . .283
Extracting Semantic Facts .. 284

Extracting context with subjects ... 284
Forward inferencing .. 285

Tracking Provenance .. 286
Building a Web of Facts .. 287

Taking advantage of open data .. 287
Incorporating data from GeoNames .. 288
Incorporating data from DBpedia .. 289
Linked open‐data publishing .. 289
Migrating RDBMS data .. 290

Managing the Social Graph ... 290
Storing social information .. 291
Performing social graph queries .. 291

Chapter 22: Triple Store Products .293
Managing Documents and Triples ... 294

Storing documents and relationships ... 294
Combining documents in real time ... 296
Combined search ... 297
Evaluating ArangoDB ... 298
Evaluating OrientDB .. 298
Evaluating MarkLogic Server .. 299

Scripting Graphs .. 300
Automatic indexing .. 301
Using the SPIN API ... 301
JavaScript scripting ... 302

xiii Table of Contents

Triple-level security ... 302
Integrating with Solr and MongoDB .. 303
Evaluating AllegroGraph ... 304

Using a Distributed Graph Store .. 304
Adding metadata to relationships ... 305
Optimizing for query speed .. 305
Using custom graph languages .. 305
Evaluating Neo4j .. 306

Chapter 23: Neo4j and Neo Technologies .309
Exploiting Neo4j ... 309

Advanced path‐finding algorithms .. 310
Scaling up versus scaling out ... 310
Complying with open standards .. 311

Finding Support for Neo4j .. 312
Clustering .. 313
High‐performance caching.. 313
Cache‐based sharding ... 314
Finding local support .. 314
Finding skills ... 314

Part VI: Search Engines .. 315

Chapter 24: Common Features of Search Engines 317
Dissecting a Search Engine ... 318

Search versus query .. 318
Web crawlers .. 318
Indexing ... 319
Searching .. 321

Indexing Data Stores ... 323
Using common connectors ... 323
Periodic indexing ... 324

Alerting ... 324
Using reverse queries .. 325
Matchmaking queries .. 325

Chapter 25: Search Engines in the Enterprise327
Searching the Enterprise .. 327

Connecting to systems .. 328
Ensuring data security .. 328

Creating a Search Application ... 329
Configuring user interfaces .. 329
What a good search API gives you .. 330
Going beyond basic search with analytics 331

xiv NoSQL For Dummies

Chapter 26: Search Engine Use Cases .335
Searching E-Commerce Products .. 335

Amazon-type cataloguing.. 335
Geospatial distance scoring ... 336

Enterprise Data Searching .. 338
Storing web data .. 338
Searching corporate data ... 338
Searching application data ... 339

Alerting ... 339
Enabling proactive working .. 339
Finding bad guys .. 340

Chapter 27: Types of Search Engines .341
Using Common Open-Source

Text Indexing .. 341
Using Lucene .. 342
Distributing Lucene ... 342
Evaluating Lucene/SolrCloud ... 343

Combining Document Stores and Search Engines 344
Universal indexing ... 345
Using range indexes ... 345
Operating on in-memory data .. 346
Retrieving fine-grained results ... 346
Evaluating MarkLogic .. 347

Evaluating Enterprise Search ... 348
Using SharePoint search ... 348
Integrating NoSQL and HP Autonomy ... 348
Using IBM OmniFind .. 349
Evaluating Google search appliance ... 349

Storing and Searching JSON ... 349
JSON universal indexing ... 350
Scriptable querying ... 350
Evaluating Elasticsearch ... 352

Chapter 28: Elasticsearch .353
Using the Elasticsearch Product ... 353

ELK stack... 354
Using Elasticsearch.. 354
Using Logstash ... 355
Using Kibana ... 355

Finding Support for Elasticsearch ... 357
Evaluating Elasticsearch BV ... 357

xv Table of Contents

Part VII: Hybrid NoSQL Databases 359

Chapter 29: Common Hybrid NoSQL Features .361
The Death of Polyglot Persistence .. 362

One product, many features ... 362
Best-of-breed solution versus single product 363

Advantages of a Hybrid Approach .. 363
Single product means lower cost... 364
How search technology gives a better column store 365
How semantic technology assists content discovery 366

Chapter 30: Hybrid Databases in the Enterprise369
Selecting a Database by Functionality .. 369

Ensuring functional depth and breadth .. 370
Following a single product’s roadmap .. 370

Building Mission-Critical Applications .. 371
Ensuring data safety .. 371
Ensuring data is accessible .. 372
Operating in high-security environments 373

Chapter 31: Hybrid NoSQL Database Use Cases 375
Digital Semantic Publishing .. 375

Journalists and web publishing ... 376
Changing legislation over time ... 377

Metadata Catalogs ... 377
Creating a single view .. 378
Replacing legacy systems ... 378
Exploring data .. 379

Chapter 32: Hybrid NoSQL Database Products 381
Managing Triples and Aggregates ... 381

Generating triples from documents .. 382
Enforcing schema on read .. 383
Evaluating OrientDB .. 383

Combining Documents and Triples with Enterprise Capabilities 383
Combined database, search, and application services 384
Schema free versus schema agnostic ... 385
Providing Bigtable features .. 385
Securing access to information .. 386
Evaluating MarkLogic .. 387

xvi NoSQL For Dummies

Chapter 33: MarkLogic .389
Understanding MarkLogic Server .. 389
Universal Indexing ... 390

Range indexing and aggregate queries ... 391
Combining content and semantic technologies............................. 392
Adding Hadoop support.. 393
Replication on intermittent networks ... 394
Ensuring data integrity .. 394
Compartmentalizing information ... 395

MarkLogic Corporation ... 396
Finding trained developers ... 396
Finding 24/7 support ... 397
Using MarkLogic in the cloud ... 397

Part VIII: The Part of Tens ... 399

Chapter 34: Ten Advantages of NoSQL over RDBMS401

Chapter 35: Ten NoSQL Misconceptions .407

Chapter 36: Ten Reasons Developers Love NoSQL 413

Index ... 419

Introduction

I
love NoSQL both as a movement and as a technology. It’s a fast‐paced,
constantly changing area. Barely a week goes by without a new NoSQL

database being created to handle a specific real‐life problem.

As a movement, NoSQL is interesting in that it started wholly independently
of any commercial organization. In fact, it was the brainchild of interested
individuals who grouped together and shared ideas. Some core ideas
certainly came from large commercial organizations, including the Bigtable
paper from Google and the key‐value store paper from Amazon, but NoSQL
was popularized as open source.

The normal process in software development is that several commercial
companies form and compete with one another and gradually the field
narrows. Then, once the remaining companies prove their worth, they’re
gobbled up by big boys like Oracle, IBM, and Microsoft. Open‐source
alternatives appear only during the later phases of this cycle.

That’s not the case with NoSQL. Sure, there were a few early commercial
players (very early in MarkLogic’s case — way back in 2001). However, the
majority of publicly available NoSQL products were created in the open
before companies incorporated them into their commercial products.

This book encourages a practical approach to evaluating NoSQL as a set
of technologies and products. The book tells you how to determine which
ones might meet your needs and how select the most appropriate ones. This
information enables you to spot business and technical problems that NoSQL
databases can solve.

After reading this book, not only will you be able to identify which type of
NoSQL database to use, but perhaps more importantly, you’ll know the ques-
tions to ask vendors about their software and services prior to purchasing one.

This book discusses NoSQL in terms of real‐life, complex mission‐critical
applications. Understanding complex enterprise applications allows you
to see the flaws and benefits of each NoSQL database, and within contexts
similar to the ones you see in your workplace.

This book guides you through this exciting area of technology and high-
lights how you and your organization can achieve similar benefits to those
described. I hope you enjoy the journey!

2 NoSQL For Dummies

Foolish Assumptions
My main aim for the book is to expose many NoSQL databases and point out
their common features and specific use cases.

My other aim is to point out that NoSQL databases are ready for the big time!
I have gone to pains to point out where things can be configured to support
this, or where gaps still exist in offerings.

I hope that large enterprises that have not yet widely adopted NoSQL will be
reassured by this book. I also hope that it will act as a call to action to NoSQL
database vendors in hardening their offerings to support the key needs of
each business sector and use cases in such systems.

As this book is considering enterprise classes of problems, I have to be aware
of things like long‐term development plans, resilient systems, support, and
availability of services.

I’ve chosen to cover the following NoSQL databases (plus one search engine):

✓✓ Riak: A key‐value store

✓✓ MongoDB: An aggregate (document) database that primarily stores
JSON

✓✓ Apache Cassandra: A column store (Bigtable clone)

✓✓ Neo4j: A triple and graph store

✓✓ MarkLogic Server: Primarily stores XML documents, also JSON, binary,
text. Also provides in memory column indexes, a triple store and a
search engine

✓✓ Redis: An in‐memory only key‐value store

✓✓ Elasticsearch: An Open Source search engine used with many NoSQL
databases

I was keen to give a background to a breadth of databases in this book. I also
needed to make sure I wasn’t covering the same subject multiple times. I
decided to cover one database that primarily manages each data type
(document, keys/values, column/tables, triple/graph).

I’m keen to ensure that I don’t give you the impression that each database
in each data type area is created equal. Although I concentrate on just one
database of each type, I also mention areas where other similar databases
are stronger or weaker where appropriate.

3 Introduction

I threw in a couple of wildcards. I want to cover Redis as an in memory
database. Although in‐memory databases have been around for years,
Redis provides a NoSQL version of this which is applicable to a different set
of problems.

I also cover a commercial NoSQL solution: MarkLogic Server. I include
this database for two reasons. Firstly, and most importantly, MarkLogic
Server can handle multiple data types whereas the others in my list only
 concentrate on one particular domain.

Secondly, I love MarkLogic Server – so much so, I joined MarkLogic as a
Senior Sales Engineer. MarkLogic Server is also the market leader by software
sales in NoSQL databases. (Most companies behind Open Source NoSQL
databases only sell extensions to open source software and services, so this
is perhaps to be expected!)

Although not strictly a database, Elasticsearch does use NoSQL approaches
to its search engine design. NoSQL databases are often used to store semi‐
structured and unstructured data. This means search engines are an appro-
priate area to cover. Indeed, Elasticsearch (and Solr/Lucene) are commonly
integrated with Open Source NoSQL databases to provide more advanced
information retrieval and indexing services.

Icons Used in This Book
Throughout the book, you’ll see these little graphic icons to identify useful
paragraphs.

The Tip icon marks tips and shortcuts that you can take to make a specific
task easier.

The Remember icon marks the information that’s especially important to
know.

The Technical Stuff icon marks information of a highly technical nature that
you can safely skip over with impunity.

The Warning icon tells you to watch out! It marks important information that
may save you headaches. Warning: Don’t skip over these icons!

4 NoSQL For Dummies

Beyond the Book
NoSQL For Dummies includes the following goodies online for easy download:

✓✓ Cheat Sheet: You can find the Cheat Sheet for this book here:

www.dummies.com/cheatsheet/nosql

✓✓ Extras: I provide a few extra articles here:

www.dummies.com/extras/nosql

Where to Go from Here
With this book, you have all the information you need to get started on your
journey. You can start with Chapter 1, or you can take a look at the table of
contents and start with a topic that most interests you.

http://www.dummies.com/cheatsheet/nosql
http://www.dummies.com/extras/nosql

 Visit www.dummies.com for great Dummies content online.

Getting Started with NoSQL
Part I

http://www.dummies.com

In this part . . .
 ✓ Discover exactly what NoSQL is.

 ✓ Identifying terminology.

 ✓ Categorizing technology.

 ✓ Visit www.dummies.com for great Dummies content
online.

http://www.dummies.com

Introducing NoSQL:
The Big Picture

In This Chapter
▶▶ Examining the past

▶▶ Recognizing changes

▶▶ Applying capabilities

T
he data landscape has changed. During the past 15 years, the explosion
of the World Wide Web, social media, web forms you have to fill in, and

greater connectivity to the Internet means that more than ever before a vast
array of data is in use.

New and often crucial information is generated hourly, from simple tweets
about what people have for dinner to critical medical notes by healthcare
providers. As a result, systems designers no longer have the luxury of
closeting themselves in a room for a couple of years designing systems
to handle new data. Instead, they must quickly create systems that store
data and make information readily available for search, consolidation, and
analysis. All of this means that a particular kind of systems technology is
needed.

The good news is that a huge array of these kinds of systems already
exists in the form of NoSQL databases. The not‐so‐good news is that many
people don’t understand what NoSQL databases do or why and how to use
them. Not to worry, though. That’s why I wrote this book. In this chapter,
I introduce you to NoSQL and help you understand why you need to consider
this technology further now.

Chapter 1

8 Part I: Getting Started with NoSQL

A Brief History of NoSQL
The perception of the term NoSQL has evolved since it was launched in 1998.
So, in this section, I want to explain how NoSQL is currently defined, and
then propose a more appropriate definition for it. I even cover NoSQL history
background in the side bars.

Amazon and Google papers
NoSQL isn’t a single technology invented by a couple of guys in a garage or a
mathematician theorizing about data structures. The concepts behind NoSQL
developed slowly over several years. Independent groups then took those
ideas and applied them to their own data problems, thereby creating the vari-
ous NoSQL databases that exist today.

Google Bigtable paper
In 2006, Google released a paper that described its Bigtable distributed struc-
tured database. Google described Bigtable as follows: “Bigtable is a distrib-
uted storage system for managing structured data that is designed to scale to
a very large size: petabytes of data across thousands of commodity servers.”

Similar to an RDBMS model at first sight, Bigtable stores rows with a single
key and stores data in the rows within related column families. Therefore,
accessing all related data is as easy as retrieving a record by using an ID
rather than a complex join, as in relational database SQL.

This model also means that distributing data is more straightforward than
with relational databases. By using simple keys, related data — such as all
pages on the same website (given as an example in Google’s paper) — can
be grouped together, which increases the speed of analysis. You can think
of Bigtable as an alternative to many tables with relationships. That is, with
Bigtable, column families allow related data to be stored in a single record.

Bigtable is designed to be distributed on commodity servers, a common
theme for all NoSQL databases created after the information explosion
caused by the adoption of the World Wide Web. A commodity server is one
without complex bells and whistles — for example, Dell or HP servers with
perhaps 2 CPUs, 8 to 16 cores, and 32 to 96GB of RAM. Nothing fancy, lots of
them, and cheaper than buying one big server (which is like putting all your
eggs in one expensive basket).

9 Chapter 1: Introducing NoSQL: The Big Picture

The first NoSQL “meetup”
The first documented use of the term NoSQL
was by Carlo Strozzi in 1998. He was visiting
San Francisco and wanted to get some people
together to talk about his lightweight, relational
database.

Relational database management systems
(RDBMS) are the dominant database today. If
you ask computer scientists who have gradu-
ated within the past 20 years what a database
is, odds are they will describe a relational
 database.

Carlo used the term NoSQL because his data-
base was accessed via shell scripts, rather
than through use of the standard Structured
Query Language (SQL). The original meaning
was “No SQL.” That is, instead of using SQL,
it used a query mechanism closer to the devel-
oper’s source environment — in Carlo’s case,
the UNIX scripting world.

The use of this term shows a frustration
amongst the developer community with using
SQL. Although an open standard with massive
common support in the prevalent Relational
Databases of the time, the term NoSQL shows
a desire to find a better way. Or at least, a
way better for the poor old developer reading
through complex and long SQL queries.

Carlo’s meeting in San Francisco came and
went. Developers continued to experiment
with alternate query mechanisms. Technology
appeared to abstract complex queries away
from the developer. A prime example is the
Hibernate library in Java, which is driven
by configuration and enables the automatic
generation of value objects that map directly
onto database tables, which means develop-

ers don’t have to worry so much about how
the underlying database is structured —
 developers just call functions on objects.

There’s a cost to using SQL. Complex queries
are hard to debug, and it’s even harder to make
them perform well, which increases the cost
of development, administration, and testing.
Finding an alternative mechanism, or a library
to hide the complexities at least, looked like a
good way to reduce costs and make it easier to
adopt best practices.

Abstraction gets you only so far, though.
Eventually, data problems will emerge that
require a completely different way of thinking.
Existing relational technology didn’t work well
with such problems, and the explosion of the
growth of the Internet and World Wide Web
would give rise to these issues.

Moreover, other key things were happening.
In 1991, the first public web page was created,
just seven years before the NoSQL “meetup.”
Yahoo and Amazon were founded in 1994. In
comparison, Google, which we tend to think has
always existed, wasn’t founded until 1998. Yes,
there was a web before Google — and before
Google, remember AltaVista (which was even-
tually purchased and shut down by Yahoo!) and
Ask Jeeves (now known as Ask.com)?

The specification for the language used for
system-to-system communication — XML —
was released as a recommendation in 1997. The
XSLT specification — used to transform XML
between formats — came in 1999. The web was
young, wild, and people were still just trying to
figure out how to make money with it. It had not
yet changed the world.

10 Part I: Getting Started with NoSQL

Amazon Dynamo paper
Amazon released a paper of its own in 2007 describing its Dynamo data stor-
age application. In Amazon’s words: “Dynamo is used to manage the state of
services that have very high reliability requirements and need tight control
over the tradeoffs between availability, consistency, cost‐effectiveness and
performance.”

The paper goes on the describe how a lot of Amazon data is stored by use
of a primary key, how consistent hashing is used to partition and distribute
data, and how object versioning is used to maintain consistency across data
centers.

The Dynamo paper basically describes the first globally distributed key‐value
store used at Amazon. Here the keys are logical IDs, and the values can be
any binary value of interest to the developer. A very simple model, indeed.

The second NoSQL “meetup”
Many open-source NoSQL databases had
emerged by 2009. Riak, MongoDB, HBase,
Accumulo, Hypertable, Redis, Cassandra, and
Neo4j were all created between 2007 and 2009.
These are just a few NoSQL databases cre-
ated during this time, so as you can see, a lot
of systems were produced in a short period of
time. However, even now, innovation moves at
a breakneck speed.

This rapidly changing environment led Eric
Evans from Rackspace and Johan Oskarsson
from Last.fm to organize the first modern NoSQL
meetup. Needing a title for the meeting that
could be distributed easily on social media, they
chose the #NoSQL tag.

The #NoSQL hashtag is the first modern use of
what we today all regard as the term NoSQL.
The description from the meeting is well worth
reading in full — as the sentiment remains
accurate today.

“This meetup is about ‘open source, distributed,
non relational databases’.

Have you run into limitations with traditional
relational databases? Don’t mind trading a
query language for scalability? Or perhaps
you just like shiny new things to try out?
Either way this meetup is for you.

Join us in figuring out why these newfan-
gled Dynamo clones and BigTables have
become so popular lately. We have gath-
ered presenters from the most interesting
projects around to give us all an introduc-
tion to the field.

This meetup included speakers from LinkedIn,
Facebook, Powerset, Stumbleupon, ZVents,
and couch.io who discussed Voldemort,
Cassandra, Dynamite, HBase, Hypertable, and
CouchDB, respectively.

This meeting represented the first time that
people came together to discuss these differ-
ent approaches to nonrelational databases and
to brand them as NoSQL.

11 Chapter 1: Introducing NoSQL: The Big Picture

These two papers inspired many different organizations to create their
NoSQL databases. There were so many variations that some people thought
it necessary to meet and discuss the various approaches being taken
(see “The second NoSQL ‘meetup’” sidebar).

What NoSQL means today
Today the NoSQL movement includes hundreds of NoSQL database products,
which has led to a variety of definitions for the term — some with very
common tenets, and others not so common. I cover these tenets in detail in
Chapter 2.

This explosion of databases happened because nonrelational approaches
have been applied to a wide range of problems where an RDBMS has
traditionally been weak (as this book covers in detail). NoSQL databases
were also created for data structures and models that in an RDBMS required
considerable management or shredding and the reconstitution of data in
complex plumbing code.

Each problem resulted in its own solution — and its own NoSQL database,
which is why so many new databases emerged. Similarly, existing products
providing NoSQL features discovered and adopted the NoSQL label, which
makes the jobs of architects, CIOs, and IT purchasers difficult because it’s
unlikely that one NoSQL database can solve all the issues in a particular
business area.

So, how can you know whether NoSQL will help you, or which NoSQL
database to choose? The answer to these questions consume the remainder
of Part I of this book by discussing the variety of NoSQL databases and the
business problems they can solve, beginning with the following section that
covers NoSQL features.

Features of NoSQL
NoSQL books and blogs offer different opinions on what a NoSQL database is.
This section highlights the common opinions, misconceptions, and hype and
fringe opinions.

12 Part I: Getting Started with NoSQL

Common features
Four core features of NoSQL, shown in the following list, apply to most
NoSQL databases. The list compares NoSQL to traditional relational DBMS:

▶✓ Schema agnostic: A database schema is the description of all possible
data and data structures in a relational database. With a NoSQL data-
base, a schema isn’t required, giving you the freedom to store informa-
tion without doing up‐front schema design.

▶✓ Nonrelational: Relations in a database establish connections between
tables of data. For example, a list of transaction details can be con-
nected to a separate list of delivery details. With a NoSQL database, this
information is stored as an aggregate — a single record with everything
about the transaction, including the delivery address.

▶✓ Commodity hardware: Some databases are designed to operate best (or
only) with specialized storage and processing hardware. With a NoSQL
database, cheap off‐the‐shelf servers can be used. Adding more of these
cheap servers allows NoSQL databases to scale to handle more data.

▶✓ Highly distributable: Distributed databases can store and process a
set of information on more than one device. With a NoSQL database, a
 cluster of servers can be used to hold a single large database.

Next, I take you through the preceding terms and describe why NoSQL
 databases have each one and when it’s helpful and when it’s not.

Schema agnostic
NoSQL databases are schema agnostic. You aren’t required to do a lot of
up‐front design work before you can store data in NoSQL databases. You can
start coding and store and retrieve data without knowing how the database
stores and works internally. (If and when you need advanced functionality,
then you can manually add further indexes or tweak data storage structures.)
Schema agnosticism may be the most significant difference between NoSQL
and relational databases.

An alternative interpretation of schema agnostic is schema on read. You need
to know how the data is stored only when constructing a query (a coded
question that retrieves information from the database), so for practical
purposes, this feature is exactly what it says: You need to know the schema
on read.

The great benefit to a schema agnostic database is that development time is
shortened. This benefit increases as you go through multiple development
releases and need to alter the internal data structures in the database.

13 Chapter 1: Introducing NoSQL: The Big Picture

For example, in a traditional RDBMS, you go through a process of schema
redesign. The schema instructs the database on what data to expect. Change
the data stored, or structures, and you must reinstruct the database using a
modified schema. If you were to make a change, you’d have to spend a lot of
time deciding how to re‐architect the existing data. In NoSQL databases, you
simply store a different data structure. There’s no need to tell the database
beforehand.

You may have to modify your queries accordingly, maybe add the occasional
specific index (such as an integer range index to allow less than and greater
than data‐type specific queries), but the whole process is much less painful
than it is with an RDBMS.

Developers allowed to do whatever they want with a database! This sends
shivers down the spines of CIOs and DBAs. Lack of control is perceived as
inherent risk. But it’s a lack of control only if you let developers change
production systems without first going through a process of development,
functional testing, and user‐acceptance testing. I’m not aware that this
process is ever bypassed, so just consider this as a theoretical risk.

RDBMS took off because of its flexibility and because, by using SQL, it sped
up changing a query. NoSQL databases provide this flexibility for changing
both the schema and the query, which is one of the key reasons that they will
be increasingly adopted over time.

Even on query, you may not need to worry too much about knowing the
schema changes — consider an index over a field account number, where
account number can be located anywhere in a document that is stored in a
NoSQL database. You can change the structure and relocate where account
number is stored, and if the element has the same name elsewhere in the
document, it’s still available for query without changes to your query
mechanism.

Sometimes, you’ll also find the term schema‐less mentioned, which is a
stretch, because there aren’t many occasions when you can do a general
query without knowing that particular fields are present — for example, a
query that is purely full‐text search doesn’t restrict itself to a particular field.

Note that not all NoSQL databases are fully schema agnostic. Some, such as
HBase, require you to stop the database to alter column definitions. They’re
still considered NoSQL databases because not all defined fields (columns in
this case) are required to be known in advance for each record — just the
column families.

RDBMS allows individual fields in records to be identified as null values
(no defined value). The problem with an RDBMS is that stored data size and

14 Part I: Getting Started with NoSQL

performance are negatively affected when storage is reserved for null values
just in case the record may at some future time have a value in that column.
In Cassandra, you simply don’t provide that column’s data, which solves the
problem.

Nonrelational
Relational database management systems have been the dominant way to
store application data for more than 20 years. A great deal of mathematical
work was done to prove the theory that underpins them.

This underpinning describes how tables relate to each other. A single Order
row may relate to many Delivery Address rows, but each Delivery Address
row also relates to multiple Order rows. This is a many‐to‐many relationship.

NoSQL databases don’t have this concept of relationships between their
records. They instead denormalize data. This means that in a NoSQL data-
base would have an Order structure with the Delivery Address embedded.
This means the delivery address is duplicated in every Order row that uses
it. This approach has the advantage of not requiring complex query time
joins across multiple data structures (tables) though.

NoSQL databases don’t store information about how individual records
relate to other records in the database, which may sound like a limitation.
However, NoSQL databases are more flexible in terms of the data structures
you can store.

Consider an order from an online retailer. The order could include product
codes, quantities, item prices, and item descriptions, as well as information
about the person ordering, such as delivery address and payment
information.

Relational database basics
Relational databases are designed on the
understanding that a row in one table can be
related to one or more rows in another table.
It’s possible, therefore, to build up complex
interrelated structures.

Queries, on the other hand, are returned as
a single set of rows. This means that a query

must use a mechanism to join tables together
as required at runtime in order to fit them into a
single result structure.

This joining mechanism is well understood and
generally predictable from a performance point
of view.

15 Chapter 1: Introducing NoSQL: The Big Picture

Rather than insert ten rows in a variety of tables in a relational database, you
can instead store a single structure for all of this order information — say, as
a JSON or XML document.

This brings up the question, “Do you really need relationships if all your data
is stored in a single record?” For a lot of applications, especially ones that
need to store exact state for a point in time, such as financial transactions,
the answer is often “No.” However, if you’re experienced with relational data-
bases, you may have stored the same information more than once, so there’s
an obvious drawback to storing information in this way.

In relational database theory, the goal is to normalize your data (that is,
to organize the fields and tables to remove duplicate data). In NoSQL
 databases — especially Document or Aggregate databases — you often
 deliberately denormalize data, storing some data multiple times.

You can store, for example, “Customer Delivery Address” multiple times
across many orders a customer makes over time, rather than store it once
and refer to it in multiple orders. Doing so requires extra storage space, and
a little forethought in managing in your application. So why do it?

There are two advantages to storing data multiple times:

▶✓ Easy storage and retrieval: Just save and get a single record.

▶✓ Query speed: In relational databases, you join information and add
constraints across tables at query time. This may require the database
engine to evaluate many tables. The more query constraints you have
across different tables, the more you reduce your query speed. (This is
why an RDBMS has precomputed views.) In a NoSQL database, all the
information you need to evaluate your query is in a single document.
Therefore, you can quickly determine the list of matching documents.

Relational views and NoSQL denormalizations are different approaches to the
problem of data spread across records. In NoSQL, you may have to maintain
multiple denormalizations representing different views of the same data. This
approach increases the cost of storage but gives you much better query time.

Given the ever‐reducing cost of storage and the increased speed of develop-
ment and querying, denormalized data (aka materialized views) isn’t a killer
reason to discount NoSQL solutions. It’s just a different way to approach the
same problem, with its own advantages and disadvantages.

Again, there is an exception to this rule! Triple stores and graph databases
have the basic concept of relationships. The difference is that every single
record (a triple consisting of three things — subject, predicate, and object —
such as “Adam likes Cheese”) contains a relationship.

16 Part I: Getting Started with NoSQL

NoSQL is a fundamentally different approach to related data, very much dif-
ferent from an RDBMS. Hence, the term nonrelational is shorthand for Non‐
Relational Mathematics Theory.

Highly distributable and uses commodity hardware
In many NoSQL databases, a key design decision is to use multiple computers
to store data for a single database, rather than have the whole database on a
single server.

Storing data across multiple machines and allowing it to be queried is dif-
ficult. You must send the query to all the servers and wait for a reply.
Hopefully, you set up the machines so that they’re fast enough to talk to each
other to handle distributed queries!

The main advantage of this approach is in the case of very large datasets,
because for some storage requirements, even the largest available single
server couldn’t store or process all the data you need. Consider all the
messages on Twitter and Facebook. You need a distributed mechanism to
effectively manage all that data, even if it’s mostly about what people had for
breakfast and cute cat videos.

An advantage of distributing your database is that you can use cheaper serv-
ers, called commodity servers, which are cheaper than single very powerful
servers. (However, a decent one will still cost you $10,000!) Even for smaller
datasets, it may be cheaper to buy three commodity servers instead of a
single, higher‐powered server.

Another key advantage is that adding high availability is easier; you’re
already halfway there by distributing your data. If you replicate your data
once or twice across other servers in the cluster, your data will still be acces-
sible, even if one of the servers crashes, burns, and dies.

Not all open‐source databases support high availability unless you buy the
supported, paid‐for version of the database from the company that develops it.

An exception to the highly distributable rule is that of graph databases.
In order to effectively answer certain graph queries in a timely fashion, data
needs to be stored on a single server. No one has solved this particular
issue yet.

Carefully consider whether you need a triple store or a graph store. Triple
stores are generally distributable, whereas graph stores aren’t. Which one
you need depends on the queries you must support. You find more on Triple
and Graph Stores in Chapter 2.

17 Chapter 1: Introducing NoSQL: The Big Picture

Not‐so‐common features
Although some features are fairly common to NoSQL databases (for example,
schema agnosticism and non‐relational structure), it’s not uncommon for a
database to lack one or more of the following features and still qualify as a
modern NoSQL database.

Open‐source
NoSQL software is unique because the open‐source movement has driven
development rather than follow a set of commercial companies. You there-
fore can find a host of open‐source NoSQL products to suit every need. When
developers couldn’t find a NoSQL database for their needs, they created one,
and published it initially as open‐source.

I didn’t include this in the earlier “Common features” section because the
majority of popular NoSQL solutions are driven by commercial companies,
with the open source variant lacking the key features required for mission
critical use in large enterprises.

The difference between open‐source NoSQL vendors and these wholly com-
mercial companies is that open‐source vendors have a business model simi-
lar to the Red Hat model. Basically, they release an open‐source product and
also sell enterprise add‐on features, support, and implementation services.

This isn’t a bad thing! It’s worth noting, though, that people at NoSQL aren’t
driven purely, or even mainly, by open‐source developers working in their
spare time — instead, they work for the commercial companies behind the
products.

Buyer beware! When it comes to selecting a NoSQL database, remember
“total cost of ownership.” Many organizations acquired open‐source prod-
ucts only to find that they need a high‐priced subscription in order to get the
features they want.

BASE versus ACID
Prior to 2014, the majority of NoSQL definitions didn’t include ACID transac-
tion support as a defining feature of NoSQL databases. This is no longer true.

18 Part I: Getting Started with NoSQL

ACID‐compliant transaction means the database is designed so it absolutely
will not lose data:

▶✓ Each operation moves the database from one valid state to another
(Atomic).

▶✓ Everyone has the same view of the data at any point in time
(Consistent).

▶✓ Operations on the database don’t interfere with each other (Isolation).

▶✓ When a database says it has saved data, you know the data is safe
(Durable).

Not many NoSQL databases have ACID transactions. Exceptions to that norm
are FoundationDB, Neo4j, and MarkLogic Server, which do provide fully seri-
alizable ACID transactions.

So why do I include ACID compliance as a not‐so‐common feature? When the
Oracle RDBMS was released, it didn’t provide ACID compliance either. It took
seven versions before ACID compliance was supported across multiple data-
base updates and tables.

Similarly, if you look at the roadmaps of all the NoSQL databases, you’ll see
that all of them refer to work on transactional consistency. MongoDB, for
example, raised $150 million in the fall of 2013 specifically to address this and
other enterprise issues. MongoDB has announced a new ACID compliant stor-
age engine. The ACID versus BASE debate is an interesting one, and I cover it
in detail in Chapter 3.

Enterprise NoSQL
Let me say up front that I’ve sold enterprise software for nine years and have
implemented it even longer, so as you might guess, I’m passionate on the
subject. Over time, I’ve witnessed its strong focus on development and sup-
port, both of which are reassuring to major companies looking to make huge
investments in mission‐critical software.

How to tell enterprise grade software from popular software — that’s the
hard bit! It’s like those TV shows where they take an old car or motorbike and
refit it completely for its owners. Maybe install a plasma TV, some lightning
decals down the side, and a bopping stereo system. The result looks awe-
some, and the smiling owners jump in ready to drive away. The problem is
that the shiny exterior may be masking some real internal engine problems.

19 Chapter 1: Introducing NoSQL: The Big Picture

The same is true of software. Some software is easy to start using, but will be
unreliable in large‐scale installations. This is just one example of something
to look out for that I include in this book.

The following list identifies the requisite features that large enterprises look
for (or should look for) when investing in software products that run the core
of their system.

▶✓ High availability: Fault tolerance when a single server goes down

▶✓ Disaster recovery: For when a datacenter goes down, or more likely
someone digs up a network cable just outside the datacenter

▶✓ Support: Someone to stand behind a product when it goes wrong (or it’s
used incorrectly!)

▶✓ Services: Product experts who can advise on best practices and help
determine how to use a product to address new or unusual business needs

▶✓ Ecosystem: Availability of partners, experienced developers, and prod-
uct information — to avoid being locked into a single vendor’s expensive
support and services contract

This book’s definition of NoSQL
I apply the highly scientific duck test to my
definition of NoSQL: If it looks like a duck,
quacks like a duck, … then it’s probably a
duck! This approach will likely be very familiar
to duck-type language developers, but my
apologies to strictly scientific-minded types.

A piece of software is a NoSQL database if it
adheres to the following:

▶✓ Doesn’t require a stringent schema for
every record created.

▶✓ Is distributable on commodity hardware.

▶✓ Doesn’t use relational database mathemat-
ical theory.

I can just see a few jaws dropping because of
this wide-ranging definition! However, many

different approaches to database design
and theory are prevalent in today’s NoSQL
ecosystem, and as author of this book, I feel
duty-bound to cover them.

This book introduces you to both the mainstream
and the edge cases so that you understand the
boundaries of NoSQL use cases. Consequently,
I cover many databases, some of which you
may decide to use and others you may decide
simply aren’t for you. In my humble opinion,
that’s what makes this book stand out from
others (no names and titles, of course, or their
lawyers might chew me up — and none of us
deserves the indigestion that might cause).

20 Part I: Getting Started with NoSQL

Many NoSQL databases are used by enterprises. Just visit the website of
any of the NoSQL companies, and you’ll see a list of them. But there is a
difference between being used by an enterprise, and being a piece of mission‐
critical enterprise software.

NoSQL databases are often used as high‐speed caches for web‐accessible
data on mission‐critical systems. If one of these NoSQL systems goes down,
though, you lose only a copy of the data — the mission‐critical store is often
an RDBMS! Seriously question enterprise case studies and references to be
sure the features mentioned in the preceding list of enterprise features exist
in a particular NoSQL product.

NoSQL databases have come of age and are being used in major systems by
some of the largest companies. As always, though, the bar needs to be con-
stantly raised. This book is for the many people who are looking for a new
way to deliver mission‐critical systems, such as CIOs, software developers,
and software purchasers in large enterprises.

In this book, you find the downsides of particular NoSQL approaches and
databases that aren’t developed sufficiently to produce products of truly
enterprise grade. The information in this book helps to separate propaganda
from fact, which will enable you to make key architecture decisions about
information technology.

Beginning with the following section (and, in fact, in the rest of this book), I
talk about NoSQL in terms of the problems related to mission‐critical enter-
prise systems and the solutions to those problems.

Why You Should Care about NoSQL
If you’re wondering whether NoSQL is just a niche solution or an increasingly
mainstream one, the answer lies in the following discussion. So, it’s time to
talk about recent trends and how you can use NoSQL databases over and
above the traditional RDBMS approach.

Recent trends in IT
Since the advent of the World Wide Web and the explosion of Internet‐
connected devices, information sharing has dramatically increased. Details
of our everyday lives are shared with friends and family, whether they’re
close or continents away. Much of this data is unstructured text; moreover
the structures of data are constantly evolving, making it hard to quantify.

21 Chapter 1: Introducing NoSQL: The Big Picture

There are simply no end of things to keep track of (for example, you can’t
predict when a website or newsfeed will be updated, or in what format).

It’s true that search engines help you find potentially useful information;
however, search engines are limited because they can’t distinguish the
nuances of how you search or what you’re aiming for.

Furthermore, simply storing, managing, and making use of this information is
a massive task. What’s needed is a set of database solutions that can handle
current and emerging data problems, which leads us back to NoSQL, the
problems, and the possibilities.

Although there’s been an outpouring of enthusiasm by the development
community about NoSQL databases, not many killer applications have been
created and put on the market. These applications will take time to emerge —
right now, NoSQL databases are being used to solve problems that emerge in
conventional approaches.

Problems with conventional approaches
During the initial phases of a new project, people often think, “I need to store
data, and I have an Enterprise License Agreement for an RDBMS, so I’ll just
use it.” True, relational DBMS have provided great value over the past 25
years and will continue to do so. Relational databases are great for things
that fit easily into rows and columns. I like to call this kind of data Excel data,
and anything that you can put in a Microsoft Excel spreadsheet, you easily
store in an RDBMS.

However, some problems require a different approach. Not everything fits
well into rows and columns — for example, a book with a tree structure of
cover, parts, chapters, main headings, and subheadings. Likewise, what if a
particular record has a field that could contain two or more values? Breaking
this out into another sheet or table is a bit of overkill, and makes it harder to
work with the data as a single unit.

There are also scenarios in which the relationships themselves can hold their
own metadata. An RDBMS doesn’t handle those situations at all; an RDBMS
just relates records in tables using structures about the relationships known
at design time.

Each of the preceding scenarios has a type of NoSQL database that
overcomes the limitations of an RDBMS for those data types: key‐value,
columnar, and triple stores, respectively. Turn to Chapter 2 for more on
those types of NoSQL database.

22 Part I: Getting Started with NoSQL

Many of the problems are because the main type of data being managed
today — unstructured data — is fundamentally different from data in tradi-
tional applications, as you’ll see in the following sections.

Schema redesign overhead
Consider a retail website. The original design has a single order with a single
set of delivery information. What if the retailer now needs to package the
products into potentially multiple deliveries?

With a relational system, you now have to spend a lot of time deciding how
best to handle this redesign. Do you create an Order Group concept, with
each group related to a different delivery schedule? Do you instead create a
Delivery Schedule containing delivery information and relate that to Order
Items?

You also have to decide what to do with historical structures. Do you keep
them as they are, perhaps adding a flag for “Order Structure version number”
so that you can decide how to process them?

Developers also must restructure every single one of their queries. Database
administrators have to rework all the views. In short, it’s a massive and
costly undertaking.

If you use a document NoSQL database instead, you can start storing your
new structure immediately. Queries on indexes still work because the same
data is stored in a single document, just elsewhere within it. You have two
sets of display logic for viewing historical orders, but plugging a new view
into an application is a lot easier than redesigning the entire application
stack’s data model. (A stack consists of a database, business application tier,
and user interface.)

Managing feeds of external datasets you cannot control is a similar issue.
Consider the many and varied ways Twitter applications create tweets.
Believe it or not, a simple tweet involves a lot of data, some of it application‐
specific and some of it general across all tweets.

Or perhaps you must store and manage XML documents across different
versions of the same XML schema. It’s still a variety problem. You may have
to support both structures at the same time. This is a common situation
in financial services, insurance and public sectors (including federal
government metadata catalogues for libraries), and information‐sharing
repositories.

In financial services, FpML is an XML document format used extensively
for managing trades. Some trades, especially in the derivatives market, last

23 Chapter 1: Introducing NoSQL: The Big Picture

weeks or months and involve many institutions. Each bank uses its own
particular version of FpML with its own custom tags.

The same is true for retail insurance. Each insurance company has its own
fields and terms, or subset thereof, even if it obeys the same standard, such
as those from the ACORD insurance standards organization.

This is where the schema agnostic, or schema on read, feature of NoSQL
databases really pays for itself — being able to handle any form of data. If the
preceding sentences sound familiar, I highly recommend that you evaluate a
NoSQL solution to manage your data.

Unstructured data explosion
I started working in sales engineering for FileNet, an enterprise content
management company that’s now part of IBM. I was struck at the time by a
survey concluding that 80 percent of organizations’ data was unstructured
in nature, and that this percentage was increasing. That statistic is still used
today, nine years later, though the proportion is bound to be more now.
Many organizations I’ve encountered since then still aren’t arranging their
data holistically in a coherent way in order to answer complex questions that
span an entire organization.

Increasingly the focus of organizations has been to use publicly available
data alongside their own to gain greater business insight — for example,
using government‐published open data to discover patterns of disease,
research disease outbreak, or to mine Twitter to find how well a particular
product is received.

Whatever the motivation, there is a need to bring together a variety of data,
much of which is unstructured, and use it to answer business questions. A lot
of this data is stored in plain text fields. From tweets to medical notes, having
a computer evaluate what is important within text is really, really hard.

For storing this data and discovering relevant information presents issues,
too. Databases evaluate queries over indexes. Search engines do the same
thing. In NoSQL, there is an ever‐increasingly blurred line between where
the database ends and the search engine begins. This enables unstructured
information to be managed in the same way as more regular (albeit rapidly
changing) information. It’s even possible to build in stored searches that
are used to trigger entity extraction and entity enrichment activities in
unstructured data.

Consider a person tweeting about a product. You may have a list of products,
list of medical issues, and list of positive and negative phrases. Being able to
write “If a new tweet arrives that mentions Ibuprofen, flag it as a medication”

24 Part I: Getting Started with NoSQL

enables you to see how frequently particular medications are used or
to specify that you only want to see records mentioning the medication
Ibuprofen. This process is called entity extraction.

Similarly, if the opinion “really cool” is mentioned, you flag it as an opinion
with a property of positive or negative attached. Flagging data and then
adding extra information is called entity enrichment.

Entity enrichment is a common pattern used when a NoSQL database and
search‐alerting techniques are combined (turn to Chapters 3 and 16 for more
on this topic).

The sparse data problem
As I’ve mentioned, relational databases can suffer from a sparse data prob-
lem — this is where it’s possible for columns to have particular values, but
often the columns are blank.

Consider a contact management system, which may have a field for home
phone, cell phone, twitter ID, email, and other contact fields. If your phone is
anything like mine, usually you have only one or two of these fields present.

Using an RDBMS requires a null value be placed into unused columns.
Potentially, there could be 200 different fields, 99 percent with blank null
values.

An RDBMS will still allocate disk space for these columns, though, because
they potentially could have a value after future edits of the contact data. This
is a great waste of resources. It’s also inefficient to retrieve 198 null values
over SQL in a result set.

NoSQL databases are designed to bypass this problem. They store and index
only what is provided by the client application. No nulls stored, and no
storage space previously allocated, but unused. You just store what you need
to use.

Dynamically changing relationships
You may discover facts and relationships over time. Consider LinkedIn where
someone may be a second‐level connection (a friend of a friend). You realize
you know the person, so you add her as a first level relationship by inserting
a single fact or relationship in the application.

You could go one step further and define subclasses of these relationships,
such as worked with, friends with, or married to. You may even add metadata
to these relationships, such as a “known since” date.

25 Chapter 1: Introducing NoSQL: The Big Picture

Relational databases aren’t great at managing these things dynamically. Sure
you could model the above relationships, but what if you discover or infer a
new class of relationship between entities or subjects that wasn’t considered
during the original system design?

Using an RDBMS for this would require an ever‐increasing storm of many‐to‐
many relationships and linking tables, one table schema for each relationship
class. This approach would be hard to keep up with and maintain.

Another aspect of complex relationships is on the query side. What if you
want to know all people within three degrees of separation of a person? This
is a common statistic on LinkedIn.

Just writing the SQL gives you a headache. “Return all people who are related
to Person1, or have a relationship with Person2 who is related to Person1, or
is related to Person3, who is related to Person4, who is related to Person1.
Oh, and make sure there are no duplicates, would you please?” Ouch!

These self‐referencing queries where the same table references itself are very
difficult to construct a query for in an RDBMS, and typically run poorly.

Triple and graph store NoSQL databases are designed with dynamically
changing relationships in mind. They specifically use a simpler data model
but at terrific scale to ensure these questions can be answered quickly.

Global distribution and access
We live in an interconnected world, but these interconnects don’t have
infinite bandwidth or even guaranteed connectivity. To provide a globally
high‐performance service across continents requires a certain amount of
replication of data. For example, a tweet from someone in Wisconsin may
result in a cached copy being written in Ireland or New Zealand. This is to
make read performance better globally.

Many NoSQL databases provide the capability to replicate information to
distributed servers intelligently so as to provide this service. This is gener-
ally built in at the database level and includes management settings and APIs
to tweak for your particular needs. A lot of the time, though, this replication
requires that global copies may have a slightly outdated view of the overall
data. This approach is called an eventual consistency model, which means
you can’t guarantee that a person in Singapore sees all of a person’s tweets if
that person just tweeted in Wisconsin.

For tweets, this lag time is fine. For billion dollar financial transactions, not so
much. Care is needed to manage this (turn to Chapter 3, for more on mission‐
critical issues).

26 Part I: Getting Started with NoSQL

NoSQL benefits and precautions
There’s more to NoSQL than simply being the gleam in the eye of agile web
developers. Real business value can be realized by using a NoSQL database
solution.

NoSQL vendors have focused strongly on ease of development. A technology
can be adopted rapidly only if the development team views it as a lower‐cost
alternative. This perspective results in streamlined development processes
or quicker ways to beat traditionally knotty problems, like those in tradi-
tional approaches mentioned in this chapter.

Lower total cost of ownership (TCO) is always a favorite with chief informa-
tion officers. Being able to use commodity hardware and rapidly churn out
new services and features are core features of a NoSQL implementation.
More so with NoSQL than relational DBMS, iterative improvements can be
made quickly and easily, thanks to schema agnosticism.

It’s not all about lower cost or making developers’ lives easier though. A
whole new set of data types and information management problems can be
solved by applying NoSQL approaches.

Hopefully, this chapter has whetted your appetite to find out not just what
NoSQL is good for, but also how these features are provided in different
NoSQL databases.

NoSQL Database Design
and Terminology

In This Chapter
▶▶ Identifying and handling different types of data

▶▶ Describing NoSQL and its terminology

▶▶ Encompassing the range of consistency options available

▶▶ Integrating related technologies

N
ew data management challenges have triggered a new database
technology — NoSQL. NoSQL thinking and technology mark a shift

away from traditional data management technologies. With all the new terms
and techniques and the wide variety of options, it’s not easy to come up with
a succinct description of NoSQL.

NoSQL databases aren’t a mere layer on top of existing technologies used
to address a slightly different use case. They’re different beasts entirely.
Each type of NoSQL database is designed to manage different types of data.
Understanding the data you want to manage will help you apply the right
NoSQL solution.

The popularity of NoSQL databases lies largely in the speed they provide for
developers. NoSQL solutions are quicker to build, update, and deploy than
their relational forerunners. Their design is tuned to ensure fast response
times to particular queries and how data is added to them.

This speed comes with tradeoffs in other areas, including ensuring data
consistency — that is, data that has just been added or updated may not be
immediately available for all users. Understanding where consistency should
and shouldn’t be applied is important when deciding to deploy a NoSQL
solution.

Chapter 2

28 Part I: Getting Started with NoSQL

Modern computer systems don’t exist in a vacuum; they’re always
communicating with someone or something. NoSQL databases are commonly
paired with particular complementary computer software, from search
engines to semantic web technologies and Hadoop. Leveraging these
technologies can make deployment of NoSQL more productive and useful.

Managing Different Data Types
I like to think in lists. When describing something, I list its properties and the
values for those properties. When describing a set of objects, I use a table
with a row for each object and a column for each property. You probably do
something similar, for example, when you use Microsoft Excel or a similar
program to store important information about a set of objects.

Sometimes some of these properties relate objects to other objects. Perhaps
you have a set of drop‐down lists, such as Expense Type, on your personal
finance sheet. This Expense Type drop‐down list is defined in another sheet
called Reference. This linking, therefore, represents a relationship between
two sheets, or tables.

The relational database management system (RDBMS) was introduced in the
1970s to handle this exact type of data. Today, the RDBMS underpins most
organizations’ applications. Examples of such systems include customer
relationship management (CRM) systems that hold details on prospects, cus-
tomers, products, and sales; and banking systems that include a list of trans-
actions on your bank accounts.

NoSQL databases aren’t restricted to a rows‐and‐columns approach. They
are designed to handle a great variety of data, including data whose structure
changes over time and whose interrelationships aren’t yet known.

NoSQL databases come in four core types — one for each type of data the
database is expected to manage:

▶✓ Columnar: Extension to traditional table structures. Supports variable
sets of columns (column families) and is optimized for column‐wide
operations (such as count, sum, and mean average).

▶✓ Key‐value: A very simple structure. Sets of named keys and their
value(s), typically an uninterpreted chunk of data. Sometimes that
simple value may in fact be a JSON or binary document.

▶✓ Triple: A single fact represented by three elements:

• The subject you’re describing

29 Chapter 2: NoSQL Database Design and Terminology

• The name of its property or relationship to another subject

• The value — either an intrinsic value (such as an integer) or the
unique ID of another subject (if it’s a relationship)

 For example, Adam likes Cheese. Adam is the subject, likes is the predi-
cate, and Cheese is the object.

▶✓ Document: XML, JSON, text, or binary blob. Any treelike structure can
be represented as an XML or JSON document, including things such as
an order that includes a delivery address, billing details, and a list of
products and quantities.

 Some document NoSQL databases support storing a separate list (or
document) of properties about the document, too.

Most data problems can be described in terms of the preceding data struc-
tures. Indeed, nearly all computer programs ever written fall into these
categories. It is therefore important to understand how you can best store,
retrieve and query that data.

The good news is that there’s now a set of databases to properly manage
each different type of data, so you don’t have to shred data into a fixed rela-
tional schema (by shred, I mean convert complex data structures to simple
excel like table structures with relationships, which has always seemed like
the wrong thing to do). I don’t like writing plumbing code just to store and
retrieve data — and that’s despite my father being a plumber!

In addition to the preceding NoSQL data types, here are two other develop-
ments worth mentioning:

▶✓ Search engines: If you’re storing information that has a variable struc-
ture or copious text, you need a common way across structures to find
relevant information, which search engines provide.

▶✓ Hybrid NoSQL databases: These databases provide a mix of the core
features of multiple NoSQL database types — such as key‐value, docu-
ment, and triple stores — all in the same product.

Several search engines and hybrid databases apply general themes present
in NoSQL products — namely, allowing variable data types and being hori-
zontally scalable on commodity hardware. As the internal designs of search
engines and hybrid NoSQL databases are similar and complementary, I’m
including them in this book. (For information on what I’m not covering, see
the upcoming sidebar named, you guessed it, “What I’m not covering.”)

30 Part I: Getting Started with NoSQL

Columnar
Column stores are similar at first appearance to traditional relational DBMS.
The concepts of rows and columns are still there. You also define column
families before loading data into the database, meaning that the structure of
data must be known in advance.

However, column stores organize data differently than relational databases do.
Instead of storing data in a row for fast access, data is organized for fast column
operations. This column‐centric view makes column stores ideal for running
aggregate functions or for looking up records that match multiple columns.

What I’m not covering
Because the NoSQL world is awash with a
range of products, I had to carefully select
which products to include and which to exclude.
Conversely, I wanted to provide more content
than you might find in other NoSQL books.

I mention several products in each type of NoSQL
database and complementary technologies.
I had to draw the line somewhere, though, so
here’s what I’m not covering, and why:

▶✓ In-memory and flash databases: Some
great advances have been made in real-
time online transaction processing (OLTP)
and analytics using in-memory databases.
In-memory databases are very specialized
and are targeted to particular problem
domains. I have, though, mentioned NoSQL
databases that take advantage of flash or
memory caching to aid real-time analytics.

▶✓ Complex proprietary stacks: Large
multinational vendors may be inclined
to think they have a solution that fits in
this book. Typically, this solution involves
integrating multiple products. I want to
cover NoSQL databases that provide a
platform, not technical jigsaw pieces that
you have to cobble together to provide

similar functionality, which is why these
guys aren’t included. I do mention single-
product commercial NoSQL software
such as Oracle NoSQL, MarkLogic,
Microsoft’s Document DB, and IBM
Cloudant, though.

▶✓ NewSQL: This is a new database access
paradigm. It applies the software design
lessons of NoSQL to RDBMS, creating a
new breed of products, which is a great
idea, but fundamentally these products
still use traditional relational math and
structures, which is why they aren’t
included. Hopefully, someone will write
a For Dummies book about these new
databases!

▶✓ Every possible NoSQL database out there:
Finally, there are just too many. I picked
the ones you’re most likely to come across
or that I believe provide the most promise
for solving mission-critical enterprise
problems. I do mention the key differences
among many products in each NoSQL
category, but I concentrate on one or two
real-world examples for each to show their
business value.

31 Chapter 2: NoSQL Database Design and Terminology

Aggregate functions are data combinations or analysis functions. They can
be as simple as counting the number of results, summing them, or calculat-
ing their mean average. They could be more complex, though — for example,
returning a complex value describing an overarching range of time.

Column stores are also sometimes referred to as Big Tables or Big Table
clones, reflecting their common ancestor, Google’s Bigtable.

Perhaps the key difference between column stores and a traditional RDBMS
is that, in a column store, each record (think row in an RDBMS) doesn’t
require a single value per column. Instead, it’s possible to model column
families. A single record may consist of an ID field, a column family for “cus-
tomer” information, and another column family for “order item” information.

Each one of these column families consists of several fields. One of these
column families may have multiple “rows” in its own right. Order item infor-
mation, for example, has multiple rows — one for each line item. These rows
will contain data such as item ID, quantity, and unit price.

A key benefit of a column store over an RDBMS is that column stores don’t
require fields to always be present and don’t require a blank padding null
value like an RDBMS does. This feature prevents the sparse data problem I
mentioned in Chapter 1, preserving disk space. An example of a variable and
sparse data set is shown in Figure 2-1.

Figure 2-1:
Column

families at
work.

32 Part I: Getting Started with NoSQL

The great thing about column stores is that you can retrieve all related
 information using a single record ID, rather than using the complex
Structured Query Language (SQL) join as in an RDBMS. Doing so does require
a little upfront modeling and data analysis, though.

In the example in Figure 2-1, I can retrieve all order information by selecting
a single column store row, which means the developer doesn’t need to be
aware of the exact complex join syntax of a query in a column store, unlike
they would have to be using complex SQL joins in an RDBMS.

So, for complex and variable relational data structures, a column store may
be more efficient in storage and less error prone in development than its
RDBMS ancestors.

Note that, in my item column family, each item’s ID is represented within the
key, and the value is the quantity ordered. This setup allows for fast lookup
of all orders containing this item ID. You can find more on structuring your
data for fast lookup in Chapters 9 and 10.

If you know the data fields involved up front and need to quickly retrieve
related data together as a single record, then consider a column store.

Key‐value stores
Key‐value stores also have a record with an ID field — the key in key‐value
stores — and a set of data. This data can be one of the following:

▶✓ An arbitrary piece of data that the application developer interprets (as
opposed to the database)

▶✓ Any set of name‐value pairs (called bins)

Think of it as a shared mailbox in an apartment building. All you see from the
outside is a set of numbered holes. Using a key, you access whatever is in the
mailbox. After looking at the mail, you decide what to do with it (probably
just throw it away, if it’s junk like most of my mail).

In this way, key‐value stores are similar to column stores in that it’s possible
to store varying data structures in the same logical record set. Key‐value
stores are the simplest type of storage in the NoSQL world — you’re just stor-
ing keys for the data you provide.

Some key‐value stores support typing (such as integers, strings, and
Booleans) and more complex structures for values (such as maps and lists).
This setup aids developers because they don’t have to hand‐code or decode
string data held in a key‐value store.

33 Chapter 2: NoSQL Database Design and Terminology

In computer science, a “list” is zero or more data values. These values may
or may not be stored in a sorted representation that allows for fast match
processing.

Maps are a simple type of key‐value storage. A unique key in a map has a
single arbitrary value associated with it. The value could be a list of another
map. So, it’s possible to store tree structures within key‐value stores, if
you’re willing to do the data processing yourself.

If you have numerous maps in your key‐value store, consider a document
store instead, which will likely minimize the amount of code required to
 operate on your data and make search and retrieval easier.

Key‐value stores are optimized for speed of ingestion and retrieval. If you need
very high ingest speed on a limited numbers of nodes and can afford to sacri-
fice complex ad hoc query support, then a key‐value store may be for you.

Triple and graph stores
Although it’s just now becoming prominent, the concept of triples has been
around since 1998, thanks to the World Wide Web Consortium (W3C) and Sir
Tim Berners‐Lee (one of my British heroes).

Before reading this book you may not have heard of triple (or graph) stores,
but if you’re experienced with LinkedIn or Facebook, you’re probably familiar
with the term social graph.

Under the hood of these approaches is a simple concept: every fact (or more
correctly, assertion) is described as a triple of subject, predicate, and object:

▶✓ A subject is the thing you’re describing. It has a unique ID called an IRI. It
may also have a type, which could be a physical object (like a person) or
a concept (like a meeting).

▶✓ A predicate is the property or relationship belonging to the subject. This
again is a unique IRI that is used for all subjects with this property.

▶✓ An object is the intrinsic value of a property (such as integer or Boolean,
text) or another subject IRI for the target of a relationship.

Figure 2-2 illustrates a single subject, predicate, object triple.

Therefore, Adam likes Cheese is a triple. You can model this data more
descriptively, as shown here:

34 Part I: Getting Started with NoSQL

AdamFowler is_a Person
AdamFowler likes Cheese
Cheese is_a Foodstuff

More accurately, though, such triple information is conveyed with full IRI
information in a format such as Turtle, like this:

<http://www.mydomain.org/people#AdamFowler> a <http://www.mydomain.
org/rdftypes#Person> .

<http://www.mydomain.org/people#AdamFowler> <http://www.mydomain.
org/predicates#likes> <http://www.mydomain.org/
foodstuffs#Cheese> .

<http://www.mydomain.org/foodstuffs#Cheese> a <http://www.mydomain.
org/rdftypes#Foodstuff> .

The full Turtle example shows a set of patterns in a single information
domain for the URIs of RDF types, people, relationships, and foodstuffs. A
single information domain is referred to as an ontology. Multiple ontologies
can coexist in the same triple store.

It’s even possible for the same subject to have multiple IRIs, with a sameAs
triple asserting that both subjects are equivalent.

You can quickly build this simple data structure into a web of facts, which
is called a directed graph in computer science. I could be a friend_of Jon
Williams or married_to Wendy Fowler. Wendy Fowler may or may not have a
knows relationship with Jon Williams.

These directed graphs can contain complex and changing webs of relation-
ships, or triples. Being able to store and query them efficiently, either on
their own or as part of a larger multi‐data structure application, is very useful
for solving particular data storage and analytics problems.

Figure 2-3 shows an example of a complex web of interrelated facts.

I focus on triple stores in this book rather than graph stores. I think of graph
stores as a subset of triple stores that are optimized for queries of relation-
ships, rather than just the individual assertions, or facts, themselves.

Figure 2-2:
A simple

semantic
assertion.

HTTP://WWW.MYDOMAIN.ORG/RDFTYPES#PERSON
HTTP://WWW.MYDOMAIN.ORG/RDFTYPES#PERSON
HTTP://WWW.MYDOMAIN.ORG/FOODSTUFFS#CHEESE
HTTP://WWW.MYDOMAIN.ORG/FOODSTUFFS#CHEESE
HTTP://WWW.MYDOMAIN.ORG/RDFTYPES#FOODSTUFF
HTTP://WWW.MYDOMAIN.ORG/RDFTYPES#FOODSTUFF

35 Chapter 2: NoSQL Database Design and Terminology

Figure 2-3:
Web of

interrelated
facts across

different
ontologies.

36 Part I: Getting Started with NoSQL

Graph math is complex and specialized and may not be required in all
situations where storing triples are required. Throughout this book, I point
out where the difference matters. The query types supported also affect the
design of a graph store, which I talk about in Chapter 19.

If you need to store facts, dynamically changing relationships, or provenance
information, then consider a triple store. If you need to know statistics
about the graph (such as how many degrees of separation are between two
 subjects or how many third level social connections a person has), then you
should consider a graph store.

Document
Document databases are sometimes called aggregate databases because they
tend to hold documents that combine information in a single logical unit — an
aggregate. You might have a document that includes a TV episode, series, chan-
nel, brand, and scheduling and availability information, which is the total set of
result data you expect to see when you search an online TV catch‐up service.

Retrieving all information from a single document is easier with a database
(no complex joins as in an RDBMS) and is more logical for applications (less
complex code).

The world is awash with documents. Documents are important as they are
generally created for a high‐value purpose. Unfortunately many of them are
tax documents and bills, but that’s totally out of my control. I just help orga-
nizations manage the things!

Loosely, a document is any unstructured or tree‐structured piece of informa-
tion. It could be a recipe (for cheesecake, obviously), financial services trade,
PowerPoint file, PDF, plain text, or JSON or XML document.

Although an online store’s orders and the related delivery and payment
addresses and order items can be thought of as a tree structure, you may
instead want to use a column store for these. This is because the data struc-
tures are known up front, and it’s likely they won’t vary and that you’ll want
to do column operations over them. Most of the time, a column store is a
better fit for this data.

Some NoSQL databases provide the best of both worlds — poly‐structured doc-
ument storage and fast field (column) operations (see the “Hybrid NoSQL data-
bases” section in this chapter, for details on heterogeneous data management).

This makes a document database a bit of a catchall. Interestingly, because of
its treelike nature, an effective document store is also capable of storing sim-
pler data structures.

37 Chapter 2: NoSQL Database Design and Terminology

A table, for example, can be modeled as a very flat XML document — that is,
one with only a single set of elements, and no sub‐element hierarchies. A set
of triples (aka subgraph) can be stored within a single document, or across
documents, too. The utility of doing so depends, of course, on the indexing
and query mechanisms supported. There’s no point storing triples in docu-
ments if you can’t query them.

Search engines
It may seem strange to include search engines in this chapter, but many of
today’s search engines use an architecture very similar to NoSQL databases.
Their indexes and query processing are highly distributed. Many search engines
are even capable of acting as a key‐value or document store in their own right.

NoSQL databases are often used to store unstructured data, documents, or
data that may be stored in a variety of structures, such as social media posts
or web pages. The structures of this indexed data vary greatly.

Also, document databases are appropriate in cases where system administra-
tors or developers frequently don’t have control of the structures. This situ-
ation is common in publishing, where one storefront receives feeds of new
books and their metadata from many publishers.

Although publishers use similar standards such as PDF and ePub for docu-
ments and ONIX XML files for metadata, they all produce documents in
slightly different ways. As a result, consistent handling of data is difficult, and
publishing is a great use case for a Document database.

Similar problems occur in the defense and intelligence realms. An agency
may receive data from an ally or a terrorist’s hard disk in a variety of formats.
Waiting six months to develop a revised relational database schema to
handle a new type of target is not viable! This is where document NoSQL
databases can be used.

Storing many structures in a single database necessitates a way to provide a
standard query mechanism over all content. Search engines are great for that
purpose. Consider search as a key requirement to unstructured data manage-
ment with NoSQL Document databases.

Search technology is different from traditional query database interface
technology. SQL is not a search technology; it’s a query language. Search deals
with imperfect matches and relevancy scoring, whereas query deals with
Boolean exact matching logic (that is, all results of a query are equally relevant).

38 Part I: Getting Started with NoSQL

Hybrid NoSQL databases
Given the range of data types being managed by NoSQL databases, you’re for-
given if you think you need three different databases to manage all your data.
However, although each NoSQL database has its core audience, several can
be used to manage two or more of the previously mentioned data structures.
Some even provide search on top of this core all‐data platform.

A recent claim in relational circles is that NoSQL databases cannot manage a
range of NoSQL data types. Throughout this book, I explain the core capabili-
ties of each type of NoSQL database. Use this information to separate vendor
claims from facts.

Hybrid databases can easily handle document and key‐value storage needs,
while also allowing fast aggregate operations similar to how column stores
work. Typically, this goal is achieved by using search engine term indexes,
rather than tabular field indexes within a table column in the database
schema design itself.

The functionality provided, though, is often the same as in column stores. So,
these products have three or four of the preceding types covered: key‐value,
document, and column stores, as well as search engines.

Many databases are moving in this direction. In Part 7, I highlight the data-
bases that are leading the way.

Available NoSQL products
At my last count, there were more than 250 databases described by analysts
in the NoSQL field. With so many (and because of this book’s page count,
plus the risk of repetitive strain injury), I had to select only a few of them.
Here is a condensed list of the leaders in providing NoSQL databases:

▶✓ Columnar: DataStax, Apache Cassandra, HBase, Apache Accumulo,
Hypertable

▶✓ Key‐value: Basho Riak, Redis, Voldemort, Aerospike, Oracle NoSQL

▶✓ Triple/graph: Neo4j, Ontotext’s GraphDB (formerly OWLIM), MarkLogic,
OrientDB, AllegroGraph, YarcData

▶✓ Document: MongoDB, MarkLogic, CouchDB, FoundationDB, IBM
Cloudant, Couchbase

39 Chapter 2: NoSQL Database Design and Terminology

▶✓ Search engine: Apache Solr, Elasticsearch, MarkLogic

▶✓ Hybrid: OrientDB, MarkLogic, ArangoDB

In Parts II through VII, I deal with each type of NoSQL database in turn,
describing the key unique features of each option and reviewing one product
of each type in detail.

Describing NoSQL
If you studied databases in school, you may have been indoctrinated in a
relational way of thinking. Say database to most people, and they think rela-
tional database management system. This is natural because during the past
30 years, the RDBMS has been so dominant.

Getting your head around NoSQL can be a bit hard, but this book was created
to make it as easy as possible.

To aid you on this journey, I want to introduce some key terms that are prev-
alent in the following chapters, as well as what they mean when applied to
NoSQL databases.

▶✓ Database construction

• Database: A single logical unit, potential spread over multiple
machines, into which data can be added and that can be queried
for data it contains.

 The relational term tablespace could also be applied to a NoSQL
database or collection.

• Data farm: A term from RDBMS referring to a set of read‐only rep-
lica sets stored across a managed cluster of machines.

 In an RDBMS, these typically can’t have machines added without
down time. In NoSQL clusters, it’s desirable to quickly scale out.

• Partition: A set of data to be stored together on a single node for
processing efficiency, or to be replicated.

 Could also be used for querying. In this case, it can be thought of
as a collection.

▶✓ Database structure

• Collection: A set of records, typically documents, that are grouped
together. This is based not on a property within the record set, but
within its metadata. Assigning a record to a collection is usually
done at creation or update time.

40 Part I: Getting Started with NoSQL

• Schema: In RDBMS and to a certain extent column stores. The
structure of the data must be configured in the database before
any data is loaded.

 In document databases, although any structure can be stored, it
is sometimes better to limit the structures by enforcing schema,
such as in an XML Schema Definition. NoSQL generally, though, is
regarded as schema‐free, or as supporting variable schema.

▶✓ Records

• Record: A single atomic unit of data representation in the particular
database being described.

 In an RDBMS, this would be a row, as it is in column stores. This
could also be a value in a key‐value store, a document in a docu-
ment store, or a subject (not triple) in a triple store.

• Row: Atomic unit of record in an RDBMS or column store.

 Could be modeled as an element within a document store or as a
map in a key‐value store.

• Field: A single field within a record. A column in an RDBMS.

 May not be present in all records, but when present should be of
the same type or structure.

• Table: A single class of record. In Bigtable, they are also called
tables. In a triple store, they may be called subject RDF types or
named be graphs, depending on the context. In a document store,
they may be collections. I’m using record type generically to refer
to this concept.

▶✓ Record associations

• Primary key: A guaranteed unique value in a particular table that
can be used to always reference a record. A key in a key‐value
store, URI in a document store, or IRI in a triple or graph store.

• Foreign key: A data value that indicates a record is related to a
record in a different table or record set. Has the same value as the
primary key in the related table.

• Relationship: A link, or edge in graph theory, that indicates two
records have a semantic link. The relationship can be between two
records in the same or different tables.

 In RDBMS, it’s normally other tables, whereas in a triple store it’s
common to relate subjects of the same type (people in a social
graph, for example). Some databases, mainly graph stores, support
adding metadata to the relationships.

41 Chapter 2: NoSQL Database Design and Terminology

▶✓ Storage organization

• Server: A single computer node within a cluster. Typically runs a
single instance of a database server’s code.

• Cluster: A physical grouping or servers that are managed together
in the same data center to provide a single service. May replicate
its databases to clusters in other data centers.

• Normal form: A method of normalizing, or minimizing duplication,
in data in an RDBMS.

 NoSQL databases typically lead to a denormalized data structure in
order to provide faster querying or data access.

▶✓ Replication technology

• Disk replication: Transparent replication of data between nodes in
a single cluster to provide high‐availability resilience in the case of
a failure of a single node.

• Database replication: Replication between databases in different
clusters. Replicates all data in update order from one cluster to
another. Always unidirectional.

• Flexible replication: Provides application controlled replication
of data between databases in different clusters. Updates may not
arrive in the same order they were applied to the first database.
Typically involves some custom processing, such as prioritization
of data updates to be sent next. Can be bi‐directional with appro-
priate update conflict resolution code.

▶✓ Search tools

• Index: An ordered list of values present in a particular record.

• Reverse index: An ordered list of values (terms), and a list of pri-
mary keys of records that use these terms.

 Provides for efficient unstructured text search and rapid aggrega-
tion functions and sorting when cached in memory.

• Query: A set of criteria that results in a list of records that match
the query exactly, returned in order of particular field value(s).

• Search: A set of criteria that results in a relevancy‐ordered list that
match the query.

 The search criteria may not require an exact match, instead return-
ing a relevancy calculation weighted by closeness of the match to
the criteria. This is what Google does when you perform a search.

42 Part I: Getting Started with NoSQL

Applying Consistency Methods
The consistency property of a database means that once data is written to
a database successfully, queries that follow are able to access the data and
get a consistent view of the data. In practice, this means that if you write a
record to a database and then immediately request that record, you’re guar-
anteed to see it. It’s particularly useful for things like Amazon orders and
bank transfers.

Consistency is a sliding scale, though, and a subject too deep to cover here.
However, in the NoSQL world, consistency generally falls into one of two
camps:

▶✓ ACID Consistency (ACID stands for Atomicity, Consistency, Isolation,
Durability): ACID means that once data is written, you have full consis-
tency in reads.

▶✓ Eventual Consistency (BASE): BASE means that once data is written, it
will eventually appear for reading.

A battle has been raging between people who believe strong consistency
in a database isn’t required and those who believe it absolutely is required
(translate people to NoSQL companies’ marketing departments!).

The reality is somewhere in between. Does it matter that a person’s Facebook
post isn’t seen by all his friends for five minutes? No, probably not. Change
“Facebook post” to “billion‐dollar‐financial transaction,” though, and your
attitude changes rapidly! Which consistency approach you pick depends
on the situation. In my experience, though, strong consistency is always the
choice in mission‐critical enterprise system situations.

When you finish this book, one of the things I hope you take away is the dif-
ference between eventual consistency (BASE) and strong consistency (ACID),
which I cover next.

ACID
ACID is a general set of principles for transactional systems, not something
linked purely to relational systems, or even just databases, so it’s well worth
knowing about. ACID basically means, “This database has facilities to stop you
from corrupting or losing data,” which isn’t a given for all databases. In fact,
the vast majority of NoSQL databases don’t provide ACID guarantees.

43 Chapter 2: NoSQL Database Design and Terminology

Foundation DB, MarkLogic, and Neo4j are notable exceptions. Some NoSQL
databases provide a lower‐grade guarantee called Check and Set that verifies
whether someone else has altered a document before allowing a transaction
to complete. This behavior is usually limited because it tends to be imple-
mented on a single‐record basis.

MongoDB is a notable database that provides Check and Set capabilities.
With MongoDB, an entire node‐worth of data can be locked during an update,
thereby preventing all read and all write operations until the operation com-
pletes. The company is working on removing this limitation, though.

How ACID works
ACID is a four-letter acronym, as explained
here:

▶✓ Atomicity: Each operation affects the
specified data, and no other data, in the
database.

▶✓ Consistency: Each operation moves the
database from one consistent state to
another.

▶✓ Isolation: One operation in-flight does not
affect the others.

▶✓ Durability: The database will not lose
your data once the transaction reports
success.

ACID transactional consistency can be
provided various ways:

▶✓ In the locking model, you stop data from
being read or written on the subset of
information being accessed until the
transaction is complete, which means
that during longer-running transactions,
the data won’t be available until all of the
update is committed.

▶✓ An alternative mechanism is multiversion
concurrency control (MVCC), which bears
no resemblance to document versioning;
instead, it’s a way of adding new data
without read locking.

In MVCC, each record gets a creation
and deletion timestamp. When a record is
created, it’s given a creation timestamp.
When a new transaction starts that alters
that record, a new record is created with
different information — the original data
isn’t altered or locked.

This behavior means the original can still
be read with all original values, even during
a long-running transaction. Only when the
transaction completes is the old record
given a deletion timestamp.

The database shows only the latest
undeleted record at the time you start
your query. Therefore, transactions don’t
interfere with each other. MVCC provides
for fully serializable transactions, which is
a hard beast to implement!

The downside is that your database
periodically needs a merge operation
to remove deleted records, although
this is usually managed automatically,
so generally only a small storage price
is paid for rapid ingestions or updates.
This approach, however, does require
that the database administrator plan for
this occasional extra read and write load
when sizing the hardware required for a
particular NoSQL database application.

44 Part I: Getting Started with NoSQL

BASE
BASE means that rather than make ACID guarantees, the database has a tun-
able balance of consistency and data availability. This is typically the case
when nodes in a given database cluster act as primary managers of a part of
the database, and other nodes hold read‐only replicas.

To ensure that every client sees all updates (that is, they have a consistent
view of the data), a write to the primary node holding the data needs to lock
until all read replicas are up to date. This is called a two‐phase commit — the
change is made locally but applied and confirmed to the client only when all
other nodes are updated.

BASE relaxes this requirement, requiring only a subset of the nodes holding
the same data to be updated in order for the transaction to succeed.
Sometime after the transaction is committed, the read‐only replica is updated.

The advantage of this approach is that transactions are committed faster.
Having readable live replicas also means you can spread your data read load,
making reading quicker.

The downside is that clients connecting to some of the read replicas may see
out‐of‐date information for an unspecified period of time. In some scenarios,
this state is fine. If you post a new message on Facebook and some of your
friends don’t see it for a couple of minutes, it’s not a huge loss. If you send a
payment order to your bank, though, you may want an immediate transaction.

An alternative approach to read‐only replicas is to have a shared‐nothing
cluster in which only one node on a cluster always serves a particular part of
the database.

Shared‐nothing doesn’t mean you lose replication, though. Databases that
employ this method typically do replicate their data to a secondary area on
another primary node or nodes — but only one node is the master for reads
and writes at any time.

Shared‐nothing clusters have the advantage of a simpler consistency model
but require a two‐phase commit to replicas. This fact means the transaction
locks while all replicas are updated. (An internal lock plus locking for other
nodes gives you two phases.)

This typically has less impact than shared data clusters with read-only rep-
licas, though, because shared‐nothing replica data areas don’t receive read
requests for that part of the database. Therefore, two‐phase commits are
faster on a shared‐nothing cluster than on a cluster with readable replicas.

45 Chapter 2: NoSQL Database Design and Terminology

Choosing ACID or BASE?
As you might expect, much of the argument is because NoSQL vendors can
differentiate themselves from their competitors by claiming a different,
unique approach. It’s interesting to note, however, the number of NoSQL ven-
dors with ACID‐compliance on their roadmap.

Some NoSQL databases have ACID‐compliance on their roadmap, even
though they are proponents of BASE, which shows how relevant ACID guar-
antees are to enterprise, mission‐critical systems.

Many companies use BASE‐consistency products when testing ideas because
they are free but then migrate to an ACID‐compliant paid‐for database when
they want to go live on a mission‐critical system.

The easiest way to decide whether you need ACID is to consider the interac-
tions people and other systems have with your data. For example, if you add
or update data, is it important that the very next query is able to see the
change? In other words, are important decisions hanging on the current state
of the database? Would seeing slightly out‐of‐date data mean that those deci-
sions could be fatally flawed?

In financial services, the need for consistency is obvious. Think of traders
purchasing stock. They need to check the cash balance before trading to
ensure that they have the money to cover the trade. If they don’t see the cor-
rect balance, they will decide to spend money on another transaction. If the
database they’re querying is only eventually consistent, they may not see a
lack of sufficient funds, thus exposing their organization to financial risk.

Similar cases can be built for ACID over BASE in health care, defense,
intelligence, and other sectors. It all boils down to the data, though, and the
importance of both timeliness and data security.

Availability approaches
Consistency is a sliding scale, not an absolute. Many NoSQL databases allow
tuning between levels of consistency and availability, which relates to the
CAP theorem.

The CAP theorem is a computer science conjecture, now proven, that shows
the list of options as to how the balance between consistency, availability,
and partitioning can be maintained in a BASE database system.

46 Part I: Getting Started with NoSQL

Eric Brewer has a lot to answer for! He came up with the CAP conjecture
in 2000. It was later proved in 2002, and so is now a theorem. The CAP
 theorem in computer science is fundamental to how many NoSQL databases
manage data.

CAP stands for Consistency, Availability, and Partitioning, which are aspects
of data management in databases. Here are some questions to consider when
considering a BASE and thus CAP approach:

▶✓ Consistency: Is the database fully (ACID) consistent, or eventually con-
sistent, or without any consistency guarantees?

▶✓ Availability: During a partition, is all data still available (that is, can a
partitioned node still successfully respond to requests)?

▶✓ Partitioning: If some parts of the same database cluster aren’t commu-
nicating with each other, can the database still function separately and
correct itself when communication is restored?

The CAP theorem states that you cannot have all features of all three at the
same time. Most of the time, this is claimed to mean that you can have only
two of the three. The reality is that each is a sliding scale. You may be able to
trade off a little of one for more of another.

A traditional RDBMS typically provides strong consistency. Some clustered
RDBMS also provide good availability, but they don’t provide partitioning.

Availability in the CAP theorem is a different concept from high availability as
used to describe services. In CAP, I’m talking about data availability.

Also, remember that the definition of consistency in ACID isn’t the same defi-
nition as in CAP:

▶✓ In ACID, it means that the database is always in a consistent state.

▶✓ In CAP, it means that a single copy of the data has been updated.

Therefore, in CAP, a system that supports BASE can be consistent.

On the other hand, some NoSQL products, such as Cassandra, are partition‐
tolerant. Each part of the database continues to operate if one is not
 communicating with the rest of the nodes. This typically occurs because
of networking outages rather than outright system failure.

When you allow part of a database to be updated when partitioned,
you’re saying that the other part of the database cannot see this update.
Consequently, allowing partitioning means you always lose some consistency.

47 Chapter 2: NoSQL Database Design and Terminology

Typically, the tradeoff is between consistency and partitioning when you talk
about cross data‐center database replication use. A particular NoSQL data-
base generally provides either

▶✓ CA (consistency and availability)

▶✓ AP (availability and partition tolerance)

A pragmatic approach to this problem is to allow a data center to operate at
full consistency but to make the other data centers’ replicas lag their primary
stores, thus becoming eventually consistent. In the real world, this setup is the
best you can hope for — even permanent fiber cables get dug up by humans!

Within a single data center, you can trade consistency and availability. Some
NoSQL databases allow you to tune consistency, usually by adding read‐only
replicas of data on additional nodes. Replicas are updated outside the trans-
action boundary and, therefore, are eventually consistent. The upside to this
approach is improved read performance and greater availability (at least for
read, not write).

Some NoSQL databases don’t relax the consistency model when performing
this local disk replication between nodes. The MarkLogic NoSQL database,
for example, updates its replicas in the local data center within a transac-
tion boundary using a two‐phase commit. This means the replicas are always
consistent, so if an outage occurs that affects the primary node for data, the
secondary node takes over and provides ACID consistency and availability
for both write and read operations.

These replicas in MarkLogic are held on nodes that manage their own pri-
mary data. Other NoSQL databases’ same data‐center replicas are stored on
nodes that are only for failover — they are read replicas only. As a result,
more hardware is needed in these products, just in case of an outage.

It’s worth taking into account how NoSQL databases provide local data repli-
cas, as well as how (or if) they have data management or catalog nodes, par-
ticularly in terms of their support for high availability and also cost. In this
case, you could have three primary nodes and two replicas for each, with a
total of nine systems. In this way, you basically triple your computing costs!
These are important points when comparing apparently low‐cost options to
other databases. Don’t worry, though, in Parts II through VII, you find out
about these and other enterprise issues you need to be aware of.

48 Part I: Getting Started with NoSQL

Developing applications on NoSQL
One of the most common conclusions about the emergence of NoSQL data-
bases is that of polyglot persistence. Polyglot persistence means that, in order
to write a single complete application, the application’s developer must use
multiple types of databases, each for its most appropriate data type.

I am a polyglot persistence sceptic because I think multiple databases are
only required because hybrid NoSQL databases are in their infancy, which
I’m not convinced will last; however, people are practicing implementing
polyglot persistence now, and no discussion of NoSQL’s relevance is com-
plete without including this topic. Moreover, this discussion may influence
decisions you make about which software to purchase over the next 5 to
25 years.

Martin Fowler (no relation to me, honest!) writes in his book with Pramod
Sadalage, NoSQL Distilled, about the era of polyglot persistence. In this book
he describes how he believes that polyglot persistence will be a long-term
need in enterprise systems. Whatever the truth turns out to be, you need to
be aware of the current limitations to data type handling in NoSQL databases.

Polyglot persistence
The database world has gone through a steady evolution over the last 40
years. When relational databases first became popular, developers wondered
if they would replace mainframe systems and would require them to write
applications using data from both types of systems, or replace them entirely.

Of course, mainframes still run many more financial transactions than rela-
tional databases do. These mainframes are generally hidden under corporate
systems, away from the prying eyes of application developers. Both RDBMS
and mainframe systems are used in modern systems such as online banking.
The mainframe systems manage bank account balances whereas the RDBMS
manage online banking user preferences and application form filling data.

Using both mainframe and RDBMS databases in the same application is what
we term polyglot persistence.

On the other hand, you rarely see four or five different relational databases
for the same application. Even when used together, they are typically hidden
under a data access layer, so an application developer learns how to set up
communication with, for example, two SOAP (Simple Object Access protocol)
web services, not two different database systems.

49 Chapter 2: NoSQL Database Design and Terminology

Polyglot persistence explained
If you need to store a web of facts, a set of documents, and shopping cart
datasets, you can’t do so in one NoSQL database. Or when you can store
them, it’s hard to retrieve all data with a single query. Instead, you must use
a single data access layer to handle the various data storage demands, and
that’s where polyglot persistence comes in.

Polyglot persistence is the idea that a single application that uses different
types of data needs to use multiple databases behind that application.
Nobody sat down and decided that polyglot persistence was the way
 forward. It’s currently the case that no single database provides all the
 functionality of a column, key‐value, document, or triple store.

Unlike the relational database world where the structural support hasn’t
changed much in years (except for XML field support), NoSQL databases are
gradually crossing over and covering multiple data types. For example, the
Elasticsearch search engine is positioning itself as a JSON document store.
MongoDB, CouchDB, and MarkLogic have the concept of primary keys or
URIs. In this way, they act as key‐value stores — the value is just a document.

If you look closely at document NoSQL databases, you can see that they
provide some or a majority of the functionality you expect from a column or
key‐value store.

▶✓ If you’re considering a key‐value store but some features are missing
that handle specifics of the data, then consider a column store.

▶✓ If a column store can’t handle a very complex structure in your applica-
tion, then consider a document store.

▶✓ If you need to manage relationships or facts in your data, then you need
features of a triple store, too.

MarkLogic and OrientDB are interesting because they work as a document
store and also act as triple and key‐value stores. Traditional relational data-
base rows and modern NoSQL column families can be represented easily as a
document (JSON or XML).

Column stores are very good at holding a lexicon of data for a field across all
record instances. These lexicons can then be used to calculate aggregation
values quickly — for example, statistical operations like mean average, stan-
dard deviation, or even just listing unique values and their counts.

Some document databases expose their internal field indexes for similar
operations. MarkLogic, for example, allows a search to be executed with

50 Part I: Getting Started with NoSQL

faceted results returned. These facets are normally just counts of the
frequency of mentions of values within search results, and are used to power
search applications. Custom user‐defined functions (UDFs) and statistical
aggregate operations are also supported, though, just as with column stores.

Document databases achieve fast aggregate operations by allowing you to
index the structure (XML element or JSON property name and location) and
the value of data within a document, which expands the database capabilities
beyond just doing a search.

These indexes may be held or cached in memory, making the speed of
statistical operations equivalent to those in a column store. If you have data
structures that could be held in a document store but that you want to
perform calculations for, don’t discount document databases without looking
at their lexicon and index functions. You may find a single database to
answer multiple business problems.

You can take this scenario even further. If you apply search engine technol-
ogy over your indexes and provide a well‐designed query planner, then you
can limit your aggregate functions using query terms efficiently.

If these indexes and queries are handled across a cluster, then you have a
very fast in‐database MapReduce capability that is efficient for high‐speed
operational database workloads, as well as for analytic workloads.

NoSQL databases are progressively improving their internal search support.
In this regard, document databases and search engines in particular are
strongly linked technologies.

NoSQL vendors are trying to add all the preceding features to their products.
MarkLogic, for example, already provides these functions within a single
product.

I fully expect all NoSQL databases to follow suit. Once this happens, there
will be little reason to use multiple databases for non‐relational workloads. I
predict that by 2017, polyglot persistence in NoSQL will largely be a thing of
the past.

The death of the RDBMS?
It’s tempting to think that once NoSQL databases evolve to handle more data
and query types, the RDBMS will no longer be needed. Nothing could be fur-
ther from the truth because NoSQL databases can’t provide all the functional-
ity of a relational database.

51 Chapter 2: NoSQL Database Design and Terminology

When I was just a glint in my father’s eye, a lot of the world’s data was stored
on hierarchical mainframe systems. These days, you’re forgiven if you think
that all major systems use relational databases to store their data. Actually
this isn’t the case. The financial services industry is powered today by main-
frame systems. They are the core of all banking transactions that happen
today. They haven’t been replaced by relational databases because main-
frames are better suited for these particular loads.

The same will happen with relational databases. Those applications that are
better served by using NoSQL will migrate to those databases. An RDBMS
will still run structured, known data loads. Sales force management platforms
like Siebel, Salesforce, and Sugar CRM are good examples. Each sales cycle
has opportunities, accounts, deal teams, and product line items. There’s no
need for a schema agnostic approach in these systems. So why would people
migrate from a relational database to a NoSQL database?

The answer is, they won’t. The majority of today’s applications will stay on
relational databases. On the other hand, NoSQL databases can be used for
the following:

▶✓ New business problems

▶✓ Data loads where the schema isn’t known upfront or varies wildly

▶✓ Situations where existing relational databases aren’t providing the per-
formance required for the data being managed

Therefore, polyglot persistence’s outlook is similar to the state of affairs for
today’s traditional applications. You may have polyglot persistence over
mainframe, relational, and NoSQL systems, but you won’t have multiple types
of each database for each type of data store.

Some organizations do have legacy systems, though. So, they may have a
corporate direction to use Oracle’s relational database but still run IBM’s DB2
as well. It’s possible, therefore, that some applications do run polyglot per-
sistence over the same type of database, which reflects the slow pace of data
migrations, not the fact that each database is designed for a different data type.

Integrating Related Technologies
As I mentioned, NoSQL databases are adapting to support more data types.
As this is happening, their capabilities around this data will also expand.

These trends will allow organizations to simplify their overall architectures.
By analyzing their needs early, organizations can find a single product to meet

52 Part I: Getting Started with NoSQL

all their needs, rather than use three products that they must glue together.
For example, some current products may provide basic text‐search function-
ality but not all the functionality, such as word stemming, that a full‐fledged
search engine provides. Understanding your own needs first allows you to
select the correct product, or product set, for solving your business needs.

Nothing exists in a vacuum. Pizza needs cheese. Hardware needs software.
NoSQL databases are no different. Consequently, in this section, I cover a few
complementary technologies that you can consider using in NoSQL projects.
I mention them here because they’re fundamental to some of the NoSQL data-
bases I discuss later in this book.

Search engine techniques
NoSQL databases are used to manage volumes of unstructured content. Be
they long string fields, tweet content (all 140 characters), XML medical notes,
or plain text and PDF files. As a result, search functionality is important.
Whether the functionality is built in (for example, by embedding Lucene),
developed through an optimized search engine, or provided by links to exter-
nal search platforms (such as Solr or Elasticsearch) varies according to each
NoSQL vendor’s strategy.

People generally associate search engines only with full‐text searches.
However, there are many other uses for search engines.

MarkLogic, for example, comes with a built‐in search engine developed spe-
cifically for the data it was designed to store — documents. The database
indexes are the same as those used for full‐text search. MarkLogic includes a
universal index. As well as indexing text content, it indexes exact field values,
XML and JSON elements, and attribute and property names, and it maintains
document ID (URIs in MarkLogician‐speak) and collection lexicons.

Range indexes can be added to this mix after data is loaded and explored.
Range indexes enable you to take advantage of less‐than and greater‐than
style queries with integers and times, as well as more complex mathematics
such as geospatial searches.

Range index support enables MarkLogic to have one set of indexes to satisfy
simple document metadata queries, full‐text content queries, or complex
search queries, including geospatial or bi‐temporal queries.

Other NoSQL databases, though, are often linked to search engines. The most
common reason to do so is for full‐text search, so it’s no surprise that search
engines are often integrated to the document NoSQL databases.

53 Chapter 2: NoSQL Database Design and Terminology

Some NoSQL databases embed the common Apache Lucene engine to add
full‐text indexes for string fields. In some situations, this is enough; but in
others, a full‐featured distributed search engine is required to run alongside
your distributed NoSQL database.

Solr is a distributed search platform that uses Lucene internally to do the
indexes. Solr developers have applied many horizontal scalability tricks that
NoSQL databases are known for.

Solr can also be used as a simple document store, saving and indexing JSON
documents natively, similar to MarkLogic’s database.

The lines will continue to be blurred between document NoSQL databases
and distributed search platforms, which is why I include search engines
alongside the core types of NoSQL search.

Business Intelligence, dashboarding,
and reporting
Storing data is all very well and good, but it’d be nice to reuse it for strategic
work as well as for operational workloads. In the RDBMS world, an entire second
tier of databases is used to allow this type of historical analytics and reporting.

I’m speaking of course of data warehouses. These warehouses hold the same
information as an operational system but in a structure that’s more useful for
reporting tools to query.

The problem with this approach is that the source system and the ware-
house are never up to date. Typically, this report required an overnight
batch update, but sometimes the update occurs only once a week. You might
think this isn’t a big deal. However, with today’s fast pace, institutions are
finding that even a 24‐hour lag is too slow. Financial services, in particular,
must answer questions from regulators on the same day, sometimes within
five minutes of being asked!

So, there’s a need to perform business intelligence-style queries of data
held in operational data stores, showing the current real‐time state of the
database (for example, “What’s my current risk exposure to Dodgy Banking,
Incorporated?”).

In NoSQL column stores, data is still held in tables, rows, and column fami-
lies in a structure suited for the operational system, not a warehousing one.
Column databases, though, often provide the capability to update aggrega-
tions on the fly.

54 Part I: Getting Started with NoSQL

Logging databases are a good example. Cassandra has been used to store log
files from systems as events occur. These live events are aggregated auto-
matically to provide hourly, daily, weekly, and monthly statistics.

Document NoSQL databases take a different approach. They store primary
copies of data but allow data transformation on query and allow denormaliza-
tions to be computed on the fly (see Chapter 14 for more on providing alter-
native structures of data held in a document NoSQL database).

Regardless of the approach taken, NoSQL databases can be used simultane-
ously because both the operational data store and for warehousing workloads.

Naturally, you don’t want 25 Business Intelligence (BI) reporting users
retrieving vast copies of the data on an operational system. This use case
can be achieved by using a BI tool that understands the internal NoSQL
databases structure. Tableau, for example, has native connectors to several
NoSQL databases.

Alternatively, you can create read‐only replicas of your NoSQL database. You
can allow your reporting users to query that database rather than the live one.

In many situations, though, reporting needs are a lot less complex than
people might like to think. Many people simply want a solid operational view
of the current state of the world — in other words, dashboards.

You can create dashboards by using aggregate functions over indexes of
column or document stores. You can use search to restrict which data is
aggregated — for example, just give aggregates of sales from the Pacific
Northwest.

Having a NoSQL database with a rich REST (REpresentational State Transfer —
a simple way of invoking networked services) API that you can rapidly plug into
web widgets is advantageous when building out dashboarding apps, and it’s
even better if internal data structures (like search results, for example) are
supported by a NoSQL vendors’ JavaScript API. Using these API removes a lot
of the plumbing code you will need to write to power a dashboard.

Batch processing with Hadoop
Map/Reduce
Hadoop technology is designed for highly distributed data management and
batch analysis. The batch analysis part is called map/reduce. The idea is that
any operation, or chained operations, consists of two parts:

55 Chapter 2: NoSQL Database Design and Terminology

▶✓ The map phase fetches data stored in a record that matches a request.

▶✓ The reduce phase boils the data down to a single answer, which is
done by distributing the query to all nodes that contain relevant data.
Consequently, the work is massively parallelized.

Map/reduce is a way to spread workloads across nodes, assimilate them, and
boil them down to unique data before passing it to the client.

In a database context, this means farming a query to all the nodes that hold
data for that database and then merging data and removing duplicates when
they arrive.

A lot of the time, though, these queries only extract a subset of the data
to return as the answer to the caller or perform an aggregate match over
the data. Examples are typically counts, sums, and averages of elements
or values within each record (whether it’s a Bigtable column or a document
element).

Many NoSQL database vendors provide an in‐database map/reduce‐like
capability for farming out queries within the cluster and performing similar
analyses. In this way, they can take advantage of distributed querying with-
out always having to process all the data on the servers; instead in‐memory
indexes are evaluated, making index‐driven NoSQL databases faster than
map/reduce process‐driven HBase.

Hadoop HDFS
Hadoop uses a storage technology called the Hadoop Distributed File System
(HDFS). This functionality is particularly applicable to NoSQL.

NoSQL databases are highly distributed operational data stores, usually
with indexing. Hadoop is a highly distributed store, too, but currently is best
suited to batch processing.

The HDFS file system is a great way to use distributed storage and is a
cheaper alternative to SANs and NAS storage. You achieve a cost reduction
by using commodity servers without expensive RAID disk arrays.

RAID stands for Redundant Array of Inexpensive Disks. It means data is dis-
tributed among disks such that if one disk fails, the system can continue to
operate. True enough, the disks are inexpensive, but the RAID controller can
be costly!

56 Part I: Getting Started with NoSQL

Although the HDFS approach is slower in terms of query‐processing, for long‐
tail historical data, the tradeoff in cost of storage versus retrieval time may
be acceptable.

A NoSQL database that supports automated data tiering based on values can
help organizations manage the movement of information during its lifecycle,
from being added, updated during use (say financial data in the same
quarter), moved to low cost storage for historical low volume reporting,
and deletion.).

NoSQL vendors are moving to support HDFS in order to provide operational
databases to replace HBase. Accumulo, MongoDB, and MarkLogic are just
three examples of these products.

The trend, therefore, is for NoSQL databases to support Hadoop HDFS as
one of many types of storage tier while providing their own optimized query
processing. As long as the query returns the data you ask for, you don’t need
to be concerned about whether it uses Hadoop map/reduce or a database’s
internal query engine — as long as it fast!

Semantics
Semantic technology is a pet love of mine. Weirdly, it predates NoSQL by
years! Sir Tim Berners‐Lee came up with the principles of the semantic web
way back in 1998.

The concept models distributed data in such a way that computers can tra-
verse links among datasets on the web much like users traverse hyperlinks
among web pages.

Technologies like RDF and SPARQL are used to model and query shared data,
respectively. Resource Description Framework (RDF) is a common mecha-
nism for modeling assertions (known as triples). The query language SPARQL
is designed to be to triples what Structured Query Language (SQL) is to rela-
tional databases. These triples are stored in a triple store or a graph store.

These technologies have particular relevance for NoSQL. In an RDBMS,
people are used to querying across tables using relationships. NoSQL data-
bases don’t provide this construct.

However, triple stores provide relationships that can be dynamic, sub-
classed, and described in their own right, and where the relationships pos-
sible among records may not be known at the time a database is designed.

57 Chapter 2: NoSQL Database Design and Terminology

Triple stores, therefore, provide the flexibility in storing relationships that
other NoSQL databases provide for the data itself — namely, schema agnosti-
cism and the ability to store different data and relationships without schema
definition up front.

So, graph and triple stores hold the promise of providing the answer to
cross‐record joins currently lacking in other NoSQL databases. A particularly
good, albeit not widely used, example is OrientDB.

OrientDB allows you to define document attributes whose value may relate
to another document. This is similar to the primary/foreign key relationships
from the relational database world. What OrientDB does, though, is to auto-
matically generate the triples to describe this relationship when it recognizes
the data in documents.

Furthermore, OrientDB allows you to query this data and dynamically gener-
ate a merged document from the result of a set of relationships held in its
triple store. It’s a very cool approach that other NoSQL vendors are sure to
begin applying to their own databases.

Semantic technology also holds the promise of providing more context
around search. Rather than return documents that mention “Thatcher,” you
may want to say “Job Role: Thatcher” or “Politician (subclass of Person):
Thatcher.” This provides disambiguation of search terms.

Several products exist, including Temis, Smartlogic, and Open Calais, that
use text analytics to extract entities (people, places, and so on) and gener-
ate semantic assertions so they can be stored in a triple store, linked to the
source text it describes in the NoSQL database.

Public cloud
Something worth considering alongside adoption of NoSQL technology is the
public cloud. Companies like Amazon and Microsoft offer flexible infrastruc-
ture that can be provisioned and shut down rapidly, on demand. A cloud
approach aligns well with NoSQL because of NoSQL’s ability to scale across
many commodity systems.

Adopting NoSQL means you will have a database that naturally fits in a cloud
environment. Many NoSQL database products can have nodes added and
removed from a cluster dynamically with no down time, which means that
during periods of peak usage, you can deploy the hardware dynamically
using Amazon Web Services, for example, and also add extra database stor-
age or query capacity on demand, too.

58 Part I: Getting Started with NoSQL

Although many NoSQL databases have their roots in open‐source, enterprise
features — including cloud management utilities — these database features
though are available only as commercial add‐ons.

Some databases may be able to scale to any number of nodes, but providing
that extra capability may require the database to shut down, or at least nega-
tively affect short‐term performance.

These concerns and others are detailed alongside the products in Parts II
through VII of this book.

Evaluating NoSQL
In This Chapter

▶▶ Balancing technical requirements

▶▶ Assessing costs

▶▶ Maintaining database systems

S
o you’ve decided you need a NoSQL solution, but there are oh so many
options out there. How to decide?

Well, you begin by writing a Request for Information (RFI) and send it to
potential suppliers. You’re not a NoSQL expert, but you know what you like!
Unfortunately, you also know that the vendors’ responses to all your ques-
tions will be, “Yes, we can do that!”

So, your job is to separate the wheat from the chaff, and that’s the purpose
of this chapter. My intention is to help you identify the differences among the
many options and to make your post‐RFI analysis much easier.

The Technical Evaluation
When performing a technical evaluation of products, it’s tempting to create
a one‐size‐fits‐all matrix of features and functions against which you evaluate
all products.

When assessing NoSQL options, though, this approach rapidly falls apart.
NoSQL is too broad a category. With traditional relational database
management systems, you can request things like “SQL support” or “Allows
modifying the schema without system restart.”

Chapter 3

60 Part I: Getting Started with NoSQL

The range of NoSQL databases means one database may be strong
in managing documents, whereas another is strong in query
performance. You may determine that you need multiple products,
rather than carrying out a simple one‐size‐fits‐all box‐ticking
beauty pageant.

This section narrows your focus before embarking on the creation
of a compliance matrix for your evaluations. By doing so, you can
ask the right questions about the right products and do a high‐
value evaluation.

Table 3-1 NoSQL Data Management Use Cases

Data to Manage NoSQL Database
Trade documents (FpML), Retail
insurance policies (ACORD), healthcare
messages, e-form data

Document database with XML support

Monthly data dumps in text delimited
(CSV, TSV) files, or system/web log files

Bigtable clone for simple structures

Document database for very complex
structures

Office documents, emails, PowerPoint Document database with binary
document text and metadata extraction
support

Web application persistent data
(JavaScript Object Notation — JSON)

Document database with JSON
support and a RESTful API

Metadata catalog of multiple other
systems (for example, library systems)

Bigtable for simple list of related fields
and values

Document database for complex data
structures or full text information

Uploaded images and documents for
later retrieval by unique ID

Key-value store for simple store/
retrieval

Document store with binary text
extraction and search for more
complex requirements

RDF, N-Triples, N3, or other linked
(open) data

Triple store to store and query facts
(assertions) about subjects

Graph store to query and analyze
relationships between these subjects

Mix of data types in this table Hybrid NoSQL database

61 Chapter 3: Evaluating NoSQL

Which type of NoSQL is for you?
The first question is what does your data look like? Unlike relational data-
bases, where it’s a given that the data model includes tables, rows, columns,
and relationships, NoSQL databases can contain a wide variety of data types.

Table 3-1 matches data types with the NoSQL database you may want to
consider.

Search features
You can narrow the field of databases if you consider how data is managed
and how it’s revealed to users and other systems.

Query versus search
An entire book can be filled on discussing query versus search. However,
requirements tend to fit on a sliding scale of functionality from simple to
complex:

▶✓ Any NoSQL database should be able to handle basic queries. Retrieving
a record by an exact property, value, or ID match is the minimum func-
tionality you need in a database. This is what key‐value stores provide.
These basic queries match exact values, such as

• By the record’s unique ID in the database

• By a metadata property associated with the record

• By a field within the record

▶✓ Comparison queries, also commonly called range queries, find a stored
value within a range of desired values. This can include dates, numbers,
and even 2D geospatial coordinates, such as searching:

• By several matching fields, or fields within a range of values

• By whether a record contains a particular field at all (query on
structure)

 Comparison queries typically require a reverse index, where target
values are stored in sequence, and record IDs are listed against them.
This is called a Term List.

▶✓ Handling of free text, including more advanced handling such as
language selection, stemming, and thesaurus queries, which are
typically done by search engines. In the NoSQL world (especially
document NoSQL databases), handling unstructured or poly‐structured

62 Part I: Getting Started with NoSQL

data is the norm, so this functionality is very desirable for such a use
case, including support for searching:

• By a free text query

• By a stemmed free text query (both cat and cats stem to the word
cat) or by a thesaurus

• By a complex query (for example, geospatial query) across mul-
tiple fields in a record

• By calculating a comparison with a query value and the value
within a record’s data (for example, calculated distance of five
miles based on a point within a record, and the center of a
City — Finding hotels in London.)

 Some databases have these search functions built in, whereas others
integrate an Apache Lucene‐based search index or an engine such
as Solr.

▶✓ In the world of analytics, you calculate summaries based on the data in
matching records, and perhaps as compared to the search criteria. It’s
common to calculate relevancy based on distance from a point, instead
of simply returning all records within a point and radius geospatial
query. So, too, is returning a heat map of the data rather than all
matching data. These tools are useful for complex searches such as the
following:

• By calculating the above while returning a summary of all results
(for example, heat map, facetted search navigation, co‐occurrence
of fields within records)

• By an arbitrarily complex set of AND / OR / NOT queries combining
any of the previously mentioned query terms

• By including the above terms in a giant OR query, returning a
higher relevancy calculation based on the number of matches and
varying weights of query terms

▶✓ Facetted search navigation where you show, for example, the total
number of records with a value of Sales in the Department field is also
useful. This might be shown as “Department — Sales (17)” in a link
within a user interface. Faceting is particularly useful when your result
list has 10,000 items and you need to provide a way to visually narrow
the results, rather than force the user to page through 10,000 records.

Timeliness
Search engines were originally developed to over time index changes of data
sources that the search engine didn’t control. Engines like Google aren’t

63 Chapter 3: Evaluating NoSQL

informed when every web page is updated, so they automatically index web-
sites based on a schedule, for example:

▶✓ Rapidly changing and popular websites like BBC News and CNN may be
indexed every few minutes.

▶✓ The index of an average person’s blog may be updated weekly.

The timeliness of indexes’ updates is very important for some organiza-
tions. Financial regulators, for example, now need a near‐live view of banks’
exposure to credit risks — an overnight update of this vital information is no
longer sufficient.

If your information retrieval requirements are nearer the search end of the
spectrum than the basic query end, then you need to seriously consider time-
liness. If this describes you, I suggest considering two products:

▶✓ A NoSQL database for data

▶✓ A separate search engine like Solr or Elasticsearch for your search
requirements

Having these two products installed separately may not be sufficient to
guarantee timely access to new data. Even if you can use a NoSQL database
distribution that comes with Solr integrated, the indexes may not be updated
often enough for your needs. Be sure to check for this functionality when
talking to vendors.

When timely updating of search indexes is required, consider a hybrid
NoSQL solution that includes advanced search functionality, and definitely
ACID compliance in a single product. Sometimes, this may be a case for using
Solr built on Lucene as a document store, but many organizations need a full‐
blown commercial system like MarkLogic with both advanced data manage-
ment and search capabilities built in.

ACID compliance means the database provides a consistent view over the
data — so there’s no lag between the time the data is saved and the time it’s
accessible. Without an ACID compliant fully consistent view, the search index
can never be real time.

A NoSQL database with indexes that are used by both the database and
the search functionality means that when a document is saved, the search
indexes are already up to date, in real time.

64 Part I: Getting Started with NoSQL

RFI questions
The following sample questions identify key required features about information
retrieval, ranging from simple to advanced query and search functionality.

In this chapter, I use some common conventions for vendor specification
questions:

▶✓ I use these common abbreviations:

• TSSS = The System Should Support

• TSSP = The System Should Provide

• TSSE = The System Should Ensure

▶✓ I use the term “record,” but you may change it to “document,” “row,”
“subgraph” or “subject” when appropriate.

General data storage question examples:

▶✓ TSSS storing and retrieving a record by a unique key

▶✓ TSSS indexes over record fields for fast single‐key retrieval of matching
records

▶✓ TSSS not requiring additional compound indexes for retrieval of records
by multiple keys

▶ ▶Forcing the creation of additional compound indexes can adversely
affect storage, and means you need to consider up front every possible
query combination of fields.

▶✓ TSSS indexing a range of intrinsic field types (such as Boolean, text,
integer, and date)

▶✓ TSSS word, stem, and phrase full‐text searching across a record

▶✓ TSSS word, stem and phrase full‐text searching limited to a set of fields
in a record

▶✓ TSSS range queries, such as dates or integers within a particular range

▶✓ TSSS returning part of a record as a match (as an alternative to return-
ing a complete, long record)

▶✓ TSSS queries including multiple query terms

▶✓ TSSS limiting a query (or query terms) to a specific subset of a record
(normally for complex document NoSQL stores — for example, just the
“patient summary” section)

▶✓ TSSS returning configurable text snippets along with matches of a query

▶✓ TSSS custom snippeting to return matching data segments, not limited
to just text matches (for example, returning a three‐minute partial

65 Chapter 3: Evaluating NoSQL

description of a five‐hour video’s metadata that matches the query,
rather than returning the whole five hour video and forcing the user to
find the segment manually)

▶✓ TSSS, a configurable Google‐like grammar for searches beyond simple
word queries (for example, NoSQL AND author:Adam Fowler AND
(publication GT 2013))

▶✓ TSSS queries with compound terms (terms containing multiple terms)
down to an arbitrary depth

▶✓ TSSS geospatial queries for points held within records that match an area
defined by a bounding box, point‐radius, and arbitrarily complex polygon

For timeliness, include these questions:

▶✓ TSSE that search indexes are up to date within a guaranteed x minute
window of time from the time a record is updated

▶✓ TSSE that search indexes are up to date at the same time as the record
update transaction is reported as complete (that is, real‐time indexing)

▶✓ TSSS updating multiple records within the boundary of a single ACID
transaction

Be sure the vendor guarantees that all sizing and performance figures quoted
are for systems that ensure ACID transactions and real‐time indexing. Many
vendors often ascertain their quotes with these features turned off, which
leads to inaccurate estimates of performance for NoSQL databases on the web.

Scaling NoSQL
One common feature of NoSQL systems is their ability to scale across many
commodity servers. These relatively cheap platforms mean that you can
scale up databases by adding a new server rather than replace old hardware
with new, more powerful hardware in a single shot.

There are high‐volume use cases that will quickly force you to scale out.
These include

▶✓ You receive status reports and log messages from across an IT land-
scape. This scenario requires fast ingest times, but it probably doesn’t
require advanced analysis support.

▶✓ You want high‐speed caching for complex queries. Maybe you want
to get the latest news stories on a website. Here, read caches take
prominence over query or ingest speeds.

66 Part I: Getting Started with NoSQL

The one thing common to the performance of all NoSQL databases is that
you can’t rely on published data — none of it — to figure out what the
performance is likely to be on your data, for your own use case.

You certainly can’t rely on a particular database vendor’s promise on perfor-
mance! Many vendors quote high ingest speeds against an artificial use case that
is not a realistic use of their database, as proof of their database’s supremacy.

However, the problem is that these same studies may totally ignore query
speed. What’s the point in storing data if you never use it?

These studies may also be done on systems where key features are disabled.
Security indexes may not be enabled, or perhaps ACID transaction support
is turned off during the study so that data is stored quickly, but there’s no
guarantee that it’s safe.

This all means that you must do your own testing, which is easy enough, but
be sure that the test is as close to your final system as possible. For example,
there’s no point in testing a single server if you plan to scale to 20 servers.
In particular, be sure to have an accurate mix of ingesting, modifying, and
querying data.

Consider asking your NoSQL vendor these questions:

▶✓ Can you ensure that all sizing and performance figures quoted are for
systems that ensure ACID transactions during ingest that support real‐time
indexing, and that include a realistic mix of ingest and read/query requests?

▶✓ Does your product provide features that make it easy to increase a
server’s capacity?

▶✓ Does your product provide features that make it easy to remove unused
server capacity?

▶✓ Is your product’s data query speed limited by the amount of information
that has to be cached in RAM?

▶✓ Does your product use a memory map strategy that requires all indexes
to be held in RAM for adequate performance (memory mapped means
the maximum amount of data stored is the same as the amount of physi-
cal RAM installed)?

▶✓ Can your database maintain sub‐second query response times while
receiving high‐frequency updates?

▶✓ Does the system ensure that no downtime is required to add or remove
server capacity?

▶✓ Does the system ensure that information is immediately available for
query after it is added to the database?

67 Chapter 3: Evaluating NoSQL

▶✓ Does the system ensure that security of data is maintained without
adversely affecting query speed?

▶✓ Does the system ensure that the database’s scale‐out and scale‐back capa-
bilities are scriptable and that they will integrate to your chosen server pro-
visioning software (for example, VMWare and Amazon Cloud Formation)?

Keeping data safe
As someone who has an interest in databases, I’m sure you’re used to dealing
with relational database management systems. So, you trust that your data is
safe once the database tells you it’s saved. You know about journal logs, redun-
dant hard disks, disaster recovery log shipping, and backup and restore features.

However, in actuality, not all databases have such functionality in their basic
versions, right out of the box. In fact, very few NoSQL databases do so in
their basic versions. These functions tend to be reserved only for enterprise
or commercial versions.

So, here are a few guidelines that can help you decide which flavor of a
NoSQL database to use:

▶✓ If you choose open‐source software, you’ll be buying the enterprise
 version, which includes the preceding features, so you might as well
compare it to commercial‐only NoSQL databases.

▶✓ The total cost of these systems is potentially related more to their
day‐to‐day manageability (in contrast to traditional relational data-
base management systems) — for example, how many database
 administrators will you need? How many developers are required to
build your app?

▶✓ You need to be very aware of how data is kept safe in these databases,
and challenge all vendor claims to ensure that no surprises crop up
during implementation.

The web is awash with stories from people who assumed NoSQL databases
had all of these data safety features built in, only to find out the hard way
that they didn’t.

Sometimes the problems are simply misunderstandings or misconfigurations
by people unfamiliar with a given NoSQL database. Other times, though, the
database actually doesn’t have the features needed to handle the workload
and the system it’s used on.

A common example relates to MongoDB’s capability for high‐speed data
 caching. Its default settings work well for this type of load. However, if you’re

68 Part I: Getting Started with NoSQL

running a mission‐critical database on MongoDB, as with any database, you
need to be sure that it’s configured properly for the job, and thoroughly tested.

Here are some thoughts that can help you discover the data safety features
in NoSQL databases:

▶✓ The vendor should ensure that all sizing and performance figures
quoted are for systems that ensure strongly consistent (ACID)
transactions during ingest, real time indexing, and a real‐life mix
between ingest and read/query requests.

▶✓ Vendor should provide information about cases in which the database is
being used as the primary information store in a mission‐critical system.
This should not include case studies where a different database held the
primary copy, or backup copy, of the data being managed.

▶✓ TSSE that, once the database confirms data is saved, it will be recoverable
(not from backups) if the database server it’s saved on fails in the next
CPU clock cycle after the transaction is complete.

▶✓ Does the database ensure data is kept safe (for example, using journal
logs or something similar)?

▶✓ Does the system support log shipping to an alternative DR site?

▶✓ TSSE that the DR site’s database is kept up to date. How does your database
ensure this? For example, is the DR site kept up to date synchronously or
asynchronously? If asynchronously, what is the typical delay?

▶✓ TTSP audit trails so that both unauthorized access and system problems
can be easily diagnosed and resolved.

▶✓ What level of transactional consistency does your database provide by
default (for example, eventual consistency, check and set, repeatable
read, fully serializable)?

▶✓ What other levels of transactional consistency can your database be
configured to use (for example, eventual consistency, check and set,
repeatable read, fully serializable)? Do they include only the vendor’s
officially supported configurations?

▶✓ What is the real cost of a mission‐critical system?

• Ask the vendor to denote which versions of its product fully sup-
port high availability, disaster recovery, strong transactional con-
sistency, and backup and restore tools.

• Ask the vendor to include the complete list price for each product
version that achieves the preceding requirements for five physical
Intel 64 bit servers with 16 cores, with each running on Red Hat
Enterprise Linux. This provides an even playing field for comparing
total cost of ownership.

69 Chapter 3: Evaluating NoSQL

Visualizing NoSQL
Storing and retrieving large amounts of data and doing so fast is great, and
once you have your newly managed data in NoSQL, you can do great things,
as I explain next.

Entity extraction and enrichment
You can use database triggers, alert actions, and external systems to ana-
lyze source data. Perhaps it’s mostly free text but mentions known subjects.
These triggers and alert actions could highlight the text as being a Person
or Organization, effectively tagging the content itself, and the document it
lays within.

A good example is the content in a news article. You can use a tool like
Apache Stanbol or OpenCalais to identify key terms. These tools may see
“President Putin” and decide this relates to a person called Vladimir Putin,
who is Russian, and is the current president of the Russian Federation.

Other examples include disease and medication names, organizations, topics
of conversation, products mentioned, and whether a comment was positive
or negative.

These are all examples of entity extraction (which is the process of
automatically extracting types of objects from their textual names).
By identifying key terms, you can tag them or wrap them in an XML element,
which helps you to search content more effectively.

Entity enrichment means adding information based on the original text
in addition to identifying it. In the Putin example, you can turn the plain
text word “Putin” into <Person uid=”Vladimir-Putin”>President
Putin</Person>. Alternatively, you can turn “London” into <Place
lon=”-0.15” lat=”52.5”>London</Place>.

You can show this data in a user interface as highlighted text with a link to
further information about each subject.

You can provide enrichment by using free‐text search, alerting, database triggers,
and integrations to external software such as TEMIS Luxid and SmartLogic.

Search and alerting
Once you store your information, you may want to search it. Free‐text search
is straightforward, but after performing entity extraction, you have more
options. You can specifically search for a person named “Orange” (as in
William of Orange) rather than search records that mention the term
orange — which, of course, is also a color and a fruit.

70 Part I: Getting Started with NoSQL

Doing so results in a more granular search. It also allows faceted navigation.
If you go to Amazon and search for Harry Potter, you’ll see categories for
books, movies, games, and so on. The product category is an example of a
facet, which shows you an aspect of data within the search results — that is,
the most common values of each facet across all search results, even those
not on the current page.

User interfaces can support rich explorations into data (as well as basic
Google‐esque searches). Users can also utilize them to save and load previ-
ous searches.

You can set up saved search criteria so that alerts are activated when
newly added records match that criteria. So, if a new record arrives
that matches your search criteria, an action occurs. Perhaps “Putin”
becomes <Person>Putin</Person, or perhaps an email lets you know a new
scientific article has been published.

Not all search engines are capable of making every query term an alert. Some
are limited to text fields; others can’t do geospatial criteria. Be sure yours
can handle the alerts you need to configure.

Aggregate functions
Once you find relevant information, you may want to dig deeper. Depending
on the source, you might ask how many countries have a GDP of greater
than $400 billion, or what’s the average age of all the members in your family
tree, or where do the most snake bites occur in Australia. These examples
illustrate how analytics are performed over a set of search results. These are
count, mean average, and geospatial heat map calculations, respectively.

Being able to make such calculations next to the data offers several
advantages. The first advantage is that you can use the indexes to speed
things up. Secondly, these indexes are likely to be cached in memory, making
them even faster. Thirdly, in memory indexes are particularly useful for a
NoSQL database using Hadoop File System (HDFS) storage. HDFS doesn’t do
native indexing or in‐memory column stores for fast aggregation calculations
itself — it requires a NoSQL database on top to do this.

Facetted navigation is an example of count‐based aggregations over search
results that show up in a user interface. The same is true for a timeline
showing the number of records that mention a particular point in time.
For example, do you want to show results from this year, this month, or
this hour?

If you want this functionality, be sure your database has the ability to
calculate aggregates efficiently next to the data. Most NoSQL databases do,
but some don’t.

71 Chapter 3: Evaluating NoSQL

Charting and business intelligence
The next obvious user‐interface extension involves charting and viewing
table summaries for live management information and historical business
intelligence analysis.

Most NoSQL databases provide an easy‐to‐integrate REST API in their
 databases. This means you can plug in a range of application tiers, or even
directly connect JavaScript applications to these databases. A variety of
excellent charting libraries are available for JavaScript. You can even use the
R Ecosystem to create charts based on data held in these databases, after
installing an appropriate database connector.

Some NoSQL databases even provide an ODBC or JDBC relational data-
base plug‐in. Creating indexes within a given record and showing them as a
 relational view is a neat way to turn unstructured data in a NoSQL document
database into data that can be analyzed with a business intelligence tool.

Check whether your NoSQL database vendor provides visualization tools
or has business partners with tools than can connect to these databases.
In vogue tools include Tableau Server, which is a modern shared business
 intelligence server that supports publishing interactive reports over data in
a variety of databases, including NoSQL databases.

Extending your data layer
A database does one thing very well: It stores data. However, because all
applications need additional software to be complete, it’s worth ensuring
that your selected NoSQL database has the tools and partner software that
provide the extended functionality you require.

Not ensuring that extended functionality is supported will mean you will
end up installing several NoSQL databases at your organization. This means
additional cost in terms of support, training and infrastructure. It’s better
to be sure you select a NoSQL database that can meet the scope of your
goals, either through its own features or through a limited number of partner
 software products.

The ability to extend NoSQL databases varies greatly. In fact, you might think
that open‐source software is easy to extend; however, just because its API is
public, doesn’t mean it’s documented well enough to extend.

Whether you select open‐source or commercial software, be sure the
 developer documentation and training are first rate. You may find, for
 example, that commercial software vendors have clearer and more detailed

72 Part I: Getting Started with NoSQL

published API documentation, and well‐documented partner applications
from which you can buy compatible software and support.

These software extensions can be anything useful to your business, but
 typically they are on either the ingest side or the information analysis side
of data management rather than purely about storage. For example, extract,
transform, and load (ETL) tools from the relational database world are being
slowly (slowly) updated for NoSQL databases. Also partner end user applica-
tions are emerging with native connectors. The Tableau Business Intelligence
(BI) tool, for example, includes native connectors for NoSQL databases.

Ingestion connectors to take information from Twitter, SharePoint, virtual file
systems, and combine this data may be useful. Your own organization’s data can
be combined with reference data from open data systems (for example, data.
gov, data.gov.uk, geonames, and dbpedia websites). These systems typically use
XML, JSON or RDF as open data formats, facilitating easier data sharing.

Integration with legacy apps is always a problem. How do you display your
geospatially enriched documents within a GIS tool? It’s tricky. Open stan-
dards are key to this integration and are already widely supported. Examples
are GeoJSON, OGC WFS, and WMS mapping query connectors.

File‐based applications are always a bit of a problem. It’s a logical next step
to present a document database as a file system. Many NoSQL databases
support the old and clunky WebDAV protocol. Alas, as of yet, no file system
driver has become prevalent. Some NoSQL databases are bound to go this
way, though.

Ask your NoSQL vendors about their supported partner applications and
extensions. These may cost less than building an extended solution yourself,
or paying for vendors’ professional services.

The Business Evaluation
Technical skills are very necessary in order for you to build a successful
application. What is as important, but all too often given much lower priority,
is the business evaluation.

Writing the code is one thing, but selecting a database which has a
community of followers, proven mission critical success, and people and
organizations to call on for help when you need it is just as important.

In this section, I describe some of the areas of the non‐technical, or business
evaluation, you should consider when evaluating NoSQL databases.

73 Chapter 3: Evaluating NoSQL

Developing skills
NoSQL is such a fast‐growing area that the skills required to use it can’t keep
up, and with so many different systems, there aren’t any open standards
equivalent to those for SQL in the relational database world.

Therefore, it’s a good idea to find and employ or contract, at the right price,
those people who have expertise in the database you select. Also, be sure
that you can find online or in‐person training. In doing so, don’t accept,
outright, people’s LinkedIn profiles in which experience with MongoDB is
listed — sometimes it’s listed only because it’s a very popular database and
the person is looking for a job when in fact they haven’t any proven delivery
experience with that database. So, you want to be sure they’re actually
skilled in the database you’re using.

Getting value quickly
NoSQL databases make it easy to load data, and they can add immediate
value. For example, if early on you solve a few high‐value business cases,
you may get financial and management backing for larger projects. With this
background, you will be able to deploy new applications quickly —
potentially stealing a march on your competitors and having fun with
 awesome new databases in the process!

So, start by identifying high‐value solutions for a few difficult, well‐scoped,
business problems and perform some short‐term research projects on them.
Use a selection of NoSQL databases during the project’s initial phases, and
check whether vendor‐specific extensions can help you achieve your aims. In
NoSQL, vendor lock‐in is a given because every product is so different — you
may as well embrace the database that best fits your needs.

Having said this, the situation is improving. XML and JSON are the defacto
information interchange formats now. In the semantic technology space
 standards like RDF and SPARQL are the predominant standards. Adopting
these long term enables you to switch vendors, but at the moment the
 fragmented nature of implementation of some of these standards means you
may well be better off adopting database specific extensions.

Finding help
With any software product, there comes a point where you need to ask for
help. Finding answers on StackOverflow.com is one thing, but in a real‐life
project, you may come upon a knotty problem that’s unique to your business.

74 Part I: Getting Started with NoSQL

In this situation, web searches probably can’t help you. You need an expert
on the database you’re using. Before selecting a database, be sure you can
get help when you need it. This could be from freelance consultants or
NoSQL software vendors themselves.

Check the price tag, though, before selecting a database — some vendors are
charging double the day rate of others for a consultant to be on site. By hand-
ing software out for free or very cheaply they have to make their money
somewhere!

24 hour, 7 day, 365 day a year dedicated support is also a very good idea for
mission critical solutions. “Follow the sun” problem resolution models will
also help fix problems quickly. Some vendors’ support staff are less technical
IT support people, whereas other vendors use actually engineers able to take
your problem through to resolution themselves. This is quicker than having
to wait for the right time zone for a few third level support engineers to get to
work in the morning.

Deciding on open‐source versus
commercial software
Many people are attracted to open‐source software because of the price tag
and the availability of online communities of expertise. I use open‐source
software every day in my job — it’s essential for me, and it may well be
essential for you, too.

The good news is that you can find a lot of open‐source NoSQL vendors and
commercial companies that sell support, services, and enterprise versions of
their software.

Here are a few reasons to use open‐source software in the first place:

▶✓ Freely available software: This kind of software has been downloaded
and tried by others, so some developers are at least familiar with it; and
people spend time contributing only to the development of software
they consider valuable or are passionate about.

▶✓ Sites like StackOverflow.com: Sites like StackOverflow.com are
full of fixes, and someone has probably approached these sites with
 problems you’re likely to encounter.

▶✓ Try before you buy: With open‐source software, you can become
 familiar with a free version of software before sinking your annual
budget into purchasing an enterprise, fully supported version.

75 Chapter 3: Evaluating NoSQL

Conversely, there are several good reasons for buying and using commercial
NoSQL databases instead:

▶✓ Documentation: Product documentation is usually much more complete
and in‐depth than open‐source software.

▶✓ Support: These companies may offer global 24/7 support and will have
trainers, consultants, and sales engineers that can travel to your office
to show you how their software can help you — good for getting support
for internal proof of concept and business cases.

▶✓ Rationale: These companies make money by selling software, not
 consulting services — their day rates may be lower than those selling
add‐ons and support for open source databases, which can reduce the
cost of implementation.

▶✓ Products: Products usually have many more built‐in enterprise features
than open‐source ones do, which means you need fewer add‐on modules
and services.

▶✓ Freebies: Because of the overwhelming number of open‐source options,
commercial companies now offer free or discounted training and free,
downloadable versions of their products that you can use and evaluate.

Building versus buying
As I alluded to earlier, many open‐source NoSQL vendors make their money
by offering commercial support and services rather than by selling software.

Many open‐source NoSQL products are also very new, so not all the features
you may need are readily available in the software. As a result, you are likely
to spend money on paying for services to add this functionality.

Many organizations have internal technical teams, especially in financial
services companies and in some defense and media organizations. Because
financial services companies take any advantage they can get to make a
profit, so they hire very capable staff.

Your organization may also have a skilled staff. If so, “Congratulations,”
because you’re the exception rather than the rule! If you’re in this situation,
you may be able to add the extra features yourself, rather than buy expensive
services.

However, most organizations aren’t in this position, so it’s worth checking
out the “additional” features in commercial software, even if they don’t
provide every single feature you want of the box, but allow you to build those
features faster.

76 Part I: Getting Started with NoSQL

It’s easy to burn money paying for software to be built to fix deficiencies in
open source software. Consider the total cost of ownership of any future
NoSQL database.

Evaluating vendor capabilities
Whom to trust? Trusting no one, like Fox Mulder (remember, The X‐Files)
only gets you so far. Eventually, you must take the plunge and choose a firm
to help you in your endeavors.

Small companies may be local, independent consultancies or smaller NoSQL
vendors. They offer a couple of advantages:

▶✓ Small vendors may be more tuned into your industry or geography.
They’re particularly useful in small countries or sectors where large
commercial companies don’t often venture.

▶✓ Small vendors tend to be flexible — because you’re likely to be a major
percentage of their annual income, as well as a useful addition to their
portfolio.

Small vendors may be prone to financial troubles and downturns. Also, they
may not have enough personnel to service and support your organization’s
expanded use of a NoSQL database.

Large (usually commercial) software companies typically have their own
strengths:

▶✓ Large companies have a greater reach and more resources — both
human and financial — to call on.

▶✓ If you have a problem that needs to be solved fast, these companies may
be better placed to help you than smaller companies are.

 Large companies have broader experiences than smaller companies
have, which means the bigger companies have probably dealt with
unique edge cases. So, if you have a unique requirement, these compa-
nies may have people who’ve dealt with similar problems.

Finding support worldwide
You want to find out whether local support is available, as either service
consultants or engineering and product support personnel. Be sure you can
contact them in your time zone and that they speak your language fluently.

77 Chapter 3: Evaluating NoSQL

Perhaps you can request a meeting with their local support leader before
signing a contract.

In government organizations, security is paramount. In some countries,
a support person who’s reviewing log files and handling support calls for
public sector systems must have proper security clearance, and this is true
even for unclassified civilian systems. Usually, these stringent requirements
are due to government organizations having suffered data losses or theft in
the past. Be sure these people are available if you work in the public sector.

Expanding to the cloud
Many organizations outsource the delivery and support of their IT services to
a third party. When provisioning new hardware or applications, this process
is typically ongoing. It can also prove costly.

NoSQL databases often are used to solve emerging problems rapidly. Agile
development is the norm in delivering the solutions to these problems. This
is particularly the case when systems need to go into production within six
months or so.

Many organizations are now moving to the cloud for their provisioning and
servicing needs in order to make delivery of new IT systems less expensive
and more agile. Be sure your NoSQL database can be used in these environ-
ments.

Several NoSQL products have specific management features in a cloud envi-
ronment. Their management APIs can be scripted and integrated with exist-
ing systems management tools. Ask your vendor what support it has with the
cloud environment you choose.

Getting Support
All sophisticated IT systems have features that become acutely important if
they’re being used for business or mission‐critical jobs. This section details
many enterprise class features that you may want to consider if you’re run-
ning business critical workloads.

78 Part I: Getting Started with NoSQL

Business or mission‐critical features
If your organization’s reputation or its financial situation will suffer if your
system fails, then your system is, by definition, an enterprise class system.

A good example of such a system in the financial services world is a trade
management system. Billions of dollars are traded in banks every day. In this
case, if your system were to go down for a whole day, then the financial and
reputational costs would be huge — and potentially fatal to your business.

The consequences of a failure in a government system might be politically
embarrassing, to both executives and those implementing the systems! A
possible and more serious side effect, though, might be the risk of life and
limb. For example, take a military system monitoring advancing troops. If it
were to fail for a day, troops might be put in harm’s way.

In the civilian sphere, certainly in the UK and the European Union, primary
healthcare systems manage critical information. In the UK, there are what’s
called Summary Care Records in which patient information is held and
shared if needed — for example, information about allergies and medications.
If a person is rushed to a hospital, this record is consulted. Without this
information on hand, it’s possible that improper care might be given.

Vendor claims
Often, people confuse a large enterprise customer with a large enterprise
system. Amazon, for example, is definitely a large-enterprise organization.
Everyone is familiar with this organization, so naturally vendors will men-
tion Amazon in their marketing material if they have sold their software to
Amazon. If this software is for printing labels on HR folders though, it’s not a
mission critical enterprise system. Treat vendor claims with suspicion unless
you know exactly how these organizations are using the NoSQL databases
you are considering.

It’s worth reading the small print of these vendors’ customer success stories:

▶✓ If a database is used to store customer orders and transactions, then it’s
a mission‐critical enterprise system.

▶✓ If a database is used behind an internal staff car sharing wiki page, then
it’s most definitely not a mission‐critical application.

Some systems fall in between the preceding definitions of enterprise and non‐
enterprise systems. Consider, for example, a database that caches thumbnail

79 Chapter 3: Evaluating NoSQL

images of products on an e‐commerce website. Technically, an e‐commerce
app is mission‐critical. If the images weren’t available for a full day, that
 company might well have a major problem. In this scenario, it doesn’t take
much to imagine that the retailer’s reputation might be damaged.

But back to Amazon. If you’re buying this book from Amazon (and please do),
you probably don’t care about thumbnail images. If the database storing just
the thumbnail images were to fail, you would still be able to place orders;
therefore, this aspect of the system isn’t really mission‐critical, unlike the
preceding situation with the e‐commerce retailer’s system.

Vendors who mention a minor system and an enterprise customer in the same
breath aren’t trying to deceive you. It’s perfectly natural for a software
vendor to want to shout about a large enterprise customer from the
rooftops . . . not that you’d listen! It’s more an issue with the English language.

So, when selecting a NoSQL database, be aware of the difference between
an enterprise customer and an enterprise system. Ask vendors exactly how
their customers use their database software and how critical that part of the
system is to the large enterprise’s bottom line.

Enterprise system issues
When you’re trying to figure out whether a database will work in a mission
critical‐system, certain issues are obvious — for example, when running a
large cluster in which one server fails, the service as a whole is still available.

In this section, I cover these types of system maintenance issues along with
disaster recovery and backups.

Perhaps less obvious enterprise issues are about how particular parts of the
system work. Two main factors in an enterprise system are durability and
security:

▶✓ Durability relates to a database’s ability to avoid the loss of data. (You
may think a database shouldn’t be called a database unless it guarantees
that you can’t lose data, but in the NoSQL world durability isn’t a given.)

▶✓ Security is essential to many customers. Think, here, about health records
or military intelligence systems, as I mentioned earlier in the chapter.

This section treats these issues as being equally important with high
availability and disaster recovery because they are as important, if not vital,
for the organizations that need them. I include examples of databases which
support these features in each subsection so you can decide which one
might meet your requirements.

80 Part I: Getting Started with NoSQL

Security
Although security is a concern for all applications, it’s a particular concern
for certain types of applications. Earlier I talked about how a failed system
can harm financial services and government entities; the same is true in
terms of security for their databases.

When it comes to dealing with security‐related issues, you can choose from
a variety approaches. In this section, I cover issues and approaches related
particularly to the security of NoSQL databases.

If you think that you can implement security in a layer of an application layer
rather than in the database, you’re right. However, why spend the time,
effort, and money required to do so if you can purchase a database with
built‐in security features?

Doing otherwise will risk making security an afterthought, with programmers
instead spending most of their time on end‐user features rather than funda-
mental system architecture like ensuring security of data.

Given the amount of money you would spend writing in security features
and the risks to your reputation and finances if you were to have a security
breach, I recommend a security in depth approach. That is, buy a product
with security features you need built in, rather than try to develop them
yourself or rely on application developers to do so.

Role-based access control
One of the most common methods of securing data is to assign each record
(or document or graph, depending on your database type) with a set of per-
missions linked to roles. This is role-based access control, or RBAC for short.

Consider a news release for a website that is being stored in a document
(aggregate) NoSQL database. The editor role may have update permissions
for the document, whereas a more public role may have only read
permissions.

This use case requires assigning role permissions, not user permissions.
Users can be assigned to one or more roles. Thus, users inherit permissions
based on the sum of their roles.

Having to create a role in order to give a user permission to perform a par-
ticular function may seem like extra work, but this approach is very useful.
Consider a user who moves to another department or who leaves entirely.
You don’t want to have to look manually for every document whose permis-
sions mention this user and change or remove them. Instead just change that

81 Chapter 3: Evaluating NoSQL

user’s role assignments in a single operation. Using role-based access control
(RBAC) is much easier for long‐term maintenance of security permissions.

Watch how databases handle permissions and role inheritance. Consider
underwriters in an insurance company, where there may be trainee, junior,
and senior underwriters, each with increasing access to different types of
information.

You could assign the junior underwriters the permissions the trainees are
assigned, plus a few more. Then you could assign all the junior underwrit-
ers’ permissions to senior underwriters, plus a few more, again. If you want
to add extra permissions to all these roles, though, you have to make three
identical changes.

If you have five levels of roles, that’s five copies. Also, every system will have
a multitude of roles like these. Personally, I’m far too lazy to perform the
same mundane task over and over again. Plus, it wastes an employee’s time
and the organization’s money.

There is a better way: Role inheritance.

Some systems include role inheritance. In this case, the JuniorUnderwriter
role inherits from the TraineeUnderwriter role, and the SeniorUnderwriter
role inherits from the JuniorUnderwiter role. Now all you need to do to add
a permission to all roles is to add it to only the TraineeUnderwriter role (the
lowest level of inheritance), and all roles will inherit the permission. Role
inheritance is much easier to understand and maintain.

Role permission logic is generally implemented with OR logic. That is, if
you assign three roles — RoleA, RoleB, and RoleC — to a record with a read
permission, a user has this permission if he has RoleA OR RoleB, OR RoleC.
If you don’t assign role read permissions to a record, then no user has read
permissions on that record (inheritance aside, of course).

Compartment security
For the vast majority of systems, OR logic is fine. There are some instances,
however, where you want to use AND logic. In other words, a user must have
all of the TopSecret, OperationBuyANoSQLDatabase and UKManagement
roles in order to read a particular document.

This capability is variously referred to as compartment security (MarkLogic
Server) or cell level security (Apache Accumulo).

In government systems, you may have several compartments. Examples
include classification, nationality, operation, and organizational unit.

82 Part I: Getting Started with NoSQL

Each compartment has several roles. Classification, for example, may
have unclassified, confidential, secret and top secret roles linked to this
compartment.

A record is compartmentalized if it requires one or more roles that are
members of a compartment to have a permission on the record. A record
may have TopSecret:Read assigned to its permissions. Another record may
have only British:Read assigned. A third record, though, may require both
TopSecret:Read and British:Read.

Compartment security is different from normal RBAC permissions in that you
must have both TopSecret and British roles to receive the read permission
(AND logic). Normal RBAC requires only one of these roles (OR logic).

Although compartment security may sound like a very useful feature, and it’s
probably vital for military systems, many systems are implemented without
requiring this feature.

Attribute‐based access control (ABAC)
A useful pattern for security is to apply permissions based on data within a
record rather than separately assign permissions to the record. This could
be based on either metadata, individual column (Bigtable clones), or element
(Aggregate NoSQL databases) values.

A good example is a customer name being mentioned within a document. You
may want to restrict access to all the documents mentioning that customer
to only those people with access to this customer’s information. You can
restrict access to these documents by processing the data within the docu-
ment, and applying the relevant security permissions based on the value of
that data.

No NoSQL databases provide this capability right out of the box. That’s
because permissions must be assigned to the record after the data is saved
by the application but before it’s available for retrieval by other applications
or users. So, this permission assignment must occur within the transaction
boundary.

Also, very few NoSQL databases support ACID‐compliant transactions
(MarkLogic, FoundationDB, and Neo4j, do for example). You can find
 examples of ACID compliant NoSQL databases in Chapters 4 and 21, where
I provide a broader discussion about ACID compliance.

If a database doesn’t support out‐of‐the‐box assignment of permissions
based on data within a document but does support ACID transactions and
pre‐commit triggers, then an easy workaround is possible.

83 Chapter 3: Evaluating NoSQL

It’s generally easy to write a trigger that checks for the presence of a value
within a record and to modify permissions based on its value. As long as a
database supports doing so during the commit process, and not after the
commit, then you know your data is made secure by using a simple pre‐
commit trigger.

As an example, MarkLogic Server supports fully serializable ACID
transactions and pre‐commit triggers. Following is a simple XML document
that I want to support for attribute‐based access control:

<MeetingReport>
 <SalesPerson>jbloggs</SalesPerson>
 <Customer>ACME</Customer>
 <Notes>Lorem Ipsum Dolar Sit Amet...</Notes>
</MeetingReport>

MarkLogic Server’s triggers use the W3C XQuery language. The following
XQuery example is a simple trigger that, when installed in MarkLogic, assigns
read and write permissions:

xquery version "1.0-ml";
import module namespace
 trgr = 'http://marklogic.com/xdmp/triggers'
 at '/MarkLogic/triggers.xqy';
declare variable $trgr:uri as xs:string external;
declare variable $trgr:trigger as node() external;
if (“ACME” = fn:doc($trgr:uri)/MeetingReport/Customer)
then
 xdmp:document-set-permissions($trgr-uri,
 (xdmp:permission(“seniorsales”,”update”),
 xdmp:permission(“sales”,”read”)
)
)
else ()

Once the trigger is installed in the file setperms.xqy in a MarkLogic Server
Modules Database, execute the following code in the web coding application
for MarkLogic ‐ Query Console to enable the trigger. On a default MarkLogic
Server installation, you can find the Query Console at the URL: http://
localhost:8000/qconsole.

Here is code showing how to install the trigger using Query Console:

xquery version "1.0-ml";
import module namespace
 trgr='http://marklogic.com/xdmp/triggers'
 at '/MarkLogic/triggers.xqy';
trgr:create-trigger("setperms",

HTTP://LOCALHOST:8000/QCONSOLE
HTTP://LOCALHOST:8000/QCONSOLE

84 Part I: Getting Started with NoSQL

 "Set Sales Doc Permissions",
 trgr:trigger-data-event(
 trgr:collection-scope("meetingreports"),
 trgr:document-content("modify"),
 trgr:pre-commit()
), trgr:trigger-module(
 xdmp:database("Modules"), "/triggers/",
 "setperms.xqy"
), fn:true(),
 xdmp:default-permissions(),
 fn:false()
)

Identity and Access Management (IdAM)
Authorizing a user for access to information or database functionality is
one thing, but before you can do that, you must be sure that the system
“knows” that the user is who she says she is. This is where authentication
comes in. Authentication can happen within a particular database, or it can
be delegated to an external service — thus the term Identity and Access
Management (IdAM).

When relational databases were introduced, there were only a few standards
around authentication – that’s why most relational databases are still used
with internal database usernames and passwords. Most NoSQL databases take
this approach, with only a few supporting external authentication standards.

The most common modern standard is the Lightweight Directory Access
Protocol (LDAP). Interestingly, most LDAP systems are built on top of rela-
tional databases that hold the systems’ information!

NoSQL databases are a modern invention. They appeared at a time when
existing authentication and authorization mechanisms and standards exist,
and so many have some way of integrating with them.

Where to start, though? Do you integrate your NoSQL database with just a
single IdAM product, or do you try to write a lot of (potentially unused) secu-
rity integrations, and risk doing them badly? It’s tempting to expect NoSQL
databases to be ahead of the curve here — but let’s be realistic. No software
developer can possibly support all the different security systems out there.

Instead, each NoSQL database has its own internal authentication scheme,
and usually support for plugging in your own custom provider. NoSQL data-
bases provide a plugin mechanism as a first step before using this mecha-
nism to implement specific standards.

Although a lack of security system integrations is a weakness from the stand-
point of a box‐ticking exercise, providing a plugin mechanism actually allows

85 Chapter 3: Evaluating NoSQL

these databases to be flexible enough to integrate with any security system
you need.

Fortunately, LDAP is one of the first options that NoSQL vendors integrate.
On the Java platform, this may be presented as support for the Java
Authentication and Authorization Standard (JAAS). This is a pluggable
architecture, and one of its commonly used plug‐ins is LDAP directory server
support.

When selecting a NoSQL database, don’t get hung up that some don’t support
your exact authentication service. As long as the software can be adapted
relatively quickly using the database’s security plugin mechanism, that will
be fine. The product’s capabilities are more important, as long as they sup-
port security plug‐ins.

This is where it’s useful to have the resources of a commercial company sup-
porting your NoSQL database — writing these security integrations yourself
may take your software engineers longer, and they might even introduce
security bugs. Commercial companies have the resources and experience of
providing these integrations to customers.

External authentication and Single Sign‐On
A NoSQL database supporting a pluggable architecture, rather than a limited
set of prebuilt plug‐ins for authentication and authorization, can sometimes
be beneficial.

This is especially true in the world of Single Sign‐On (SSO). SSO allows you
to enter a single name and password in order to access any service you use
on a corporate network. It means your computer or application session is
recognized without you having to type in yet another password. Think of it as
“authentication for the password‐memory‐challenged.”

You’re probably already familiar with such systems. For example, did you
ever log on to Gmail, then visit YouTube and wonder why you’re logged on
there, too? It’s because both services use a single, independent logon
service — your Google account. Well, that’s SSO at work.

SSO is an absolute joy on corporate networks. Most of us need access to
many systems — in my case, dozens unfortunately — to do our daily jobs.

Explaining exactly how this works in detail is beyond the scope of this book,
but typically when you first log on to a site, you receive a token. Rather than
have your computer send your password to every single website (eek!), it
passes this token. Alone, the token means nothing, so passing it along is not a
security breach.

86 Part I: Getting Started with NoSQL

The token allows an application to ask the security system that created the
token a question, usually something like this: “Is this token valid, and does this
guy have access to use this service? If so, who is he and what roles does he
have?” Basically, behind‐the‐scene services do the legwork, and not the user.

The most common SSO on corporate networks is one provided on Microsoft
Windows machines and Microsoft Active Directory on the server‐side that
works automatically out of the box. Active Directory can issue Kerberos
tokens to you when you log on at the start of your working day. After logging
on, when you access any service that supports Kerberos SSO on the corpo-
rate network, you aren’t prompted again for a username and password.

The downside is that not all software services support every type of SSO
software, and they certainly don’t do it automatically out of the box. If you’re
planning on building a set of applications that a single user may need access
to using a NoSQL database then consider using an SSO product (who knows,
you might prevent someone’s meltdown).

Often, though, SSO token validation is handled by the application stack,
not by the underlying database. If you’re assigning roles and permissions
for records held in a NoSQL databases, you can reduce hassles during
 development by having the database use the same tokens, too.

Needing SSO support is especially true of use cases involving document
(aggregate) NoSQL databases. These types of records (documents) generally
are the types that have a variety of permissions. Most relational‐ or table‐
based (for example, Bigtable) systems give the same role based access to all
rows in a table. Documents tend to be a lot more fluid, though, changing from
instance to instance, and even between minor revisions.

Having support for SSO in the database, or at least allowing external authenti-
cation security plug‐ins to be added, is a good idea for document databases.

Security accreditations
The best yardstick for assessing any product — from databases to delivery
companies — is this: “Where have you done this before?” In some instances,
this information is commercially or security sensitive. The next best yard-
stick is, “Has anyone done due diligence on your product?”

When it comes to security, especially for government systems, organizations
are very unwilling to share exact technical knowledge. Even within the same
government! In this scenario, an independent assessment is the next best
thing to talking with someone who previously implemented the product.

87 Chapter 3: Evaluating NoSQL

If software vendors have significant footprints in government agencies,
their products will eventually be used in systems that require independent
verification for either

▶✓ A particular implementation — for example, information assurance (IA)
testing for a federal high‐security system

▶✓ A reference implementation of the product, its documentation, code
reviews, and security testing

Government agencies have their own standards for accreditation, and a vari-
ety of testing labs available to do this. In the U.S., a common standard to look
for is accreditation to Common Criteria (CC). Products are tested against
specific levels, depending on what they’re used for. A good yardstick for the
latest CC standard is EAL2 accreditation. This means that the software has
been tested in accordance with accepted commercial best practices.

You can find a good introduction to Common Criteria assurance levels and
their equivalents on the CESG website, the UK’s IA Technical Authority
for Information Assurance, at www.cesg.gov.uk/servicecatalogue/
Common-Criteria/Pages/Common-Criteria-Assurance-Levels.
aspx.

Generally, enterprise systems do their own security testing before going live.
These days it’s even commonplace for them to do so when handling material
that has a relatively low‐level classification, such as a database holding many
confidential documents, even for civilian government departments.

If the release of information your system is holding could result in a great risk to
reputation, financial stability, or life and limb, have your system independently
accredited — no matter which database you’re using — before it goes live.

Durability
It’s tempting to assume that a database — that is, a system that’s designed
to hold data — always does so in a manner that maintains the integrity of
the data. The problem is, data isn’t either safe or unsafe; its durability is on a
sliding scale.

Durability is absolutely vital to any mission‐critical system. Specific require-
ments depend on a number of factors:

▶✓ Using a database that is ACID‐compliant is necessary on mission‐critical
systems.

▶✓ Using an ACID‐compliant database reduces development costs in the
short‐term and maintenance costs over the long‐term.

WWW.CESG.GOV.UK/SERVICECATALOGUE/COMMON-CRITERIA/PAGES/COMMON-CRITERIA-ASSURANCE-LEVELS.ASPX
WWW.CESG.GOV.UK/SERVICECATALOGUE/COMMON-CRITERIA/PAGES/COMMON-CRITERIA-ASSURANCE-LEVELS.ASPX
WWW.CESG.GOV.UK/SERVICECATALOGUE/COMMON-CRITERIA/PAGES/COMMON-CRITERIA-ASSURANCE-LEVELS.ASPX

88 Part I: Getting Started with NoSQL

▶✓ If many records need to be updated in a single batch (with only either
All or Zero updates succeeding), then use a database that supports
transactions across multiple updates. (These NoSQL databases are lim-
ited in number.)

 Never use a database that reports a transaction is complete, when the
data may not be safe or the transaction applied. Several databases’
default consistency setting will allow you to send data to the database
with it being held just in RAM, without guaranteeing it hits disk. This
means if the server’s motherboard fails in the next few seconds you run
the risk of losing data.

Preparing for failure
The relational database management system revolution provided us with a
very reliable system for storing information. In many ways, we take those
management features for granted now.

For NoSQL databases, though, assume nothing! The vast majority of NoSQL
databases have been around only since 2005 or later. The developers of these
databases remain mostly concerned about building out data storage and
query functionality, not about systems maintenance features.

Resilience is when commercial NoSQL vendors, or commercial companies
offering an expanded enterprise version of an open‐source NoSQL product,
come into their own. These paid‐for versions typically include more of the
management niceties that system administrators are used to in large data-
base systems. Weigh the cost of these enterprise editions against the ease of
recovery from a backup, and don’t reject commercial software out of hand,
because the cost of a long outage could be much greater than the cost of a
software license.

When selecting a NoSQL database that needs to be resilient to individual
hardware failures, watch for the following features.

High availability (HA)
HA refers to the ability for a service to stay online if part of a system fails.
In a NoSQL database, this typically means the ability for a database cluster
to stay online, continuing to service all user requests if a single (or limited
number of) database servers within a cluster fail. Some users may have to
repeat their actions, but the entire service doesn’t die.

Typically, HA requires either a shared storage system (like a NAS or a SAN)
or stored replicas of the data. A Hadoop cluster, for example, stores all data

89 Chapter 3: Evaluating NoSQL

locally but typically replicates data twice (resulting in three copies) so that,
if the primary storage node fails, the data is still accessible. MarkLogic Server
can operate using shared storage or local replicated storage. Some NoSQL
databases that provide sharding don’t replicate their data, or they replicate it
just for read‐only purposes. Therefore, losing a single node means some data
can’t be updated until the node is repaired.

Disaster recovery (DR)
DR is dramatically described as recovering from a nuke landing on your
 primary data center. More likely, though, an excavator driver just cut your
data center’s Internet cable in half.

No matter the cause, having a hot standby data center with up‐to‐date copies
of your data ready to go within minutes is a must if your system is mission‐
critical. Typically, the second cluster is an exact replica of your primary data
center cluster.

I’ve seen people specify fewer servers for a DR cluster than for their primary
cluster. However, doing so increases your chance of a double failure! After
all, if your primary service goes down for 20 minutes, when the cluster goes
back online you’ll probably have the normal daily usage plus a backlog of
users ready to hit your DR cluster. So, specify equal or more hardware for a
DR center — not less. The shorter the downtime (under a couple of minutes
should be possible), the more likely you can use the exact configuration in
your primary and DR sites.

Scaling up
NoSQL databases were designed with considerable scalability in mind. So,
the vast majority of them implement clusters across many systems. Not all
NoSQL databases are born equal, though, so you need to be aware of scalabil-
ity issues beyond the basics.

In the following subsections, I promise to avoid really techie explanations
(like the intricacies of particular cluster query processing algorithms) and
discuss only issues about scalability that affect costs in time and money.

Query scalability
Some NoSQL databases are designed to focus more on query scalability than
data scalability. By that, I mean they sacrifice the maximum amount of data
that can be stored for quicker query processing. Graph databases are good
examples.

90 Part I: Getting Started with NoSQL

A very complex graph query like “Find me the sub graphs of this graph that
most closely match these subjects” requires comparing links between many
stored data entities (or subjects in graph speak). Because the query needs
data about the links between items, having this data stored across many
nodes results in a lot of network traffic.

So, many graph databases store the entire graph on a single node. This
makes queries fast but means that the only multiserver scalabilities you get
are multiple read‐only copies of the data to assist multiple querying systems.

Conversely, a document database like MongoDB or MarkLogic may hold
documents on a variety of servers (or database nodes). Because a query
returns a set of documents, and each document exists only on a single node
(not including failover replicas, of course), it’s easy to pass a query to each of
the 20 database nodes and correlate the results together afterward with mini-
mum networking communication.

Each document is self‐contained and evaluated against the query by only the
database node it’s stored on. This is the same MapReduce distributed query
pattern used by Hadoop MapReduce.

Storing your information at the right level means that the queries can be
evaluated at speed. Storing information about a program that deals with its
scheduling, genre, channel, series, and brand in a single document is easier
to query than doing complex joins at query time.

This is the old “materialized views versus joins” argument from relational
database theory reimagined in the NoSQL world.

In a document database, you can denormalize the individual documents
around series, programs, channels, and genres into a single document per
combination. So, you have a single document saying, for example, “Doctor
Who Series 5, Episode 1 will be shown on BBC 1 at 2000 on the March 3,
2015,” rather than a complex relational web of records with links that must
be evaluated at query time.

For an Internet catchup TV service, querying the denormalized document set
is as simple as saying “Return me all documents that mention ‘Doctor Who’
and ‘Series 5’ where the current time is after the airing time.’” No mention of
joins, or going off and looking across multiple record (in this case document)
boundaries.

Denormalization does, correctly, imply duplication. This is simply a tradeoff
between storage and update speed versus query speed. It’s the same tradeoff
you’re used to when creating views in relational databases, and it should be
understood in the same way — that is, as a way to increase query perfor-
mance, not a limitation of the database software itself.

91 Chapter 3: Evaluating NoSQL

Cluster scalability
What do you do if your data grows beyond expectation? What if you release
a new product on a particular day, and your orders go through the roof? How
do you respond to this unforeseen situation rapidly enough without going
over the top and wasting resources?

Some NoSQL databases have scale‐out and scale‐back support. This is par-
ticularly useful for software as a service (SaaS) solutions on a public cloud
like Amazon or Microsoft Azure.

Scale out is the ability to start up a new database instance and join it to a
cluster automatically when a certain system metric is reached. An example
might be CPU usage on query nodes going and staying above 80 percent for
ten minutes.

Cluster horizontal scaling support should include automated features (rather
than just alerts for system administrators) and integration to cloud manage-
ment software like AWS. The database should also be capable of scaling on a
live cluster without any system downtime.

Perhaps the hardest part of horizontal scaling is rebalancing data once
the new node is started. Starting a new node doesn’t get you very far with
a query processing issue unless you share the data across all your nodes
equally. If you don’t rebalance data then the server with little or no data will
be lightning fast and others will be slow. Support for auto‐rebalancing data
transparently while the system is in use solves this problem rapidly, and
without administrator intervention.

Auto‐rebalancing can be reliably implemented only on NoSQL databases with
ACID compliance. If you implement it on a non‐ACID‐compliant database, you
run the risk that your queries will detect duplicate records, or miss records
entirely, while rebalancing is occurring.

So, now you’ve solved the high‐usage issue and are running twice the amount
of hardware as you were before. Your sale ends, along with the hype, and
system usage reduces — but you’re still paying for all that hardware!

Support for automatic scale‐back helps. It can, for example, reduce the
number of nodes when 20 percent of the CPU is being used across nodes
in the cluster. This implies rebalancing support (to move data from nodes
about to be shut down to those that will remain online). Having this feature
greatly reduces costs on the public cloud.

Scale‐back is a complex feature to implement and is still very rare. At the
time of this writing, only MarkLogic Server can perform automatic scale‐back

92 Part I: Getting Started with NoSQL

on Amazon. MarkLogic Server also has an API that you can use to plug in
scale‐out/scale‐back functionality with other public and private cloud man-
agement software.

Acceptance testing
News websites are frequently mentioning stories about large systems where
an “update” caused major chaos. These happen in government and banking
systems. When they do happen, they happen very publicly and to a great
cost to the reputation of the organization at fault.

These issues can often be avoided through a significant investment in
testing, particularly User Acceptance Testing (UAT), before going live. Even
something that you may think is a minor update can irritate and alienate
customers.

Don’t be tempted to reduce your testing in order to meet deadlines. If
anything, increase your testing. Missing development deadlines means the
job was likely more complex than you originally thought. This means you
should test even more, not less.

The Y2K bug deadline was one that absolutely could not be moved. The vast
majority of systems, though, even important national systems, are given
artificial timelines of when people want systems to be working, not when IT
professionals are sure the systems will work.

Trust your IT professionals or the consultants you have brought in to work
on a project. Delays happen for many reasons (often because IT profession-
als are trying to make things work better).

When it comes to testing, the old adage is true — you only get one chance to
make a first impression.

Monitoring
Your system is built, and it’s gone live. Now, we can all retire, right? Wrong!
It may seem counterintuitive, but just like an old, decrepit body, software
breaks down over time.

Perhaps an upgrade happens that makes a previously working subsystem
unreliable. Maybe you fix a bug only to find an issue with performance after

93 Chapter 3: Evaluating NoSQL

the patch goes live. Or even some system runs out of support and needs
replacing entirely.

It all means extra work. You can spot problems in one of two ways:

▶✓ You get an angry phone call from a user or customer because something
critical to them failed.

▶✓ Your own system monitoring software spots a potential issue before it
becomes a critical one.

Monitoring comes in two broad forms:

▶✓ Systems monitoring watches components such as databases, storage,
and network connectivity. This is the first form that you can enable with-
out any database‐ or application‐specific work.

▶✓ Application monitoring spots potential performance issues before they
bring a system down.

 As an example, a “simple bug fix” could test fine, but when put live, it
may cause performance issues.

 The only way to spot what is causing a performance issue in part of
the database is to be monitoring the application. Perhaps the bug fix
changed how a particular query was performed. Maybe what was one
application query resulting in one database query is now generating five
database queries for the same action.

 This issue results in lower performance, but you can’t link the perfor-
mance issue with the bug fix if you don’t know precisely where the faulty
code is in the application. Diagnosing the issue will be impossible with-
out some form of application monitoring.

Many NoSQL databases are still playing catchup when it comes to advanced
application monitoring. Open‐source NoSQL databases often have no features
for this issue. To get these features, you have to buy expensive support from
the commercial vendor that develops the software.

Ideally, you want at least a way to determine

▶✓ What queries or internal processes are taking the longest to complete

▶✓ What application or user asked for these queries or processes to be
executed

Also ideally, a monitoring dashboard that allows you to tunnel down into
particular application queries on particular database nodes is helpful. In

94 Part I: Getting Started with NoSQL

this way, you may be able to list the queries in‐flight on a single node of a
highly distributed database. Viewing the process details (for example, the full
query or trigger module being executed) at that point can greatly reduce live
system debugging time.

Quick debugging results in your application team spotting potential issues
and rolling back bad updates, for example, before your users give you a ring.
In extreme cases, effective monitoring will keep a system that was performing
well from grinding to a halt during peak periods.

Once you find an issue, to prevent a repeat situation, it’s important to advise
your testing team to incorporate a test for that issue in the next bug‐fix test-
ing cycle.

Over time, detailed monitoring pays for itself many times over, although put-
ting an exact number on money saved is a hard thing to do, and you certainly
can’t really quantify this number upfront.

I’ve worked for a variety of software vendors and have seen many customers
who didn’t pay for monitoring or support until they had a major, and some-
times public, failure. However, from that point on, they all made sure they
did so.

Visit www.dummies.com/extras/nosql for great Dummies content online.

Key-Value Stores
Part II

http://www.dummies.com/extras/nosql

In this part . . .
 ✓ Segment your customers for better targeting.

 ✓ Know your customer segments better with personas.

 ✓ Find what value different customers bring to your
company.

 ✓ Visit www.dummies.com/extras/nosql for great
Dummies content online.

http://www.dummies.com/extras/nosql

Common Features of Key-Value
Stores

In This Chapter
▶▶ Ensuring that your data is always available

▶▶ Deciding on how to add keys to your data

▶▶ Managing your data in a key-value store

K
ey-value stores are no frills stores that generally delegate all value-
handling to the application code itself. Like other types of NoSQL

databases, they are highly distributed across a cluster of commodity servers.

A particular benefit of key-value stores is their simplicity. Redis, for example,
is only 20,000 lines of code! It can be embedded into an application easily and
quickly.

Throughput is the name of the game. Many using a key-value store will
sacrifice database features to gain better performance. Key-value stores lack
secondary indexes, and many of them eschew synchronized updates (thus
also eschewing guaranteed transactional consistency) to their data’s replicas
in order to maximize throughput.

In this chapter, I cover how to configure a key-value store to ensure that no
matter what happens to the database servers in your cluster, your data is
always available.

Key-value stores also place some constraints on how you model your data for
storage. I talk about the best strategies for this, including information on set-
ting appropriate keys for your data records, and indexing strategies.

Chapter 4

98 Part II: Key-Value Stores

Managing Availability
As with other NoSQL database types, with key-value stores, you can trade
some consistency for some availability. Key-value stores typically provide
a wide range of consistency and durability models — that is, between
availability and partition tolerance and between consistent and partition
tolerance.

Some key-value stores go much further on the consistency arm, abandoning
BASE for full ACID transactional consistency support. Understanding where
to draw the line can help you shorten the list of potential databases to
consider for your use case.

Trading consistency
Key-value stores typically trade consistency in the data (that is, the ability to
always read the latest copy of a value immediately after an update) in order
to improve write times.

Voldemort, Riak, and Oracle NoSQL are all eventually consistent key-value
stores. They use a method called read repair. Here are the two steps involved
in read repair:

1. At the time of reading a record, determine which of several available
values for a key is the latest and most valid one.

2. If the most recent value can’t be decided, then the database client is
presented with all value options and is left to decide for itself.

Good examples for using eventually consistent key-value stores include
sending social media posts and delivering advertisements to targeted users.
If a tweet arrives late or a five-minute-old advertisement is shown, there’s no
catastrophic loss of data.

99 Chapter 4: Common Features of Key-Value Stores

Implementing ACID support
Aerospike and Redis are notable exceptions to eventual consistency. Both
use shared-nothing clusters, which means each key has the following:

▶✓ A master node: Only the masters provide answers for a single key,
which ensures that you have the latest copy.

▶✓ Multiple slave replica nodes: These contain copies of all data on a
master node. Aerospike provides full ACID transactional consistency
by allowing modifications to be flushed immediately to disk before the
transaction is flagged as complete to the database client.

Aerospike manages to do that at very high speeds (which refutes claims that
having ACID decreases write speed). Aerospike natively handles raw SSDs for
data-writing by bypassing slower operating systems’ file system support.

Of course, more SSDs mean higher server costs. You may decide that using
Redis (configured to flush all data to disk as it arrives) is fast enough and
guarantees sufficient durability for your needs. The default setting in Redis is
to flush data to disk every few seconds, leaving a small window of potential
data loss if a server fails.

Here are some examples of when you may need an ACID-compliant key-value
store:

▶✓ When receiving sensor data that you need for an experiment.

▶✓ In a messaging system where you must guarantee receipt.

 Redis, for example, provides a Publish/Subscribe mechanism that acts
as a messaging server back end. This feature combined with ACID
support allows for durable messaging.

Managing Keys
Key-value stores’ fast read capabilities stem from their use of well-defined
keys. These keys are typically hashed, which gives a key-value store a very
predictable way of determining which partition (and thus server) data
resides on. A particular server manages one or more partitions.

A good key enables you to uniquely identify the single record that answers a
query without having to look at any values within that record. A bad key will
require that your application code interprets your record to determine if it
does, in fact, match the query.

100 Part II: Key-Value Stores

If you don’t design your key well, you may end up with one server having
a disproportionately heavier load than the others, leading to poor perfor-
mance. Using the current system-time as a key, for example, pushes all new
data onto the last node in the cluster, which leads to a nightmare scenario of
rebalancing. (Similar to what happens to me when I eat a burger. The more I
place into the same large bucket — my mouth — the slower I get!)

Partitioning
Partition design is important because some key-value stores, such as Oracle
NoSQL, do not allow the number of partitions to be modified once a cluster is
created. Their distribution across servers, though, can be modified. So start
with a large number of partitions that you can spread out in the future.

One example of partitioning is Voldemort’s consistent hashing approach, as
shown in Figure 4-1. Here you see the same partitions spread across three
servers initially and then across four servers later. The number of partitions
stays the same, but their allocation is different across servers. The same is
true of their replicas.

Figure 4-1:
Consistent

hashing
partition

allocation in
Voldemort.

101 Chapter 4: Common Features of Key-Value Stores

Accessing data on partitions
Key-value stores are highly distributed with no single point of
failure. This means there’s no need for a master coordinating node
to keep track of servers within a cluster. Cluster management
is done automatically by a chat protocol between nodes in the
server.

You can use a trick in the client driver to squeeze maximum
performance out of retrieving and storing keys and values — the
client driver keeps track of which servers hold which range of
keys. So the client driver always knows which server to talk to.

Most databases, NoSQL included, pass a request on to all members
of a cluster. That cluster either accepts the write internally or
passes it one under the hood to the correct node. This setup
means an extra network trip between nodes is possible, which can
add to latency.

In order to avoid discovery latency, most key-value stores’ client
drivers maintain a metadata list of the current nodes in a cluster
and which partition key ranges each nod manages. In this way,
the client driver can contact the correct server, which makes
operations faster.

If a new node is added to a cluster and the metadata is out of
date, the cluster informs the client driver, which then downloads
the latest cluster metadata before resending the request to the
correct node. This way maximum throughput is maintained with a
minimum of overhead during development. Another side benefit is
that there’s no need for a load balancer to pass queries on to the
next available, or least-busy, server — only one server (or read
replica server) ever receives a client request, so there’s no need
for load balancing.

Managing Data
Once you manage the keys appropriately, you’re ready to design
how to store data and ensure that it’s safe and always accessible
for the work you need to do, which I explain in this section.

102 Part II: Key-Value Stores

Data types in key-value stores
Key-value stores typically act as “buckets” for binary data. Some databases
do provide strong internal data typing and even schema support. Others
simply provide convenient helper functions in their client drivers for serial-
izing common application data structures to a key-value store. Examples
include maps, lists, and sorted sets.

Oracle NoSQL can operate in two modes:

▶✓ Simple binary store

▶✓ Highly structured Avro schema support

An Avro schema is akin to a relational database schema — enforcing a very
stringent set of format rules on JavaScript Object Notation (JSON) data
stored within the database, as illustrated here:

{username: “afowler”, sessionid: 13452673, since: 1408318745, theme: “bluesky”}

You define an Avro schema using a JSON document. This is an example of the
Avro schema for the stored data shown previously:

{“type”: “record”,“namespace”: “com.example”,“name”: “UserSession”,“fields”: [
 {“name”: “username”, “type”: [“string”,”null”]},
 {“name”: “sessionid”, “type”: “int”},
 {“name”: “since”, “type”: “long”},
 {“name”: “theme”, “type”: [“string”,”null”]}
]}

An Avro schema provides very strong typing in the database for when schema
is important. In the preceding example, you see string data, a numeric session
id, a date (milliseconds, since the Unix Time Epoch, as a long integer), and a
personalization setting for the theme to use on the website.

Also notice that the type of username and theme has two options — string
and null, which is how you instruct Oracle NoSQL that null values are
allowed. I could have left theme as a string and provided an additional con-
figuration parameter of “default”: “bluesky”.

Other NoSQL databases provide secondary indexes on any arbitrary prop-
erty of a value that has JSON content. Riak, for example, provides secondary
indexes based on document partitioning — basically, a known property within
a JSON document is indexed with a type. This allows for range queries (less
than or greater than) in addition to simple equal and not equal comparisons.
Riak manages to provide range queries without a stringent schema — just
simple index definition. If the data is there, it’s added to the index.

103 Chapter 4: Common Features of Key-Value Stores

Replicating data
Storing multiple copies of the same data in other servers, or even racks of
servers, helps to ensure availability of data if one server fails. Server failure
happens primarily in the same cluster.

You can operate replicas two main ways:

▶✓ Master-slave: All reads and writes happen to the master. Slaves take
over and receive requests only if the master fails.

 Master-slave replication is typically used on ACID-compliant key-value
stores. To enable maximum consistency, the primary store is written
to and all replicas are updated before the transaction completes. This
mechanism is called a two-phase commit and creates extra network and
processing time on the replicas.

▶✓ Master-master: Reads and writes can happen on all nodes managing a
key. There’s no concept of a “primary” partition owner.

 Master-master replicas are typically eventually consistent, with the clus-
ter performing an automatic operation to determine the latest value for
a key and removing older, stale values.

 In most key-value stores, this happens slowly — at read time. Riak is the
exception here because it has an anti-entropy service checking for con-
sistency during normal operations.

Versioning data
In order to enable automatic conflict resolution, you need a mechanism to
indicate the latest version of data. Eventually consistent key-value stores
achieve conflict resolution in different ways.

Riak uses a vector-clock mechanism to predict which copy is the most recent
one. Other key-value stores use simple timestamps to indicate staleness.
When conflicts cannot be resolved automatically, both copies of data are sent
to the client. Conflicting data being sent to the client can occur in the follow-
ing situation:

1. Client 1 writes to replica A ‘Adam: {likes: Cheese}’.

2. Replica A copies data to replica B.

104 Part II: Key-Value Stores

3. Client 1 updates data on replica A to ‘Adam: {likes: Cheese, hates:
sunlight}’.

 At this point, replica A doesn’t have enough time to copy the latest data
to replica B.

4. Client 2 updates data on replica B to ‘Adam: {likes: Dogs, hates:
kangaroos}’.

 At this point, replica A and replica B are in conflict and the database
cluster cannot automatically resolve the differences.

An alternative mechanism is to use time stamps and trust them to indicate
the latest data. In such a situation, it’s common sense for the application to
check that the time stamps read the latest value before updating the value.
They are checking for the check and set mechanism, which basically means
‘If the latest version is still version 2, then save my version 3’. This mechanism
is sometimes referred to as read match update (RMU) or read match write
(RMW). This mechanism is the default mechanism employed by Oracle
NoSQL, Redis, Riak, and Voldemort.

Key-Value Stores in the
Enterprise

In This Chapter
▶▶ Ensuring you have enough space for your data

▶▶ Achieving faster time to value in implementations

K
ey‐value stores are all about fast storage and retrieval. If you need a
key‐value store, then by definition you need to scale out — massively —

and ensure maximum performance of your database. This high speed comes
at the cost of more‐advanced database features — features that would add to
each request’s processing time.

Being designed for high speed means that key‐value stores have a straight-
forward architecture that allows you to quickly create applications. Knowing
some easy approaches can greatly reduce the time you spend deploying
them. For large‐scale enterprise systems these features are a must.

In this chapter, I cover how to ensure that not only is your key‐value store
fast, but that you can achieve productivity (and cost savings) quicker. I also
mention how to do this while being frugal with resources, such as disk space.

Scaling
Scaling is important to ensure that as your application and business grows,
you can handle the new users and data that come online. Some aspects of
scaling are difficult to pull off at the same time — for example, the ability to
handle high‐speed data ingestion while simultaneously maximizing the speed
of reading.

Chapter 5

106 Part II: Key-Value Stores

Key‐value stores are great for high‐speed data ingestion. If you have a known,
predictable primary key, you can easily store and retrieve data with that key.
It’s even better if the key is designed to ensure an even distribution of new
data across all servers in the cluster.

Avoid traditional approaches of an incremented number. Instead, use a
Universal Unique Identifier (UUID). A UUID is a long alphanumeric string that
is statistically unlikely to already be in use.

Using a UUID means that statistically the partitions you create over the key
will each receive an even amount of new data. This approach evens out the
ingestion load across a cluster. One partition will have keys starting with, for
example, 0000 to 1999.

Unfortunately, the more records you have, the more likely your keys will
clash, even when using UUIDs. This is where you can use a timestamp —
concatenated to after the UUID — to help ensure uniqueness.

Without complex indexing or query features, key‐value stores ensure the
maximum ingestion speed of data. The databases needed to accomplish fast
storage are relatively simple, but you need to consider hardware such as the
following:

▶✓ Memory: Many databases write to an in‐memory storage area first and
only checkpoint data to disk every so often.

 Writing to RAM is fast, so it’s a good idea to choose a database that does
in‐memory writing to provide more throughput.

▶✓ SSD: High‐speed flash storage is great for storing large synchronous
writes — for example, large in‐memory chunks of new data that are
offloaded to disk so that RAM can be reserved for new data. Using
high‐quality SSDs take advantage of this write speed advantage. Some
databases, such as Aerospike, natively support SSD storage to provide
maximum throughput.

▶✓ Disk arrays: It’s always better to have more spindles (that is, more
discs) with less capacity than one large disk. Use 10 K RPM spinning
discs as your final tier and consider a high‐performance RAID card using
RAID 10. RAID 10 allows newly written data to be split across many
discs, maximizing throughput. It also has the handy benefit of keeping
an extra copy of your data in case a hard disk fails.

107 Chapter 5: Key-Value Stores in the Enterprise

Simple data model – fast retrieval
Storing all the data you need for an operation against a single key means
that if you need the data, you have to perform only one read of the database.
Minimizing the number of reads you need to perform a specific task reduces
the load on your database cluster and speeds up your application.

If you need to retrieve data by its content, use an index bucket. Suppose you
want to retrieve all orders dispatched from Warehouse 13. (Assuming, of
course, you’re not worried about the supernatural content of the package!)

Key‐value stores aren’t known for their secondary index capabilities. It’s
sometimes better to create your own “term list” store for these lookups.
Using the warehouse ID as a key and a list containing order IDs as the value
allows you to quickly look up all orders for a given warehouse.

In‐memory caching
If you’re offering all website visitors the current top‐ten songs according to
their sales, many of your queries will look the same. Moreover, choosing a
database that has an in‐memory value cache will improve repeated reading of
the top‐ten songs information.

Aerospike is notable for giving you the ability to dynamically reprioritize its
use of memory, depending on whether you have a high ingest load or a high
query load. If your load varies during the day, you may want to consider
using Aerospike.

You can also use Redis or a similar key‐value store as a secondary layer just
for caching. Redis is used frequently in conjunction with NoSQL databases
that don’t provide their own high‐speed read caching.

Having a cache in front of your primary database is generally good practice. If
you suffer a distributed denial of service (DDoS) attack, the cache will be hit
hard, but the underlying database will carry on as normal.

Reducing Time to Value
Time to value is the amount of time required from starting an IT project to
being able to realize business benefit. This can be tangible benefits in cost
reduction or the ability to transact new business, or intangible benefits like
providing better customer service or products.

108 Part II: Key-Value Stores

Key‐value stores are the simplest NoSQL databases with regards to data
model. So, you can quickly build applications, especially if you apply a few
key principles, including reviewing how you manage data structures, which I
cover next.

Using simple structures
Key‐value stores are more flexible than relational databases in terms of the
format of data. Use this flexibility to your advantage to maximize the rate of
your application’s throughput. For example, if you’re storing map tiles, store
them in hex format so that they can be rendered immediately in a browser.

In your application, store easy‐to‐use structures that don’t require scores of
processing time. These structures can be simple intrinsic types like integers,
strings, and dates, or more sophisticated structures like lists, sorted sets, or
even JSON documents stored as a string.

Because it can be interpreted directly by a JavaScript web application, use
JSON for simple web app status or preference storage. If you’re storing log
data, store it in the format most appropriate for retrieval and analysis.

Use the most appropriate structure for your application, not your database
administrator. Also consider the effects of time on your database. Will you
want to modify data structures in the future to support new features?

Data structures change over time. A flexible JSON document is better than a
CSV data file or fixed‐width data file because JSON structures can easily vary
over time without needing to consider new or deleted properties. Change a
column in a CSV file stored in a key‐value store, and you must update all of
your application’s code! This isn’t the case with a JSON document, where
older code simply ignores new properties.

Complex structure handling
If you have complex interrelated data sets, give careful thought to the data
structures in your key‐value store. My best advice is to store data sets in a
way that allows easy retrieval. Rather than store eight items separately that
will require eight reads, denormalize the data — write the data to the same
record at ingestion time — so that only one read is needed later. This does
mean some data will be stored multiple times. An example is storing cus-
tomer name in an order document. Although this stores the customer name
across many orders, it means when showing a summary of the order you

109 Chapter 5: Key-Value Stores in the Enterprise

don’t have to discover that the value customer_number=12 means Mr A Fowler —
preventing an additional read request.

Denormalization consumes more disk space than relational databases’
normal form, but greatly increases query throughput. It’s the NoSQL equiva-
lent of a materialized view in a relational database. You’re sacrificing storage
space for speed — the classic computer science tradeoff.

For computer scientists of my generation, it’s considered heresy to keep mul-
tiple copies of the same data. It’s simply inefficient. Our relational database
lecturers would eat us for breakfast!

However, with the current low cost of storage and the increasing demands
of modern applications, it’s much better to sacrifice storage for speed in
reading data. So, consider denormalization as a friend.

110 Part II: Key-Value Stores

Key-Value Use Cases
In This Chapter

▶▶ Handling transient user information

▶▶ Managing high‐speed caching of your data

K
ey‐value stores can scale prodigiously, and this capability is reflected
in the various ways that they’re used. Maybe you need to deliver

hundreds of thousands of targeted web advertisements every second,
perhaps to users in different countries, in different languages, and to different
categories of websites. Speed is critical. You want your ads to appear as the
web page appears so that the ad doesn’t slow down the user’s experience.
When people visit a blog looking for information, they want to see the blog,
not wait for the ads.

On the other hand, maybe you have a globally distributed web application
and need to store session information or user preferences, but you don’t
want to clog up your transactional database systems with this data. Or
perhaps your requirements are even simpler. You just need to cache data
from another system but serve it at a very high speed.

Whatever your needs for high‐speed retrieval, key‐value NoSQL stores can help.

Managing User Information
There’s mission‐critical data, and there’s supporting data. It’s okay if your
mission‐critical data appears a little slowly because you want to be sure it’s
safe and properly managed. But you don’t want the supporting data of your
application to hinder overall transactions and user experiences. Although the
supporting data may be lower in value, its need to scale up is great — typically
by providing delivery of query responses in less than ten milliseconds. Much
of this supporting data helps users access a system, tailor a service to their
needs, or find other available services or products.

Chapter 6

112 Part II: Key-Value Stores

Delivering web advertisements
Although advertisements are critical to companies marketing their wares or
services on the web, they aren’t essential to many users’ web‐browsing expe-
riences. However, the loading time of web pages is important to them, and as
soon as a slowly delivered ad starts adding to a page’s load time, users start
moving to alternative, faster, websites.

Serving advertisements fast is, therefore, a key concern. Doing so isn’t a
simple business, though. Which advertisement is shown to which user
depends on a very large number of factors, often determined by such factors
as the user’s tracked activity online, language, and location.

Companies that target their advertisements to the right customers receive
more click‐throughs, and thus more profit. However, the business of targeted
advertising is increasingly scientific.

Key‐value stores are used mainly by web advertisement companies. (You can
find case studies about such usage on key‐value NoSQL vendors’ websites.)
Utilizing their proprietary software, these companies use a combination of
factors to determine what a user wants or is interested in so that they can
target advertisements to that user effectively. You can think of this combina-
tion of factors as being a key, and it’s this composite key that points to the
most compelling advertisement. Everything that is needed to serve the adver-
tisement is kept as the value within a key‐value store.

If you need to serve data fast based on a set of known factors, then a key‐value
store is an excellent match. All you need to do is set up the key effectively.

To set up the key, perform some offline analysis of which advertisements will
be relevant to each combined profile of people. If the information you have
on the visiting user is country, language, and favorite category of purchases
on Amazon, then perhaps an appropriate key would be UK‐english‐guitars.

This prevents having to do any complex queries at ad serving time — just instead
concatenate these fields together to form a key and ask for the value of that key.

Handling user sessions
You can spend all the money you want on a state‐of‐the‐art datacenter for
your transactional data, but if your website is slow, people will say that your
entire service is slow. In fact, when companies and governments launch new
online services that can’t handle the load placed on them, the press eats
them for breakfast.

113 Chapter 6: Key-Value Use Cases

Typically, the problem isn’t that a primary processing system goes down;
rather, it’s because the users’ identities or sessions are handled poorly.
Perhaps the username isn’t cached, or every request requires opening a new
session from the application server instead of than caching this information
between requests.

A user session may track how a user walks through an application, adding
data on each page. The data can then be saved at the end of this journey in a
single hit to the database, rather than in a sequence of small requests across
many page requests. Users often don’t mind waiting a couple of seconds after
clicking a save button. Providing an effective user session on a website that
has low latency has a couple of benefits:

▶✓ The user (soon to be customer!) receives good service.

▶✓ Partially complete data doesn’t get saved to your main back‐end
transactional database.

Websites use a cookie to track the user’s interaction with a website. A cookie
is a small file linked to a unique ID, just like a record in a key‐value store. The
server uses these cookies to identify that it already knows a user on their
second or subsequent requests, so the server needs to fetch a session using
this data quickly. In this way, when users log in, the websites recognize who
they are, which pages they visit, and what information they’re looking for.

This unique ID is typically a random number, perhaps our old friend, the
Universally Unique Identifier (UUID). The website may need to store various
types of data. Typically, this data is short‐lived — the length of a user’s
session, perhaps just a few minutes.

Key‐value stores are, therefore, ideal for storing and retrieving session data
at high speeds. The ability to tombstone (that is delete) data once a time-
stamp is exceeded is also useful. In this way, the application doesn’t need to
check the timestamp of the session on each request — if the session isn’t in
the database, it’s been tombstoned. So the session is no longer valid, which
removes some of the application programmer’s administrative burden.

Supporting personalization
Similar to the user‐session requirement, but longer‐lived, is the concept of
user service personalization. This is where the front‐end application is
configured by users for their specific needs.

Again, this is a front‐end secondary type of data, not the primary transac-
tional data within a system. For example, imagine that you have a primary

114 Part II: Key-Value Stores

database showing the work levels for all your team, the current case files
they’re working on, and all the related data. This is the primary data of
the application. Perhaps it’s stored in an Oracle relational database or a
MarkLogic NoSQL document database.

Use of the data can vary. For instance, one user may want to view a summary
of only his team’s workload, whereas a manager might want to track all
employees on a team.

These users are receiving different personalized views of the same data.
These view preferences need to be saved somewhere. You probably don’t
want to overload your case database with this personalization data; it’s
specific to the front‐end application, not the core case‐management system.

Using a key‐value store with a composite key containing user id (not
session id) and the service name allows you to store the personalization
settings as a value, which makes lookups very quick and prevents the
performance of your primary systems from being negatively affected.

High‐Speed Data Caching
Imagine you are a bank teller with three other colleagues working. You each
have a line of people to be served. One of the customers, though, keeps get-
ting in line to ask if his check has been cashed yet and the amount credited
to his account. When you answer him, instead of leaving he joins the back of
the line again.

This small query repeating increases your workload, and so the line keeps
increasing in size, until all customers are unhappy about the amount of time
they are waiting around for their query.

The same analogy is true of NoSQL databases. Imagine each bank teller is
instead a partition of data within a NoSQL database cluster. Asking the same
question over and over again — whether the data exists or not — stresses
systems as much as the re‐queuing customer. Better instead for him to check
his internet banking on his phone. The application cashes the customer’s
recent bank balance and transactions processed, taking load off of the tellers
and the core banking systems.

High‐speed in‐memory caching provides this caching capability without the
need for a separate application level caching layer. This reduces total cost of
ownership and makes developing well‐performing applications quicker and
easier.

115 Chapter 6: Key-Value Use Cases

Lowering latency in financial services
Many complex financial transaction processing systems are built on top of mainframe or relational
databases. Banks that operate proprietary mainframes are usually charged for the amount
of processing they do, so they must watch their total processing, particularly if they’re using a
mainframe system. By caching all general responses to common queries, the impact and cost of
mainframe use is minimized.

Consider a list of the latest interest rates calculated by the banks for interbank lending. Caching
these rates with a staleness timeout — or tombstone — of one minute means they’re deleted when
stale. If a system has thousands of transactions per minute, this approach may cut the primary
system’s processing by 99 percent. That’s a lot less mainframe instructions processed, or fewer
expensive Oracle server licenses required.

Using the same information you use in a Structured Query Language “where” clause as the key
allows fast access. If the information isn’t present, then query the back-end database and cache
the result for a minute.

So, in the relational database application, if you have

select ExchangeRate from ExchangeRateTable where
 FromCurrency=”GBP” and ToCurrency=”EUR”;

you can model it with a key-value model of

Bucket: ExchangeRateTable
Key: GBP:EUR, Value: 1.8

In this case, secondary indexes and complex “where” clauses aren’t required; you’re simply
fetching a single unique key value from a single bucket.

116 Part II: Key-Value Stores

Key-Value Store Products
In This Chapter

▶▶ Ensuring data is retrieved as fast as possible

▶▶ Taking advantage of flash storage speed

▶▶ Using pluggable storage engines underneath your key‐value store

▶▶ Separating data storage and distribution across a cluster

▶▶ Handling partitions when networks fail

S
ome applications require storage of information at high speeds for
later analysis or access. Others are all about responding as quickly as

possible to requests for data. Whatever your use case, when speed is key,
key‐value stores reign. Their simple processing and data models adapt to a
range of use cases.

You can find many NoSQL key‐value stores, each with its own niche.
Understanding these niches and the unique benefits of each option is the
path to selecting the best solution for your particular business problem.

In this chapter, I introduce the main vendors in the key‐value NoSQL
database space by describing use cases they are each uniquely useful for.
This contrasts against the general use cases in the previous chapter that all
key‐value stores can address.

Chapter 7

118 Part II: Key-Value Stores

High‐Speed Key Access
Key‐value stores are all about speed. You can use various techniques to
maximize that speed, from caching data, to having multiple copies of data, or
using the most appropriate storage structures.

Caching data in memory
Because data is easily accessed when it’s stored in random access memory
(RAM), choosing a key‐value store that caches data in RAM can significantly
speed up your access to data, albeit at the price of higher server costs.

Often, though, this tradeoff is worth making. You can easily calculate what
percentage of your stored data is requested frequently. If you know five percent
is generally requested every few minutes, then take five percent of your data size
and add that number as spare RAM space across your database servers.

Bear in mind that the operating system, other applications, and the database
server have memory requirements, too.

Replicating data to slaves
In key‐value stores, a particular key is stored on one of the servers in the
cluster. This process is called key partitioning. This means that, if this key is
constantly requested, this node will receive the bulk of requests. This node,

The Amazon Dynamo paper
Amazon came up with the modern concept of
a NoSQL key-value store when it created the
Dynamo DB. This database, and its accompa-
nying published paper, introduced the world to
highly scalable distributed key-value stores.

Dynamo incorporated the ideas of storing all
information by a single primary key, using con-
sistent hashing to spread data throughout a
cluster and using object versioning to manage
consistency.

Dynamo introduced a gossip intercommunica-
tion protocol between key-value servers and
replication techniques between servers, all
with a simple data access API. Dynamo was
designed to allow tradeoffs between consis-
tency, availability, and cost-effectiveness of a
data store.

These have all since become standard features
of key-value stores.

119 Chapter 7: Key-Value Store Products

therefore, will be slower than your average request speed, potentially
affecting the quality of service to your users.

To avoid this situation, some key‐value stores support adding read‐only
replicas, also referred to as slaves. Redis, Riak, and Aerospike are good
examples. Replication allows the key to be stored multiple times across
several servers, which increases response speed but at the cost of more
hardware.

Some key‐value stores guarantee that the replicas of the key will always have
the same value as the master. This guarantee is called being fully consistent.
If an update happens on the master server holding the key, all the replicas
are guaranteed to be up to date. Not all key‐value stores guarantee this
status (Riak, for example), so if it’s important to be up to date to the milli-
second, then choose a database whose replicas are fully consistent (such as
Aerospike).

Data modeling in key‐value stores
Many key‐value stores support only basic structures for their value types,
leaving the application programmer with the job of interpreting the data.
Simple data type support typically includes strings, integers, JSON, and
binary values.

For many use cases, this works well, but sometimes a slightly more granular
access to data is useful. Redis, for example, supports the following data value
types:

▶✓ String

▶✓ List

▶✓ Set

▶✓ Sorted set

▶✓ Hash maps

▶✓ Bit arrays

▶✓ Hyperlog logs

Sorted sets can be queried for matching ranges of values — much like
querying an index of values sorted by date, which is very useful for searching
for a subset of typed data.

120 Part II: Key-Value Stores

Operating on data
Redis includes operations to increment and decrement key values directly,
without having to do a read‐modify‐update (RMU) set of steps. You can do so
within a single transaction to ensure that no other application changes the
value during an update. These data‐type specific operations include adding
and removing items to lists and sets, too.

You can even provide autocomplete functionality on an application’s user
interface by using the Redis ZRANGEBYLEX command. This command
retrieves a set of keys which partially matches a string. So, if you were to
type “NoSQL for” in the search bar of an application built on Redis, you
would see the suggestion “NoSQL For Dummies.”

Evaluating Redis
Redis prides itself on being a very lightweight but blazingly fast key‐value
store. It was originally designed to be an in‐memory key‐value store, but now
boasts disk‐based data storage.

You can use Redis to safeguard data by enabling AOF (append only file)
mode and instructing Redis to force data to disk on each query (known as
forced fsync flushing). AOF does slow down writes, of course, but it provides a
higher level of durability for data. Be aware, though, that it’s still possible to
lose up to one second of commands.

Also, Redis only recently added support for clustering. In fact, at the time
of this writing, Redis’s clustering support is in the beta testing phase.
Fortunately, Redis uses a shared‐nothing cluster model, with masters for
particular keys and slaves that are never directly written to by a client; only
the master does so. Providing shared‐nothing clustering should make it
easier for Redis to implement reliable clustering than it is for databases that
allow writes to all replicas.

If you want a very high‐speed, in‐memory caching layer in front of another
database — MongoDB or Riak are commonly used with Redis — then
evaluate Redis as an option. As support for clustering and data durability
evolves, perhaps Redis can overtake other back‐end databases.

121 Chapter 7: Key-Value Store Products

Taking Advantage of Flash
When you need incredibly fast writes, flash storage is called for (as opposed
to calling for Flash Gordon). This comes at the cost of using RAM space, of
course. Writing to RAM will get you, well, about as far as the size of your
RAM. So having a very high‐speed storage option immediately behind your
server’s RAM is a good idea. This way, when a checkpoint operation to flush
the data to disk is done, it clears space in RAM as quickly as possible.

Spending money for speed
Flash is expensive — more so than traditional spinning disk and RAM. It’s
possible to make do without flash by using RAID 10 spinning disk arrays, but
these will get you only so far.

A logical approach is to look at how fast data streams into your database.
Perhaps provisioning 100 percent of the size of your store data for a spinning
disk, 10 percent for flash, and one percent for RAM. These figures will vary
depending on your application’s data access profile, and how often that same
data is accessed.

Of course, if you’re in an industry where data ages quickly and you absolutely
need to guarantee write throughput, then an expensive all‐flash infrastructure
could be for you.

To give you an idea about the possible scale achievable in a key‐value store
that supports native flash, Aerospike claims that, with native flash for data
and RAM for indexes, 99.9 percent of reads and writes are completed within
one millisecond.

Context computing
Aerospike espouses a concept called context‐aware computing. Context‐aware
computing is where you have a very short window of time to respond to a
request, and the correct response is dictated by some properties of the user,
such as age or products purchased. These properties could include:

▶✓ Identity: Session IDs, cookies, IP addresses

▶✓ Attributes: Demographic or geographic

▶✓ Behavior: Presence (swipe, search, share), channels (web, phone),
services (frequency, sophistication)

122 Part II: Key-Value Stores

▶✓ Segments: Attitudes, values, lifestyle, history

▶✓ Transactions: Payments, campaigns

The general idea is to mine data from a transactional system to determine the
most appropriate advertisement or recommendation for a customer based
on various factors. You can do so by using a Hadoop map/reduce job, for
example, on a transactional Oracle relational database.

The outputs are then stored in Aerospike so that when a particular customer
arrives on your website and they have a mixture of the preceding list of
factors (modeled as a composite key), the appropriate advertisement or
recommendation is immediately given to the customer.

Evaluating Aerospike
Aerospike is the king of flash support. Rather than use the operating system’s
file system support on top of flash, as other databases do (that is, they basically
treat a flash disk as any other hard disk), Aerospike natively accesses the flash.

This behavior provides Aerospike with maximum throughput, because it
doesn’t have to wait for operating system function calls to be completed; it
simply accesses the raw flash blocks directly. Moreover, Aerospike can take
advantage of the physical attributes of flash storage in order to eke out every
last bit of performance.

Aerospike is one of my favorite NoSQL databases. I was very close to using it
in this book as the primary example of key‐value stores, instead of Riak.
However, I didn’t because Riak is currently more prevalent (and I wanted to
sell books).

I fully expect Aerospike to start overtaking Riak in large enterprises and
mission‐critical use cases, though. It has enterprise‐level features lacking in
other databases, including the following:

▶✓ Full ACID consistency: Ensures data is safe and consistent.

▶✓ Shared‐nothing cluster: Has synchronous replication to keep data
consistent.

▶✓ Automatic rebalancing: Automatically moves some data to new nodes,
evening out read times and allowing for scale out and scale back in a
cluster.

▶✓ Support for UDFs and Hadoop: User defined functions can run next to
the data for aggregation queries, and Hadoop Map/Reduce is supported
for more complex requirements.

123 Chapter 7: Key-Value Store Products

▶✓ Secondary indexes: Adds indexes on data value fields for fast querying.

▶✓ Large data types: Supports custom and large data types; allows for
complex data models and use cases.

▶✓ Automatic storage tier flushing on writes: Flushes RAM to flash storage
(SSDs) and disk when space on the faster tier is nearly exhausted.

Whether or not you need blazing‐fast flash support, these other features
should really interest people with mission‐critical use cases. If you’re
evaluating Riak for a mission‐critical system, definitely evaluate Aerospike
as well.

Using Pluggable Storage
There are times when you want to provide key‐value style high speed access
to data held in a relational database. This database could be, for example,
Berkeley DB (Java Edition for Voldemort) or MySQL.

Providing key‐value like access to data requires a key‐value store to be
layered directly over one of these other databases. Basically, you use another
database as the storage layer, rather than a combination of a file system for
storage and an ingestion pipeline for copying data from a relational database.

This process simplifies providing a high speed key‐value store while using a
traditional relational database for storage.

Changing storage engines
Different workloads require different storage engines and performance
characteristics. Aerospike is great for high ingest; Redis is great for high
numbers of reads. Each is built around a specific use case.

Voldemort takes a different approach. Rather than treating the key‐value
store as a separate tier of data management, Voldemort treats the
key‐value store as an API and adds an in‐memory caching layer, which means
that you can plug into the back end that makes the most sense for your
particular needs. If you want a straightforward disk storage tier, you can use
the Berkeley DB Java Edition storage engine. If instead you want to store
relational data, you can use MySQL as a back‐end to Voldemort.

This capability combined with custom data types allows you to use a
key‐value store’s simple store/retrieve API to effectively pull back and
directly cache information in a different back‐end store.

124 Part II: Key-Value Stores

This approach contrasts with the usual approach of having separate
databases — one in, say, Oracle for transactional data and another in your
key‐value store (Riak, for example). With this two‐tier approach, you have
to develop code to move data from one tier to the other for caching. With
Voldemort, there is one combined tier — your data tier — so the extra code
is redundant.

Caching data in memory
Voldemort has a built‐in in‐memory cache, which decreases the load on the
storage engine and increases query performance. No need to use a separate
caching layer such as Redis or Oracle’s Coherence Java application data
caching product on top.

The capability to provide high‐speed storage tiering with caching is why
LinkedIn uses Voldemort for certain high‐performance use cases.

With Voldemort, you get the best of both worlds — a storage engine for your
exact data requirements and a high‐speed in‐memory cache to reduce the
load on that engine. You also get simple key‐value store store/retrieve
semantics on top of your storage engine.

Evaluating Voldemort
In the Harry Potter books Lord Voldemort held a lot of magic in him, both
good and bad, although he used it for terrorizing muggles. The Voldemort
database, as it turns out, can also store vast amounts of data, but can be
used for good by data magicians everywhere!

Voldemort is still a product in development. Many pieces are still missing, so
it doesn’t support the variety of storage engines you might expect. This focus
for Voldemort’s development community is likely because Voldemort is built
in the Java programming language, which requires a Java Native Interface
(JNI) connector to be built for integration to most C or C++ based databases.

Voldemort has good integration with serialization frameworks, though.
Supported frameworks include Java serialization, Avro, Thrift, and Protocol
Buffers. This means that the provided API wrappers match the familiar
serialization method of each programming language, making the development
of applications intuitive.

Voldemort doesn’t handle consistency as well as other systems do.
Voldemort uses the read repair approach, where inconsistent version

125 Chapter 7: Key-Value Store Products

numbers for the same record are fixed at read time, rather than being kept
consistent at write time.

There is also no secondary indexing or query support; Voldemort expects
you to use the facilities of the underlying storage engine to cope with that
use case. Also, Voldemort doesn’t have native database triggers or an
alerting or event processing framework with which to build one.

If you do need a key‐value store that is highly available, is partition‐tolerant,
runs in Java, and uses different storage back ends, then Voldemort may be
for you.

Separating Data Storage
and Distribution

Oracle Corporation is the dominant player in the relational database world.
It’s no surprise then that it’s at least dabbling in the NoSQL space.

Oracle’s approach is to plug the gaps in its current offerings. It has a highly
trusted, enterprise‐level relational database product, which is what it’s
famous for. However, this approach doesn’t fit every single data problem. For
certain classes of data problems, you need a different way of storing things —
that’s why I wrote this book!

Oracle has a data‐caching approach in Coherence. It also inherited the
Berkeley DB code. Oracle chose to use Berkeley DB to produce a distributed
key‐value NoSQL database.

Using Berkeley DB for single node storage
Berkeley DB, as the name suggests, is an open‐source project that started
at the University of California, Berkeley, between 1986 and 1994. It was
maintained by Sleepycat Software, which was later acquired by Oracle.

The idea behind Berkeley DB was to create a hash table store with the best
performance possible. Berkeley DB stores a set of keys, where each key
points to a value stored on disk that can be read and updated using a simple
key‐value API.

Berkeley DB was originally used by the Netscape browser but can now be
found in a variety of embedded systems. Now you can use it for almost every

126 Part II: Key-Value Stores

coding platform and language. An SQL query layer is available for Berkeley
DB, too, opening it up to yet another use case.

Berkeley DB comes in three versions:

▶✓ The Berkeley DB version written in C is the one that’s usually embedded
in UNIX systems.

▶✓ The Java Edition is also commonly embedded, including in the
Voldemort key‐value store.

▶✓ A C++ edition is available to handle the storage of XML data.

Berkeley DB typically acts as a single‐node database.

Distributing data
Oracle built a set of data distribution and high‐availability code using NoSQL
design ideas on top of Berkeley DB. This approach makes Oracle NoSQL a
highly distributed key‐value store that uses many copies of the tried‐and‐true
Berkeley DB code as the primary storage system.

Oracle NoSQL is most commonly used alongside the Oracle relational
database management systems (RDBMS) and Oracle Coherence.

Oracle Coherence is a mid‐tier caching layer, which means it lives in the
application server with application business code. Applications can offload
the storage of data to Coherence, which in turn distributes the data across
the applications’ server clusters. Coherence works purely as a cache.

Oracle Coherence can use Oracle NoSQL as a cache storage engine, providing
persistence beneath Oracle Coherence and allowing some of the data to be
offloaded from RAM to disk when needed.

Oracle Coherence is commonly used to store data that may have been
originally from an Oracle RDBMS, to decrease the operational load on the
RDBMS. Using Oracle NoSQL with Coherence or directly in your application
mid‐tier, you can achieve a similar caching capability.

Evaluating Oracle NoSQL
Despite claims that Oracle NoSQL is an ACID database product, by default,
it’s an eventually consistent — non‐ACID — database. This means data read
from read replica nodes can potentially be stale.

127 Chapter 7: Key-Value Store Products

The client driver can alleviate this situation by requesting only the absolute
latest data, which not surprisingly is called absolute consistency mode. This
setting reads only data from the master node for a particular key. Doing so for all
requests effectively means that the read replicas are never actually read from —
they’re just there for high availability, taking over if the master should crash.

It’s also worth noting that in the default mode (eventually consistent),
because of the lack of a consistency guarantee, application developers must
perform a check‐and‐set (CAS) or read‐modify‐update (RMU) set of steps to
ensure that an update to data is applied properly.

In addition, unlike Oracle’s RDBMS product, Oracle NoSQL doesn’t have a
write Journal. Most databases write data to RAM, but write the description
of the change to a Journal file on disk. Journal writes are much smaller than
writing the entire change to stored data, allowing higher throughput; and
because the journal is written to disk, data isn’t lost if the system crashes
and loses the data stored in RAM.

If there’s a system failure and data held in RAM is lost, this journal can be
replayed on the data store. Oracle NoSQL doesn’t have this feature, which
means either that you run the risk of losing data or that you slow down your
writes by always flushing to disk on every update. Although small, this write
penalty is worth testing before going live or purchasing a license.

Oracle is plugging Oracle NoSQL into its other products. Oracle NoSQL
provides a highly scalable layer for Oracle Coherence. Many financial services
firms, though, are looking at other NoSQL options to replace Coherence.

Another product that may be useful in the future is RDF Graph for Oracle
NoSQL. This product will provide an RDF (Resource Description Format —
triple data, as discussed in Chapter 19) persistence and query layer on top of
Oracle NoSQL and will use the open‐source Apache Jena APIs for graph query
and persistence operations.

The concept of major and minor keys is one of my favorite Oracle NoSQL
features. These keys provide more of a two‐layer tree model than a single
layer key‐value model. So, I could store adam:age=33 and adam:nationality=uk.
I could pull back all the information on Adam using the “adam” major key, or
just the age using the adam:age key. This is quite useful and avoids the need
to use denormalization or migrating to a NoSQL document database if your
application has simple requirements.

Oracle NoSQL is also the only key‐value store in this book that allows you
to actively enforce a schema. You can provide an Avro schema document,
which is a JSON document with particular elements, to restrict what keys,
values, and types are allowed in your Oracle NoSQL database.

128 Part II: Key-Value Stores

If you want a key‐value store that works with Oracle Coherence or want to
fine‐tune availability and consistency guarantees, then Oracle NoSQL may be
for you. Oracle’s marketing messaging is a little hard to navigate — because
so many products can be used in combination. So, it’s probably better to
chat with an Oracle sales representative for details on whether Oracle NoSQL
is for you. One commercial note of interest is that Oracle sells support for
the Community (free) Edition — that is, you don’t have to buy the Enterprise
Edition to get Oracle support. If cost is an issue, you may want to consider
the Community Edition.

Handling Partitions
The word partition is used for two different concepts in NoSQL land. A data
partition is a mechanism for ensuring that data is evenly distributed across
a cluster. On the other hand, a network partition occurs when two parts of
the same database cluster cannot communicate. Here, I talk about network
partitions.

On very large clustered systems, it’s increasingly likely that a failure of one
piece of equipment will happen. If a network switch between servers in a
cluster fails, a phenomenon referred to as (in computer jargon) split brain
occurs. In this case, individual servers are still receiving requests, but they
can’t communicate with each other. This scenario can lead to inconsistency
of data or simply to reduced capacity in data storage, as the network
partition with the least servers is removed from the cluster (or “voted off”
in true Big Brother fashion).

Tolerating partitions
You have two choices when a network partition happens:

▶✓ Continue, at some level, to service read and write operations.

▶✓ “Vote off” one part of the partition and decide to fix the data later when
both parts can communicate. This usually involves the cluster voting a
read replica as the new master for each missing master partition node.

Riak allows you to determine how many times data is replicated (three
copies, by default — that is, n=3) and how many servers must be queried in
order for a read to succeed. This means that, if the primary master of a key is
on the wrong side of a network partition, read operations can still succeed if
the other two servers are available (that is, r=2 read availability).

129 Chapter 7: Key-Value Store Products

Riak handles writes when the primary partition server goes down by using a
system called hinted handoff. When data is originally replicated, the first node
for a particular key partition is written to, along with (by default) two of the
following neighbor nodes.

If the primary can’t be written to, the next node in the ring is written to.
These writes are effectively handed off to the next node. When the primary
server comes back up, the writes are replayed to that node before it takes
over primary write operations again.

In both of these operations, versioning inconsistencies can happen because
different replicas may be in different version states, even if only for a few
milliseconds.

Riak employs yet another system called active anti‐entropy to alleviate this
problem. This system trawls through updated values and ensures that
replicas are updated at some point, preferably sooner rather than later. This
helps to avoid conflicts on read while maintaining a high ingestion speed,
which avoids a two‐phase commit used by other NoSQL databases with
master‐slave, shared‐nothing clustering support.

If a conflict on read does happen, Riak uses read repair to attempt to return
only the latest data. Eventually though, and depending on the consistency
and availability settings you use, the client application may be presented
with multiple versions and asked to decide for itself.

In some situations, this tradeoff is desirable, and many applications may
intuitively know, based on the data presented, which version to use and
which version to discard.

Secondary indexing
Secondary indexes are indexes on specific data within a value. Most
key‐value stores leave this indexing up to the application. However, Riak is
different, employing a scheme called document‐based partitioning that allows
for secondary indexing.

Document‐based partitioning assumes that you’re writing JSON structures
to the Riak database. You can then set up indexes on particular named
properties within this JSON structure, as shown in Listing 7-1.

130 Part II: Key-Value Stores

If you have an application that’s showing a customer’s orders for the
previous month, then you want to query all the records, as shown in
Listing 7-1, where the customer id is a fixed value (1429857) and the order‐
date is within a particular range (the beginning and end of the month).

In most key‐value stores, you create another bucket whose key is the
combined customer number and month and the value is a list of order ids.
However, in Riak, you simply add a secondary index on both customer‐id
(integer) and order‐date (date), which does take up extra storage space but
has the advantage of being transparent to the application developer.

These indexes are also updated live — meaning there’s no lag between
updating a document value in Riak and the indexes being up to date. This
live access to data is more difficult to pull off than it seems. After all, if the
indexes are inconsistent, you’ll never find the consistently held data!

Evaluating Riak
Basho, the commercial entity behind Riak, says that its upcoming version 2.0
NoSQL database always has strong consistency, a claim that other NoSQL
vendors make. The claim by NoSQL vendors to always have strong
consistency is like claiming to be a strong vegetarian . . . except on Sundays
when you have roast beef.

Riak is not an ACID‐compliant database. Its configuration cannot be altered
such that it runs in ACID compliance mode. Clients can get inconsistent data
during normal operations or during network partitions. Riak trades absolute
consistency for increased availability and partition tolerance.

Running Riak in strong consistency mode means that its read replicas are
updated at the same time as the primary master. This involves a two‐phase
commit — basically, the master node writing to the other nodes before it
confirms that the write is complete.

 Listing 7-1: JSON Order Structure

{
 “order-id”: 5001,
 “customer-id”: 1429857,
 “order-date”: “2014-09-24”,
 “total”: 134.24
}

131 Chapter 7: Key-Value Store Products

At the time of this writing, Riak’s strong consistency mode doesn’t support
secondary indexes or complex data types (for example, JSON). Hopefully,
Basho will fix this issue in upcoming releases of the database.

Riak Search (a rebranded and integrated Apache Solr search engine uses an
eventually consistent update model) may produce false positives when using
strong consistency. This situation occurs because data may be written and
then the transaction abandoned, but the data is still used for indexing —
leaving a "false positive" search result — the result isn’t actually any longer
valid for the search query.

Riak also uses a separate sentinel process to determine which node becomes
a master in failover conditions. This process, however, isn’t highly available,
which means that for a few seconds, it’s possible that, while a new copy of
the sentinel process is brought online, a new node cannot be added or a new
master elected. You need to be aware of this possibility in high‐stress failover
conditions.

Riak does have some nice features for application developers, such as
secondary indexing and built‐in JSON value support. Database replication
for disaster recovery to other datacenters is available only in the paid for
version, whose price can be found on their website (rental prices shown,
perpetual license prices given on application only).

The Riak Control cluster monitoring tool also isn’t highly regarded because
of its lag time when monitoring clusters. Riak holds a lot of promise, and
I hope that Basho will add more enterprise‐level cluster‐management facilities
in future versions. It will become a best‐in‐class product if it does.

132 Part II: Key-Value Stores

Riak and Basho
In This Chapter

▶▶ Selecting a key‐value store for your needs

▶▶ Finding commercial companies providing support for Riak

R
iak is the highest praised and most‐used NoSQL key‐value store.
Its customers range from public health services in Europe to web

advertisement agencies the world over.

Basho Technologies, the makers of Riak, has offices worldwide and is the
go‐to place for support, which it offers 24/7.

In this chapter, I talk about issues you need to consider when selecting a
key‐value store. These include finding support for your key‐value store based
development efforts.

Choosing a Key-Value Store
As I’ve mentioned in Chapter 2, key‐value stores are relatively simple
database designs. The operations they provide are largely the same, with
only a few providing extra features for application developers.

Most of the choices relate to whether you want an ACID‐compliant database,
one with secondary indexes, or one that supports a very specific, niche
feature, such as native support for flash storage.

Being able to create well‐built applications also means you need to find
well‐trained personnel and support services. You’ll also need to consider
integrating the key‐value store with existing complementary technology, and
how to handle storage of the data formats required by your application.

Chapter 8

134 Part II: Key-Value Stores

Ensuring skill availability
Skill availability is a major reason for using key‐value stores. Being able to
construct keys effectively and use special buckets to mimic indexes are very
specific skills. Finding people who have proven these skills in the field rather
than merely downloaded and ran through a tutorial for the database is a
good idea!

Each key‐value store also has different client libraries, each with a difference
in feature support. Many are straightforward and use common semantics.
Each, for instance, provides a store, get, and delete operation for keys. Ensure
your developers are not only familiar with the database, but also conversant
in the programming language API chosen for your project.

The application programming model of key‐value stores is pretty
 straightforward. Application developers still may need to do some work
on indexing and deserialization of the value returned by a key‐value store,
especially when the chosen NoSQL database doesn’t support secondary
indexes natively.

People who are familiar with an organization’s programming language should
be able to understand these semantics quickly. It’s much easier to learn key‐
value semantics than it is to learn the Structured Query Language (SQL) of
relational database systems.

Integrating with Hadoop Map/Reduce
Normally in a Hadoop Map/Reduce job, the Hadoop Distributed File System
(HDFS) is the input source and output destination of an operation’s data. It’s
possible, though, to use Riak as input, or output, or both.

Using Riak as an input means that you can specify a set of keys, a secondary
index query, or a Riak Search query to execute which returns a list of keys
for the records that Hadoop needs to process. When Hadoop requests these
records by key, Riak fetches each of them, iterating through all the matching
records.

When Riak is used as an output destination for map/reduce jobs, Riak’s Java
client library uses annotations to determine how to best store the output
generated. You need, of course, to specify which bucket the output goes into.
This Hadoop output mechanism supports secondary index tags, links, and
metadata.

135 Chapter 8: Riak and Basho

Using Riak as an output may be particularly useful when you’re implementing
context computing, which I describe in Chapter 7. For example, say that you
write the output as “If you see a customer with these attributes, then serve
this advertisement.” The web application then uses the fast Riak key‐value
store to quickly determine which advertisement to show.

Meanwhile, map/reduce can batch‐process customer information overnight
to determine the best advertisements to show, updating Riak as an output
data storage destination each day with the latest analysis.

Using JSON
JSON is short for JavaScript Object Notation. JavaScript programmers
 “discovered” this format. They realized that a subset of JavaScript object
definition features could be used to store and pass data. Now, it’s used
 extensively behind web applications for data serialization.

The following code shows an order modeled as a JSON document:

{
 “order-id”: 5001,
 “customer”: {
 “customer-id”: 1429857,
 “name”: “Adam Fowler”,
 “address”: {
 “line1”: “some house”,
 “line2”: “some place”,
 “city”: “some city”
 }
 },
 “order-date”: “2014-09-24”,
 “total”: 134.24,
 “items”: [
 {“item-id”: 567, “quantity”: 5, “unit-price”: 3.60},
 {“item-id”: 643, “quantity”: 1, “unit-price”: 116.23}
]
}

Key‐value stores don’t tend to operate on complex values. (After all,
 document NoSQL databases are about dealing with documents.) A JSON
order document, such as the preceding one, is a complex treelike structure.
You can see that the JSON object includes a customer object, which in turn
includes an address object.

Riak, however, can handle JSON documents natively. For example, in the pre-
ceding code, you can add secondary indexes to customer-id, item-id,

136 Part II: Key-Value Stores

and order-date. Doing so enables fast querying for a variety of order
records. A good example is providing a summary of a customer’s orders for a
particular month.

Riak supports its own internal map/reduce engine, which is not the same
as Hadoop Map/Reduce. The difference is that Riak uses JavaScript as the
 processing language and allows for processing data across Riak nodes
 without the need for a full Hadoop Map/Reduce installation.

Riak Search is a Solr‐based (see Chapter 27) add‐on that allows for full text
searches. Note that, even though it’s tightly integrated with Riak, unlike
Riak’s built‐in secondary indexes, Riak Search’s indexes aren’t updated in
real time. However, if you need free text search for Riak‐held data (which
is especially useful if you’re storing JSON documents containing lots of free
text), then Riak Search may be a good option.

Riak also supports multi‐datacenter replication, which you can purchase
from Basho. This feature allows asynchronous updates from a master cluster
to one or more secondary (read‐only) clusters. These updates are typically
configured to occur as soon as possible, but are asynchronous so as not to
affect the speed of operations on the primary datacenter.

Finding Riak Support (Basho)
A key aspect to selecting a vendor to bet a mission‐critical application on
is ensuring you have expert support when you need to. Perhaps you need
 support for a major live system outage, or maybe just best practice guidance
when developing an application or sizing a cluster.

Basho was founded in 2008, and as I mentioned earlier, is the maker of
Riak. This worldwide company is the primary consultant for Riak, and the
contributions to Riak’s code come primarily from Basho employees.

Enabling cloud service
Basho provides a rental option for cloud services known as Riak CS (Basho
publishes the latest price on its website). Basho also sells the Enterprise
version of Riak on a perpetual license basis — that is, with an upfront fee
 followed by a smaller annual maintenance and support. The price of this fee
is available only upon application to Basho’s sales team.

137 Chapter 8: Riak and Basho

This cloud service supports Amazon S3 storage, a simple distributed storage
API at affordable pricing. Riak CS also supports OpenStack and the Keystone
authentication service.

Having Riak available on Amazon is particularly helpful if you need rapid
scale out or scale back of the cluster. These services are typically seasonal
and peak a few weeks out of each year, especially during the Christmas and
tax‐filing seasons.

Handling disasters
To ensure that your data remains available when an entire datacenter goes
down (often caused by workers mechanically digging up network cables!),
you need to have a second datacenter with the latest possible information.

You can do so with Riak by purchasing Basho’s Riak Enterprise. This edition
supports asynchronous or timed replication of data from a primary master
site to one or more secondary replica sites. If the primary site goes down,
you can switch your customers and applications to one of the replica sites.
Because replication is asynchronous, it’s still possible to lose some data,
but this is the typical replication method used between datacenters across
all types of database software. Asynchronous cluster‐to‐cluster replication
provides the best tradeoff between primary cluster performance and data
durability and consistency.

Evaluating Basho
Basho also offers expert consultation services for the Riak database. In the
UK, Basho offers perpetual licenses, support, and consultation on the UK
government’s G‐Cloud store, and you can find the government’s prices online
by searching for Riak at https://www.digitalmarketplace.service.
gov.uk.

Basho also claims to have several high‐profile customers, including Best Buy,
the Braintree payments service, Comcast, and Google (in its Bump service).
Various media and advertisement companies, including Rovio Entertainment,
creator of Angry Birds, are customers, too.

At the time of this writing, Basho has offices in Washington, D.C., London,
and Tokyo.

https://www.digitalmarketplace.service.gov.uk
https://www.digitalmarketplace.service.gov.uk

138 Part II: Key-Value Stores

Visit www.dummies.com/extras/nosql for great Dummies content online.

Bigtable Clones
Part III

http://www.dummies.com/extras/nosql

In this part . . .
 ✓ Managing data.

 ✓ Building for reliability.

 ✓ Storing data in columns.

 ✓ Examining Bigtable products.

 ✓ Visit www.dummies.com/extras/nosql for great
Dummies content online.

http://www.dummies.com/extras/nosql

Common Features of Bigtables
In This Chapter

▶▶ Structuring your data

▶▶ Manipulating data

▶▶ Managing large applications

▶▶ Ensuring optimum performance

I
n previous chapters, I’ve focused on RDBMS features. Now, I want to talk
about the useful features provided by Bigtables and how to improve the

performance of your Bigtable applications.

Bigtables clones are a type of NoSQL database that emerged from Google’s
seminal Bigtable paper. Bigtables are a highly distributed way to manage
tabular data. These tables of data are not related to each other like they
would be in a traditional Relational Database Management System (RDBMS).

Bigtables encourage the use of denormalisation — copying summary data in
to several records — for fast read speed, rather than using relationships that
require CPU‐costly data reconstitution work at query time.

In Chapter 11, I cover the use of Bigtables; however, to make the best use
of them, you first need to understand how they organize data and how to
structure data for its optimal use. That’s the purpose of this chapter.

In this chapter, I describe how Bigtable clones based on Google’s original
Bigtable are different from RDBMS technology. I also discuss the mindset
needed to understand and best use Bigtable NoSQL databases.

Chapter 9

142 Part III: Bigtable Clones

Storing Data in Bigtables
A Bigtable has tables just like an RDBMS does, but unlike an RDBMS, a
Bigtable tables generally don’t have relationships with other tables. Instead,
complex data is grouped into a single table.

A table in a Bigtable consists of groups of columns, called column families,
and a row key. These together enable fast lookup of a single record of data
held in a Bigtable. I discuss these elements and the data they allow to be
stored in the following sections.

Using row keys
Every row needs to be uniquely identified. This is where a row key comes in.
A row key is a unique string used to reference a single record in a Bigtable.
You can think of them as being akin to a primary key or like a social security
number for Bigtables.

Many Bigtables don’t provide good secondary indexes (indexes over column
values themselves), so designing a row key that enables fast lookup of
records is crucial to ensuring good performance.

A well‐designed row key allows a record to be located without having to have
your application read and check the applicability of each record yourself. It’s
faster for the database to do this.

Row keys are also used by most Bigtables to evenly distribute records
between servers. A poorly designed row key will lead to one server in your
database cluster receiving more load (requests) than the other servers, slow-
ing user‐visible performance of your whole database service.

Creating column families
A column family is a logical grouping of columns. Although Bigtables allow
you to vary the number of columns supported in any table definition at run-
time, you must specify the allowed column families up front. These typically
can’t be modified without taking the server offline. As an example, an address
book application may use one family for Home Address. This could con-
tain the columns Address Line 1, Address Line 2, Area, City, County, State,
Country, and Zip Code.

143 Chapter 9: Common Features of Bigtables

Not all addresses will have data in all the fields. For example, Address Line 2,
Area, and County may often be blank. On the other hand, you may have data
only in Address Line 1 and Zip Code. These two examples are both fine in the
same Home Address column family.

Having varying numbers of columns has its drawbacks. If you want to HBase,
for example, to list all columns within a particular family, you must iterate
over all rows to get the complete list of columns! So, you need to keep track
of your data model in your application with a Bigtable clone to avoid this
 performance penalty.

Using timestamps
Each value within a column can typically store different versions. These
 versions are referenced by using a timestamp value.

Values are never modified — a different value is added with a different time-
stamp. To delete a value, you add a tombstone marker to the value, which
basically is flagging that the value is deleted at a particular point in time.

All values for the same row key and column family are stored together, which
means that all lookups or version decisions are taken in a single place where
all the relevant data resides.

Handling binary values
In Bigtables, values are simply byte arrays. For example, they can be text,
numbers, or even images. What you store in them is up to you.

Only a few Bigtable clones support value‐typing. Hypertable, for example,
allows you to set types and add secondary indexes to values. Cassandra also
allows you to define types for values, but its range‐query indexes (less‐than
and greater‐than operations for each data type) are limited to speeding up
key lookup operations, not value comparison operations.

Working with Data
NoSQL databases are designed to hold terabytes and petabytes of
information. You can use several techniques to handle this amount of
information efficiently.

144 Part III: Bigtable Clones

Such a large store of information places unique problems on your database
server infrastructure and applications:

▶✓ Effectively splitting data among several servers to ensure even ingestion
(adding of data) and query load

▶✓ Handling failure of individual servers in your cluster

▶✓ Ensuring fast data retrieval in your application without traditional
RDBMS query joins

This section looks at these issues in detail.

Partitioning your database
Each table in a Bigtable is divided into ordered sets of contiguous rows,
which are handled by different servers within the cluster. In order to distrib-
ute data effectively across all servers, you need to pick a row key strategy
that ensures a good spread of query load.

A good example of doing this is to use a random number as the start of your
partition key. As each tablet server (a single server in a Bigtable cluster)
will hold a specific range of keys, using a randomized start to a partition key
ensures even data distribution across servers.

A bad example of doing this can be found in a financial transaction data-
base or log file management database. Using the timestamp as a row key
means that new rows are added to the last tablet in the cluster — on a single
machine. This means one server becomes the bottleneck for writes of new
data.

Also, it’s possible most of your client applications query recent data more
often than historic data. If this is the case, then the same server will become
a bottleneck for reads because it holds the most up‐to‐date data.

Use some other mechanism to ensure that data is distributed evenly across
servers for both reads and writes. A good random number mechanism is to
use Universally Unique Identifiers (UUIDs). Many programming languages
come with a UUID class to assist with this. Using a Java application with
HBase, for example, means you have access to the Java UUID class to create
unique IDs for your rows.

145 Chapter 9: Common Features of Bigtables

Clustering
NoSQL databases are well suited to very large datasets. Bigtable clones like
HBase are no exception. You’ll likely want to use several inexpensive com-
modity servers in a single cluster rather than one very powerful machine.
This is because you can get overall better performance per dollar by using
many commodity servers, rather than a vastly more costly single, powerful
server.

In addition to being able to scale up quickly, inexpensive commodity servers
can also make your database service more resilient and thus help avoid hard-
ware failures. This is because you have other servers to take over the service
if a single server’s motherboard fails. This is not the case with a single large
server.

Figure 9-1 shows a highly available HBase configuration with an example of
data split among servers.

The diagram in Figure 9-1 shows two nodes (HRegionServers, which I talk
about in the upcoming section “Using tablets”) in a highly available setup,
each acting as a backup for the other.

Figure 9-1:
Highly

available
HBase
setup.

146 Part III: Bigtable Clones

In many production setups, you may want at least three nodes for high
availability to ensure two server failures close in time to one another can
be handled. This isn’t as rare as you’d think! Advice varies per Bigtable; for
example, HBase recommends five nodes as a minimum for a cluster:

▶✓ Each region server manages its own set of keys.

 Designing a row key‐allocation strategy is important because it dictates
how the load is spread across the cluster.

▶✓ Each region maintains its own write log and in‐memory store.

 In HBase, all data is written to an in‐memory store, and later this store is
flushed to disk. On disk, these stores are called store files.

 HBase interprets store files as single files, but in reality, they’re distrib-
uted in chunks across a Hadoop Distributed File System (HDFS). This
provides for high ingest and retrieval speed because all large I/O opera-
tions are spread across many machines.

To maximize data availability, by default, Hadoop maintains three copies of
each data file. Large installations have

▶✓ A primary copy

▶✓ A replica within the same rack

▶✓ Another replica in a different rack

Prior to Hadoop 2.0, Namenodes could not be made highly available. These
maintained a list of all active servers in the cluster. They were, therefore, a
single point of failure. Since Hadoop 2.0, this limit no longer exists.

Denormalizing
Rows in a particular table consist of several column families. Each column
family can contain many columns. What Bigtables cannot do is store multiple
values as a list in the same column for a row, which means that you must
choose to either

▶✓ Store a list within the value (and serialize and load it yourself in code).

▶✓ Use a composite value for the column name, such as email|work and
email|home.

Rather than normalize your data by having multiple tables that require
joining to get a picture of a person, you may want to use a single record with
multiple values copied (coalesced) in to a single record. This capability is

147 Chapter 9: Common Features of Bigtables

called denormalization. Application developers find this approach easier to
deal with because they can store an entire object as a row.

A good example is an e‐commerce order. You may have a column family for
billing information, a column family for delivery information, and a column
family for items within the order. Many order items are in a single order.
Applying denormalization means you can operate on all data about an order
as a single entity.

There are several benefits to this approach in a NoSQL database:

▶✓ Application developers can work with an entire order as a single entity
or object.

▶✓ Read operations don’t need to do complex joins, as in SQL, on a rela-
tional DBMS.

▶✓ Write operations don’t require shredding of data (taking an aggregate
structure and spreading it across many tables), just writing of a single
aggregate structure to a single record.

Bigtables like HBase have alternative mechanisms to denormalization:

▶✓ Use a version of a value to store each actual value.

▶ ▶The number of retained versions is set at the time a column family is
created, which means the number of items per order is limited.

▶✓ Store the Order Items object as an aggregate, perhaps in JSON or XML.

▶✓ Flatten some of the model keys and use composite row keys.

 This is similar to the way you’d store data with a relational database
with joins, but it enables fast scanning of all the data in an order.

For a full discussion of this modeling scenario, go to the online HBase
documentation, which you can find at http://hbase.apache.org/book.
html#schema.casestudies.custorder.

If you find yourself storing many data values as JSON or XML “dumb” binary
columns, consider a document database that supports secondary indexes.
These document NoSQL databases are a much better fit for tree data models.

148 Part III: Bigtable Clones

Managing Data
Once data is written to a database, you need to be able to manage it effi-
ciently and ensure that it’s always in a consistent, known state. You also
need to be able to alter the storage structure over time as data needs to be
 rebalanced across a cluster.

There are several techniques available to manage data within Bigtable clones,
and I discuss those next.

Locking data
Row locking means a record cannot have any field accessed while another
process is accessing it. Row locking is an apt feature for a record that may be
updated. Consider a situation where two clients are trying to update informa-
tion at the same time. Without a row lock, one client could successfully write
information that is immediately overwritten by the second process before
the next read.

In this situation, a read‐modify‐update (RMU) sequence is helpful. This pro-
cess requires that the database lock an entire row for edits until the first edit-
ing process is complete. However, doing so is particularly tricky if you need
to either update or create a row but your application doesn’t yet know if that
row already exists. Should you create or update a row? The good news is that
databases like HBase allow locking on any row key, including those that don’t
yet exist.

Using tablets
A tablet server is a server within a Bigtable cluster that can manage one or
more tablets. HBase calls these HRegionServers. You use these servers to
store rows of data that belong to a particular subset of a table. These subsets
are contiguous rows as judged by their row key values.

A typical tablet server can store from 10 to 1,000 tablets. In turn, these tab-
lets hold a number of rows within a particular table. Tablets, therefore, hold
a group of records (called rows in Bigtables) for a single table within a single
database.

149 Chapter 9: Common Features of Bigtables

A tablet is managed by a particular tablet server. If that server goes down,
another tablet server is assigned to manage that tablet’s data. Thus, a tablet
is the unit of persistence within a Bigtable.

Alternative names for this mechanism exist across different Bigtable clones.
HBase, for example, supports multiple regions per region server and multiple
stores per region.

Configuring replication
Replication is an overloaded term in NoSQL land. It can mean one of several
things:

▶✓ Copying data between multiple servers in case of disk failure.

▶✓ Ensuring that read replicas have copies of the latest data.

▶✓ Keeping a disaster recovery cluster up to date with the live primary
cluster.

 This definition is the one that most people will recognize as replication.
I call this disaster recovery (DR) replication to avoid confusion.

All DR functionality works on the premise that you don’t want to block data
writes on the primary site in order to keep the DR site up to date. So, DR
replication is asynchronous. However, the changes are applied in order
so that the database can replay the edit logs in the correct sequence. As a
result, it’s possible to lose some data if the primary site goes down before the
DR site is updated.

This state of affairs applies to all traditional relational DBMS DR replication.
The advantage, on the other hand, is very fast writes in the primary cluster.

Waiting for another server to confirm that it’s updated before the client is
told that the transaction is complete is called a two‐phase commit. It’s
considered two phases because the local commit and all configured remote
commits must happen before the client is informed of a transaction’s
success.

Replication means that data changes are sent from a primary site to a
secondary site. You can configure replication to send changes to multiple
secondary sites, too.

Replication happens between tablets or regions, not at the database level.
This means that updates happen quickly and that the load is spread across
both the primary and secondary clusters.

150 Part III: Bigtable Clones

Improving Performance
Depending on how they’re used, you must tweak the configuration of data-
bases to ensure that they perform as needed. In this section, I talk about
some common options to keep in mind when you’re tuning a Bigtable clone.

Compressing data
All of the Bigtable clones that I looked at in detail for this book — HBase,
Hypertable, Accumulo, and Cassandra — support block compression, which
keeps data values in a compressed state to reduce the amount of disk space
used. Because, in general, Bigtables don’t store typed values, this compres-
sion is simple binary compression.

Several algorithms are typically supported, usually at least gzip and LZO
compression. HBase and Cassandra, in particular, support several
algorithms.

Cassandra stores its data in the SSTable format, which is the same format
as Google’s original Bigtable. This format has the advantage of using an
append‐only model. So, rather than update data in place — which requires
uncompressing the current data, modifying it, and recompressing — data can
simply be appended to the SSTable. This single compression activity makes
updates fast.

Caching data
NoSQL databases generally use an append‐only model to increase the perfor-
mance of write operations. New data is added to the storage structure, and
old data is marked for later deletion. Over time, merges happen to remove
old data. Compaction is another word for this process.

For write‐heavy systems, this model can lead to a lot of merges, increasing
the CPU load and lowering data write speed. Some Bigtable systems, such
as Hypertable, provide an in‐memory write cache, which allows some of the
merges to happen in RAM, reducing the load on the disk and ensuring better
performance for write operations.

For read‐heavy systems, reading the same data from disk repeatedly is expen-
sive in terms of disk access (seek) times. Hypertable provides a read cache to
mitigate this problem. Under heavy loads, Hypertable automatically expands
this cache to use more of a system’s RAM.

151 Chapter 9: Common Features of Bigtables

Filtering data
Retrieving all records where a value is in a particular range comes at the
expense of data reading bandwidth. Typically, a hashing mechanism on the
row key is used to avoid reading a lot of data just to filter it, you instead
search just a smaller portion of the database. Searching this value space is
I/O‐intensive as data increases to billions of records.

Because “billions of records” isn’t an unusual case in NoSQL, a different
approach is required. One of the most common techniques is called a Bloom
filter, named after Burton Howard Bloom who first proposed this technique in
1970.

A Bloom filter uses a predictable and small index space while greatly
reducing requirements for disk access. This state is achieved because a
Bloom filter is probabilistic; that is, it returns either Value may be in set or
Value is definitely not in set, rather than a traditional Value is definitely in set.

Exact value matches can then be calculated based on the results from the
Bloom filter — a much reduced key space to search. The disk I/O is still
greatly reduced, as compared to a traditional simple hashing mechanism that
scans the entire table.

HBase, Accumulo, Cassandra, and Hypertable all support Bloom filters.

152 Part III: Bigtable Clones

Bigtable in the Enterprise
In This Chapter

▶▶ Protecting your data when a server crashes

▶▶ Predicting reliability of your database service’s components

▶▶ Growing your database service as your business grows

B
usinesses are risk-adverse operations, and mission-critical systems
rely on safeguard after safeguard, along with plan B and plan C, in case

disaster strikes.

Distributed Bigtable-like databases are no exception, which requires Bigtable
enthusiasts to prove that this newfangled way of managing data is reliable for
high-speed and mission-critical workloads.

Thankfully, the people working on Bigtable clones are also intimately famil-
iar with how relational database management systems (RDBMS) provide
mission-critical data storage. They’ve been busily applying these lessons to
Bigtables.

In this chapter, I talk about the issues that large enterprises will encounter
when installing, configuring, and maintaining a mission-critical Bigtable data-
base service.

Managing Multiple Data Centers
If all goes horribly, horribly wrong — or someone accidentally turns off
all the lights in a city — you’ll need an entire backup data center, which is
referred to as a disaster recovery site.

In this section, I talk about the features commonly available in Bigtable
clones that help guarantee a second data center backup in case of disaster.

Chapter 10

154 Part III: Bigtable Clones

Active-active clustering
Perhaps your organization does “live” business in many locations in the
world. If so, you need high-speed local writes to your nearest data center —
so all data centers must be writable. In this scenario, all data centers are pri-
mary active data centers for their own information.

Active-active clustering writes can happen at any location. All data centers
are live all the time. Data is replicated between active sites, too, in order to
provide for traditional disaster recovery.

However, if the same data record is overwritten in multiple locations, you
may be faced with having to choose between two options:

▶✓ Wait for the site to write this data to all data centers, slowing down your
transaction times.

 This option is shown in part A of Figure 10-1.

▶✓ Replicate this data asynchronously, potentially losing some of the latest
data if it wasn’t replicated before an outage at one site.

▶✓ This option is shown in part B of Figure 10-1.

In my experience, it’s unusual to have a situation where the same record
must be updated from multiple data centers. Normally, writing a new record
locally and pushing that to the other sites asynchronously is sufficient. In
this model, each site does accept writes, but only for a fixed number of parti-
tions (primary keys). This still allows a global view to be generated locally,
with a small chance of inconsistency only with the remote replicated data.
This option is show in part C of Figure 10-1.

When you absolutely need fast local data center writes across the world, a
globally distributed database that supports full active-active clustering is
needed. Cassandra is a Bigtable database that supports global active-active
clusters while preserving as much speed as possible on ingest.

Managing time
Many Bigtable databases rely on identifying the latest record by a timestamp.
Of course, time is different across the world, and coming up with a reliable,
globally synchronized clock is incredibly difficult. Most computer systems
are accurate individually to the millisecond, with synchronization lag of a few
milliseconds. For most systems this is fine, but for very large systems a more
accurate time stamp mechanism is required.

155 Chapter 10: Bigtable in the Enterprise

An out-of-sync clock means that one site thinks it has the latest version of
a record, whereas in fact another site somewhere in the world wrote an
update just after the local write. Only a very few applications, though, are
affected by this time difference to the extent that data becomes inconsistent.
Most records are updated by the same application, process, or local team of
people that wrote it in the first place. Where this isn’t the case (like in global
financial services where trades can be processed anywhere), synchronization
is an issue.

Google recently came up with a mechanism for a reliable global timestamp
called the Google TrueTime API, and it’s at the heart of the Spanner NewSQL
relational database, which stores its data in the Bigtable NoSQL columnar
database.

This API depicts the concept of uncertainty in terms of current time. It uses
a time interval that’s guaranteed to include the time at which an operation
happened. This approach better clarifies when an operation definitely or may
have happened. The time synchronization uses atomic clocks or GPS signals.

Many Bigtable databases, except Google Bigtable itself, support the concept
of a record timestamp. These time stamps don’t rise quite to the level of sci-
ence that Google’s TrueTime API does, but they provide a close approxima-
tion that may suffice in your particular use case. Notably, Accumulo has its
own distributed time API within a cluster.

Figure 10-1:
Cross-data

center
replication

mecha-
nisms.

156 Part III: Bigtable Clones

Reliability
Reliability refers to a service that’s available and can respond to your
requests. It means you’re able to access the service and your data, no matter
what’s going on internally in a cluster.

Conversely, if you can’t communicate with the server in the cluster and can’t
access the data in the server, your database needs to handle the lack of com-
munication.

The database also needs to handle failures. What happens if the disk drive
dies? How about a single server’s motherboard? How about the network
switch covering a quarter of your database cluster? These are the kinds of
things that keep database administrators up at night (and employed, come to
think of it).

In this section, I discuss how Bigtable databases provide features that allevi-
ate database cluster reliability issues.

Being Google
In Google’s Bigtable paper, which I introduced in Chapter 1, its authors dis-
cuss their observations on running a large distributed database. Bigtable
powers Google Analytics, Google Earth, Google Finance, Orkut, and
Personalized Search. These are large systems, and Googles’ observations
regarding such systems are interesting. In particular, they spotted various
causes for system problems, as shown here:

▶✓ Memory corruption: Where a system’s memory state becomes invalid

▶✓ Network corruption: Where data is modified while in transit

▶✓ Large clock skew: Where servers disagree on the “current” time

▶✓ Hung machines: Where some machines don’t respond while others do

▶✓ Extended and asymmetric network partitions: Where long network
lags occur, and also “split brains,” which is where a cluster of nodes is
divided into two (or more) clusters unevenly, each receiving requests as
if the whole cluster was still operational and communicative

▶✓ Bugs in other systems Google used: For example, dependent services
like the distributed Chubby file-lock mechanism

157 Chapter 10: Bigtable in the Enterprise

▶✓ Overflow of GFS quotas: Effectively running out of disk space

▶✓ Planned and unplanned hardware maintenance: Where workloads
in the cluster are affected

These problems affect a wide variety of distributed databases, and when
assessing a particular database for its reliability in enterprise applica-
tions, you need to find out how they handle the preceding situations.

With this information, you can identify higher-risk areas of your system,
including whether a single point of failure (SPoF) needs to be addressed.
SPoFs are the main cause of catastrophic service unavailability, so I
spend a lot of time throughout this book identifying them. I recommend
you address each one I talk about for a live production service.

Ensuring availability
A table in a Bigtable database is not a physical object. Instead, data is
held within tablets. These tablets are all tagged as being associated with
a table name. Tablets are distributed across many servers.

If a server managing a tablet fails, then this needs to be managed.
Typically, in Bigtable clones, another tablet server is elected to take over
as the primary master for the tablets on the failed server. These tablets
are shared between the remaining servers to prevent a single server
from becoming overloaded.

How these secondary servers are selected and how long it takes them to
take over operations on those tablets are important issues because they
can affect data and service availability, as shown here:

▶✓ Some Bigtable clones have a master process that monitors tablet
servers and then reallocates their tablets if the tablets fail or
become unresponsive. These masters are also responsible for data-
base changes like adding or removing tables, so these masters also
respond to limited client requests.

▶✓ On some databases (for example, Hypertable), these master pro-
cesses aren’t highly available, which means that, if the master also
dies, you might have a problem. Usually, you can start another
master within seconds, but it’s important to understand this needs
to be done to guarantee availability.

158 Part III: Bigtable Clones

▶✓ Other Bigtable clones (HBase, Accumulo) will have standby master pro-
cesses running, with failover happening immediately and without the
client knowing. Accumulo even goes so far as to have a feature — called
FATE, amusingly enough — that guarantees and replays any database
structure altering requests if the master fails during a modification. This
prevents schema corruption of the database.

▶✓ Other databases (Cassandra) use a chatter protocol between all mem-
bers of the cluster, avoiding a master process altogether. This gives
Cassandra the minimum number of components, and allows every
server in the cluster to look the same, all of which makes administration
and setup easier, while helping guarantee availability, too.

Scalability
Anyone can create a database that looks fast on a single machine while
loading and querying a handful of records. However, scaling to petabytes
requires a lot of work. In this section, therefore, I highlight features that can
help you scale read and write workloads.

The features covered in this chapter are specific to Bigtable clones
mentioned in this book. Many other strategies are possible to achieve
scalability, including:

▶✓ Use distributed file storage. Shares load across physical disks/servers,
which can be done in one of the following ways:

• A local RAID (Redundant Array of Inexpensive Disk) array

• A shared storage system such as HDFS (Hadoop File System)

▶✓ Go native. Using a compiled programming language next to an operating
system like C++ is always faster than a bytecode or interpreted language
like Java.

 Most Bigtable clones are implemented on top of Java, with Hypertable
being the notable C++ exception.

▶✓ Utilize fast networks. Use at least 10-Gbps switches for high-speed
operations, especially if you’re using shared network storage.

▶✓ Set up separate networks. Sometimes it’s useful to keep client-to-
database network loads separate from database-to-storage or database
intra-node chatter. On larger clusters, intra-node chatter can also start
flooding a data network if the network is shared. On very large clusters,
it’s best to have a secondary net for intra-server communication to
avoid this problem.

159 Chapter 10: Bigtable in the Enterprise

▶✓ Write to memory with journaling. Some databases can receive writes
in memory, which is very fast, while also writing a small record of the
changes, called a Journal, to disk to ensure that the data is durable if the
server fails. This Journal is smaller, and thus faster to save, than apply-
ing the change itself to all the database structures on disk.

Ingesting data in parallel
When writing large amounts of data to a database, spread the load. There’s
no point having a 2-petabyte database spread across 100 servers if 99 per-
cent of the new data is landing on only one of those servers, and doing so can
easily lead to poor performance when data is being ingested.

Bigtable databases solve this problem by spreading data based on its row
key (sometimes called a partition key). Adjacent row key values are kept near
each other in the same tablets.

To ensure that new data is spread across servers, choose a row key that guar-
antees new records aren’t located on the same tablet on a single server, but
instead are stored on many tablets spread across all servers.

▶✓ Accumulo allows you to plug in your own balancer implementations,
which enables you to specify that rows can be kept together or spread
across a cluster, depending on your needs.

▶✓ Accumulo and HBase also support locality groups, which keep particular
columns for the same row together. This is particularly useful for guar-
anteeing fast read speeds. Hypertable supports locality groups, too, with
a feature called access groups.

In-memory caching
A database system can experience extreme input and output load, as
described here:

▶✓ In many systems, the same data is often requested. Consider a news
site that shows the latest news stories across a range of segments. In
this case, it’s important to keep the latest stories cached, rather than go
back to disk to access them each time they’re requested.

▶✓ When high-speed writes are needed, the most efficient way to handle
them is to write all the data to an in-memory database file, and just write
the journal (a short description of the changes) to disk, which increases
throughput while maintaining durability in the event of a system failure.

160 Part III: Bigtable Clones

It’s best to have a system that can cope with managing both high-speed
writes and read caching natively and automatically. Hypertable is one such
database that proactively caches data, watching how the system is used and
changing memory priorities automatically.

Indexing
Like key-value stores, Bigtable clones are very good at keeping track of
a large number of keys across many, if not hundreds, of database serv-
ers. Client drivers for these databases cache these key range assignments
in order to minimize the lag between finding where the key is stored and
requesting its value from the tablet server.

Rather than store one value, a Bigtable stores multiple values, each in a
column, with columns grouped into column families. This arrangement
makes Bigtable clones more like a traditional database, where the database
manages stored fields.

However, Bigtables, like key-value stores, don’t generally look at or use the
data type of their values. No Bigtable database in this book supports — out of
the box — data types for values, though Cassandra allows secondary indexes
for values. However, these secondary indexes simply allow the column value
to be used for comparison in a “where” clause; they don’t speed up query
times like a traditional index does.

You can apply the same workaround to indexing used in key-value stores to
Bigtables. Figure 10-2 shows single and compound indexes.

The shown indexing method is limited, though, because you need to know in
advance what combinations of fields are required in order to build an index
table for each combination of query terms. The indexes are also consistent
only if the Bigtable database supports transactions, or real time updates of
the indexes during a write operation.

If the database doesn’t support automatic index table updates within a trans-
action boundary, then for a split second, the database will hold data but have
no index for it. Databases with transactions can update both the data table
and index table(s) in a single atomic transaction, ensuring consistency in
your database indexes. This is especially critical if the server you’re writing
to dies after writing the value, but before writing the index — the row value
may never be searchable! In this case, you must check for data inconsisten-
cies manually on server failover.

161 Chapter 10: Bigtable in the Enterprise

Hypertable is a notable exception because it does provide limited key qualifier
indexes (used to check whether a column exists for a given row) and value
indexes (used for equals, starts with, and regular expression matches). These
indexes do not support ranged less-than or greater-than queries, though.

Other general-purpose indexing schemes are available for use with Bigtable
clones. One such project is Culvert (https://github.com/booz-allen-
hamilton/culvert). This project aimed to produce a general-purpose sec-
ondary indexing approach for multiple Bigtable implementations over HDFS.
HBase and Accumulo are supported.

This project has been dormant since January 2012, but the code still works.
In the future it may no longer work with the latest databases, requiring orga-
nizations to build their own version. This means knowing about Culvert’s
approach could help you design your own indexing strategy.

Commercial support vendors, such as Sqrrl Enterprise for Accumulo, pro-
vide their own proprietary secondary indexing implementations. If you need
this type of indexing, do consider those products. Similarly, the Solr search
engine has also been used on top of Bigtable clones.

Figure 10-2:
Secondary

index tables
in a Bigtable

database.

https://github.com/booz-allen-hamilton/culvert
https://github.com/booz-allen-hamilton/culvert

162 Part III: Bigtable Clones

Using an additional search engine tier takes up much more storage (field values
are stored twice) and may not be transactionally consistent if it’s updated out-
side of a database transaction. Cassandra, which ensures consistent Solr index
updates, is the notable exception in the DataStax Enterprise version.

Solr is a useful option for full-text indexing of JSON documents stored as
values in Bigtables. But if you’re storing documents, it’s better to consider a
document store.

Aggregating data
In transactional database systems, individual rows are created and updated,
whereas in analytical systems, they’re queried in batches and have calcula-
tions applied over them.

If you need to provide high-speed analytics for large amounts of data, then
you need a different approach. Ideally, you want the ability to run aggrega-
tion calculations close to the data itself, rather than send tons of information
over the network to the client application to process.

All Bigtable clones in this book support HDFS for storage and Hadoop Map/
Reduce for batch processing. Accumulo is prominent because it includes a
native extension mechanism that, in practice, may prove more efficient for
batch processing than Hadoop Map/Reduce.

Accumulo iterators are plug-in Java extensions that you can write yourself
and use to implement a variety of low-level query functionality. You can use
them to:

▶✓ Shard data across tablet servers.

▶✓ Sort data (for storing the most recent data first).

▶✓ Filter data (used for attribute-based access control).

▶✓ Aggregate data (sum, mean average, and so on).

HBase coprocessors introduced recently in HBase 0.92 also allow similar
functionality as Accumulo offers. They also will eventually allow HBase to
have similar security (visibility iterator) functionality as Accumulo.

163 Chapter 10: Bigtable in the Enterprise

Configuring dynamic clusters
After you parallelize your data as much as possible, you may discover that
you need to add more servers to your cluster in order to handle the load.
This requires rebalancing the data across a cluster in order to even out the
query and ingest loads. This rebalancing is particularly important when you
need to increase the size of your cluster to take on larger application loads.

You can support cluster elasticity in Bigtable clones by adding more servers
and then instructing the master, or entire cluster for master-less Bigtable
clones like Cassandra, to redistribute the tablets across all instances. This
operation is similar to server failover in most Bigtable implementations.

The control of the HDFS area is moved to a new server, which then may have
to replay the journal (often called the write ahead log — WAL) if the changes
haven’t been flushed to HDFS. On some databases, like HBase, this process
can take ten minutes to finish.

Once you’ve scaled out, you may decide you want to scale back, especially
if during peak periods of data ingestion, you added more servers only to
receive more parallel information. This is common for systems where infor-
mation is submitted by a particular well known deadline, like for government
tax-return deadlines. Again, this requires redistribution of the tablets, revers-
ing the preceding scale out process.

Configuring and starting this process is in many cases a manual exercise. You
can’t join a Bigtable to a cluster and have that cluster magically reassign tab-
lets without issuing a command to the cluster. Some commercial enterprise
versions, such as DataStax Enterprise, do automate this process.

164 Part III: Bigtable Clones

Bigtable Use Cases
In This Chapter

▶▶ Restructuring data for storage in columns

▶▶ Storing data for later analysis

B
igtable is used to manage very large amounts of data across many serv-
ers, up to petabytes of data and hundreds, if not thousands, of servers.

If you’re using relational databases but having issues with them, you might
think that Bigtable clones are the natural place to start looking for help. After
all, they’re tables, so they must be similar to relational databases, right?
Unfortunately, that’s not the case.

Bigtable clones handle some issues well that relational database don’t
solve — for example, with sparse data problems, where datasets contain
many different types of values, but only a handful of those values are used.
Bigtable clones are also able to analyze data while it’s in-flight, rather than in
overnight batches in a separate data warehouse.

This chapter shows how managing data in relational database differs from
managing the same data in a Bigtable. I also talk about how to store data
effectively for later analysis, and for providing historic summaries of data
analyzed.

Handling Sparse Data
At times, a relational database management system (RDBMS) may have a
table design (a schema) in which the columns don’t have a value. An example
is a social media site where someone hasn’t provided their photo yet.

Chapter 11

166 Part III: Bigtable Clones

Using an RDBMS to store sparse data
Null values(as opposed to empty strings) in relational databases typically
consume a couple of bytes, which is fine normally because the field isn’t
filled — which when filled would be more like a 20-byte string for, say, storing
an uploaded a picture. Two bytes is better than 20 bytes.

In some situations, though, these two bytes per blank field can be a
significant amount of wasted space. Consider a contacts application that
supports usernames and phone numbers for every type of network — cell,
home, and office phone — and social networks like Twitter, Facebook, and
Baidu, with a column for each of the hundreds of options and addresses. This
means hundreds of bytes wasted per record.

If you’re anything like me, each contact consumes a minimum of three fields
(see Figure 11-1). If you provide a contact management service, you may be
storing 297 null fields for the 300 fields you support. Scale this up to a shared
global application, and you’re looking at terabytes of wasted space.

Author: So you can’t scale up from global to worldwide, because they mean
the same thing — so the scale is the same.

That’s even before you consider doing a query on a single contact and pulling
back 300 columns, many of which are null. Those null columns 2 bytes mark-
ers are costly in space on the result set when being sent over the network
and processed at the client.

Using a Bigtable to manage sparse data instead of a relational database allevi-
ates this storage issue.

Figure 11-1:
Sparse

contacts
table in an

RDBMS.

167 Chapter 11: Bigtable Use Cases

Using a Bigtable
In a Bigtable, you can model the same contacts application with a
column family for each type of network (phone, social media, email, snail
mail) and a column for each one defined (home phone, cell phone, office
phone).

Bigtable stores only the columns you indicate on each record instance. If
you indicate three columns — email, home phone, and cell phone — then
Bigtable stores exactly those three column values. No nulls, and no wasted
space, as illustrated in Figure 11-2.

If you need to find all contacts with a phone number — say, at least one
column in the phone column family — then you need to consider that factor.
This scenario can happen if you’re viewing all contacts in a phone in order
to make a call; there’s no point in showing contacts without phone numbers
here!

In this case, the database must support a column exists query for the column
family and column names. Some databases, such as Hypertable, allow you to
set up special qualifier indexes to ensure that these types of existential que-
ries will operate quickly over large datasets.

Also, keep in mind that some Bigtable clones don’t provide advanced match-
ing functions for values but store them instead as “dumb” binary data that
cannot be compared with data-type specific operations — for example,
searching for all contact names (a string field) starting with “Adam F”. This is
a starts with query that processes a string value. Most Bigtable clones provide
exact match functionality, but don’t natively support partial match or data-
type-specific range queries (less than and greater than).

Figure 11-2:
Sparse data
in a Bigtable

clone.

168 Part III: Bigtable Clones

Hypertable’s value indexes do support exact match, starts with, and regular
expression matches. If you need this functionality regularly, Hypertable may
be for you.

Bigtable clones also don’t support relationships, preferring to store multiple
copies of data to minimize read-time processing. This is a process called
denormalization. Although, in some situations, this approach consumes more
disk space, it enables very efficient reads with higher throughput than most
relational databases can provide.

Analyzing Log Files
Log files are very common across a range of systems and applications. Being
able to record these files for later analysis is a valuable feature.

Log-file recording and analysis is a very complex business. It’s not unusual
for every system-to-system call in mission-critical Enterprise applications to
include tracking code. This code enables the app to check for errors, invalid
values, and security breaches, as well as the duration of each action.

This vast information is collected from hundreds of servers. It’s then ana-
lyzed in nearly real time in order to ensure that a system’s tracking capabili-
ties and condition are up to date. In this way, problems are discovered before
services to users are interrupted.

Analyzing data in-flight
The traditional relational database approach to analyzing data is to store it
during the day and then at regular intervals (normally overnight) to create a
different structure of that data in a data warehouse for analyzing the next day.

For your company’s current Enterprise software sales, daily data summaries
may be enough. On the other hand, in countries with highly regulated finan-
cial services, this information needs to be less than five minutes old. The
same can be said for system monitoring. There’s no point in having a view
that’s 24 hours or more out of date; you need summaries as soon as they’re
available.

Bigtable clones are great for collecting this information. They can have flexi-
ble columns, so if a particular log entry doesn’t have data for a field, it simply
can’t be stored. (See Figure 11-3 for an example of a log entry.) Bigtable
clones also allow you to store data in multiple structures.

169 Chapter 11: Bigtable Use Cases

To build a quick picture of a day in five minute, one-hour, one-day chunks,
you can store the same data in alternative structures at the same time. This
is an application of the denormalization pattern commonly used in NoSQL
systems, as shown in Figure 11-4.

The preceding denormalization approach enables quick searching for data
in different systems at different time intervals, which is useful for ad-hoc
querying and also for building data summaries, which I discuss next.

Building data summaries
Having extra index tables allows a daemon program to regularly and
efficiently recalculate the last five minutes, hour, and daily summaries.

Instead of requiring a range index or scanning all data rows to find the last
five minutes of data, you instead merely round the current time up to a

Figure 11-3:
A typical log

file entry.

Figure 11-4:
The same
log entry

indexed for
different

time
periods.

170 Part III: Bigtable Clones

Figure 11-5:
Calculated

summary
table.

five-minute interval and query for all data with that interval in your
log summary table.

Using specialized system iterators (as Accumulo does) or stored
procedures allows this calculation to happen within the database
very efficiently. (See Figure 11-5, which shows a summary table
being updated.)

Bigtable Products
In This Chapter

▶▶ Controlling data distribution

▶▶ Maximizing security

▶▶ Increasing performance

▶▶ Distributing data around the world

R
ight now, I bet you’re feeling like a kid in a candy store, knowing that
he can have only one kind of candy — but which one is the question!

You’ve seen the future, and you know you want a Bigtable NoSQL database,
because, as the name implies, they’re big, and they’re tabular; and whether
your thing is ridiculously large datasets, government grade security, high
performance with data consistency, or global distribution of your data —
there’s a Bigtable out there for you!

In this chapter, I discuss each of these different use cases, to help you deter-
mine which Bigtable fits your needs.

Chapter 12

History of Google Bigtable
Google published its Bigtable paper in 2006.
This paper described for the first time a set
of related technologies that Google had been
using to store and manage data under its
services.

Of particular interest was the design decision to
avoid joins between tables, preferring instead
a denormalization approach — that is, to keep
copies of certain data for different uses, such
as a summary record and a detail record both
having “patient name” columns.

Google’s Bigtable was designed to be flexible
enough to use for a variety of Google’s services.
As a result, Bigtable is a general-purpose data-
base, potentially applicable to a wide range of use
cases, much like its relational database forebears.

Bigtable was built on a number of building
blocks. The first was the distributed file system
called GFS — Google File System. This file
system is complemented by a distributed lock-
ing mechanism called Chubby, which ensures
that writes and reads to a single file are atomic.

(continued)

172 Part III: Bigtable Clones

Managing Tabular Big Data
Many best practices, tricks, and tips are available for working with big data and
Bigtables. I’ve highlighted just a few, but forums are full of other options, too.

The term big data is overhyped. It refers to the management of very fast,
large, variable, or complex datasets, typically involving billions of records
(data) that are spread across many machines, and changing the structure of
that data, in order to store it.

Designing a row key
HBase and Cassandra distribute data by row key. Each region server
manages a different key space. This means that data distribution — and
therefore, ingest and query performance — depends on the key you choose.

Consider an application that manages log files. You may be tempted to use
the date and time of a message as the start of the row key. However, doing so
means that the latest information will reside on the single server managing
the highest row-key values.

All of your newly ingested data will hit this single server, slowing ingest
performance. It’s even worse if a set of monitoring dashboards are all
querying for the last five minutes worth of data, because this single server
will also have the highest query load. Performance suffers — and somebody
may shout at you!

Today this design is applied in the open-source
Hadoop Distributed File System (HDFS). The
SSTable file format for storing data is also used.
A number of today’s Bigtable clones share this
capability.

A variety of architectural and mathematical
techniques are applied to Bigtable, too:

▶✓ Data compression

▶✓ Sharding parts of a table (tablets) between
multiple servers

▶✓ Bloom filters

Bloom filters are special “space-efficient”
indexes that tell you either “this key defi-
nitely doesn’t exist” or “this key may exist”
in the database. Their use reduces disk I/O
operations when you’re looking up keys
that may not exist.

Bigtable has inspired (sometimes along with
Dynamo in the key-value world) many open
source software developers to implement
highly scalable wide-column stores. These
column stores are highly tolerant of patchy
sparse data and operate at extreme scale.

(continued)

173 Chapter 12: Bigtable Products

Instead, make the row key something that distributes well across machines.
A unique key with random values across the spectrum of possible values is a
good start. Java includes a Universally Unique Identifier (UUID) class to gen-
erate such an ID. Some Bigtables have this built-in capability, too.

Instead, model your key values that are used as lookups for column names
rather than row keys (you find more on this topic in the following section).

You need to be careful, though, because different key strategies create differ-
ent read and write tradeoffs in terms of performance. The more random the
key, the less likely adjacent rows will be stored together.

Using a very random key means you will have a faster write speed, but slower
read speed — as the database scans many partitions for related data in your
application. This may or may not be an issue depending on how interrelated
your rows are.

By using secondary indexes, you can alleviate this issue, because indexed
fields are stored outside the storage key, which gives you the best of both
worlds.

Key and value inversion
In a relational database, if you want to perform a quick lookup of table values,
you add a column index. This index keeps a list of which records have which
values, ordered by the value itself. This approach makes range queries (less-
than and greater-than) much quicker than scanning the entire database.

Most Bigtables — with the exception of Hypertable — don’t have such value
indexes. Instead, all indexes are performed on keys — be they row keys or
column keys (column names). This means you must get used to modeling
your data differently. You may also have to create your own index tables for
fast lookups. Consider the traditional relational database schema shown in
Figure 12-1.

Figure 12-1:
Relational
employee

depart-
ment table

schema.

174 Part III: Bigtable Clones

In this schema, adding an index in the department column allows you to
perform quick lookups. On Bigtable clones, this generally isn’t possible. Some
Bigtable clones provide secondary indexing that don’t speed up queries,
instead they just mark columns as being queriable. Apache Cassandra has
these sorts of indexes. Other Bigtables, like Hypertable, have true secondary
indexes which speed up queries, like their RDBMS relations.

Instead, you need an employee department index table, where you store the
department values as row keys and the employee numbers using one of two
methods:

▶✓ Column names with blank values: This is where you use the column
name as a “flag” on the record.

▶✓ Column families, with summary details in name and id: Allows a sum-
mary to be shown with no further lookups. Figure 12-2 shows an exam-
ple of denormalization.

Figure 12-2:
Bigtable

employee
depart-

ment and
employee

implementa-
tion.

175 Chapter 12: Bigtable Products

This works because the keys are automatically indexed, and all data under a
row key for a particular column family are kept local to each other, making
lookups fast.

As an additional benefit, if an employee is in multiple departments, then this
model still works. The same cannot be said of the default relational model in
Figure 12-1.

Denormalization with Bigtables
A basic key-value inversion example leaves you with two tables in a database
that don’t support joins. So you have to execute two database requests to
fetch all employee information for those employees in departments.

If you often perform lookups in this manner, you may want to consider
another approach. For example, you always show a summary of the
employees when looking up via department. In this scenario, copy some
summary data from the employee details table into the employee department
table. This is called denormalization and is shown in section B of Figure 12-2.

Some Bigtable clones, such as Cassandra, provide automatic column name
ordering. In Figure 12-2, I use the employee’s full name in a column name,
which means that I don’t have to sort the resulting data. (I kept the row key
in case there are multiple John Smiths in the company!) In the application,
I split the column name by semicolon when showing the name in the user
interface.

In my application, I can now provide very fast lookups of employees by
department and show a list of employees with summary information without
significant processing or application side sorting. The only cost is a slight
increase on storing this information in two ways in the same record (an
example of trading disk space for higher speed read operations).

Scanning large key sets — Bloom filters
Bigtable clones, like their key-value store brethren, store data by managing a
set of keys. These keys are usually hashed to balance data across a cluster.

When querying for a list of records where the key is of a particular value,
you have to pass the query off to all nodes. If each node manages millions of
records, then so can take some time.

This is where Bloom filters come in. You can add a Bloom filter onto column
names in all Bigtable products. Rather than exhaustively scanning the whole
database to answer the question “which rows have keys equaling this name,”
a Bloom filter tells you “this row may be in the results” or “this row definitely

176 Part III: Bigtable Clones

isn’t in the results.” This minimizes the key space that needs to be thor-
oughly searched, reducing disc I/O operations and query time.

Bloom filters use up memory storage space, but they are tunable. You can
tune the chance that a row matches. An incorrect match is called a false-
positive match. Changing the match weight from 0.01 to 0.1 could save you
half the RAM in the filter — so doing so is worth considering. In HBase, this
setting is io.hfile.bloom.error.rate, which defaults to 0.1. You can
also tune Cassandra by using the bloom_filter_fp_chance parameter to
the decimal value desired.

Distributing data with HDFS
So you have a fantastic HBase installation that’s distributing data evenly
across the whole cluster. Good work!

Now, turn your attention to data durability. What happens if a disk fails? How
do you continually manage replicas? How do you perform fast appends to
internal table structures?

This is where HDFS comes in. HDFS (the Hadoop Distributed File System)
is based on the original Google File System. HDFS is great for ingesting very
large files and spreading data across a cluster of servers.

Also, by default, HDFS maintains three copies of your data, providing redun-
dancy across machines, and even racks of machines, in a data center.

What HDFS doesn’t do is maintain indexes or pointers to data stored within
those very large files. HDFS also doesn’t allow alteration of specific parts of
files stored on it. To provide indexing and support updates of data, you will
need a NoSQL database running on top of HDFS. Figure 12-3 shows how an
HBase cluster stores information on multiple Hadoop HDFS partitions spread
across a Hadoop cluster.

Rather than store many small table files, HBase stores fewer, very large
files one per row. New data is appended to these files. Changes are also
appended, so you don’t have to modify earlier parts of an existing table file.
This process fits well with the HDFS storage mechanism.

HBase provides HDFS with a way to index and find appropriate small records
within very large datasets. Hadoop provides HBase with a tried and true,
highly parallel, distributed file system in HDFS, as well as batch processing
through MapReduce.

177 Chapter 12: Bigtable Products

Batch processing Bigtable data
There are two types of database queries:

▶✓ The result needs to be known as soon as possible.

 These are data analysis use cases like users searching or listing records
in a database.

▶✓ The result will take time to calculate.

 These are long-running aggregations or analysis and reporting jobs.

 These longer running jobs typically don’t involve a user sitting in front
of a screen waiting for an answer.

Answer sets may need to be processed, too, in order to generate a result,
and this process requires a different way of scheduling and managing jobs.
Thankfully, Hadoop MapReduce provides this functionality.

A simple Map/Reduce job typically consists of two operations:

1. The map task scans through a dataset and collates matching data in a
required format.

2. The reduce task takes this data and produces an answer for the query.
A reduce task’s output can also form the input of a map task, allowing
for chained analysis.

 An example of a simple MapReduce job is analyzing citizen detail
records in a HBase database, producing the average height of citizens,
grouped by age.

Figure 12-3:
How HBase

and HDFS
work

together
to manage

data.

178 Part III: Bigtable Clones

In this example, the map function returns a set of records with height and age
information. The reduce function tallies these by age and calculates a mean
average using the sum and count.

You can run more complex MapReduce jobs to feed a result from one
operation as an input to another. In this way, sophisticated chains of analysis
can be built.

HBase provides special table-oriented map and reduce operations. Guess
what they’re called? TableMapper and TableReducer, of course! The
TableMapper provides a row object, making it easy to operate on tabular
data in MapReduce.

The downside to MapReduce for simple operations such as count, sum, and
average is that a lot of data is shunted around to the querying MapReduce
Java code. Ideally, you want these results to be calculated right next to the
data, in the HBase runtime itself.

Coprocessors
HBase 0.92 introduced a coprocessors feature,
which will allow HBase to eventually include
built-in features like complex filtering and
access control.

For now, though, you can implement pre-
calculation routines with coprocessors. Rather
than execute aggregate operations at query
time, coprocessors provide observer instances
that execute when data is read or saved. This
effectively allows pre-calculation of results
prior to querying. Think of them as akin to a
relational database’s triggers. A variety of
observation points are provided, including

▶✓ preGet, postGet: Called before and
after a Get request.

▶✓ preExists , postExists : Called
before and after an existence check via a
Get request.

▶✓ prePut, postPut: Called before and
after saving client data.

▶✓ preDelete , postDelete : Called
before and after a client deletes values.

Once these aggregates are calculated, HBase
needs a way to allow clients to request their
values. Custom endpoints can be created
to provide this data. Endpoints can commu-
nicate with any Observer instance, which
allows endpoints to access pre-calculated
aggregates.

Endpoints can be thought of as the equivalent of
stored procedures from the relational database
world. They are similar to client-side code that
actually runs on the server and can be called by
a range of clients.

Endpoints and Observers can perform any
operation within HBase, so be sure you know
what your code is doing before you deploy
it! Coprocessors should provide a way to
extend the inner workings of HBase in the
future.

179 Chapter 12: Bigtable Products

Assessing HBase
HBase is the original and best-known Bigtable clone in the NoSQL space
today, and it’s tightly linked to Hadoop, which makes it an obvious NoSQL
database candidate for any organization with a large Hadoop deployment.

However, if you’re thinking about using HBase, you need to consider several
points. For example, HBase is written in Java, so it isn’t as fast as a database
implemented in C++.

Moreover, HBase isn’t transactionally consistent, so it may not be suitable for
some mission-critical workloads as a primary master store of data. Also, the
fact that HBase requires HDFS storage is a barrier for organizations that don’t
use Hadoop, so HBase adds more complexity to an application architecture,
and requires extra knowledge to deploy it.

Not all of the issues from the relational database world have been solved
in Bigtables. In a Bigtable, your data is still in a table structure, requiring at
least some up-front schema design for fast operation, and it takes time to
design this schema and get it right; making data fit in to a table storage model
also forces you to write “plumbing” code to convert data when reading and
writing to the database.

For example, HBase must be taken completely offline in order to create a
new column family or new tables. This is a major barrier to ongoing agile
 development.

No dedicated commercial entity backs HBase. Cloudera is the only
commercial company you could say offers extensive HBase support, but it’s
currently selling support for three NoSQL databases on top of its Hadoop
distribution. The three are Accumulo, MongoDB, and HBase. On its website,
Cloudera is positioning HBase as an entry-level database for Hadoop.

Be sure that HBase has all the features you need and that you can find the
right level of support and development expertise for your rollout. You’ll likely
want more of this support in-house with HBase, and be sure to confirm your
designs up front during rounds of proof of concept testing.

Securing Your Data
Once the excitement of getting data in and out of a system has passed — and
it passes rapidly — you want to turn your attention to protecting your data.

180 Part III: Bigtable Clones

One of the ways to protect it is to secure access to it based on specific user
roles or privileges — for data such as medical records, employee addresses,
and billing details.

Some industry standards require that you protect records. Credit card
handling, for example, requires that after the entire card number is entered,
only the last four digits are shown on screens that follow (the full card
number is hidden in the application).

Cell-level security
Traditional approaches to security require that an application’s code handles
security, including authenticating users, discovering their roles, and
ensuring that they access only the records they’re supposed to. This has
been the case with relational database management systems for years. The
same is true for many Bigtable clones, too.

Where this model breaks down is in the accreditation of the database
itself, with the likes of the DoD and regulators, and in the lack of a built-in
permissions model.

Accreditation and certification for public groups such as defense and
sensitive government agencies provide assurance to both the organizations
and to the public that best practice with regards writing secure code has
been followed. If security is implemented at the application level, then the
application and database are accredited together as a single system. This
may not be a problem for some, but if you’re trying to justify the creation of a
new application built on a secure database, having an accredited database is
useful for providing information security assurances to the business.

Building a security model into your own code is not an easy task. You first
have to build a set of security plug-ins that allow you to authenticate users
and look up their roles in one or more existing corporate systems. Then you
need a way to assign privileges for particular records to users. None of this is
easy to build, maintain, or protect against intrusion.

Take the following summary care record example with individual user access
in which I assume data is secured at the record level. This is an anti-pattern —
a pattern you should not apply on a real system. It is an anti-pattern because
it is incomplete, as I will discuss next when we build a complete security
model for health data.

Patient: Name: Leo Fowler, Address: 12 Swansea, DoB: 06/March/2014
Permissions: Dr Dye: read+write

181 Chapter 12: Bigtable Products

A summary care record is the minimum personal healthcare information
required to provide emergency room care to a patient. In the UK National
Health Service (NHS) this summary care record is accessible through a
combination of surname, birth date, and first line of an address. It can be
accessed by any emergency medical worker.

Role based access control
There are clear benefits to using a system that comes with built-in authen-
tication, authorization, and support for role based access control (RBAC).
RBAC allows privileges to be assigned not to users, but to roles, for actions
on a particular record.

Using roles is easier to manage than individual user access — for example,
if someone moves from one department to another. All you do is update a
single user-role list in your corporate security system rather than all
permissions attached to a single user. Your RBAC-based database then
automatically reflects the new roles when the user next accesses it.
Listing 12-1 shows a summary care record with Roles attached.

Listing 12-1: Summary Care Record (SCR) Information and RBAC Read/
Write Privileges
Patient: Name: Leo Fowler, Address: 12 Swansea, DoB: 06/March/2014
Permissions: Doctor: read+write, Nurse: read

External Directory System
Role Nurse: Nurse Ratchett
Role Doctor: Dr Dye, Dr A Trainee

Listing 12-2: SCR with RBAC Privileges for Two ER Doctors
Patient: Name: Leo Fowler, Address: 12 Swansea, DoB: 06/March/2014
Permissions: BrimingtonSurgeryDoctor: read+write

External Directory System
Role BrimingtonSurgeryDoctor: Dr Dye, Dr A Trainee

This shows that a user with at least one of the doctor or nurse roles can
read the summary care record. This is OR Boolean logic between roles, and
it’s the default RBAC mechanism used by most security systems.

The problem with such an approach is that any doctor can see the informa-
tion. The roles are too wide. You can further refine them to make them more
specific. As you see in Listing 12-2, now only the general practice surgery
doctors can see the information.

182 Part III: Bigtable Clones

Now you have the opposite problem — being too specific. Now only local
doctors have access. You want ER doctors to have access, too. You need a
way to define exactly who has access to the record.

Compartment security
Ideally, you want to use Boolean logic as shown in Listing 12-3.

This use of AND logic on roles is typically managed through named
compartments. In Listing 12-3, you have a job role compartment and a depart-
ment compartment.

Listing 12-3: Doctor AND EmergencyRoom: read
Patient: Name: Leo Fowler, Address: 12 Swansea, DoB: 06/March/2014
Permissions: EmergencyRoom AND Doctor: read
 BrimingtonSurgery AND Doctor: read+write

External Directory System
Role EmergencyRoom: Dr Kerse, Dr Shelby, Dr Death
Role Doctor: Dr Dye, Dr A Trainee, Dr Kerse, Dr Shelby, Dr Death
Role BrimingtonSurgery: Dr Dye, Dr A Trainee

Table 12-1 Roles Required When Using Compartment Security

Record General
Roles

Department
Compartment

Job Role
Compartment

Result

HR Policy Employee - - Read
allowed

Charlie Child’s
Ward Notes

Employee - Doctor Read
allowed

Children’s Ward
Procedures

Employee Children’s
Ward

- Read
allowed

John Doe’s SCR Employee Emergency
Room

Doctor Read
denied

Forcing all role assignments to use AND logic is very restrictive, so systems
instead use this logic: If any assigned roles are within a compartment, then
ensure that the user has ALL compartment roles; otherwise, ensure that the
user has ANY of the non-compartmentalized assigned roles.

Table 12-1 shows the roles needed in this scenario when using compartment
security. Here Jane the Junior Doctor who works in the Children’s Ward is
trying to access (read) documents.

183 Chapter 12: Bigtable Products

This role assignment works well. When any role assignment includes one
with a compartment, roles are required — restricting who can read the
records. Where multiple compartments are mentioned, AND logic is forced —
the user must have both roles to access the summary care record.

Cell-level security in Accumulo
There may be situations where you don’t have a summary record — just the
main patient record. In this situation, you want to provide a summary care
record filter. This filter prevents certain fields — rather than entire records —
from being viewed by an unauthorized user.

Accumulo includes an extra field as part of its key. Along with the row key,
column family, and column name, Accumulo includes a visibility key. This is a
Boolean expression that you can use to limit visibility to certain roles defined
within the system.

This invisible key is for read security only. It’s possible, unless security
settings are configured properly, for a user who cannot see a particular value
to overwrite it. Thus the lack of visibility doesn’t prevent a user overwriting a
value. To ensure this doesn’t happen, be sure to correctly define table
visibility settings as well as cell value visibility.

Assessing Accumulo
Accumulo was originally created by the U.S. National Security Agency, so the
security system is pretty flexible. Of course, you need to manage that
flexibility to ensure there aren’t any gaping holes.

In particular, you can use a variety of plug-ins to link Accumulo to existing or
custom authentication and authorization technologies. Having these plugins
built into the database layer simplifies a system’s design and makes the
overall architecture easier to accredit from a security standpoint.

Unless it has a good reason not to, the U.S. Department of Defense is
mandated to use Accumulo for Bigtable workloads — not for all NoSQL use
cases (such as document, triple store, or key-value), contrary to popular
belief — although the NSA has been required to contribute its security and
other enhancements to other open-source projects, including HBase and
Cassandra.

Accumulo can also use HDFS storage, like HBase can, which fits the bill when
HBase-like functionality is needed in a more security-conscious setting.

184 Part III: Bigtable Clones

Like HBase, though, there are no larger companies providing dedicated
support. Cloudera again provides support for Accumulo as a higher-end
 alternative to HBase.

Cloudera provides HBase, Accumulo, and MongoDB for its Hadoop offerings.
Be sure that your local Cloudera team understands and has implemented
Accumulo in similar organizations in the past, and where it should be used,
rather than MongoDB and HBase. There are advantages and disadvantages to
each database.

High-Performing Bigtables
In many situations that require high performance, moving to a Bigtable
solution provides the desired result. There are always extremes, though.
Sometimes you need to squeeze every last ounce of performance out of a
potential implementation.

Perhaps this is to reduce the hardware required, perhaps you’re cataloging
the stars in the universe, or perhaps you simply want to get the most for your
money. Whatever the reason, there are options to assess.

Using a native Bigtable
Java is a great language, but it’s simply not as fast as C++. HBase, Accumulo,
and Cassandra are all built as Java applications. Java is the defacto language
for enterprise systems, so its status isn’t surprising.

Using C++ and operating system-provided APIs directly allows you to access
lower-level, higher-performing services than the Java tier. Hypertable is a
Bigtable database written in C++ from the ground up, and it provides a high
performance Bigtable implementation.

Indexing data
You’ve already seen that Bigtable clones index keys like key-value stores and
treat values as binary data. In some situations, though, you do in fact have to
index the values themselves. Or perhaps you’re just too familiar with
relational databases and want your typed columns back!

185 Chapter 12: Bigtable Products

Having a database that provides strong typing on column values gives you
the ability to index values and to perform other typed operations, such as
sums and averages.

Hypertable provides secondary indexing for values and the column name
qualifiers. These indexes allow exact match or “starts with” matches. The
indexes are implemented internally by Hypertable automatically creating a
table with the same name, but preceded by a caret ^ symbol.

This approach is more convenient than updating index values yourself, and
ensures that index updates are transactionally consistent with the data these
indexes link to, but this approach does have limitations. You’re limited to
Just three operations:

▶✓ Checking a column exists

▶✓ Checking exact value matches

▶✓ Checking prefix (starts with) matches

You can’t do data-specific range queries like finding all orders with an item
with a quantity greater than five. This limitation is potentially a big one if you
need to perform substantial analytics over the data. Still, some indexing is
always better than no indexing!

Ensuring data consistency
For mission-critical applications, it’s vital to ensure that, once written, data
remains durable. If you’re using a Bigtable as the primary store of mission-
critical and high-value business information, then you need an ACID compli-
ant database.

Ensuring that data is durable, that writes are applied in the correct order,
and that information is replicated in the same order that it was updated in
the source database cluster are just a few of the desirable features in such
a system. Also, such systems need to ensure that your database supports
strong consistency or is ACID-compliant. So, be sure to ask your vendor how
its database ensures the safety of your data. Specifically, ask if it’s fully ACID-
compliant.

Some vendors use the term “strong consistency” because their products
aren’t capable of providing ACID compliance. However, there’s a big differ-
ence between the two.

186 Part III: Bigtable Clones

Hypertable is an ACID-compliant database for atomic operations. The only
thing it lacks is the ability to group multiple atomic operations in a single
transaction. In this case, if you need to modify several rows, perhaps one in
a data table and another in an index table, then your update will not be ACID-
compliant — each update occurs in its own window.

Assessing Hypertable
Right out of the box, Hypertable provides richer value indexing than other
Bigtable clones do. Hypertable also supports HDFS as well as other file
systems, including locally attached storage. Local disk storage is attractive
when you want a Bigtable NoSQL database but don’t want to manage a large
Hadoop cluster.

In my experience, many NoSQL implementations actually consist of three
to five servers. In such an environment, a large HDFS array is overkill. Not
everyone uses NoSQL to manage gazillions of bytes of information. Often,
they want the schema flexibility, speed of deployment, and cost savings
associated with using commodity hardware rather than traditional relational
database management systems like Oracle and Microsoft SQL Server.

Hypertable allows access group definition. Access groups tell the database
to group column families from the same rows together on the same server.
Consider a summary page that needs information from two or three column
families. Configuring an access group on these families allows them to be
retrieved quickly from the database.

Column families in Hypertable are optional, so you can ignore family names,
as you can in Cassandra. Or, when they’re required, you can use them like
you can in HBase. Better still, you can mix and match approaches in the same
table definition!

I really like the approach Hypertable has taken. It provides a pragmatic set of
features that application programmers want in databases, without sticking to
the dogma that “values are just binary objects.”

One of my favorite features is adaptive memory allocation:

▶✓ When Hypertable detects a heavy write load, more RAM is used as an
in-memory region. This speeds up reads because many are written to
RAM rather than to disk.

▶✓ When a significant amount of reads is detected, Hypertable automati-
cally switches to using RAM so that more RAM is used as a read cache,
which, again, minimizes disk access for reads.

187 Chapter 12: Bigtable Products

Hypertable isn’t as widely used as HBase, Accumulo, or Cassandra, though.
If you want the features of Hypertable, be sure you can find local expert
support and developers who are experienced with Bigtable clones like
Hypertable.

I have a couple of concerns about Hypertable:

▶✓ Region servers in Hypertable are highly available, with the Hypertable
master reallocating regions to another server when one goes down.
However, the master service isn’t highly available; it only has a standby.

 This is similar to a disaster recovery approach, which means that it’s
possible for a master to go down, followed promptly by a region server
that isn’t replaced for a few seconds. This window of time is short, but
one you need be aware of, and prior to going live with the application,
you need to test failover. Data could become inaccessible if both the
master and the region server are on the same rack in a data center, and
the network fails on that rack.

▶✓ Hypertable is available under the more restrictive GPL version 3 license.
Although an open-source license, the GPL prevents Hypertable from
being embedded within a commercial product. If you want to create
“black box” software that embeds Hypertable and sell it, you must
obtain a commercial license from Hypertable, Inc.

 The GPL is potentially restrictive. If you are a software development firm
with Hypertable experts, then you may not want or need to pay for
commercial support.

 The GPL licensing issue is likely to affect only a few use cases, mainly
OEM partners. This licensing doesn’t stop organizations from building
and selling access to services that use Hypertable for storage.

Distributing Data Globally
If, like me, you have a vast collection of data spread over the world then you
would appreciate features in your database to perform this data distribution
for you, rather than having to code it in your application yourself. Writing
this code for several database clusters creates a lot of manual work.

In my case, I use replication for my enormous collection of food recipes, but
the need for replication can also happen in a variety of other situations:

▶✓ Financial transactions being done in several countries at the same
time — London, New York and Singapore, for example

188 Part III: Bigtable Clones

▶✓ International shop orders being placed in more local warehouses

▶✓ A globally distributed social network or email service with local servers,
but with globally shared contacts

Substituting a key-value store
Bigtable clones can be thought of as a specific subclass of key-value stores.
You can quite happily run key-value workloads on a Bigtable clone, too. If you
already have a Bigtable, then you may well want to consider doing so.

If you need blazing fast writes — in the order of 100,000 writes per second
or more — then a key-value store performs more quickly. In most situations,
though, you probably have lighter loads, and if this is the case and you
need Bigtable features only occasionally, then Cassandra may be for you.
Cassandra prides itself on having features of both Bigtable and key-value
stores, and takes its inspiration from both Amazon’s Dynamo and Google’s
Bigtable papers. Figure 12-4 shows the differences between the two models.

In a key-value store, you have to design your key carefully in order to ensure
evenly distributed data in a cluster and that lookups are fast. Bigtables have
these key hierarchies built in with its concept of column families and column
names.

Consider that you’re using a key-value store to hold data pulled from a web-
site for later search indexing. You may want to store and retrieve data by the
website domain, page URL, and the timestamp you stored it.

In a key-value store, you can design a key like this:

Key: AB28C4F2-com.wiley.www-/index.html

Figure 12-4:
Traditional
key-value

store versus
using a

Bigtable as
a key-value

store.

189 Chapter 12: Bigtable Products

This uses a GUID or similar random string as the first part of the key to
ensure that, during ingest, the data is distributed across a cluster. This key
also uses a timestamp qualifier for the time the page was indexed.

Whereas, in a Bigtable, you could use the column family and name fields, too:

Key: AB28C4F2 Column Family: com.wiley.www Name: /index.html

This key allows you to be more flexible when querying, because you can
easily pull back all web pages for a domain or a specific page in a domain,
which you can do quickly because a query is based only on the exact value of
a key. This approach eliminates you having to trawl all keys for lexicographic
(partial string) matches.

Cassandra doesn’t support column family names. Instead, you merge the
preceding column family and page name or use two columns (the domain
with a blank value). Cassandra does, however, allow you to specify an index
of keys across values. So, in the preceding example, you could set up an
index over key, domain, and page name.

I can ensure that entire domain content lookups are quick because the first
key is the partition key in Cassandra, which keeps all data together for all
pages in the same domain.

Inserting data fast
Cassandra manages its own storage, rather than farm it off to HDFS, like
HBase does. As a result Cassandra offers some advantages, with the first
being that it can manage and throttle compactions. A compaction, also called
a merge, occurs every so often as Cassandra appends data to its database
files and marks data for deletion. This deleted data builds up over time,
requiring compaction. The benefit is higher ingest rates. Another advantage
is that Cassandra doesn’t need to go over the network to access data storage.

With Cassandra, you also have the advantage of using local SSDs, perhaps
by writing the journal to an SSD and writing data to RAM and flushing it to a
spinning disk later. This, too, aids the speed of ingestion.

You can also run Cassandra with both spinning disk HDDs and SSD disks for
the same database. Perhaps some data is read more often and other data
less often. This differently accessed data may even be columns on the same
record. Storing these individual often-read columns on SSDs and the rest on a
spinning disk boosts speed, without you having to replace every disk with an
expensive SSD.

190 Part III: Bigtable Clones

Replicating data globally
Cassandra is unique in allowing a cluster to be defined across geographic
boundaries and providing tolerance of network partitions to ensure data is
available worldwide when needed.

A Cassandra ring is a list of servers across server racks and data centers.
You can configure Cassandra so that a replica is on the same rack, another
on a different rack (in case that rack’s network goes down), and maybe even
another two copies in other data centers.

This enables maximum replication and ensures that data can always be
accessed. However, note that all these replicated copies — whether in the
same data center or another one — are replicated synchronously. This
means it’s possible for the replicas to disagree on the current value of a data
item.

Consistency is guaranteed by configuring the client driver accessing
Cassandra. By using a setting of ONE, you indicate you don’t care about
consistency; you’re happy with any copy.

By using a setting of LOCAL_QUARUM, you’re saying you want the value
agreed on and returned by, for example, two out of three servers within just
the local cluster. Specifying ALL requires that all servers in the cluster that
contain a copy of that value are in agreement.

There are a variety of other settings to consider. A full list of the consistency
settings their meaning can be found on the Apache Cassandra website:
http://cassandra.apache.org

Assessing Cassandra
Cassandra allows partitioning and writing data when its primary master
is unavailable. It’s, therefore, not an ACID-compliant database, so in some
cases, the data will be inconsistent or replicas will disagree on the correct
value.

You need to be aware of this issue when building an application on
Cassandra. A read repair feature is available to help with this issue, but when
you use it, there’s a potential ten-percent loss in performance. However, this
may well be a good tradeoff for your purposes.

Global master-master replication is a great feature to have, but given that it
can be used asynchronously, it doesn’t provide a true “always consistent”

http://cassandra.apache.org

191 Chapter 12: Bigtable Products

master-master replication that you may be familiar with in the relational
database world. Ensuring that the client uses full consistency leads to slower
usage times.

Cassandra also doesn’t support column families. This gives it a data model
somewhere in between a key-value store and a Bigtable. This may or may not
be an issue in your applications.

Cassandra’s CQL query language will be familiar to most people who are
familiar with the relational database and SQL world, which helps lower
barriers to entry for existing database developers.

Cassandra does manage local storage very well. SSDs are recommended for
at least part of the data managed. Using local SSD storage will always provide
faster storage and retrieval in comparison to delegating file system
management to a separate tier like HDFS.

Also, with no single points of failure anywhere in the architecture, Cassandra
is easy to install and maintain, and it’s capable of being very fast.

In Chapter 13, I discuss Apache Cassandra and the commercial company
DataStax that provides support for Cassandra.

192 Part III: Bigtable Clones

Cassandra and DataStax
In This Chapter

▶▶ Creating high‐speed key access to data

▶▶ Supporting Cassandra development

C
assandra is the leading NoSQL Bigtable clone. Its popularity is based
on its speed and SQL‐like query language for relational database type

people, and the fact it takes the best technological advances from the
Dynamo and Bigtable papers.

DataStax is the primary commercial company offering support and Enterprise
extensions for the Cassandra open‐source Bigtable clone. DataStax is one
of the largest NoSQL companies in the world, having received more than
$106 million in investor funding in September 2014, and $84 million during
mid‐2013.

In this chapter, I discuss both the Cassandra Bigtable NoSQL database and
the support that can be found from DataStax, its commercial backer.

Designing a Modern Bigtable
The Cassandra design team took the best bits from Amazon’s Dynamo paper
on key‐value store design and Google’s Bigtable paper on wide column store
(also called extensible record store) design.

Cassandra, therefore, provides high‐speed key access to data while also
providing flexible columns and a schema‐free, join‐free, wide column store.
Developers who have used the Structured Query Language (SQL) in relational
database management systems should find the Cassandra Query Language
(CQL) familiar.

Chapter 13

194 Part III: Bigtable Clones

Clustering
The ability for a single ring (a Cassandra cluster) of Cassandra servers to be
spread across servers, racks of servers, and geographically dispersed data-
centers is a unique characteristic of Cassandra. Cassandra manages eventu-
ally consistent, asynchronous replicas of data automatically across each of
these types of boundaries. Different datacenters can even differ in the number
of replicas for each data set, which is useful for different scales at each site.

This treatment of every server holding the same data as a single dispersed
cluster, rather than independent but connected sets of clusters, takes a bit of
getting used to. It’s unique to the databases in this book.

Scaling a cluster out to add one‐third more capacity may require some
thought, because you need to consider its position in the ring and how
adding capacity may affect the automatically managed replicas.

You configure your physical Cassandra architecture by using a Gossiping
Property File Snitch, which has nothing to do with Harry Potter’s Quidditch,
unfortunately. This is a configuration file that defines what servers are in
which racks and datacenters. This configuration mechanism is recommended
because it allows Cassandra to make the best use of the available physical
infrastructure.

Tuning consistency
Data consistency in Cassandra is tunable; that is, it doesn’t need to always
be eventually consistent across all replicas. The settings used are up to the
client API, though, and not the server.

By writing data using the ALL setting, you can be sure that all replicas will
have the same value of the data being saved. For mission‐critical financial
systems, for example, this is the approach to take.

If you use the ALL setting for write consistency, be aware that a network
partition anywhere in your global cluster will cause the whole system to be
unavailable for writes!

Other settings are available — 11, in fact, for writes. These settings range
from ALL to ANY. ANY means that data will try to write to any of the replicas.
If no replicas for that key are online, Cassandra will use hinted‐handoff, which
is to say that it will save the write on a node adjacent to a replica node that
is currently unavailable. This provides the highest service availability for the
lowest consistency guarantees.

195 Chapter 13: Cassandra and DataStax

This flexibility is great if you need a single Bigtable implementation that
provides a range of consistency and availability guarantees for different
applications. You can use the same technology for all of these applications,
rather than having to resort to a different database for only a small number
of use cases.

Similarly, ten different read‐consistency settings are available in the client
API. These settings mirror the write levels, with the missing setting being
ANY, because ONE means the same thing as ANY for a read operation.

Analyzing data
Cassandra provides a great foundation for high‐speed analytics based on
near‐live data. This is how DataStax produced an entire integrated analytics
platform as an extension to Cassandra.

Datastax’s analytics extension enables rapid analysis in several situations,
including detection of fraud, monitoring of social media and communications
services, and analysis of advertisement campaigns, all running in real time
next to the data.

Batch analytics is also supported by integrating Hadoop Map/Reduce with
Cassandra. Cassandra uses its own local file system. DataStax provides a CFS
alternative to HDFS to work around the historic single points of failure in the
Hadoop ecosystem. This file system is compatible with Hadoop, and is acces-
sible directly by other Hadoop applications.

CFS is a Java subclass of the HadoopFileSystem class, providing the same low‐
level interface, making it interchangeable with HDFS for Hadoop applications.

Searching data
With Cassandra, you can create indexes for values, which are implemented
as an internal table in Cassandra. In this way, you don’t have to maintain
your own manually created index tables.

A default Cassandra index will not help you in several situations:

▶✓ Typed range queries or partial matches: Indexes are only for exact
matches.

▶✓ Unique Values: Where each unique value isn’t used more than once —
results in a very large read scan of the index, hitting query performance

196 Part III: Bigtable Clones

▶✓ A frequently updated column: Cassandra has a limit of 100,000 time-
stamped versions of each record, so more than this number of updates
causes the index to fail.

▶✓ For queries across an entire partition: This requires communica-
tion with every server holding data. It’s best to limit data queried with
another field (for example, record owner ID).

For more complex situations, DataStax offers an enhanced search capability
based on Apache Solr. Unlike other NoSQL vendors’ implementations of Solr,
though, DataStax has overcome several general issues:

▶✓ Search indexes are updated in real time, rather than asynchronously like
most Solr integrations are.

▶✓ Data is protected. Lucene indexes (the underlying index layer of Solr)
can become corrupted. DataStax uses Cassandra under Solr to store
information, ensuring this doesn’t happen.

▶✓ Availability and scaling built in. Add a new Cassandra node, and you
have a new Solr node. There’s no need for a separate search engine
cluster with different storage requirements.

Solr provides hit highlighting, faceted search, range queries, and geospatial
search support. Part VI covers these features.

Securing Cassandra
DataStax Enterprise offers a range of security features for Cassandra. All
data communications are encrypted over SSL, be they internal gossip data or
international replication between servers.

Client‐to‐node encryption is also supported, along with Kerberos authentica-
tion communications and internally stored authentication information.

Particularly impressive is the built‐in support for encryption of data at rest.
This feature has its limitations, though. The commit logs, for example, are not
encrypted; operating system‐level encryption is required for this.

More seriously, the certificates used for encryption of data within the SSTable
structures are stored on the same file system rather than a security device.
Practically speaking, this means access to the underlying file system needs to
be secured anyway. In extreme scenarios, operating system‐level or disk‐level
management may be a better choice for encryption at rest.

197 Chapter 13: Cassandra and DataStax

Finding Support for Cassandra
DataStax is the commercial entity providing Cassandra and big data support,
services, and extensions. It is a worldwide company with 350 employees
(a 100‐percent increase from a year ago) spread across 50 countries.

DataStax’s leading product is DataStax Enterprise (DSE). DSE combines
a Hadoop distribution with Cassandra and additional tools to provide
 analytics, search, monitoring, and backup.

Managing and monitoring Cassandra
The DataStax OpsCenter is a monitoring tool for Cassandra. It’s available in a
commercial version and also as a limited free version. This provides a visual
dashboard for the health and status of not only Cassandra but also the ana-
lytics and search extensions, too.

If you’re adding new nodes to a cluster, DataStax OpsCenter gives you the
ability to set up automated handling of cluster rebalancing. This capability
greatly reduces the burden on database administrators.

Also, configurable alerts and notifications can be sent, based on a range
of activities in the cluster. OpsCenter allows alerts to be fired based on,
for example, when the CPU usage or data storage size on a particular node
breaches a defined performance target. This alerting helps to proactively
avoid cluster problems, which can degrade the overall service.

OpsCenter also supports planning for capacity through historical analysis.
Historical statistics help predict when new nodes will need to be added. This
analysis, too, is configurable visually, with live updates on the state of pro-
cessing once the cluster is activated.

OpsCenter also has its own API, which allows monitoring information to
be plugged into other tools. A good example is a private (internal) cloud‐
management environment.

Active‐active clustering
Most NoSQL databases in this book are either completely commercial or
have Enterprise features only in their paid‐for, Enterprise version. Cassandra
is different. With Cassandra, the base version can do master‐master
 clustering across datacenters.

198 Part III: Bigtable Clones

Actually, it’s not so much master‐master clustering as it is global data repli-
cation, which enables data to be replicated, asynchronously, to datacenters
spread throughout the world.

The flip side to a single‐cluster, worldwide spread is that a “split brain syn-
drome” (also called a network partition) can develop when networks go down.
This situation requires repairing a replica server’s data when the network
comes back up. Cassandra supports a read‐repair mechanism to alleviate this
problem, but data can become inconsistent if a split brain syndrome goes on
too long.

Visit www.dummies.com/extras/nosql for great Dummies content online.

Document Databases
Part IV

http://www.dummies.com/extras/nosql

In this part . . .
 ✓ Creating tree structures.

 ✓ Distributing information.

 ✓ Sharing information with the world.

 ✓ Examining document database products.

 ✓ Visit www.dummies.com/extras/nosql for great
Dummies content online.

http://www.dummies.com/extras/nosql

Common Features of
Document Databases

In This Chapter
▶▶ Expanding tree structures

▶▶ Emulating key‐value stores

▶▶ Creating partial updates

W
hen talking about document databases, the word document refers to a
hierarchical structure of data that can contain substructures. This is

a more general term than being, for example, like Microsoft Word documents
or web pages, although they are certainly two types of documents that can
be managed in a document‐oriented NoSQL database.

Documents can consist of only binary data or plain text. They can be semi‐
structured when self‐describing data formats like JavaScript Object Notation
(JSON) or Extensible Markup Language (XML) are used. They can even be
well‐structured documents and always conform to a particular data model,
such as an XML Schema Definition (XSD).

Document NoSQL databases are flexible and schema agnostic, which means
you can load any type of document without the database needing to know
the document’s structure up front.

Document databases have many uses and share common features, which I
explain in the chapter. As you read this chapter, you may be surprised to find
out that a document NoSQL database will meet your needs over the other
types of NoSQL database mentioned in this book.

Chapter 14

202 Part IV: Document Databases

Using a Tree-Based Data Model
In Chapter 9, I explain that Bigtable databases require at least some informa-
tion about the data schema — at a minimum, the table name and column
families, although the columns can be variable.

In a document NoSQL database, you can load any type of data without the
database having prior knowledge of the data’s structure or what the values
mean. This flexibility makes these databases great both for prototyping a
solution in an “agile” development process and for permitting changes in the
stored data after a system goes live. No need for a complex schema redesign
within the database for every little change. This isn’t the case in traditional
relational database management systems (RDBMS).

Bigtable clones allow you to manage sets of data sets; that is, when a Bigtable
clone is given a row key, it returns a set of column families. When a Bigtable
receives a row key and a column family qualifier, it returns a set of columns,
each with a cell value (some with multiple cell values at different timestamps).

Bigtable clones effectively give you three levels of sets: row, family, and
column, which can be represented in a tree model. Figure 14-1 shows an
example of the online ordering application mentioned in Chapters 7 and 8
structured for a Bigtable clone.

Figure 14-1:
Example

structure
of an order

table in a
Bigtable

clone.

203 Chapter 14: Common Features of Document Databases

What if you want to go down another level? Or another still? This is where a
document database comes in, by providing the flexibility you need. Listing
14-1 is an example of an order document with enhanced information and
ample flexibility.

Listing 14-1: Order XML Document

<order id=”1234”>
 <customer id=”52”>Adam Fowler</customer>
 <items>
 <item qty=”2” id=”456” unit_price=”2.00” price=”4.00”>Hammer</item>
 <item qty=”1” id=”111” unit_price=”0.79” price=”0.79”>Hammer Time</item>
 </items>
 <delivery_address lon=”-43.24” lat=”54.12”>
 <street>Some Place</street>
 <town>My City</town>
 …
 </delivery_address>
</order>

Of course, you are free to use a less hierarchical, flatter, structure. Listing
14-2 shows a log file management as a tree structure.

Listing 14-2: A mock Log File in a JSON tree structure

{
 “source”: {
 “host”: “192.168.1.3”, “process”: “tomcat”, “format”: “tomcat-error-log”
 }, “entry”: {
 “timestamp”: “2014-09-04 T10:00:43Z”, “level”: “error”,
 “summary”: “Null Pointer Exception at com.package.MyClass:110:2”,
 “trace”: [
 “com.package.MyClass:110:2”,
 “com.package.OtherClass:45:7”,
 “com.sun.util.HashtableImpl”
]
 }
}

In this case, a stack trace error report can be a tree structure. You could, for
example, dump information about every live executing process into a file,
rather than just the section of code that reported the error. This approach is
particularly useful for parallel debugging.

204 Part IV: Document Databases

In a Bigtable clone, your application must manage converting the preced-
ing hierarchical document structure to and from a tree structure, whereas a
document database can manage it natively.

Storage of document data without “shredding” data across a set of tables is
potentially useful if you want to query for a count of error reports to see
which applications caused the most errors in a particular code module.
Doing so requires a batch analysis job in a Bigtable — but a simple aggrega-
tion query in a document database with element indexing enabled.

Handling article documents
Tree structures vary greatly. A semi‐structured format like XHTML (the format
used by web pages) has, as its name implies, some structure, but you can
model the individual paragraphs, headings, and sections in a variety of ways.

A common practice in document databases is to index a property, or an ele-
ment, no matter where it occurs within a document. For example, you could
index all h1 (main headings) and h2 (subheadings) elements regardless of
where they occur. Both MarkLogic Server and Microsoft DocumentDB allow
this style of indexing.

Document databases are great at providing consistent query over these
 variable structures. There are many real‐life examples of querying over
 document structures:

▶✓ Stack traces in log files may have a class name field at varying depths in
a tree structure.

▶✓ A patient’s medical records may mention a drug or condition anywhere
in the text notes field.

Managing trades in financial services
One of the most common document formats in the commercial industry is
the Financial products Markup Language (FpML). FpML documents are a
particular XML schema structure. They’re used for trading in long‐running
financial derivatives.

205 Chapter 14: Common Features of Document Databases

There are a couple of reasons that FpML need an XML oriented document
database rather than a JSON oriented one, or need to be stored in a relational
database:

▶✓ JSON doesn’t work for storing FpML documents because it doesn’t sup-
port namespaces, and FpML documents always include elements using
the standard FpML namespace and a bank’s own internal information in
another element namespace — both in the same document.

▶✓ XML Schema Definitions (XSDs) can have parent‐child inheritance. A
“place,” for example, could be a parent class of a “town” or “bridge,”
with the document mentioning the elements “town” or “bridge,” but not
“place.” This information isn’t available for JSON structures, so you can’t
infer inheritance in a JSON model.

JSON documents are the lingua franca of web applications, though. Having a
document NoSQL database that supports JSON documents natively, perhaps
alongside other formats like XML or plain text, is useful. Don’t discount XML
given the number of enterprise systems that use it as a native format.

Discovering document structure
Document databases tend to store documents in a compressed on‐disk
format. In order to do so, the databases need to understand the format of
the documents they receive. When you submit JSON or XML documents, for
example, a database uses that structure to better manage the data on disk.

Here is an example of a JSON document that represents an online order:

{ _id: 1234, customer: 52, customer_name: “Adam Fowler”, items: [
 {qty: 2, item: {id: 456, title: “Hammer”, unit_price: 2.00}, price: 4.00},
 {qty: 1, item: {id: 111, title: “Hammer Time”, unit_price: 0.79}, price: 0.79}
], delivery_address: {street: “some place”, town: “My City”, … }
}

MongoDB stores documents in its own BSON binary representation, which
is useful because JSON, like that in the preceding JSON example, has a lot
of text in property names. You can save space by compressing or manag-
ing these property names as simple numeric identifiers, rather than as
long strings.

MarkLogic Server takes a similar approach with XML documents — that is, it
stores a compressed representation. All elements and attributes are treated
as a term. Each term is assigned a unique ID. This allows MarkLogic to use its
own binary tree structure, which saves space when storing XML documents

206 Part IV: Document Databases

versus storing them as long strings. Listing 14-3 shows an XML representa-
tion of the same online order document.

Listing 14-3 An XML Document

<order id=”1234”>
 <customer id=”52”>Adam Fowler</customer>
 <items>
 <item qty=”2” id=”456” unit_price=”2.00” price=”4.00”>Hammer</item>
 <item qty=”1” id=”111” unit_price=”0.79” price=”0.79”>Hammer Time</item>
 </items>
 <delivery_address>
 <street>Some Place</street>
 <town>My City</town>
 …
 </delivery_address>
</order>

Saving space is more important for XML than it is for JSON because XML has
closing and starting tags, as you can see in delivery_address in the above
XML document.

Rather than simply compress data on disk, MarkLogic Server uses these term
ids within its search indexes, which are built automatically when a document
is written to MarkLogic Server. MarkLogic Server’s universal index indexes all
structures: elements and attributes, parent and child element relationships,
and exact element values.

The universal index indexes everything it finds. This speeds up querying for
documents where an element has a particular value, without you having to
add specific indexes or instructing the database about the document struc-
ture in advance. The universal index also indexes text (words, phrases, and
stems). You can find more on MarkLogic’s universal index in Part VII.

Microsoft’s DocumentDB is a JSON document NoSQL database that also
includes a universal index, but only for JSON documents.

Supporting unstructured documents
Fully unstructured information is actually rare. It’s more typical to use a
 container format like JSON or XML and to store large quantities of plain text
in particular properties and elements.

207 Chapter 14: Common Features of Document Databases

There are situations, though, when you receive a lot of text or binary data
(think about the average My Documents folder). Here are a couple of ways
to manage groups of documents collected from such a hierarchical storage
device:

▶✓ Collections of files may contain a combination of

• Structured files (such as CSV expense information)

• Semi‐structured files (such as XML and saved HTML web pages)

• Unstructured files (such as JPEG images, movies, MP3s, word
 documents, PDFs, and plain text files)

▶✓ In reality, unstructured formats are actually semi‐structured; it’s just
that you don’t normally instruct your database to understand them.
However, you may be missing some useful information that you might
want to extract and search. For example, JPEG images may contain
metadata about

• The camera that took the images

• The prevailing conditions when the image was shot

• The GPS coordinates and elevation where the image was taken

▶✓ Some databases come with built‐in support for extracting this metadata
and plain text from binary files. This is great for indexing the plain text
for search or to provide for more‐structured management of the files’
metadata.

▶✓ MarkLogic Server, for example, includes support for more than 200
binary formats through its use of binary data extraction libraries. These
provide an XHTML output, using meta tags for metadata and the body
tag for text content. You can integrate other solutions with other docu-
ment databases to allow automatic extraction of information on ingest.

▶✓ Many document databases support the concept of a URI path as a pri-
mary key, or a unique document ID. Think of this path as being a file
system path with an innate hierarchy. Some document databases allow
you to list the documents stored under a particular, partial URI. In this
way, you can represent a file system in a document database. Some
NoSQL databases consider the unique ID as external to the document
(MarkLogic), whereas others (MongoDB and Microsoft DocumentDB)
use a special id property within the document.

208 Part IV: Document Databases

Document Databases as
Key-Value Stores

Document databases make great key‐value stores. You can use a document
URI path to represent a composite key like those in a key‐value store. You
can use document properties/elements, or metadata fields, to control how
the database partitions data.

Document databases also provide a deeper level of data management func-
tionality. This comes at the cost of processing time, which is why key‐value
stores are used for some JSON document storage use cases — where fast stor-
age and retrieval is more important than advanced management functionality.

Modeling values as documents
Values can be binary information stored as a document. In many uses of a
key‐value store, though, values are JSON or XML structures. If you want to do
advanced processing or indexing of values in a JSON or XML document, then
a document database may be a better option.

Document databases provide in‐memory read caches, with some (MongoDB)
even providing read‐only replicas to allow greater parallel reads of the same
data. If you have data that’s read often, then a document database may
provide speedy access to documents that’s equivalent to key‐value stores’
access speed.

Automatic caching of parts of the database is particularly useful if all your
data can’t fit in the memory of a key‐value store, such as Redis.

Using value information
Once the elements/attributes (XML) or properties (JSON) — which I call
 elements from now on to distinguish them from a document’s metadata — are
indexed, you can perform data queries and aggregation processes over them.

Document databases like MarkLogic Server and Microsoft DocumentDB
provide range queries for their typed indexes. This means that, rather than
being limited to “element equals X,” you can say “element is less than X” or
“between X and Y inclusive.”

209 Chapter 14: Common Features of Document Databases

Both MarkLogic Server and Microsoft DocumentDB provide user‐defined
functions (UDFs). These are server‐side functions that take the set of docu-
ments matching a query and perform aggregation calculations on them.

These aggregations can be a mean average, a standard deviation, or any
other scalar output you devise. These operations are very fast, too, typically
operating on the indexes rather than opening each document. This operation
contrasts to the Hadoop or internal map/reduce mechanisms of other docu-
ment databases and key‐value stores, which must load the data from disk to
perform these calculations.

You can also use these range indexes for fast sorting and filtering operations
on result sets. They are immensely useful and allow for more advanced func-
tionality. MarkLogic Server, for example, uses range indexes as the basis for
2D geospatial search.

Patching Documents
In some applications, rather than update and replace a whole document, you
may want to change part of it, or a single value. A read, modify, update (RMU)
operation on the entire content of a document is quite expensive in terms
of processing time, and in many NoSQL databases isn’t ACID — meaning
another operation could update the document between your application’s
read and update steps!

Supporting partial updates
A partial update is one where you are updating just one of two values in a
document, rather than replacing the whole thing. Perhaps there is a field that
holds the number of times a document has been read, or the current product
quantity in a warehouse.

Examples of partial updates may be as simple as replacing one element,
which is similar to how a RBMS works. Consider the following query:

UPDATE Pages SET view_count = view_count + 1 WHERE id = “Page2”

If the record is modeled as a document, then a similar patch operation in
MarkLogic Server might look like this:

<rapi:patch xmlns:rapi="http://marklogic.com/rest-api">
 <rapi:replace select="/view_count" apply="ml.add">1</rapi:replace>
</rapi:patch>

210 Part IV: Document Databases

Or the equivalent in JSON might look like this:

{"patch": [
 {"replace": {
 "select": "$.view_count",
 "apply": "ml.add",
 "content": 1
 } }
] }

Document NoSQL databases could be enhanced to implement this functional-
ity in their REST API layer rather than within the database. This implementa-
tion would do an internal read, modify, update operation within a transaction,
which could lead to a disk I/O penalty similar to an insert of the full document.
You want to ensure that these multiple requests per update won’t impact your
application’s performance by performing application load testing at the same
level of concurrent requests as the peak period will be in your future produc-
tion application.

Patching operations can also include appending elements to a parent element
within a tree structure. Consider a shopping cart document where a user on
a website adds an item to his cart. This could be an append operation at the
end of an orderItems element using a document patch.

Streaming changes
The append operation enables you to handle a range of streaming cases
efficiently. This operation will identify where in a document new data needs
adding, and insert the data. This prevents performance impacts caused by
the alternative read‐modify‐update approach.

For applications that require live information streaming with nearly real‐time
analysis by an application or human expert, supporting append operations is
a potentially game‐changing feature.

Consider a video recording that is being analyzed on the fly. Image that
you’re receiving a video stream from a remotely controlled hexacopter. Along
with the video, you’re receiving a metadata stream that includes the altitude,
position, viewing angle (multiple axes), and the camera’s zoom level. You can
index this metadata stream by time and append it to a video metadata docu-
ment’s metastream element. For very long videos, to load the whole docu-
ment and store it temporarily in your system’s memory for an update may
use up too much RAM — you must load, modify, and then update the whole
document’s content.

211 Chapter 14: Common Features of Document Databases

Instead of a very RAM costly read‐modify‐update cycle, you can stream
the changes into the document using an append operation. Moreover, the
 document is visible to queries in the system while it’s being streamed in live,
rather than having to wait until the entire stream activity is complete before
being made available for query.

Providing alternate structures in real time
NoSQL databases don’t use joins to other documents like relational data-
bases do, although some (MarkLogic Server, OrientDB) do allow building of a
merged view at the time a document is read.

Instead, an approach called denormalization is used. Denormalization
 duplicates some information at ingestion time in order to provide access
to high‐speed reads and queries. Duplication of data is done so that the
 database doesn’t have to process joins at query time.

You may want to quickly produce alternative or merged views as new data
arrives in the database. Doings so requires you to use a database trigger to
spot the new document and to generate the one or more structures you need.

Relational database management systems provide a similar concept called
views. You can construct these on the fly or prebuild them. Prebuilt views are
called materialized views. These views trade the use of extra disk space for
the ability to save memory and processing power at query time. They are, in
practical terms, equivalent to adding extra denormalized documents in a
NoSQL document database.

Examples of using denormalization include

▶✓ Updating a summary document showing the latest five news items when
a new item arrives.

▶✓ Updating multiple searchable program‐availability documents on a
catchup TV service when a new scheduling document arrives. This
merges data from an episode, genre, brand, and scheduling set of
 documents into multiple program‐availability documents.

▶✓ Taking an order document and splitting it into multiple order‐item docu-
ments in order to allow a relational business intelligence tool to query at
a lower granularity.

212 Part IV: Document Databases

These use cases require the following database features:

▶✓ If they’re easy to update, you can generate these alternative structures
in a pre‐commit trigger.

This means the denormalizations are generated as the new document
arrives. When the transaction to add documents ends, the denormaliza-
tions will become visible at exactly the same time.

▶✓ You can use a post‐commit trigger if either of the following occur:

• Immediate consistency in these views isn’t required.

• Ingest speed is more important than consistency.

▶✓ A post‐commit trigger allows the transaction to complete and guarantees
that from that point, the denormalizations are generated. This improves
the speed of writes at the cost of a few seconds of inconsistency.

Document Databases in the
Enterprise

In This Chapter
▶▶ Spreading your data across servers

▶▶ Ensuring your data is kept safe

▶▶ Making record versions consistent across your database cluster

I
f a database tells you that data is saved, then you’re likely to rely on that
assurance. For mission-critical use cases this reliance is vital. Moreover,

many industries don’t just want changes to their data to be accessible imme-
diately after an update; they also want the indexes used to find the data kept
up to date, too — reflecting the current state of the database.

Another issue is the distribution of data around a database cluster. By
distributing data, you improve the speed of writes. Distributing data though
also means that you may sacrifice the speed of read operations and also
of queries. This is because queries need to be handled by many servers.
Understanding the tradeoffs for each situation is important.

Document NoSQL databases differ from each other in how they provide
the preceding features. They are key for enterprises that want to bet their
business on new technology in order to gain competitive advantages.

In this chapter, I discuss the advantages and risks of each approach to
consistency and distribution of data in a document oriented NoSQL database.

Remember, there’s no right or wrong way to do things; the “right” way simply
depends on the situation.

Chapter 15

214 Part IV: Document Databases

Sharding
If all your new data arrives on the last server in your cluster, write operations
will suffer, and as the overloaded server struggles to keep up, read opera-
tions will also be affected. This is where sharding comes in.

Sharding is the process of ensuring that data is spread evenly across an
entire cluster of servers. Shards can be set up at the time a cluster is imple-
mented (MongoDB), they can be fixed into a number of buckets or partitions
that can be moved later (Couchbase, Microsoft DocumentDB), or they can be
managed automatically simply by moving a number of documents between
servers to keep things balanced (MarkLogic Server).

In this section, I describe different approaches to document record sharding,
and how you may apply them.

Key-based sharding
With key-based sharding, the key — the name, URI, or ID — of a docu-
ment determines which server it’s placed on. Like key-value stores and
Bigtable clones, some document NoSQL databases assign a range of key
values to each server in a cluster. Based on the key of the record and the
ranges assigned to each server, a client connector can determine exactly
which server to communicate with in order to fetch a particular document.
MongoDB and Couchbase database drivers use this approach to sharding.

Some document NoSQL databases, such as MongoDB, allow their replicas to
be queried, rather than exist purely as a backup for a primary shard. This
allows for greater read parallelization. This splits the document access load
between both the primary shard and its replicas, increasing overall cluster
query performance.

The flip side is that, if asynchronous replication is used, then replicas could
“disagree” on the current value of a document. You need to carefully select
the client driver and server replication settings to avoid this situation.

Automatic sharding
With automatic sharding, the database randomly assigns a new document
to a server, which means the database’s developer doesn’t have to carefully
select a key in order to ensure good write throughput.

215 Chapter 15: Document Databases in the Enterprise

Automatic sharding works well for a live cluster, but if you need to scale out
or scale back during peak periods, you’ll need to rebalance your partitions.
For example, a new server with little data will respond quicker than one of
the existing servers with lots of data. Using automatic sharding rebalances
document among the new (empty) and existing (crowded) servers, increasing
average response times.

Rebalancing automatically, rather than based on key range for each server, is
an easier operation — you simply move the individual documents you need
in order to keep a balance, rather than move them around to maintain fixed
range buckets on each server. This means fewer documents to move around,
and means you simply move them to a less busy server.

However, no one approach to assigning documents is truly balanced. Some
servers will, for reasons unknown to we mortals, perform slightly worse
than others, causing partitions to become slightly weighted over time.
Rebalancing fixes this problem.

In some databases this rebalancing, or fixed range repartitioning, has to be
initiated manually (Couchbase). This then has a batch performance impact
across a cluster. Some document databases, like MarkLogic Server, perform
this rebalancing live as it needs to. This evens out rebalancing load over
time, rather than having to impact cluster performance when manually
forced in a short time window.

Preventing Loss of Data
Durability relates to keeping data intact once it’s saved. Both ACID-compliant,
fully consistent systems and non-ACID, eventually consistent systems are
capable of being durable.

Durability is typically achieved either by

▶✓ Always writing the document to disk as it arrives before returning a
successful response.

 This impacts the performance of write operations.

▶✓ Writing to memory but writing a journal of the change to disk.

 A journal log entry is a small description of the change. It provides good
performance while ensuring durability.

216 Part IV: Document Databases

If a server writes to memory only during the transaction, with no journal log,
then it’s possible for the server to fail before the data is saved on disk. This
means the data in memory is lost permanently — it is not durable.

Not all databases guarantee durability by design. Couchbase, for example,
only writes to RAM during a write operation. An asynchronous process later
on writes the data to disk.

You can use the PersistTo option in Couchbase to ensure that data is forced
to disk within the bounds of a write operation.

At the time of this writing, Couchbase 3.0 was in beta and about to be
released. This version takes a different approach to durability. It still writes
data to RAM, but a new approach — the Couchbase Database Change
Protocol (DCP) — is used to stream these changes from RAM to other repli-
cas. This can happen before the originating server saves the data to disk.

By Couchbase’s own admission, there is still a small window of time in which
data can be lost if a server failure happens. There is no way to predict or fix
this problem when it happens because there’s no journal — the data is irre-
versibly lost.

Most databases use a journal log as a good tradeoff between the performance
of write operations and durability. MarkLogic Server and MongoDB both use
journal files to ensure that data is durable. Microsoft DocumentDB, instead,
applies the full change during a transaction, so a journal file isn’t needed.

Replicating data locally
Once the data is saved durably to a disk on a single server, what happens if
that server fails? The data is safe, but inaccessible. In this situation, data rep-
lication within a cluster is useful.

Replication can either occur

▶✓ Within a transaction (called a two-phase commit): If within a
transaction, then all replicas have the same current view of the updated
document.

▶✓ After a transaction completes: In this case, the replica will be updated
at some point in the future. Typically, this inconsistency lasts for
seconds rather than minutes. This is called eventually consistent
replication.

217 Chapter 15: Document Databases in the Enterprise

Whichever method you use, once it’s complete, you’re guaranteed that
another copy of the data is available elsewhere in the same cluster. If the
originating server goes down, the data can still be returned in a query.

Using multiple datacenters
What if you’re really having a bad day, and someone digs up a network or
power cable to your entire datacenter? This is where database replication
comes in.

In database replication, the changes to an entire database across a cluster
are streamed as they happen to one or more backup clusters in a remote
datacenter(s). Because of the network latency involved, this process gener-
ally is done asynchronously as a tradeoff between the speed of write opera-
tions and the consistency of remote data.

Because this replication is asynchronous, some data may not be available at
the second site if the first site becomes unavailable before the data is repli-
cated. If new writes or updates occur at the backup site when it takes over
the service, these changes need to be merged with the saved, but not repli-
cated, data on the original site when you switch back. At times, this process
may create a conflict (with two “current” views of the same data) that you
must fix manually once inter-cluster communication is restored.

Selectively replicating data
Sometimes though you may have different needs for your other data center
clusters. Perhaps you only want a partial set of information replicated to
other live clusters, say for reference reasons.

A good example of this is a metadata catalog in which a description of the
data each cluster holds is replicated to other sites, but not the data itself.
This kind of catalog is useful for very large files that you don’t need to rep-
licate to all sites. One non-replicated file store holds the files, while your
NoSQL document database holds the metadata catalog.

If you have a small cluster or an individual node (an austere cluster) that isn’t
always connected, database replication isn’t a good option, because over
time, a backlog of updates could build up and have to be sent all together to
the cluster when that austere cluster does connect. This situation can cause
the secondary cluster to struggle to catch up. An example is a ship, oil rig, or
special forces soldier’s laptop.

218 Part IV: Document Databases

It’s also possible that you do want all data replicated, but you must prioritize
which data to replicate first. Perhaps a list of all the notes you’ve made on a
device is replicated first, and the notes themselves are replicated later. This
is common in certain scenarios:

▶✓ Mobile phone synchronization: Notes are saved on a phone for offline
use and then synced later.

 You can run Couchbase Mobile on a phone to provide for such situa-
tions.

▶✓ Austere sites: These include such places as oil rigs, military bases with
intermittent satellite communications, or sneaky people with laptops in
remote places. MarkLogic Server supports these types of installations.

This type of replication is sometimes called mobile synchronization, or flex-
ible replication, or Query Based Flexible Replication (QBFR). The phrase query
based reflects that a search query is used to bound the data to be replicated,
allowing several priority-ordered datasets to be replicated in a push or pull
manner.

Managing Consistency
It’s perfectly acceptable in some applications to have a slight lag in the time
it takes for data to become visible. Facebook posts don’t appear instantly
to all users. You can also see on Twitter that someone new is following you
before the total number of followers is updated. This lag is typically only a
few seconds, and for social media that’s not a problem. However, the same
isn’t true in situations such as in the following:

▶✓ Primary trading systems for billion dollar transactions

▶✓ Emergency medical information in an emergency room

▶✓ Target tracking information in a battle group headquarters

It’s important to understand the differences in approaches when considering
a database for your application. Not all NoSQL databases support full ACID
guarantees, unlike their relational database management systems counter-
parts.

It’s not that you’re either consistent or inconsistent. Instead, there’s a range
of consistency levels. Some products support just one level; others allow you
to select from a range of levels for each database operation. Here, I cover
only the two most extreme consistency models. Refer to specific database
products for a complete list of the consistency guarantees they support.

219 Chapter 15: Document Databases in the Enterprise

Using eventual consistency
With eventual consistency, a write operation is successful on the server that
receives it but all replicas of that data aren’t updated at the same time. They
are updated later based on system replication settings.

Some databases provide only eventual consistency (Couchbase), whereas
others allow tuning of consistency on a per operation basis, depending on the
settings of the originating client request (MongoDB, Microsoft DocumentDB).

Most social networks use this consistency model for new posts. This model
gives you very fast write operations, because you don’t have to wait for
all replicas to be updated in order for the write operation to be complete.
Inconsistency tends to last only a few seconds while the replicas catch up.

Using ACID consistency
ACID consistency is the gold standard of consistency guarantees. For a full
definition of ACID consistency, refer to Chapter 2. An ACID-compliant data-
base ensures that

▶✓ All data is safe in event of failure.

▶✓ Database updates always keep the database in a valid state (no conflicts).

▶✓ One set of operations doesn’t interfere with another set of operations.

▶✓ Once the save completes, reading data from any replica will always give
the new “current” result.

Some ACID databases go further and allow several changes to be executed
within the same transaction. These changes are applied in a single set,
ensuring consistency for all documents affected.

Consistency is achieved by shipping all the changes you want applied from
the server where a transaction is started, to each replica, then applying the
changes, and if all is well the transaction completes. If any one action fails,
the entire transaction of changes is rolled back on all replicas. Transaction
roll back ensures the data is kept in a consistent state.

MarkLogic Server provides ACID transactions both on the server-side
(when applying a set of changes in a single operation) and across several
client requests in an application (when applying each change individually,
then having a user select ‘apply’). Microsoft’s DocumentDB provides ACID
transactions only on the server-side, when executing a JavaScript stored
procedure.

220 Part IV: Document Databases

Document Database Use Cases
In This Chapter

▶▶ Distributing electronic articles

▶▶ Controlling unstructured data feeds

▶▶ Modifying data structures

▶▶ Joining data streams

D
ocuments are all around us. From shopping orders to patient notes
to books like this one. A world of infinite possibilities exists with

documents.

Knowing which use cases can be handled by a document NoSQL database is
an increasing challenge. Unlike some other types of NoSQL databases in this
book, document database providers are continually adding new features that
enable you to turn plain data storage into more functional information.

The use cases I describe in this chapter are industry- and solution-agnostic,
which makes sense because there are so many ways to apply document
databases. Take each example as a suggested “recipe” and apply it to your
particular data-management needs.

Publishing Content
The sale of online books is a big industry. People download whole books to
read offline at their leisure or as references in their jobs, for example.

It’s a little different with other kinds of digital publications, though. You
can access articles in scientific journals, for example, by subscribing to the
journal itself, by purchasing a single issue, or by downloading a single article.

Chapter 16

222 Part IV: Document Databases

Some scientific publishers, with varying degrees of copyright options, allow
you to buy access to the images used in their publications. Say that you
want to create a slide strictly for 30 students. In that case, the licensing
requirements won’t be as great as they would be if you were to write and
plan to market a book that uses existing published material.

This fine-grained access to content and the associated licensing for its use
signifies where digital publishing is today.

Managing content lifecycle
I used to work in the enterprise content management (ECM) and business
process management (BPM) software industries. One inescapable realization
was that process and content go hand in hand. As content goes through its
lifecycle — from creation, to modification, dissemination, and destruction —
different business actions generally need to happen.

When you fill in a bank account opening form online, an account opening pro-
cess starts. This process uses information within that form document, and a
sequence of well-known actions, to move the document and business process
through a lifecycle.

An account opening document could have the following steps in its lifecycle:

1. Validation: Check the form for any semantic or business rule errors. For
example, “We don’t cover business in a particular part of the UK, such
as the Channel Islands.”

2. Identity check: Check the identity of the user against other systems (for
example, check the official ID and credit reports).

3. Risk assessment: If the credit report is poor or otherwise not acceptable,
a decision is made to manually assess by the appropriate bank
employee.

 If the credit check was okay, the process moves to Step 4.

4. Process for opening account: This is a holding period during which
appropriate systems create the bank account.

5. Waiting for customer to activate card and account: Communications
are sent out during account opening, and then the account activation
pauses until the customer activates their card.

6. Opening of account is complete: The process is successful.

223 Chapter 16: Document Database Use Cases

The same process applies to publishing:

1. A concept for a book is submitted to a publisher for approval.

2. If the proposal is approved, the author generates a table of contents.

3. The author, if new, goes though initial training.

4. The book is written, produced in a variety of formats, and published to
digital and print vendors.

While these processes are happening, it’s helpful to use the document
lifecycle status as a query field. This means the status metadata either
resides in the document itself or is written into the document’s metadata by
the process. For example, MarkLogic Server allows you to store a separate
metadata document alongside the content document, which means that you
don’t have to store this status information in the document itself.

This approach is useful when the format of the source document isn’t
designed to hold internal process information. Many publishers use
internal XML schema to describe their publications’ content, which doesn’t
allow information about the status of the book and process to be held. So
an external metadata association capability is needed in the document
database.

Unlike many ECM vendors, very few document NoSQL database vendors
support content-centric workflow like those described previously. None have
full end-to-end business process management functionality built natively on
top of their products.

MarkLogic Server does have a feature called Content Processing Framework
(CPF) that provides content-centric workflow. You provide this feature with
a definition of the states within the lifecycle (called a pipeline) and the list of
documents (document collections or URI prefixes) that this pipeline should
be applied to.

With this feature, it’s possible to build sophisticated workflow-based
applications without having to install, integrate, and maintain a separate and
complex business process management system.

Distributing content to sales channels
Publishers were among the first to embrace the Extensible Markup Language
(XML) as a generic language to describe documents that can be repurposed
into different formats as required.

224 Part IV: Document Databases

The availability and popular use of XML Stylesheet Language
Transformations (XSLT) to convert XML to a variety of other formats, includ-
ing HTML for web pages and Portable Document Format (PDF) documents, is
a key benefit to using XML over other formats like JSON. The use of XML
Schema Definitions (XSDs) to describe a common format for exchanging
information is also useful.

During the publishing process, you need the ability to repurpose a source
document, or documents, into a target format. Publishers may do this at the
proofing stage so they can be sure the output looks correct, which generally
means these documents are generated and stored alongside the originals
in a collection of documents (MarkLogic Server) or attachments (Microsoft
DocumentDB).

For other industries, the ability to generate different formats on the fly for
occasional use outweighs the need to create and store them just in case
they’re requested. This concept is called schema on read because you
morph the data to your target format — the schema — when you request the
 document.

You can accomplish schema on read in MarkLogic Server by using XSLT
for individual documents, or XInclude for merging documents, or a custom
XQuery stored procedure to perform any transformation you like. XInclude is
a way to merge in other documents at query time. It’s a similar, but limited,
approach to query joins in the relational database world.

Microsoft provides a similar mechanism for JSON documents via Structured
Query Language (SQL) syntax to project, or describe at query time, the
structure of the content you want to receive.

This special query syntax is very similar to that used in a relational database
management system’s (RDBMS) SQL syntax. It allows for repurposing of a
number of related document sections, restricting the information returned,
and even specifying fixed values and results from aggregation functions
(mean average, count, standard deviation, and so on).

Although Microsoft describes pulling together information in a DocumentDB
query as a join, it should be pointed out that, unlike a join in a relational data-
base, DocumentDB joins are possible only within sections of the same JSON
document. They don’t allow joining of multiple documents.

225 Chapter 16: Document Database Use Cases

Managing Unstructured Data Feeds
Managing unstructured data is very challenging. Unlike well-designed JSON
and XML documents, unstructured data doesn’t provide hints to the objects
it describes. Structures also vary greatly because human language isn’t
restricted to a single way of writing.

In this section, I discuss how to manage large quantities of unstructured texts
within documents in a document oriented NoSQL database.

Entity extraction and enrichment
Some of these variable structures may be in binary formats. In this situa-
tion, you need to extract the text and/or metadata from those formats. When
that’s done, you can treat this output as a document that can be processed,
which could be a text, a JSON, or an XML (including XHTML) document.

Once the data is extracted, it’s likely to be a lot of text with no structure. You
need to figure out what the “things” mentioned are. These could be, for exam-
ple, people, places and organizations mentioned by name in the test.

This approach is very common for free text forms such as letters, patient
referrals, medical notes, tweets, or news articles.

You’ll then probably want to wrap the identified text with a tag — a
JSON property or an XML element. So, for example “Adam Fowler”
becomes <person>Adam Fowler</person> in XML or “person”: “Adam Fowler”
in JSON.

Entity extraction is particularly useful if you want to perform a query after-
ward for all documents that mention Adam Fowler the person. An element
lookup is always quicker and more accurate than a full-text search.

How do you get to this point, though? This is where Natural Language
Processing (NLP) comes in. You can keep it simple by using a full-text
search for a phrase and then a stored procedure to mark up your text. Using
MarkLogic Server alerts, for example, enables entity extraction to run fast,
asynchronously after adding a document.

For more complex situations or where you want the relationships between
entities, not just their mention, you need a more sophisticated solution.
Consider the text “Adam Fowler was observed entering Uncommon Ground
on Main Street, Medford, WI.”

226 Part IV: Document Databases

From this text, you get a person’s name, a business name, and an address.
You also get the fact that Adam Fowler visited the shop Uncommon Ground,
which is located on Main Street, Medford, WI.

You can use an open-source tool such as OpenCalais to perform this type of
entity and semantic extraction. You can store these results separate from the
document or use them to tag the indicated places in the document.

More sophisticated commercial offerings are available, too. The two that
I’ve seen mentioned most frequently by NoSQL-adopting organizations are
Smartlogic’s Semaphore and TEMIS’s Luxid products.

These tools go one step further by providing information about an entity.
Returning to the Adam Fowler example, say that the zip code and the longi-
tude and latitude are included with the address.

You can store this enhanced information within the document. Instead of
storing

<place>Uncommon Ground, Main Street, Medford, WI</place>

you store

<place lon=”-34.567” lat=”54.321” zipcode=”54451” type=”business”
subtype=”coffee”>Uncommon Ground, Main Street, Medford,
WI</place>

In this case, if your document database, or the search engine integrated with
it, supports geospatial search, you can use the longitude and latitude data.
You can also provide a full address summary or link to a Google map using
longitude and latitude or the zip code.

The process of adding more information to original content rather than just
tagging it is called entity enrichment. It’s very useful for enhancing ordinary
text data, and for allowing the searching of that data.

Managing Changing Data Structures
Each organization has many systems, each with its own data. These indi-
vidual information silos are typically split by organization area. Examples
include HR, customer sales, product quantities available, and complaints.
Each of these systems is independent, with their own application managing
the data.

227 Chapter 16: Document Database Use Cases

Some applications, however, consolidate data from a number of systems
within an organization, as well as third party or public data, in order to
 provide a more flexible application. This provides for a rich array of informa-
tion with which to mine for useful business answers.

Organizations don’t have control over external data-feed formats, and they
can be changed at any time without warning. Even worse, many data struc-
tures in use today change depending on the application that creates them,
rather than the system that stores them.

A good example of this is a tweet. A tweet isn’t just a 140-character message —
hundreds of fields are behind it, and they vary depending on the application
that created the tweet.

In this section, I discuss how this great variety of ever changing data can be
handled in a document NoSQL database.

Handling variety
Storing and retrieving variable information is a key benefit of all NoSQL docu-
ment databases. Indexing and searching their structure, though, is difficult.

Many document databases don’t perform these operations natively; instead,
they use an external search engine such as Solr (MongoDB) or Elasticsearch
(Couchbase) to do so. These search engines typically index either the text in
the document or specifically configured elements within the document.

Microsoft’s DocumentDB and MarkLogic Server both take a different
approach. They have a universal index that examines the documents as
they’re ingested. They both index the structure as well as the values. This
enables you to perform element-value queries (exact match queries) as soon
as a document is stored.

Microsoft’s implementation even allows you to do range queries (less than,
greater than, and so on) over this universal index, whereas with MarkLogic
server, range indexes need to be configured individually.

This extra indexing, of course, comes at a cost. It takes extra time at ingest if
you want to keep your indexes consistent with your data. It also costs in storage
space for the indexes. Either can increase server and storage rental costs.

Both Microsoft’s DocumentDB and MarkLogic Server allow you to configure
your indexes to a fine-grained level for each database (MarkLogic) or
Collection (Microsoft’s DocumentDB, which is akin to a “bucket” within a
database that manages a set of documents).

228 Part IV: Document Databases

Managing change over time
If you change the format of documents, you need to rework your search
index configurations. In many search engines, this forces the regeneration of
the index of all of your content! A very costly procedure, indeed.

MarkLogic Server gets around redoing a full re-indexing operation by sup-
porting field indexes. In this way, you can query via a single index that is
configured to look at element A in one document and element B in another
document — the structure is different, but you use a single query to refer-
ence the field.

So, for example, as well as having a separate index for “id” within product
documents and “prod_id” within order documents, you can have a field index
called “product_id” that will include results from both these elements. Doing
so would be useful if you were searching for a page on a website, as well as
comments about that page, where you could set up an index for “page_name.”

Having to manually reconfigure indexes delays the handling of new types of
content. You have to perform index changes before making use of the data.
This is where a universal index like those in Microsoft’s DocumentDB and
MarkLogic Server really pays dividends.

Having a universal structural index allows you to search and explore the
data you’ve ingested and then decide to perform different queries over it.
You don’t have to manually configure the structure before loading content in
order to search it immediately.

Where Microsoft’s implementation has the advantage is in automatic range
index queries because you can perform less than and greater than data
operations over numbers and dates.

Where MarkLogic’s implementation has the advantage is in providing a
full-text search over all content in addition to structure and values. This
supports word stemming (“cat” and “cats” both stem to “cat”) and word and
phrase searches and has configurable diacritic support for languages with
interesting dots and dashes over their letters.

MarkLogic Server also includes specialized support for many world languages
and is configurable at runtime for specific query needs. An example is a
search that is or isn’t case-sensitive or diacritic-sensitive or that ignores or
includes particular characters as word boundaries.

229 Chapter 16: Document Database Use Cases

Consolidating Data
Sometimes an answer isn’t available in a single document. Perhaps you need
to join multiple streams of information together in order to paint a picture.
Maybe instead different systems hold their own data, which needs to be
brought together to answer a question.

Handling incoming streams
When building these “answer” documents, your first task is to join the data
together. Very few document NoSQL databases (Microsoft DocumentDB,
OrientDB, and to a lesser extent, MarkLogic Server) provide support for these
joins at query time, which means you have to do this work yourself.

First, though, you need to store the information. Using constructs to store
related data is a good start. If you know, for instance, that some tweets and
news stories are about the same topic, then tagging them as such in their
metadata, or adding them to the same collection, makes sense. In this way,
you can quickly look up all data related to the same topic.

Some document databases, for example MarkLogic Server, support adding
documents to multiple collections. Others just support one collection for a
document. You can work around this issue by using a metadata property, like
this JSON document with an internal _topic property:

{
 “_id”: 1234, “_someInternalProperty”:”a value”, “_topic”: “business”,
 “url”: “http://bbc.co.uk/some/url” , “title”: “A Business Inc. bankrupt”,
 “content”: “Lorem ipsum dolar sit amet”
}

Where metadata properties aren’t supported, use an element in the
document. A good trick is to use names that start with underscores in
order to avoid clashes with fields used by application code, as shown in the
preceding example.

In the past, it was normal to receive dumps of information overnight and
process them in the wee hours of the morning. Now information is generated
24/7 and needs to be ingested as soon as it arrives. This means your service
must operate 24/7 also. No more downtime for system checks, backups, or
upgrades.

230 Part IV: Document Databases

To handle 24/7 operations, your database cluster needs to support

▶✓ Online backups: Back up nodes within the cluster with no loss of
service.

▶✓ Online upgrades: Take a server offline (another server takes over its
data), upgrade the offline server; then bring it back online with no
service interruptions.

▶✓ Data replication: If a replica server can’t take over one server’s data,
then it can’t support online upgrades. You achieve replication through a
shared network disk, or disk replication between servers.

These availability constraints are peculiar to 24/7 streamed incoming data.
A lot of databases don’t need this degree of availability. It’s increasingly
common to find that service is required 24/7, though, so you need to be
aware of these issues.

Amalgamating related data
After you successfully store the data — by the way, well done, because it’s no
mean feat! — you must join it together.

Say that you use an ID tracing database for banking arrears collection sys-
tems. In this case, you want the latest internal information on customers.
Perhaps you receive feeds of data from credit reporting agencies, consented
email and cell phone records, public twitter messages (including geocoded
tweets so you know where they were sent from), and maybe even local phone
directory or census information. The consented cell phone and email data
typically includes names and addresses, too. (Think of all those web forms
you fill in with privacy check boxes.)

You want to integrate this data to provide a picture of a person and where
he has lived. Basically, you join the public fragments of his identity. After all,
if he moves out of his house and skips the $110,000 he owes the bank on his
mortgage, then it’s worth trying to find him!

So, you want to create a “Person” document joining information about the
particular person at this particular address. Maybe you find his cell phone
number, email address, and mortgage records.

You could then mine tweets near his house and see if any cluster at this
address. Then look at the profile and tweets to determine whether he is living
there, or perhaps his daughter. If it is him, attach this data to the “Person”
object.

231 Chapter 16: Document Database Use Cases

To ensure that it’s the right person, store the provenance information of
what you find, and how it was modified or generated. Why did you add the
twitter id to the record? What evidence do you have (list of tweets)? How
certain are you (percentage match relevance)?

You’ll then be able to see whether any of the identifying information in the
last couple of months clusters at a new address. Perhaps a rented property in
the next town. In this fashion, you can find the debtors new address.

Providing answers as documents
Once you bring all the information together, you need to provide it in a user-
friendly way to people who utilize your application.

For catch-up TV services, for example, there’s no point in showing episode
summaries or a list of all the channels and times for the past two weeks and
the next six months that they’ll be showing. Instead, it’s better to show a set
of episodes that the user can watch now, no matter when its start and end
dates occurred.

Taking this source information and creating a different amalgamated view
at different levels of granularity is called denormalization. This is a very
common use case with document-oriented NoSQL databases. Instead of
doing joins at query time (as you can do with a relational database), you
 precompute the joins and store the results as documents, perhaps in a
 different collection.

Doing so is particularly useful if each of the source documents you need to
join together is controlled by a different set of users. The producers of a tele-
vision show may be responsible for describing the episode, but the network
director is responsible for its scheduling.

You need to pull information from the episode and availability documents,
perhaps along with series, brand, and platform (for example, Wii, web,
 set-top box, Apple Store) in order to compose the denormalized episode-
availability documents.

The best way to think about these denormalized documents is as answer
documents. Based on the questions users can ask, what would they expect
the answer to look like? Given this information, you can create a set of denor-
malization operations that make sense for your application.

If you’ve created denormalizations well, the answer documents will contain
all the information that a user needs for a query in order to find them. These

232 Part IV: Document Databases

documents can then be indexed for query. Alternatively, you can use a
search engine to provide a full-text index for episode-availability searches.

Although it does take up more space, creating denormalizations reduces
query and processing time because only one document is read, and the query
doesn’t have to process and join together many records in order to provide
the single answer the user is looking for.

Producing denormalizations is the document NoSQL database equivalent of
a materialized view in the relational database world. Materialized views are
pre-computed joins across tables, used to avoid joins at query time. You’re
trading storage space for query speed and I/O workload. Depending on your
application and complexity of the joins, this tradeoff may well be worth
making.

Document Database Products
In This Chapter

▶▶ Replacing memcache

▶▶ Providing a familiar developer experience

▶▶ Delivering an end-to-end document platform

▶▶ Creating a web application back end

I
f you’ve decided that a document-orientated, schema-free, tree-structured
approach is for you, then you have several choices because many great

and varied document NoSQL databases are available. But the question, of
course, is which one to use?

Perhaps your organization requires the ability to scale out for high-speed
writes. Maybe, instead, you have only a few documents with high-value data.
Perhaps you’re looking for a relational database that your developers are
familiar with.

Because the fundamental designs of databases differ, there’s no one-size-fits-
all approach. These designs are neither wrong nor right; they’re just different
because each database is designed for a different use. They become “wrong”
only if they’re applied to the wrong type of problem.

In this chapter, I explain how to make the choice that best suits your needs.

Providing a Memcache Replacement
Memcache is an in memory caching layer that is frequently used to speed up
dynamic web applications by lowering database query load.

In some web applications, you must provide an in-memory storage layer —
to offload repeated reads from a back-end operational database server or,

Chapter 17

234 Part IV: Document Databases

alternatively, to store transient user session data that lives only while a user
is on a website.

Memcached was the original open-source, in-memory key-value store
designed for this purpose. It provides either an in-memory store within
a single web application’s memory space, or a central service to provide
memory caching for a number of application servers.

Other similar open-source and commercial options exist. Oracle Coherence is
a sophisticated offering, along with Software AG’s Terracotta. Hazelcast is a
popular open-source in-memory NoSQL option. Redis can also be used for
 in-memory caching (refer to Part II for more on key-value stores).

Ensuring high-speed reads
The primary purpose of a memcache layer is to attain high-speed reads. With
memcache, you don’t have to communicate over the network with a database
layer that must read data from a disk.

Memcache provides a very lightweight binary protocol that enables applica-
tions to issue commands and receive responses to ensure high-speed read
and write operations.

This protocol is also supported by other NoSQL databases. Couchbase, for
instance, supports this protocol natively, allowing Couchbase to be used as a
shared service drop-in replacement for memcache.

Using in-memory document caching
Using Couchbase as a memcache replacement ensures that cached data is
replicated quickly around multiple data centers, which is very useful, for
example, when a news story is prompting numerous views and tweets. With
Couchbase, you can prevent increasing the load on the server by caching this
popular story in memory across many servers.

Because Couchbase is a document NoSQL database, it also supports setting
up indexes on complex JSON structures. Memcache doesn’t provide this type
of aggregate storage structure; instead, it concentrates on simpler structures
such as sets, maps, and intrinsic types like strings, integers, and so on.

Couchbase is particularly useful when a web application retrieves a cached
news item either by a page’s URL or by the latest five stories on a particular
topic. Because Couchbase provides views and secondary indexes, you can
execute exact-match queries against data stored in memory.

235 Chapter 17: Document Database Products

Supporting mobile synchronization
Increasingly, services such as Evernote, SugarSync, and Dropbox require that
data is stored locally on a disconnected device (like a cell phone) for later
synchronization to a central cloud service. These services are particularly
critical when devices like cell phones and laptops are disconnected from a
network, for example, oil rigs, environmental surveys, or even battlefields.

The creators of such services don’t design their own communication and
synchronization protocols, probably because doing so is costly, slow, and
bug-prone. The good news is that Couchbase has you covered via Couchbase
Mobile, which works on mobile devices. Its internal master-master replication
protocol allows many different devices to sync with each other and with a
central service.

Evaluating Couchbase
Couchbase provides good support for high-speed writes like a key-value
store, while also eventually storing data on disk. Its primary use is for an
always-on connection for clusters and devices.

Couchbase, however, isn’t an ACID-compliant database. There are short
 windows of time when data is held in memory on one machine but not yet
saved to disk or saved on other machines. This situation means data less
than a few seconds old can be lost if a server fails.

Couchbase views are the basis of its indexing. If you need secondary indexes,
then you must create a design document and one or more views. These are
updated asynchronously after data is eventually written to disk.

If data loss windows and inconsistent indexes are big issues in your situa-
tion, I suggest waiting for the upcoming version 3.0, which will provide
streaming replicas between memory without waiting for disk check-pointing.
It also will allow updating query views directly from memory. Combining
these capabilities with consistent use of the PersistTo flag on save and the
stale=false flag on read will reduce such problems, at the cost of some
speed. These settings aren’t easy to find on the Couchbase documentation
website (http://www.couchbase.com/documentation), so you will
have to read the API documentation for the details.

Couchbase is likely hard to beat in terms of speed in the document NoSQL
database realm. This speed comes at the cost of consistency and durabil-
ity and with a lack of automatic indexing and data querying features. Range
 queries (less than, greater than) aren’t supported at all.

HTTP://WWW.COUCHBASE.COM/DOCUMENTATION

236 Part IV: Document Databases

Couchbase restricts you to only three replicas of data. In practice, this is
probably as many replicas as you want, but all the same, it is a restriction.

If speed is king in your situation — if you’re using JSON documents, if you
want a memcache replacement, or perhaps you need a persistence layer
for your next gazillion-dollar generating mobile app — then Couchbase may
be for you.

Providing a Familiar Developer
Experience

Developers are picky folks. We get stuck in our ways and want to use only
technologies that we’re familiar with, and not dirty or weird in some way,
although esoteric code may be just the thing for some people, which may be
why there are so many different databases out there!

To get developers on board, you need to provide things that work the way
developers expect them to. A database needs to be easy to get started with,
and it needs to provide powerful tools that don’t require lots of legwork —
and that they can put to use in, say, about five minutes.

Indexing all your data
Having a schema-free database is one thing, but in order to have query func-
tionality, in most NoSQL databases you must set up indexes on specific fields.
So you’re really “teaching” the database about the schema of your data.

Microsoft’s DocumentDB (for JSON) and MarkLogic Server (for JSON and
XML), however, both provide a universal index, which indexes the structure
of documents and the content of that document’s elements.

DocumentDB provides structural indexing of JSON documents and even pro-
vides range queries (less than, greater than operations) alongside the more
basic equal/not equal operations. DocumentDB does all this automatically,
without you having to “teach” the database about the prior existence of your
documents’ structure.

237 Chapter 17: Document Database Products

Using SQL
Pretty much every computer science graduate over the past 30 years knows
how to query and store information held in an RDBMS, which means there
are many people fluent in SQL, the language used to query those systems.

Being able to query, join, sort, filter, and project (produce an output in a dif-
ferent structure to the source document) using this familiar language reduces
barriers to adoption significantly.

Microsoft provides a RESTful (Representational State Transfer) API that
accepts SQL as the main query language. This SQL language is ANSI SQL-
compliant, allowing complex queries to be processed against DocumentDB
using the exact syntax that you would against a relational database, as shown
in Listing 17-1.

The SQL query in Listing 17-1, for example, produces the JSON output shown
in Listing 17-2.

Programmers familiar with RDBMS should find this query very intuitive.

Listing 17-1: SQL to Project a JSON Document into a Different Structure
SELECT
 family.id AS family,
 child.firstName AS childName,
 pet.givenName AS petName
FROM Families family
JOIN child IN family.children
JOIN pet IN child.pets

Listing 17-2: The Resulting JSON Projection
 [
 {
 "familyName": "Fowler",
 "childName": "Reginald",
 "petName": "Leo"
 },
 {
 "familyName": "Atkinson",
 "childName": "Reece",
 "petName": "Deefer"
 }
]

238 Part IV: Document Databases

Linking to your programming language
Of course, high-level programmers won’t be attracted to database innards,
like the query structure of SQL. They prefer to work with objects, lists, and
other higher-level concepts like save, get, and delete. They’re a high-brow
bunch who sip martinis while reclining on their super-expensive office chairs
and coding.

Application objects can be order objects, a list of items in an order, or an
address reference. These objects must be mapped to the relevant structures
in order to be held in, and queried from, the document database. Listing 17-3
shows an example of a .NET object class used to store family information.

Listing 17-3: .NET Code for Serialized JSON Objects
public class Family
{
 [JsonProperty(PropertyName="id")]
 public string Id;
 public Parent[] parents;
 public Child[] children;
};
public struct Parent
{
 public string familyName;
 public string firstName;
};
public class Child
{
 public string familyName;
 public string firstName;
 public string gender;
 public List<Pet> pets;
};
public class Pet
{
 public string givenName;
};
// create a Family object
Parent mother = new Parent { familyName= "Fowler", firstName="Adam" };
Parent father = new Parent { familyName = "Fowler", firstName = "Wendy" };
Child child = new Child { familyName="Fowler", firstName="Reginald",

gender="male"};
Pet pet = new Pet { givenName = "Leo" };
Family family = new Family { Id = "Fowler", parents = new Parent [] { mother,

father}, children = new Child[] { child } };

239 Chapter 17: Document Database Products

You can use and serialize plain .NET objects directly to and from
DocumentDB. These object classes can have optional annotations, which
helps migrate an “id” field in the JSON representation to the .NET object’s
“Id” field (capital I), as you can see in the Family class in Listing 17-3. So,
when using DocumentDB, programmers just use the standard coding
practices they’re used to in .NET.

Evaluating Microsoft DocumentDB
Microsoft’s DocumentDB is an impressive new entry in the document NoSQL
database space. With tunable consistency, a managed service cloud offer-
ing, a universal index for JSON documents with range query support, and
JavaScript server-side scripting, DocumentDB is powerful enough for many
public cloud NoSQL scenarios.

Currently, DocumentDB is available only on Microsoft Azure, and for a price.
It doesn’t have an open-source offering, which will limit its adoption by
some organizations, though it’s likely to be attractive to Windows and .NET
programmers who want to take advantage of the benefits of a schema-less
NoSQL design with flexible consistency guarantees. These programmers
may not want to learn the intricacies of non-Windows environments, like
MongoDB on Red Hat Linux, for example.

.NET developers with exposure to SQL or Microsoft SQL Server will find it
easy to understand DocumentDB. As a result, DocumentDB will challenge
MongoDB in the public cloud — because DocumentDB is more flexible and
has better query options when a JSON document model is used.

For private cloud providers and large organizations able to train people on
how to maintain free, open-source alternatives, MongoDB will likely maintain
its position. If Microsoft ever allows the purchase of DocumentDB for private
clouds, this situation could change rapidly.

MarkLogic Server is likely to continue to dominate in cases of advanced
 queries with geospatial and semantic support; or where binary, text, and
XML documents with always-ACID guarantees need to be handled; or in high-
security and defense environments.

All the same, Microsoft should be commended for this well-thought-out
and feature-rich NoSQL document database. This new entrant along with
Oracle’s NoSQL key-value store (refer to Part II for more on Oracle NoSQL)
and the Cloudant document NoSQL database (which IBM purchased in 2014)
proves that NoSQL is making the big boys of the software industry sit up and
take notice.

240 Part IV: Document Databases

Providing an End-to-End Document
Platform

Storing JSON and allowing it to be retrieved and queried with strong consis-
tency guarantees is a great start. However, most enterprise data is stored
in XML rather than in JSON. XML is the lingua franca (default language) of
 systems integration. It forms the foundation of web services and acts as a
self-describing document format.

▶✓ In addition to XML, plain text documents, delimited files like comma
separated values (CSV), and binary documents still need to be managed.
If you want to store these formats, extract information from them, and
store metadata against the whole result, then you need a more compre-
hensive end-to-end solution.

▶✓ After managing the data, you may also need to provide very advanced
full text and geospatial and semantic search capabilities. Perhaps you
also want to return faceted and paginated search results with matching-
text snippets, just like a search engine.

▶✓ Perhaps you want to go even further, and take the indexes of all the
documents and conduct co-occurrence analysis. This is where you look
at two elements in the same document and calculate how often across
all documents in a query two values occur together — say, the product
and illness fields extracted from some tweets. You may discover that
Tylenol and flu often occur together. Perhaps this will lead you to start
an advertisement campaign for this combination.

▶✓ This analytic capability is more than summing up or counting existing
fields. It requires more mathematical analysis that needs to be done at
high speed, preferably over in-memory, ordered range indexes.

Say that you then want to describe how you extracted the information, from
which sources, who uploaded it, and what software was used. You can then
code this information in Resource Description Framework (RDF) triples,
which I discuss in Part V of this book.

You may then want to take all this information, repurpose it, and publish
summaries of it. This end-to-end complete lifecycle used to manage docu-
ments and the valuable information within them requires many features. To
do so in mission-critical systems that require ACID transactional consistency,
backups, high availability, and disaster recovery support — potentially over
somewhat dodgy networks — makes the task even harder.

MarkLogic Server is designed with built-in support for these really tough
problems.

241 Chapter 17: Document Database Products

Ensuring consistent fast reads and writes
At the risk of repetition — and boring you to tears — I say once again that
providing very fast transaction times while maintaining ACID guarantees on
durability and consistency is no easy thing.

Many NoSQL databases that I cover in this part of the book, and indeed entire
book, don’t provide these guarantees in order to achieve higher throughput
times. Many mission-critical systems require these features, though, so it’s
worth mentioning some approaches to achieving these guarantees while
ensuring maximum throughput.

MarkLogic Server writes all data to memory and writes only a small journal
log of the changes to disk, which ensures that the data isn’t lost. If a server
goes down, when it restarts, the journal is replayed, restoring the data.
Writing a small journal, rather than all the content, to disk minimizes the disk
I/O requirements when writing data, thus increasing overall throughput.

Many databases also lock information for reads and writes while a write oper-
ation is updating a particular document. MongoDB currently locks the entire
database within a given instance of MongoDB! (Although this will change with
upcoming versions of MongoDB.)

To avoid this situation, MarkLogic Server uses the tried-and-true approach
called multi-version concurrency control (MVCC). Here’s what happens if you
have a document at an internal timestamp version of 12:

1. When a transaction starts and modifies the data, rather than change the
data, an entirely new document is written.

 Therefore, the database doesn’t have to lock people out for reads. All
reads that happen after the transaction begins, but before it finishes, see
version 12 of the document.

2. Once the document transaction finishes, the new version is given the
timestamp version of 13:

• All reads that happen after this point are guaranteed to see only
version 13.

• Replicas are also updated within the transaction, so even if the
 primary server fails, all replicas will agree on the current state of
the document.

242 Part IV: Document Databases

3. All changes are appended as new documents to the end of a database
file, both in-memory and on disk.

 In MarkLogic, this is called a stand. There are many stands within a
forest, which is the unit of partitioning in MarkLogic Server. A single
server manages multiple forests. They can be merged or migrated as
required while the service is live, maintaining a constant and consistent
view of the data.

Of course, with new records being added and with old records that are no
longer visible being somewhere in the stand files, an occasional cleanup
operation is needed to remove old data. This process is generally called
 compaction, but in MarkLogic, it’s called a merge operation. This is because
many stands are typically merged at the same time as old data is removed.

Always appending data means that reads don’t have to block other requests,
ensuring fast read speeds while still accepting writes. This mechanism is also
the basis for providing ACID guarantees for the protection of data and consis-
tency of query and retrieval.

MarkLogic Server also updates all indexes within the transaction boundary.
Therefore, it’s impossible to get false positives on document updates or
deletions, and all documents are discoverable as soon as the transaction
creating them completes. No need to wait for a traditional search engine’s
re-indexing run.

Supporting XML and JSON
MarkLogic Server is built on open standards like XML, XQuery, XPath,
and XSLT. XQuery is the language used for stored procedures, reusable
code modules, triggers, search alerts, and Content Processing Framework
(CPF) actions.

MarkLogic can natively store and index XML and plain text documents, store
small binary files within the stands, and manage large binaries transparently
directly on disk (but within the managed forest folder).

You handle JSON documents by transposing them to and from an XML repre-
sentation with a special XML namespace, which in practice, is handled trans-
parently by the REST API. You pass in JSON and retrieve JSON just as you do
with MongoDB or Microsoft’s DocumentDB, as shown here:

<person id=”1234”>Adam Fowler</person>

243 Chapter 17: Document Database Products

The XML representation on disk is highly compressed. Each XML element
name is very text-heavy, and there’s a start tag and an end tag, as shown in
the preceding example. Rather than store this long string, MarkLogic Server
uses its own proprietary binary format.

MarkLogic Server replaces the tag with a term id and inherently handles the
parent-child relationships within XML documents, which saves a lot of disk
space — enough so that, on an average installation, the search indexes plus
the compressed document’s content equal the size of the original XML
document.

This trick can be applied to JSON, too, and MarkLogic is adding native
JSON support in MarkLogic Server version 8. In addition, MarkLogic is also
adding full server-side JavaScript support. You will be able to write triggers,
user-defined functions, search alert actions, and CPF workflow actions in
JavaScript.

In addition, the exact functions and parameters currently available in
XQuery will be available to JavaScript developers. JavaScript modules will
also be capable of being referenced and called from XQuery, without special
handling. This will provide the best of both worlds — the most powerful,
expressive, and efficient language for working with XML in XQuery; and the
most natural language for working with JSON in JavaScript. Except you’ll be
able to mix and match depending on your skills as a developer.

Using advanced content search
There are document NoSQL databases, and then there are enterprise search
engines. Often integrating the two means having search indexes inconsistent
with your database documents, or duplicated information — some indexes
in the database with the same information or additional indexes in the
search engine.

MarkLogic Server was built to apply the lessons from search engines to
schema-less document management. This means the same functionality you
expect from Microsoft FAST, HP Autonomy, IBM OmniFind, or the Google
Search Appliance can be found within MarkLogic Server.

In addition to a universal document structure and value (exact-match) index,
MarkLogic Server allows range index (less than, greater than) operations.
This range query support has been extended to include bounding box, circle
radius, and polygon geospatial search, with server-side heat map calculations
and “distance from center of search” analytics returned with search results.

244 Part IV: Document Databases

MarkLogic Server’s search features don’t include a couple of features
 provided by dedicated search vendors (you can find more on search engines
in Part VI):

▶✓ An out-of-the-box user interface application that you can configure with-
out using code.

▶✓ Connectors to other systems. This is because MarkLogic Server aims to
have data streamed into it, rather than going out at timed intervals via
connectors to pull in content.

Range index distance calculations allows for complex relevancy scoring.
A good example is for searching for a hotel in London. Say that you want
a hotel near the city center but also want a highly rated hotel. These two
 metrics can both contribute to the relevancy calculation of the hotel docu-
ment in question, providing a balanced recommendation score for hotels.

This is just one example of the myriad search capabilities built into
MarkLogic Server. Many of these capabilities, such as alerting, aren’t as
feature-rich in pure-play enterprise search engines, let alone in NoSQL
 databases.

Securing documents
Many of MarkLogic’s customers are public sector organizations in the United
States Department of Defense. In these areas, securing access to information
is key. MarkLogic Server has advanced security features built in. These fea-
tures are available for commercial companies, too.

MarkLogic Server’s compartment security feature isn’t available for commer-
cial customers based in the United States because of government licensing
agreements. Outside the United States though, this feature is available for
commercial use.

MarkLogic supports authentication of users via encrypted passwords held
in the database itself, or in external systems. These external systems include
generic LDAP (Lightweight Directory Access Protocol) authentication sup-
port and Kerberos Active Directory token support, which allows single
sign-on functionality when accessing MarkLogic from a Windows or Internet
Explorer client. Digital certificates are also supported for securing access.

Authorization happens through roles and permissions. Users are assigned
roles in the system. These roles may come from internal settings or, again,
from an external directory through LDAP. Permissions are then set against
documents for particular roles. This is called role based access control (RBAC).

245 Chapter 17: Document Database Products

If you add two roles to a system, both with read access to the same
document, then a user with either one of those roles can access the
document.

In some situations, though, you want to ensure that only users with all of a
set of roles can access a document. This is called compartment security and is
used by defense organizations worldwide.

Consider the following compartments:

▶✓ Nationality: British, American, Russian

▶✓ Organization: CIA, NSA, DoD, UK SIS, UK NCA, FSB

▶✓ Classification: Unclassified, Official, Secret, Top Secret

▶✓ Compartment: Operation Squirrel, Operation Chastise, ULTRA

If a document has read permissions set for the roles American, Secret, and
Operation Chastise, then only users with all three roles have access to that
document.

Compartment security effectively enforces AND logic on roles instead of the
normal OR logic. Roles must be in named compartments for compartment
security to be enabled, though.

These permissions are indexed by MarkLogic in a hidden index. Any search
or document retrieval operation, therefore, is always masked by these per-
missions, which makes securing documents very fast as the indexes are
cached in memory.

Users performing a search never see documents they don’t have permission
for, including things like paginated search summaries and total matching
records counts.

These security guarantees are in contrast to many other systems where a
mismatch between the document database, application, and search engine
security permissions can lead to “ghost” false positive results. You see that
a result is there, and maybe it’s a unique ID, but you don’t see data from the
database describing the result, which indicates that content exists that you
should never see.

Security permissions in MarkLogic are also applied to every function in the
system. A set of execute permissions is available to lock down functionality.
Custom permissions can be added and checked for by code in these func-
tions. Execute permissions can even be temporarily bypassed for specific
application reasons using amps — amps are configuration settings of a

246 Part IV: Document Databases

MarkLogic application server to allow privileged code to be executed only in
very specific circumstances.

Wire protocols in MarkLogic, such as XML Database Connectivity (XDBC, the
XML equivalent of Windows’ ODBC), HTTP REST, and administrative web
applications are all secured using SSL/TLS.

MarkLogic Server also holds a U.S. Department of Defense Common Criteria
certification at an EAL2 (Evaluation Assurance Level 2) standard. It is the
only NoSQL database to hold accreditation under Common Criteria. This
means its security has been tested and verified such that its development
and testing procedures comply with industry best practice for security.

All these features combined provide what MarkLogic calls government-grade
security.

Evaluating MarkLogic Server
MarkLogic Server has a great many functions, including NoSQL database,
search engine, and application services (REST API). Its list of enterprise
 features, including full ACID compliance, backup and restore functions, cross-
datacenter replication, and security, are unsurpassed in the NoSQL space.
This makes MarkLogic Server attractive for mission-critical applications.

MarkLogic Server is currently hard to come to grips with because of its use of
XQuery. Although XQuery is a very capable language and the best language
for processing XML, not everyone is familiar with it. MarkLogic Server ver-
sion 8, with its server-side JavaScript support, will alleviate this issue.

MarkLogic Server, like Microsoft’s DocumentDB, is a commercial-only offer-
ing. The download license provides six months of free use for developmental
purposes, after which you have to talk with a MarkLogic sales representa-
tive in order to extend or purchase a license. This is alleviated somewhat by
a lower-end Essential Enterprise license. Unlike many open-source NoSQL
 databases where an expensive commercial version is always required for
cross-datacenter replication, backup and restore functions, integrated analyt-
ics, and other enterprise features, this less-advanced edition of MarkLogic
provides these features as standard. This new licensing scheme was intro-
duced in late 2013 to counter the common perception that MarkLogic Server
was too expensive.

MarkLogic Server is also available on U.S. and UK government purchasing
lists, as GSA and GCloud, respectively.

247 Chapter 17: Document Database Products

MarkLogic Server also has limited official programming language driver
 support. Currently, an XDBC Java and .NET API, and REST based the Java
API are available as official drivers. A basic JavaScript Node.js driver will
also be available with the release of version 8. These REST API-based drivers
are being open-sourced now, though, which should improve development
releases.

Unofficial drivers are also available as open-source projects for JavaScript
(MLJS — for use in both Node.js and browser applications), Ruby
(ActiveDocument), C# .NET (MLDotNet), and C++ (mlcplusplus).

MLJS, MLDotNet, and mlcplusplus are all projects I manage on my GitHub
account at https://github.com/adamfowleruk.

The lack of an out-of-the-box configurable search web interface is also a prob-
lem when comparing MarkLogic Server’s search capabilities to other search
vendors. This problem is limited, though, with many customers choosing to
use wrap search functionality as one of many functions within their NoSQL-
based applications.

For end-to-end document-orientated applications with unstructured search,
perhaps a mix of document formats (XML, JSON, binary, text), and complex
information management requirements, MarkLogic Server is a good choice.

Providing a Web Application Back End
It’s a very exciting time, with web startups and new networked mobile apps
springing up all over the place. If this describes your situation, then you need
a NoSQL database that is flexible enough to handle changes in document
schema so that old and new versions of your app can coexist with the same
data back end.

You also need a simple data model. If you support multiple platforms, you
need this model to work seamlessly across platforms without any complex
document parsers, which probably means JSON rather than XML documents.

If you’re building a web app that communicates either directly to the data-
base or via a data services API that you create, then you want this functional-
ity to be simple, too. In this case, a JSON data structure that can be passed
by any device through any tier to your database will make developing an
application easier.

Many web startups and application developers who don’t want to spend
money on software initially but want their database to expand along with the

HTTPS://GITHUB.COM/ADAMFOWLERUK

248 Part IV: Document Databases

popularity of their application use MongoDB. MongoDB, especially running
as a managed cloud service, provides an inexpensive and easy-to-start API
required for these types of applications. The software doesn’t provide all
the advanced query and analytics capabilities of Microsoft’s DocumentDB
or MarkLogic Server, but that isn’t a problem because its primary audience
 consists of web application developers in startup companies.

Trading consistency for speed
In many mobile and social applications, the latest data doesn’t return with
every query; however, that’s no great loss if, for example, you get a new follower
on Twitter and the count of followers doesn’t update for, say, six seconds.
Allowing this inconsistency means that the database doesn’t have to update the
master node and the replicas (typically two) during a write operation.

Trading this consistency in a document database like MongoDB means that the
database doesn’t have to update the master node and the replicas during a write
operation. MongoDB also supports writing to RAM and journaling to disk, so if
you want durability of data with eventual consistency to replicas then MongoDB
can be used for this. This allows MongoDB to provide high write speeds.

MongoDB currently locks its database file on each MongoDB instance when
performing a write. This means only one write can happen at a time
(although this issue will be addressed in version 2.8). Even worse, all reads
are locked out until a write completes. To work around this problem, run
multiple instances per server (perhaps one per two CPU cores). This
approach is called micro-sharding.

Normally you operate one instance of a NoSQL database per server and
manage multiple shards on that server (as discussed in Chapter 15) — with
MongoDB micro-sharding you have to run multiple copies of MongoDB on
each server, each with a single shard. This is of course a higher CPU and I/O
load on the server.

Consistency levels aren’t enforced by the MongoDB server; they are selected
by the client API driver, which allows clients to selectively choose the consis-
tency for their writes and reads.

To ensure that all replicas are updated and that the data is completely
flushed to disk before an operation completes, you can select the ALL
 replicas option for the write operation.

Similarly, you can set read consistency options. For example, you can ask for a
majority of replicas, or all replicas, to agree on the “current” state of a record
for the read operation before a copy of the record is returned to the client.

249 Chapter 17: Document Database Products

Sticking with JavaScript and JSON
If you’re writing a web application, then you probably employ several web
developers, and they’re probably familiar with clever JavaScript tricks and
know how to model data effectively in JSON.

Ideally, you want those developers to use their existing set of skills when
it comes to operating your database. You want to save and retrieve JSON.
When you query, you want a query definition that’s in JSON. You might not
be a relational database expert with years of Structured Query Language
(SQL) experience; however, you want to same functionality exposed in a way
familiar to your JavaScript and JSON fluent web developers.

MongoDB’s query mechanism uses a JSON structure. The response you get
is a JSON result set, with a list of JSON documents; it’s all very easy to under-
stand and use from a web developer’s perspective, which is why MongoDB is
so popular.

Finding a web community
MongoDB’s simplicity and JavaScript-centric characteristics make it a natural
starting place for developers. This is reflected by the strength of the MongoDB
online community

Partly it’s because MongoDB, Inc. (formerly 10gen) has an excellent developer-
centric, local meet-up strategy and strong marketing behind it. Every week in
MongoDB offices worldwide, people show up and work on apps with their sales
and consulting staff.

MongoDB is also prevalent on web forums. If you hit upon a problem,
chances are you can find a solution on StackOverflow.com. This is a double-
edged sword, though — because it may be that people are having a lot
of problems!

Evaluating MongoDB
MongoDB is a solid database when used as a back end for web applica-
tions. Its JavaScript and JSON centricity make it easy to understand and use
straightaway.

250 Part IV: Document Databases

Being able to choose what level of consistency and durability you have
is also useful. It’s up to you, as a developer, to understand this trade off,
though, and the benefits and costs each gives you.

Currently, the main thing limiting MongoDB’s use in mission-critical enter-
prise installations — as opposed to large enterprises that are using MongoDB
as a cache or for noncritical operations — is its lack of enterprise features.

The recent 2.6 version did introduce rolling backups, data durability settings,
and basic index intersection. Basic RBAC (role based access control, men-
tioned earlier in this chapter) was also added, but not at the document level.
You can secure access only by using roles to collections and databases, not
individual documents.

Also, fundamental changes need to be made to MongoDB’s architecture to
allow better scaling. Support for multi-core processors that doesn’t require
you to start multiple instances is one such change.

Another is the need to define a compound index. Say that you have a query
with three query terms and a sort order. In order to facilitate this query,
rather than add an index for each term and define the sort order in the query,
you must define a compound index for every combination of query terms
you use and their sort order. This approach requires a lot of indexing and
index space. MongoDB has begun to address this issue, but it hasn’t entirely
removed the need for compound indexes.

The database-wide write lock is also a problem in systems that require large
parallel write operations. This fundamental design exists because MongoDB
uses memory-mapped files. An entirely new persistence mechanism will be
required to resolve this, and this will take time to test, debug, and prove.

MongoDB’s funding rounds in 2013 were aimed at helping it solve these fun-
damental design challenges in the coming years, and MongoDB is on its way
to achieving this goal with the new features in the 2.6 and 2.8 releases.

The bottom line is that MongoDB is easy to grasp and is already used by
many companies to build very useful applications. If you have a web applica-
tion or need a JSON data model in a NoSQL database with built-in querying,
consider adopting MongoDB, especially if you need a free database or a
private installation. Currently, neither of these scenarios are supported by
Microsoft’s DocumentDB.

MongoDB
In This Chapter

▶▶ Working with open-source software

▶▶ Supporting MongoDB

M
ongoDB is the poster child for the NoSQL database movement. If
asked to name a NoSQL database, most people will say MongoDB, and

many people start with MongoDB when looking at NoSQL technology. This
popularity is both a blessing and a curse. It’s obviously good for MongoDB,
Inc. (formerly 10gen). On the flip side, though, people try to use MongoDB
for purposes it was not designed for, or try to apply relational database
approaches to this fundamentally different database model.

MongoDB is a good NoSQL document database with a range of features that,
in the open-source NoSQL world, are hard to beat. Starting your NoSQL
career with MongoDB is a good approach to take.

In this chapter, I describe how MongoDB can be used, and where support can
be found for your own implementation.

Using an Open-Source
Document Database

Some companies can’t afford to purchase commercial software, support, or
consulting, at least at the outset. If this describes your company, you may
want to start with the free open-source version of MongoDB, which you can
find at https://www.mongodb.org/downloads.

MongoDB’s use of the GNU Affero General Public License (AGPL) v3.0 means
that anyone can download the software source code, compile it, and use it

Chapter 18

https://www.mongodb.org/downloads

252 Part IV: Document Databases

to provide a database service, either for her own applications or as a shared
public cloud computing service.

Doing so reduces the costs and complexities of adopting MongoDB. Several
cloud providers on Amazon and Azure offer hosted MongoDB database
services.

MongoDB’s core database code is available under the GNU AGPL v3.0 license.
MongoDB is unique in using this particular license. This differs from the
standard GNU GPL in ensuring that, if a modified version of MongoDB is
created and run on a public service (for example, in the Amazon or Azure
clouds), then the source code for that modification must be released back
to the community under the same GNU AGPL v3.0 license. Some commercial
companies may find this requirement problematic, because it may prevent
them from producing their own enhanced MongoDB and making it available
as a unique commercial service on the public cloud.

Handling JSON documents
MongoDB natively handles JSON documents. Like XML, JSON documents’
property names can be quite verbose text. MongoDB uses its own BSON
(short for Binary JSON) storage format to reduce the amount of space and
processing required to store JSON documents. This binary representation
provides efficient serialization that is useful for storage and network
transmission.

This internal operation is handled transparently by the client drivers and
MongoDB. Developers never need to worry about this implementation detail.

Finding a language binding
One of the main strengths of MongoDB is the range of official programming
language drivers it supports. In fact, it officially supports ten drivers. These
drivers are released under Apache License v2.0, allowing you to extend the
drivers, or fix them as needed, and to redistribute the code.

Also, more than 32 unofficial drivers (the code is not reviewed by MongoDB)
under a variety of licenses are available, which is by far the most language
drivers I’ve come across for any NoSQL database.

Whether you want a modern-day or older esoteric programming language,
MongoDB probably has a language binding for you, as shown here:

253 Chapter 18: MongoDB

▶✓ Official: C, C++, C#, Java, Node.js, Perl, PHP, Python, Ruby, Scala

▶✓ Unofficial: ActionScript 3, Clojure, ColdFusion, D, Dart, Delphi, Entity,
Erlang, Factor, Fantom, F#, Go, Groovy, JavaScript, Lisp, Lua, MATLAB,
Node.js, Objective C, OCaml, Opa, Perl, PHP, PowerShell, Prolog, Python,
R, REST, Ruby, Scala, Racket, Smalltalk

If your language binding isn’t mentioned in the preceding list, then you really
are using something rare and wonderful for your applications!

Effective indexing
Storing data is one thing, finding it again is quite another! Retrieving a
document using a document ID, or (primary) key, is supported by every
NoSQL document database.

In many situations, though, you may want a list of all comments on a web
page or all recipes for puddings (my personal favorite!). This requires
retrieving a list of documents based not on their key but on other information
within the document — for example, a page_id JSON property. These indexed
fields are commonly referred to as secondary indexes. Adding an index to
these fields allows you to use them in queries against the MongoDB database.

In some situations, you may want to search by several of these fields at a
time, such as for all pudding recipes that contain chocolate but are gluten
free. MongoDB solves this issue by allowing you to create a compound index,
which is basically an index for all three fields (recipe type, ingredients, is
gluten free), perhaps ordered according to the name of the recipe.

You can create a compound index for each combination of query fields and
sort orders you need. The flip side is that you need an index for every single
combination. If you want to add a query term for only five-star recipes, then
you need yet another compound index, maybe several for different sorting
orders, too.

Other document NoSQL databases (MarkLogic Server and Microsoft
DocumentDB) and search engines solve this matter by allowing an
intersection of the results of each individual index. In this way, there’s no
need for compound indexes, just a single index per field and a piece of math
to perform an intersection on each index lookup’s document id list. This
approach reduces the amount of administration required for the database
and the space needed for the index on disk and in memory.

You also need to think about how to structure your documents so that you
can create effective indexes for querying. MongoDB, in true NoSQL style,

254 Part IV: Document Databases

doesn’t support cross-document joins, which means that your
document structure must contain all the information needed to resolve a
query. Essentially, you construct your documents to look like the “answers”
you’re looking for. The process of merging information to provide effective
answers is called denormalization and is a key skill required for working with
NoSQL databases.

MongoDB doesn’t support a universal index — you need to manually
configure every index. In its 2.6 version, MongoDB introduced basic
geospatial support through the adoption of the GeoJSON standard.

Likewise, advanced full-text searches aren’t supported in MongoDB. A
common pattern is to integrate the Solr search engine with MongoDB (see
Part VI of this book for details on Solr). This provides eventually consistent
full-text searches of your documents. However, in this case, you must write
part of your application according to MongoDB’s programming API and
part in accordance with Solr’s. If, however, you need full-text indexing in
MongoDB, this is the approach to take.

Finding Support for MongoDB
MongoDB, Inc., is the commercial company behind most of the development
and innovation of the MongoDB NoSQL database, and it is one of the
largest NoSQL companies in terms of investments, raising $150 million
through October 2013.

This funding round was purely to improve MongoDB and help it become an
enterprise-class product ready for high-end mission-critical workloads. So
far, MongoDB has added geospatial search and started improving support for
index intersection and security. MongoDB has also added a database write
journal to ensure data durability in the event of a system failure.

Over the next two to three years, we should begin seeing better database
locking, fully composable search indexes, and security permissions at the
document level. At the moment these are lacking in MongoDB.

MongoDB in the cloud
MongoDB, Inc., provides advice on running MongoDB on a wide variety of
cloud platforms, which isn’t surprising because MongoDB emerged from the
10gen company’s cloud application requirement.

255 Chapter 18: MongoDB

MongoDB supports the following public cloud platforms:

▶✓ Amazon EC2

▶✓ dotCloud

▶✓ Google Compute Engine

▶✓ Joyent Cloud

▶✓ Rackspace Cloud

▶✓ Red Hat OpenShift

▶✓ VMWare Cloud Foundry

▶✓ Windows Azure

There is, of course, nothing stopping you from downloading MongoDB and
installing it on your private cloud. This, too, is supported.

Licensing advanced features
Not all functionality is available on the free download version of MongoDB.
If you want any of the following functionality, you must buy MongoDB
Enterprise from MongoDB, Inc.

▶✓ MongoDB Management Service (MMS): Enables disaster recovery repli-
cation to a second cluster and is a systems monitoring tool.

▶✓ Security integrations: Includes Kerberos, LDAP authentication, and
auditing.

▶✓ Enterprise software integration: Integrates MongoDB with your
organization’s monitoring tools through SNMP (Simple Network
Management Protocol).

▶✓ Certified operating system support: Includes full testing and bug fixes
for operating systems.

▶✓ On-demand training: Provides access to online training portal.

▶✓ 24/7 support: Includes software support and bug fixes.

▶✓ Commercial license: Enables you to use MongoDB as an embedded
database in a commercial product or service you sell.

In practice, disaster recovery replication to a second or subsequent site
is required for enterprise application software. If you’re a large enterprise
thinking about betting part of your business on a NoSQL document database,
you need disaster recovery replication, which means forking out the money
for an Enterprise License Agreement.

256 Part IV: Document Databases

Ensuring a sustainable partner
MongoDB, Inc., now has the funding required to improve its product and
market it to organizations worldwide. With offices all over the globe, you can
find official support locally, specific to your needs when using MongoDB,
including regular health checks, presales architecture and deployment
advice, and expert consulting services, all for a significant price, of course.
If you’re working on your first major project, this advice can be invaluable.
For example, it can help you spot ways to apply best practices and avoid
common pitfalls.

As a principal sales engineer, I know how valuable early-stage consulting
advice is. You may need only 20 days of consultancy over a year’s time, but
it helps ensure a successful project. It’s also generally a good idea to have
a health check a few months after you go live because estimates on the size
requirements of systems never exactly match their scale of actual predicted
use, or growth of use. So, it’s best to do an early-stage tweak of a few
post-deployment settings in order to tune your database appropriately. For
this, expert advice is best — so buy a few of those consultancy days.

The document NoSQL database landscape is now in prime time. With IBM
buying Cloudant and Microsoft building DocumentDB — from scratch — it’s
clear that these types of databases are the most valuable applications of
NoSQL technology.

With the entry of the big boys of IBM and Microsoft, and Oracle with its
NoSQL key-value store, competition will begin to get tight. The market is no
longer immature and full of startups competing for cutting-edge customers.

Enterprise capabilities and rich functionality that help reduce development
and administration costs will become increasingly important, as will security,
data durability, consistency, and systems monitoring.

MongoDB must meet the expectations of investment groups providing it with
funding. It will be interesting to see how MongoDB reacts to competition from
IBM Cloudant and especially Microsoft’s DocumentDB. DocumentDB seems
aimed squarely at providing just a little more than MongoDB does, but of
course at a commercial software price.

For now, though, MongoDB’s status as a leading document NoSQL database
vendor, along with the others I discuss in this part of the book, is assured.
With a large installation base, the ability to be installed in private clouds, and
many experienced developers on the market, MongoDB will be hard pressed
to be surpassed by Microsoft for a while yet.

Visit www.dummies.com/extras/nosql for great Dummies content online.

Graph and Triple Stores
Part V

http://www.dummies.com/extras/nosql

In this part . . .
 ✓ Applying standards.

 ✓ Managing metadata.

 ✓ Accessing unstructured information.

 ✓ Examining triple store and graph products.

 ✓ Visit www.dummies.com/extras/nosql for great
Dummies content online.

http://www.dummies.com/extras/nosql

Common Features of Triple
and Graph Stores

In This Chapter
▶▶ Architecting triples and quads

▶▶ Applying standards

▶▶ Managing ontologies

I
 want to begin this chapter by asking, “Why do you need a triple store or
graph store?” Do you really need a web of interconnected data, or can you

simply tag your data and infer relationships according to the records that
share the same tags?

If you do have a complex set of interconnected data, then you need to decide
what query functionality you need to support your application. Are you
querying for data, or trying to mathematically analyze the graph itself?

In order to get the facts, or assertions, that you require, are you manually
adding them, importing them from another system, or determining them
through logical rules, called inferencing? By inferencing, I mean that if Luke is
the son of Anakin, and Anakin’s mother is called Shmi, then you can infer that
Luke’s grandmother is Shmi.

The tool you select for the job — whether it’s a simple document store with
metadata support, a triple store, or a graph store — will flow from your
answers to the preceding questions.

In this chapter, I discuss the basic model of graph stores and triple stores,
how they differ, and why you might consider using them.

Chapter 19

260 Part V: Graph and Triple Stores

Deciding on Graph or Triple Stores
I deliberately separated the terms graph store and triple store in this book.
The reason is pretty simple. Although the underlying structures are the
same, the analysis done on them is drastically different.

This difference means that graph and triple stores, by necessity, are
architected differently. In the future, they may share a common
underpinning, but not all the architectural issues of distributing graphs
across multiple machines have been addressed at this point in time.

Triple queries
A triple store managed individual assertions. For most use cases you can
simply think of an assertion as a “fact.” These assertions describe subjects’
properties and the relationships between subjects. The data model consists
of many simple subject – predicate – object triples, as shown in Figure 19-1.

This subject – predicate – object triple allows complex webs of assertions,
called graphs, to be built up. One triple could describe the type of the sub-
ject, another an integer property belonging to it, and another a relationship
to another subject.

Figure 19-2 shows a simple graph of subjects and their relationships, but no
properties for each subject. You can see that each relationship and type is
described using a particular vocabulary. Each vocabulary is called an ontology.

Each ontology describes a set of types, perhaps with inheritance and “same
as” relationships to other types in other ontologies. These ontologies are
described using the same triple data model in documents composed of
Resource Description Framework (RDF) statements.

In graph theory these subjects are called vertices, and each relationship
is called an edge. In a graph, both vertices and edges can have properties
describing them.

Figure 19-1:
Simple

subject –
predicate –

object triple.

261 Chapter 19: Common Features of Triple and Graph Stores

Figure 19-2:
A simple

graph
showing

assertions
across four

different
ontologies.

262 Part V: Graph and Triple Stores

Every graph store is a triple store because both share the same concepts.
However, not every triple store is a graph store because of the queries that
each can process.

A triple store typically answers queries for facts. Listing 19-1 shows a simple
query (based on the graph in Figure 19-2) to return all facts about the first
ten subjects of type person.

In a more complex example, you may look for subjects who are related to
other subjects through several relationships across the graph, as illustrated
in Listing 19-2.

In Listing 19-2, you aren’t looking for a directly related subject but for one
separated by a single hop (that is, a query on an object related to another
object) through another vertex, or relationship, in the graph. In Listing 19-2,
you’re asking for a list of the first ten people who know someone who
likes cheese.

These examples SPARQL queries share one thing in common: They return a
list of triples as the result of the operation. They are queries for data itself,
not queries about the state of the relationships between subjects, the size of
a graph, or the degree of separation between subjects in a graph.

Graph queries
A graph store provides the ability to discover information about the
relationships or a network of relationships. Graph stores can respond to que-
ries for data, too, and are also concerned with the mathematical
relationships between vertices.

Listing 19-1: Simple SPARQL Query

SELECT ?s ?p ?o WHERE {
 ?s rdf:type :person .
 ?s ?p ?o .
} LIMIT 10

Listing 19-2: Complex SPARQL Query

SELECT ?s WHERE {
 ?s rdf:type :person .
 ?s :knows ?s2 .
 ?s2 rdf:type :person .
 ?s2 :likes :cheese .
} LIMIT 10

263 Chapter 19: Common Features of Triple and Graph Stores

Generally, you don’t find these graph operations in triple stores:

▶✓ Shortest path: Finds the minimum number of hops between two vertices
and the route taken.

▶✓ All paths: Finds all routes between two vertices.

▶✓ Closeness: Given a set of vertices, returns how closely they match
within a graph.

▶✓ Betweenness: Given a set of vertices, returns how far apart they are
within a graph.

▶✓ Subgraph: Either finds a part of the graph that satisfies the given
constraints or returns whether a named graph contains a specified
partial graph.

These algorithms are mathematically much harder queries to satisfy than
simply returning a set of facts. This is because these algorithms could
traverse the graph to an unpredictable depth of search from the first object
in the database.

Triple queries, on the other hand, are always bounded by a depth within
their queries and operate on a known set of vertices as specified in the
 queries themselves.

Describing relationships
Graph stores also allow their relationships, or edges, to be described using
properties. This convention isn’t supported in RDF in triple stores. Instead,
you create a special subject to represent the relationships itself, add the
properties to this intermediate subject.

This process does lead to more complex queries, but they can be handled
using the query style shown in Listing 19-2.

Making a decision
The differences between the graph and triple store data models lead to great
differences in architecture. Because of the number of hops possible in graph
queries, a graph store typically requires all its data to be held on a single
server in order to make queries fast.

A triple store, on the other hand, can distribute its data in the same manner
as other NoSQL databases, with a specialized triple index to allow distributed
queries to be spread among servers in a cluster.

264 Part V: Graph and Triple Stores

In the future, it may be possible to distribute a graph store while maintaining
speed — by detecting wholly independent graphs stored alongside others
and separating them between servers. Alternatively, you can use graph
analysis to find the nearest related vertices and store them near each other
on the same server, which minimizes the number of cross‐server
relationships, and thus the queries required.

Whether you choose a triple or graph store isn’t a question of which architec-
ture you prefer; instead, the question is which type of queries you prefer.

The majority of data models use triples to provide the same flexibility in
modeling relationships as you get in schema‐less NoSQL’s document models.
They are basically schema‐less relationships: You are free to add, remove,
and edit them without informing the database beforehand of the particular
types of relationship you’re going to add.

Triple stores are concerned with storing and retrieving data, not returning
complex metrics or statistics about the interconnectedness of the subjects
themselves.

Triple stores are also built on the open RDF set of standards and the SPARQL
query language. Graph stores each have their own terminology, slightly
different data models, and query operations.

If you need to query information about the graph structure, then choose a
graph store. If you only need to query information about subjects within that
graph, then choose a triple store.

From this point on, I use the term triple store to refer to both triple and graph
stores, unless stated otherwise.

Deciding on Triples or Quads
The subject – predicate – object data model is a very flexible one. It allows
you to describe individual assertions.

There are situations though when the subject – predicate – object model is
too simple, typically because your assertion makes sense only in a
particular context. For example, when describing a particular patient in one
medical trial versus another trial, or maybe you’re describing the status of
one person within two different social groups.

Thankfully, you can easily model context within a triple store. Triple stores
have the concept of a named graph. Rather than simply add all your
assertions globally, you add them to a named part of the graph.

265 Chapter 19: Common Features of Triple and Graph Stores

You can use this graph name to restrict queries to a particular subset of the
information. In this way, you don’t need to change the underlying ontology or
the data model used in order to support the concept of context.

In the preceding example, you could have a different named graph for each
medical trial or each social group. If you specify the named graph in your
query, you restrict the context queried. If you don’t specify the named graph,
you get a query across all your data.

Note that each triple can be stored in only a single named graph. This means
you must to carefully select what you use as your context and graph name.
If you don’t, then you may find yourself in a situation where you need to use
two contexts for a single set of triples.

The way the graph name is implemented on some NoSQL databases means
the triples are stored within a document, and the document can be linked to
multiple collections. The collection name in these systems is synonymous
with the graph name. This allows a little more flexibility, even if it’s a little
“naughty” when compared to the W3C specifications. MarkLogic Server
provides this capability if you need it.

By creating a database for all triples in a particular application, when
querying across them, you’re automatically saying they all have value. In
most situations, therefore, you don’t need a context. In this situation, you
can ignore the context of the data and just keep thinking in terms of triples,
rather than quads.

If you need the context concept and you can add a property to a subject
without making your queries complex, or altering an ontology, then do so,
because this approach is more flexible.

If you absolutely need to use context without adding your own properties
outside of an ontology, then using the graph name for context will give you
the quads you need.

Storing RDF
The first standard you need to become familiar with when dealing with
triples is the Resource Description Framework (RDF). This standard
describes the components of the RDF data model, which includes subjects,
predicates, objects, and how they are described.

This standard is vast and too complex to detail in this book. The best reference
I’ve found is Semantic Web for the Working Ontologist, Second Edition by Dean
Allemang and James Hendler, published by Morgan Kaufmann. This book dis-
cusses practical ways to apply and model RDF solutions.

266 Part V: Graph and Triple Stores

Here are a few key RDF concepts that are explained in detail in the working
ontologist book:

▶✓ URI: The unique identifier of a subject or a predicate.

▶✓ Namespace: A namespace allows packaging up of objects in an ontology.
Namespaces allow you to mix internal RDF constructs and third‐party
ontologies.

▶✓ RDF type: Used to assert that a subject is an instantiation of a particular
type. Not equivalent to a class. RDF supports inheritance between RDF
types, including across ontologies.

▶✓ Subject: The entity you’re describing — for example, physical (person,
place) or conceptual (meeting, event). Takes the form of a URI.

▶✓ Predicate: The edge, or relationship, between the subject and the
object. Takes the form of a URI.

▶✓ Object: Either another subject URI when describing relationships
between subjects, or an intrinsic property value like an integer age or
string name.

A key difference between RDF and other specifications is that there are
multiple expression formats for RDF data, not just a single language. Common
languages are N‐Triples, Turtle, and RDF/XML.

Which format you choose depends on the tools you’re using. A person who
understands RDF in one format should be able to pick up another format
easily enough without formal retraining.

Applying Standards
Sir Tim Berners-Lee has a lot of talented people
working with him at the World Wide Web
Consortium (W3C). These people like to create
standards based on feedback from scholars
and industry.

Applying open standards allows organiza-
tions like your own to find a wider range of
talented people with transferable skills they
can apply to their projects. This is much
easier to find then expertise on proprietary
methods.

There is a difference between proprietary
and open software and proprietary and open
standards:

✓▶ A proprietary (commercial) piece of soft-
ware can support open standards.

✓▶ Open-source software can invent its own
data models and query languages, and not
support open standards.

Be sure you don’t confuse the two when decid-
ing on the total cost of ownership of software.

267 Chapter 19: Common Features of Triple and Graph Stores

In addition to RDF, there are other related standards in the ecosystem. Here
are the standards you need to become familiar with:

▶✓ SPARQL: Semantic querying language. Triple store equivalent of SQL.
Able also to construct new triples and return as a result set.
(An example of projection.)

▶✓ RDF Schema (known as RDFS): RDFS helps define the valid statements
allowed for a particular schema.

▶✓ OWL (the Web Ontology Language): Sometimes referred to as
RDFS+. A subset of OWL is commonly used to supplement RDF Schema
definitions.

▶✓ SKOS (Simple Knowledge Organization System): W3C standard
recommendation that describes using RDF to manage controlled
vocabularies, thesauri, taxonomies, and folksonomies.

These specifications allow you to define not only the data in your database
but also the structure within that data and how it’s organized.

You can use a triple store by utilizing a single RDF serialization like N‐Triples,
and SPARQL to query the information the database contains. It’s good to
know about these other specifications, however, when you’re designing
ontologies that you share with the outside world.

Querying with SPARQL
SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF
Query Language. SPARQL uses a variant of the Turtle language to provide a
query mechanism on databases that store RDF information.

SPARQL provides several modes of operation:

▶✓ Select: Returns a set of matching triples from the triple store

▶✓ Ask: Returns whether a query matches a set of triples

▶✓ Construct: Creates new triples based on data in the triple store (similar
to projection)

These operations can be restricted to portions of the database using a Where
clause.

As shown in Listing 19-1, select statements can be very simple. The sample in
listing 19-1 returns all triples in the database that match the given expression.

268 Part V: Graph and Triple Stores

You can construct more complex queries to find particular subjects that
match a query across relationships in the graph, as shown in Listing 19-2.

Using SPARQL 1.1
An update to the SPARQL standard is now very common and often people
looking to implement a triple store request the 1.1 version of the SPARQL
standard.

Version 1.1 provides a “group by” structuring mechanism and allows
aggregation functions to be performed over triples.

Listing 19-3 shows both an aggregation function (AVG for mean average) and
a GROUP BY clause. This query returns the average age of purchasers for
each product ordered from a website.

SPARQL 1.1 also provides a HAVING keyword that acts like a filter clause,
except it operates over the result of an aggregation specified in the SELECT
clause, rather than a bound variable within the WHERE clause.

Modifying a named graph
An often overlooked specification is the W3C SPARQL 1.1 graph store
protocol. This is a single web address (called a HTTP endpoint — HTTP being
Hypertext Transfer Protocol, the protocol that powers the web) that allows
clients to create, modify, get, and delete named graphs within a triple store.

This is a simple specification that can be easier to work with than the more
complex SPARQL 1.1 Update mechanism. The graph store protocol is easy to
use because you can take any Turtle RDF file and use a simple web request to
create a graph, or add new data to an existing graph.

Listing 19-3: Product Average Purchaser Age Query and Result

SELECT (AVG(?age) AS ?averageage) WHERE {
 ?product :id ?id .
 ?product :title ?title .
 ?order rdf:type :order .
 ?order :has_item ?product .
 ?order :owner ?owner .
 ?owner :age ?age .
} GROUP BY ?title

269 Chapter 19: Common Features of Triple and Graph Stores

SPARQL 1.1 Update is a variation of SPARQL that allows the insertion and
deletion of triples within a named graph. It also provides graph deletion via
the DROP operation and copy, load, move, and add operations.

Managing Triple Store Structures
Triple stores provide great flexibility by allowing different systems to use
the same data model to describe things. That comes at the cost of allowing
people to describe things in a very open and flexible way!

RDF Schema (RDFS), OWL, and SKOS allow developers to use the familiar RDF
mechanism to describe how these structures interrelate to each other and
the existing relations and values.

Describing your ontology
An ontology is a semantic model in place within an RDF store. A single store
can contain information across many ontologies. Indeed, you can use two
ontologies to describe different aspects of the same subject.

The main tool used to describe the structures in an RDF ontology is the RDF
Schema Language (RDFS). Listing 19-4 illustrates a simple example of an RDF
Schema.

Listing 19-5 shows how RDF Schema are used in practice.

Listing 19-4: Some Assertions

:title rdfs:domain :product .
:service rdfs:subClassOf :product .
:period rdfs:domain :service .
:foodstuff rdfs:subClassOf :product .
:expiry rdfs:domain :foodstuff .

Listing 19-5: Triples Within This RDF Schema

:SoftwareSupport rdf:type :service .
:SoftwareSupport :period “12 months” .
:SoftwareSupport :title “Software Support” .
:Camenbert rdf:type :foodstuff .
:Camembert :title “Camembert Cheese” .
:Camembert :expiry “2014-12-24”^^xs:date .

270 Part V: Graph and Triple Stores

The preceding schema implies the following:

▶✓ Software support is a type of product.

▶✓ Camembert is a type of product.

▶✓ Both have a title in the product domain, rather than the service or food-
stuff domains.

Relationships within triples are directional, thus the semantic web industry’s
frequent references to directed graphs. The relationship is from one subject to
one object. In many situations, there is an opposite case, for example:

▶✓ fatherOf (or motherOf) and sonOf

▶✓ purchased and owns

▶✓ ordered and customer

The Web Ontology Language, OWL, provides extensions to RDF Schema that
help model more complex scenarios, including that in Listing 19-6.

As you can see in Listing 19-6, the inverseOf predicate can be used to
specify that relationships are the opposite of each other. This enables the
presence of one relationship to infer that the other relationship also exists in
the opposite direction.

Of course, many more sophisticated examples are available. You can prob-
ably think immediately of other ways to apply this concept.

My personal favorite use of inferencing is to shorten paths within queries.
You know from the preceding triples that Adam has an order, the order con-
tains several items, and items have genres. So, you can infer a single fact:
Adam is interested in databases. Being able to infer this fact can greatly sim-
plify future queries. It allows a preference engine to use data without knowing
how the ordering system is structured in the database.

Listing 19-6: Simple Use of the OWL inverseOf Property

:person rdf:type owl:Class .
:fatherOf rdf:type owl:ObjectProperty;
 rdfs:domain :person;
 rdfs:range :person;
 owl:inverseOf :sonOf .
:sonOf rdf:type owl:ObjectProperty;
 rdfs:domain :person;
 rdfs:range :person;
 owl:inverseOf :fatherOf .

271 Chapter 19: Common Features of Triple and Graph Stores

Enhancing your vocabulary with SKOS
A common requirement in using a triple store is to define concepts and how
objects fit within those concepts. Examples include

▶✓ Book categories in a library

▶✓ Equivalent terms in the English language

▶✓ Broadening and narrowing the focus of a concept using related terms

SKOS is used to define vocabularies to describe the preceding scenarios’ data
modeling needs.

A concept is the core SKOS type. Concepts can have preferred labels and
alternative labels. Labels provide human readable descriptions. A concept
can have a variety of other properties, too, including a note on the scope of
the concept. This provides clarification to a user of the ontology as to how a
concept should be used.

A concept can also have relationships to narrower or broader concepts. A
concept can also describe relationships as close matches or exact matches.

Listing 19-7 is an example SKOS ontology used to describe customers and
what class of customer they are with a company.

SKOS provides a web linkable mechanism for describing thesauri, taxono-
mies, folksonomies, and controlled vocabularies. This can provide a very
valuable data modeling technique.

In particular, SKOS provides a great way to power drop‐down lists and hier-
archical navigation user‐interface components. So, consider SKOS for times
when you need a general‐purpose, cross‐platform way to define a shared
vocabulary, especially if the resulting data ends up in a triple store.

Listing 19-7: SKOS Vocabulary to Describe Customer Relationships

amazon:primecustomer a skos:concept ;
 skos:prefLabel “Amazon Prime Customer”@en ;
 skos:broader amazon:customer .
amazon:customer a skos:concept ;
 skos:prefLabel “Amazon Customer”@en ;
 skos:broader :customer ;
 skos:narrower amazon:primecustomer .

272 Part V: Graph and Triple Stores

Describing data provenance
In the day‐to‐day use of databases you likely create, update, and delete data
with abandon. In this book, you find out how to gather information from
disparate sources and store all of it together, using document or semantic
mechanisms to create new content or infer facts.

In larger systems, or systems used over time, you can end up with very com-
plicated interconnected pieces of information. You may receive an innocu-
ous tweet that shows a person may be of interest to the police. Then decide
six months later, after examining lots of other data, that this person’s house
should be raided.

How do you prove that the chain of information and events you received,
assessments you made, and decisions taken were reasonable and justified for
this action to take place?

Similarly, records, especially documents held in document‐orientated NoSQL
databases, are changed by people who are often in the same organization.
This is even more the case when you’re dealing with distributed systems
like a Wiki. How do you describe the changes that content goes through over
time, who changed it, and why? This kind of documentation is known as data
provenance.

You can invent a number of ways to describe these activities. However, a
wonderful standard based on RDF has emerged to describe such changes of
data over time.

The W3C (yes, those people again!) PROV Ontology (PROV‐O) provides a way
to describe documents, versions of those documents, changes, the people
responsible, and even the software or mechanism used to make the change!

PROV‐O describes some core classes:

▶✓ prov:Entity: The subject being created, changed, or used as input

▶✓ prov:Activity: The process by which an entity is modified

▶✓ prov:Agent: The person or process carrying out the activity on an
entity

These three core classes can be used to describe a range of actions and
changes to content. They can form the basis for systems to help prove gover-
nance is being followed within a data update or action chain.

273 Chapter 19: Common Features of Triple and Graph Stores

PROV‐O comprises many properties and relationships. There’s not room in
this book to describe all of them, nor could my tired ole hands type them! But
here is a selection I like to briefly mention:

▶✓ wasGenertedBy: Indicates which agent generated a particular entity

▶✓ wasDerivedFrom: Shows versioning chains or where data was
 amalgamated

▶✓ startedAtTime, endedAtTime: Provide information on how the activity
was performed

▶✓ actedOnBehalfOf: Allows a process agent to indicate, for example,
which human agent it was running for; also, used to determine when one
person performs an operation at the request of another

Regardless of your requirements for tracking modifications of records or for
describing actions, you can use PROV‐O as a standards‐compliant basis for
managing the records of changes to data in your organization.

PROV‐O is a group of standards that includes validator services that can be
created and run against a triple store using PROV‐O data. It’s a standard well
worth being familiar with if you need to store data on changes information
held in your NoSQL database.

274 Part V: Graph and Triple Stores

Triple Stores in the Enterprise
In This Chapter

▶▶ Taking care of your data

▶▶ Managing facts about data alongside source data itself

A
s with any other type of database system, there are best practices
for organizing and setting up triple stores to ensure consistent and

 reliable service. There is a difference, though, between triple stores and
graph stores. That is, two different architectural approaches are taken in the
design of triple stores and graph stores. These two approaches are due to
different types of queries — graph wide analysis functions and listing records
 (subjects), and their properties that match some criteria. These differences
lead to tradeoffs related to ensuring data durability, supporting high
availability of associated services, and providing for disaster recovery.

In this chapter, I discuss the issues around maintaining a consistent view
of data across both triple stores and graph stores. I also talk about a
common enterprise use case of using a triple store to store facts about and
relationships between data that is managed in other systems.

Ensuring Data Integrity
Most enterprises expect a database to preserve their data and to protect it
from corruption during normal operations. This can be achieved through
server side features, or settings in a client driver. Whatever the approach, the
ultimate aim is to store multiple copies of the latest data, ensuring that even
if one copy is lost the data stays safe and accessible.

Chapter 20

276 Part V: Graph and Triple Stores

Enabling ACID compliance
Many of the triple and graph databases featured in this book are
ACID‐compliant. I talk about this in Chapter 2. As a reminder, ACID
compliance means that a database must guarantee the following:

▶✓ Atomicity: Each change, or set of changes, happens as a single unit. In a
transaction, either all the changes are applied or all are abandoned (that
is, a rollback occurs in which the database is restored to its previous
state).

▶✓ Consistency: The database moves from one consistent state to another.
Once data is added, a following request will receive view of the data.

▶✓ Isolation: Each transaction is independent of other transactions running
at the same time so that, ideally, each transaction can be played one
after the other with the same results. This arrangement is called being
fully serializable.

▶✓ Durability: Once data is confirmed as being saved, you’re guaranteed it
won’t be lost.

These properties are important features for mission‐critical systems
where you need absolute guarantees for data safety and consistency. In
some situations, relaxing these rules is absolutely fine. A good example is
a tweet appearing for some people immediately, but for others with a few
 seconds delay.

For highly interconnected systems where data is dependent on other data,
or where complex relationships are formed, ACID compliance is a necessity.
This is because of the unpredictable interdependency of all the subjects held
in a triple store.

Graph stores tend to guarantee ACID properties only on their primary master
server. Because of the complex math involved, graph stores tend not to be
sharded — that is, they don’t have part of their data residing on different
servers. I discuss sharding’s advantages for other NoSQL databases in
Chapter 15, but in the following I talk about sharding in terms of consistency
and cross‐record query throughput.

It’s much quicker for the math involved to have all the data on one server.
Practically, this means that you have two or more big servers, as described
here:

▶✓ All clients talk only to the first server, which I’ll call the master.
Therefore, that database can easily provide ACID guarantees.

277 Chapter 20: Triple Stores in the Enterprise

▶✓ For the server’s replica(s) though, replication may ship data changes
asynchronously, rather than within the same transaction boundary.
This is normal on other NoSQL databases and relational databases, but
usually only between two separate clusters in different data centers
rather than two servers in the same cluster.

Graph stores ship changes asynchronously for the master and the replica(s)
within the same data center. So, although graph stores like Neo4j and
AllegroGraph are technically ACID‐compliant, they don’t guarantee the
same‐site consistency that other NoSQL databases covered in this book do.
This is because of the two approaches to building a triple or graph store.

A better option is to select either a graph store or triple store approach,
based on the query functionality you need.

▶✓ Single server for a whole database: High server costs. Other servers act
as disaster recovery or delayed read replicas. You get very fast graph
analysis algorithms, though.

▶✓ Multiserver, sharded database: Lower server costs. Other servers are
masters for portions of the data, and highly available replicas for other
servers in the cluster. This option produces slower, complex graph
analysis functions, but you can still do fast SPARQL‐style triple queries
for individual records held just one a single server.

In an asynchronous, eventually consistent replica, it’s possible that, after a
failure, some of the saved data will not be available on the replica.

Sharding and replication for high
 availability
The simplest way to provide high availability is to replicate the data saved
on one server to another server. Doing so within the transaction boundary
means that, if the master dies on the next CPU cycle after saving data, the
data is guaranteed to be available on its replica(s), too.

This is the approach ACID‐compliant NoSQL databases generally take. Rather
than have these replica servers sit idle, each one is also a master for different
parts of the entire triple store.

So, if one server goes down, another server can take over the first server’s
shards (partitions), and the service can continue uninterrupted. This is
called a highly available service and is the approach that MarkLogic Server
and OrientDB take.

278 Part V: Graph and Triple Stores

An alternative and easier implementation is to make each replica eventually
consistent with respect to its view of the data from the master. If a master
goes down, you may lose access to a small frame of data, but the service as a
whole remains highly available.

If you can handle this level of inconsistency, then ArangoDB (from Franz,
Inc.) may be a good open‐source alternative to MarkLogic Server and
OrientDB. ArangoDB is busy working on providing fully consistent replicas,
but they’re not quite there yet.

Replication for disaster recovery
The replication approach that graph stores provide in the same data center,
and the replication approach three triple stores mentioned previously
provide between data centers, is an eventually consistent full copy of data.

Secondary clusters of MarkLogic Server, OrientDB, and ArangoDB are
eventually consistent with their primary clusters. This tradeoff is common
across all types of databases that are distributed globally.

Primary clusters of Neo4j and AllegroGraph also employ this method
between servers in the same site. Their master servers hold the entire
 database, and replica servers on the same site are updated with changes
regularly, but asynchronously.

In addition to replicating the master to local replicas, consider replicating the
data to a remote replica, too, in case the primary data center is taken offline
by a network or power interruption.

Storing Documents with Triples
An emerging pattern is for document NoSQL databases to integrate triple
store functionality. This makes sense. Document NoSQL databases typically
provide

▶✓ The ability to store many elements/properties within a single document

▶✓ Concept of a collection for a group of documents

▶✓ Ability to create specialized indexes over structures within their content

▶✓ Ability to join different query terms together to satisfy a request to
match a document

279 Chapter 20: Triple Stores in the Enterprise

You can map these properties onto their equivalent triple store functionality.
Specialized indexes are used to ensure that the triple store‐specific query
functionality is fast. These databases then simply adopt the open standards
of RDF and SPARQL to act as a triple store to the outside world.

Also document NoSQL databases don’t support relationships among
documents. By applying triple store technology to these databases, you can
represent a document as a subject, either explicitly or implicitly, and use
triples to describe them, their metadata, relationships, and origin.

Some of these databases, such as OrientDB, are also capable of using triples
to describe containment relationships within documents. As a result, you can
request a merged document (say a book) that is created at query time from
many related documents (chapters, images, and so on).

This functionality is provided in two ways, depending on the approach you
take with the triple store:

▶✓ Use a document as a representation of a subject/vertex and a
relationship/edge (ArangoDB).

▶✓ Use a document as a container for many triples (OrientDB, MarkLogic
Server).

Neo4j and AllegroGraph don’t provide this functionality, as it focuses solely
on providing a graph store.

You can find more information on this hybrid approach, including additional
functionality, in Part VII of this book.

Describing documents
Some of the databases mentioned in this part (Part V), such as OrientDB and
ArangoDB, don’t support storage of metadata about documents outside of
the documents themselves.

By creating a subject type for a document, you can graft document metadata
functionality into these databases. This subject type can hold the ID field of
the document and have a predicate and object for every piece of metadata
required.

You can construct this extra metadata automatically by using a custom API
entry point in the database’s own APIs, or perhaps by constructing
specialized database triggers that execute when the document is saved and
extracted. Alternatively, you can add this metadata accordingly with
additional API calls from your application.

280 Part V: Graph and Triple Stores

Combining queries
Once you start implementing this joined approach between the document
and semantic worlds, you may get to a point where you need to perform a
combined query.

With a combined query, you query both the document and the triple store in
order to answer a question related to all the information in your database.

A combined query could be a document provenance query where you want
to return all documents in a particular collection that have, for example, a
“genre” field of a particular value and that also were added by a semantically
described organization called “Big Data Recordings, Inc.”

Another likely possibility is that the document you’re storing is text that
was semantically extracted and enriched. (Refer to Part IV for more on
this process.) This means that the text in the document was analyzed, and
from the text you extracted, for example, names of people, places, and
organizations and how they relate to one another.

If this document changes, the semantic data will change also. In this case,
you want to be able to replace the set of information extracted from the
document and stored in the triple store. There are two mechanisms for
doing so:

▶✓ Use a named graph. Use the document ID, or a variation of it, for the
name of a graph and store all extracted triples in that graph, which
makes it easy to update the extracted metadata as a whole. This process
works for all triple stores.

The advantage of a named graph is that it works across triple store
implementations. The downside is that you have to manually create
server‐side code to execute one query against the triple store and
another against the document store in order to resolve your complex
document provenance query.

▶✓ Store the triples in the document they were extracted from. If your
document structure supports embedding different namespaces of
information, like MarkLogic Server, you can store an XML representation
of the triples in an element inside the document.

This approach offers the advantage of linking all the required indexes
in the same document ID (MarkLogic Server calls this a URI). MarkLogic
Server has a built‐in search engine that includes support for full text,
range (less than, greater than) queries, as well as semantic (SPARQL)
queries.

281 Chapter 20: Triple Stores in the Enterprise

This means you can construct a MarkLogic Server Search API query
that, in a single hit of the indexes (called a search index resolution),
can answer the entire query. This works regardless of the ontology or
document search query needed. It’s just a different type of index inside
the same document.

The AllegroGraph graph store product takes a different approach to
joining a document NoSQL database to a graph store. It provides an
API to integrate to a MongoDB document store. This allows you to use
SPARQL to find subjects that match a SPARQL query and that relate
to documents that match a MongoDB query, which is achieved
using standard SPARQL queries and AllegroGraph’s own custom
MongoDB‐linked functions.

282 Part V: Graph and Triple Stores

Triple Store Use Cases
In This Chapter

▶▶ Handling unstructured information

▶▶ Reconstructing processes

▶▶ Applying inductive logic

▶▶ Establishing social relationships

S
emantics, triples, and graphs offer a whole new world that’s unfamiliar
to many people with a database background. This makes it very exciting!

You first need to get hold of the data needed to build your graph, which you
can find at from websites that publish Linked Open Data (LOD), or you can
extract them from your own content. Two examples of LOD websites are
dbpedia (http://dbpedia.org), which provides a semantically modeled
extra of Wikipedia data, and geonames (http://geonames.org), which
provides a catalogue of places, countries, and geospatial coordinates.

You may then need to track where you found this information, how you
acquired it, and the changes made to the information over time. This
provenance information can be key in legal and defense industries.

Perhaps you need to merge all the new triples you have added from your
own organizations’ data with reference information from other systems and
sources. Several techniques are available that can help you accomplish this
task. For example, you can add extra properties to a Place from imported
Geonames data, or you can create your own subclass of Place, such as a
Theme Park, and describe that location.

You then need to support providing answers to potentially difficult questions
by using the information you store. Because the social graph is the most
wide‐ranging example of a complex graph model, in this chapter, I spend
some time talking about the links between people and other subjects in a
triple store, and the types of queries a triple store holding this type of data
can address.

Chapter 21

http://dbpedia.org
http://http://geonames.org

284 Part V: Graph and Triple Stores

In this chapter, I also extract facts from existing data, use additional facts
from third-party sources, and use semantic data to store an audit trail of
changes to records over time.

Extracting Semantic Facts
Semantic facts are properly called assertions. For most use cases, using
the term facts is an easier mental model to picture, so I use the term facts
throughout. An assertion is a single triple of subject – predicate – and object.
This could be “Adam is a Person” or “Adam is aged 33.”

All database software can easily handle structured information like these
facts. This data is effectively a list of fields and their values, as I discussed
in Chapter 19. Unstructured text, though, is very difficult for computers, and
indeed humans, to deal with.

Free text indexing and proximity searches can help you to some extent. For
example, a proximity search displays documents in which matching terms
occur, and you can infer a relationship between text within a document by
using proximity‐search limits such as NEAR queries (for example, “Adam
NEAR/3 age” which means searching for where “Adam” is mentioned within
three words of “Age”). To do anything useful, though, you need a more
comprehensive approach.

In this section, I describe how to analyze the text in unstructured content in
order to extract semantic facts, so you can provide a rich query using
semantic technology over information extracted from text documents.

Extracting context with subjects
Natural Language Processing (NLP) is the process of looking at words,
phrases, and sentences and identifying not only things (people, places, orga-
nizations, and so on) but also their relationships.

You can store this information as subjects, properties, and relationships —
as you do in triple stores. Several pieces of software are available to help you
do so. Here are the most popular ones:

▶✓ OpenCalais: An open‐source semantic extraction tool

▶✓ Smartlogic Semaphore Server: A commercial entity extraction and
enrichment tool that can also generate triples

▶✓ TEMIS Luxid: Another common commercial entity extraction and
enrichment tool

285 Chapter 21: Triple Store Use Cases

All of these tools provide entity extraction (identify things) with entity
enrichment (add extra information about those things). They also have the
ability to generate an output report. This report can be in a list of semantic
assertions (OpenCalais) in RDF or XML format. You can also place these facts
in a separate RDF document, or you can tag text inline in the original
document. All these tools generate XML and/or RDF output.

You can then store this output in a document database or a triple store, or
you can utilize a hybrid of the two. Doing so facilitates an accurate
semantic search. It also allows the information within unstructured text to be
combined with other semantic facts ingested from elsewhere (for example,
DBpedia, Wikipedia’s RDF version; or GeoNames, a public geospatial
database in RDF).

Forward inferencing
Inferencing is the ability to take a set of assertions and extrapolate them
to other assertions. You can perform backward inferencing and forward
 inferencing.

Here’s an example of backward inferencing: If Leo is the son of Adam, and
Adam is the son of Cliff, then you can reason that Leo is the grandson of Cliff.
You can “prove” a new fact by referencing others in the database. That is, in
order to infer the new triple, you use information available earlier in the text.

Forward inferencing, on the other hand, is the process of inferring what may
happen in the future (or be true in the future), when after analysing all
existing information, all facts that can be inferred are inferred.

Forward inferencing is typically done at ingestion time, which does lead to
slower performance, but it also means that you don’t have to do this work
at query time. In this respect, forward inferencing is similar in effect to the
denormalization approach of other NoSQL databases.

Forward inferencing does allow you to build quite sophisticated webs of
stored and inferred facts, which users can employ as helpful shortcuts. A
good example is a product recommendations — for instance, “You may like
product x because you liked product y, and others who liked product y also
liked product x.”

If you don’t create your inferencing rules carefully, you can end up in a
situation where inferencing gets out of hand by creating billions of triples
that may not, in fact, be accurate! This can lead to aborted triple ingestion,
poor performance, or a significant waste of storage.

286 Part V: Graph and Triple Stores

This proliferation can happen by the inferencing rules clashing. An example
is if you infer that all objects with names are people, but in fact find that
many cars and pets have names. You will have a lot of incorrect triples
 generated stating that all these cars and pets are people!

Tracking Provenance
Being able to prove that a decision was made or that a process was followed
because of a certain set of facts is a difficult business. It generally takes
weeks or months to trawl through content to discover who knew what and
when and why things happened as they did.

However, triple stores store assertions so that they can be queried later.
Graph stores go one step further by allowing you to take a subgraph and ask
for other matching graphs that are stored.

One example of a provenance query is to find collusion in financial markets.
If you see a pattern of traders at two investment banks communicating with
each other prior to companies’ marketplace events, then you may see a
 pattern of fraud.

These patterns can be modeled as graphs of interconnected people,
 organizations, activities, and other semantic relationships such as “Adam
called Freddie the Fraudster.”

Auditing data changes over time
The World Wide Web Consortium (W3C) has
created a set of standards under the PROV
Ontology (PROV-O) banner to track changes
to data.

This ontology includes support for a variety of
subject types, including people, organizations,
computer programs, activities, and entities
(typically content used as input or output).

For example, as a police force receives reports
over time, an analysis can be updated. Each
change is described, and the list of sources

for the report increases to reflect the data the
report is based on.

This information can, in turn, be used to create
an action plan. A police risk assessment and
threat analysis as well as an arrest plan can be
based on this information prior to a raid.

By using the output of the police report analysis
and a semantic query over provenance infor-
mation, you can prove that the appropriate
process was followed to support a raid on the
premises of the “guilty” entity.

287 Chapter 21: Triple Store Use Cases

Building a Web of Facts
You can create a triple store that answers questions by using other peoples’
data instead of just your own. The Resource Description Framework (RDF)
standard was created to allow this web of interconnected data to be built.
This approach is generally referred to as the Semantic Web.

There’s also a growing movement of open‐data publishing. This movement
has led governments, public sector organizations, research institutions, and
some commercial organizations to open up their information and license it to
be reused.

Combining the concepts of open‐data publishing and RDF and SPARQL allows
you to create Linked Open Data (LOD), which is published data under an open
license that refers to other sources of linked open data on other websites.

A news article from the BBC might mention a place that’s linked to the
GeoNames geographical RDF dataset. It could also mention a person with a
profile on DBpedia — the RDF version of Wikipedia.

Over time, these links develop and are changed to produce a global Semantic
Web of information. This is the culmination of Sir Tim Berners‐Lee’s vision
for a web of interconnected data that can be navigated by computers, just as
the World Wide Web is navigated by humans using web browsers.

Taking advantage of open data
You can find many great datasets, ranging from the U.S. Geological Survey
(USGS) data about places within the United States to information about
Medicare spending per patient, or even to names of newborns since 2007 in
the United States.

Not all open data is published according to RDF specifications; therefore, it
isn’t ready to be stored immediately in a triple store. For example:

▶✓ Of the 108,606 datasets on the U.S. government’s open‐data website
(https://www.data.gov), only 143 are available in RDF, whereas
13,087 are available in XML, 6,149 are available in JSON, and 6,606 are
available in CSV.

▶✓ At http://data.gov.uk (the UK’s equivalent to data.gov), of the
15,287 published datasets, 167 are available in RDF, 265 are available in
XML, 3,186 are available in CSV, and 22 are available in JSON.

https://www.data.gov
http://data.gov.uk

288 Part V: Graph and Triple Stores

Many of these datasets are easy to convert to an RDF format, but the prob-
lem is you have to manually figure out how to do this conversion yourself, for
every dataset encountered.

Currently, these publishing mechanisms are published only as static data files
rather than as a SPARQL endpoint that can be queried and composed in other
RDF data stores. You can search for a dataset, but not for the dataset itself.
Hopefully, this will change in the future as open‐data publishing develops.

Incorporating data from GeoNames
GeoNames is a database of geographic information that covers a vast range
of information, including

▶✓ Continents, countries, counties, towns, and administrative boundaries

▶✓ Mountains, forests, and streams

▶✓ Parks

▶✓ Roads

▶✓ Farms

▶✓ Zip Codes

▶✓ Undersea locations

All this information is licensed under the Creative Commons Attribution ver-
sion 3.0 license. This means you’re free to use the information so long as you
clearly state who created it.

All the information in GeoNames is linked to a longitude and latitude point on
the Earth, allowing for geospatial search and indexing.

Consider a text document that mentions a town. You can link this document to
the town within GeoNames, which enables you to search for all documents in a
country even if that document doesn’t explicitly contain the country’s name!

Places in GeoNames are also linked to their DBpedia entries, if one exists.
This is a practical example of Linked Open Data in action.

289 Chapter 21: Triple Store Use Cases

Incorporating data from DBpedia
DBpedia contains a semantic extraction of information available within
Wikipedia. It’s a crowd‐sourced effort created by volunteers and made avail-
able under both the Creative Commons Attribution‐ShareAlike 3.0 license and
the Free Documentation License.

As of this writing, DBpedia provides data on 4.58 million entities, with 583
million facts in 125 languages! It’s a huge resource, and it enables you to pro-
vide contextual information to help end users navigate through information.

This information is available for download in the N‐Triples and N‐Quad for-
mats. A description of the DBpedia ontology is available in the Web Ontology
Language (OWL) on its website (www.w3.org/2004/OWL).

Linked open-data publishing
Once you have your own data linked to other linked open‐data sources, you
may want to publish your own information. You can use a triple store to do
so. If you have protected internal information, you may want to extract, or
replicate, particular named graphs from your internal servers to a publically
accessible server hosting “published” information.

You can use this publishing server to host flat file N‐Triples for static down-
loads. You can also use it to provide a live SPARQL query endpoint to the
web for others to interactively query and to download subsets of your data
as they need it.

SPARQL, as a query language, allows you to join, at query time, remotely
stored information from other SPARQL endpoints. This is a great way to
perform ad hoc queries across multiple datasets. The following example is a
SPARQL 1.1 Federated query to two different endpoints:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?interest ?known
WHERE
{
 SERVICE <http://people.example.org/sparql> {
 ?person foaf:name ?name .
 OPTIONAL {
 ?person foaf:interest ?interest .
 SERVICE <http://people2.example.org/sparql> {
 ?person foaf:knows ?known . } }
 }
}

http://www.w3.org/2004/OWL

290 Part V: Graph and Triple Stores

You can find the entire example at www.w3.org/TR/sparql11-
federated-query/#optionalTwoServices. The SPARQL 1.1
Federated Query document is a product of the whole of the W3C SPARQL
Working Group.

Migrating RDBMS data
When performing entity enrichment on NoSQL databases, it’s common to pull
reference information from relational database management systems.

Again, those clever people who contribute to W3C working groups have you
covered, by way of a language called R2RML, which stands for RDB to RDF
Mapping Language. This enables you to define transforms to convert a
relational schema to a target RDF ontology. R2RML and related standards are
available here: www.w3.org/2001/sw/rdb2rdf

In some situations, though, you want to quickly ingest information before
performing data refactoring or inferencing. For example, you may want to
store the original information so that you can assert PROV‐O provenance
information on the data before reworking it.

In this situation, you can use the Direct Mapping of relational data to RDF.
You can find details on this standard here: www.w3.org/TR/rdb-direct-
mapping

In the past, I’ve used direct mapping to perform a tongue‐in‐cheek demo to
illustrate ingesting relational data into a triple store for inferencing and que-
rying. You can find this video on YouTube at https://www.youtube.com/
watch?v=4cUqMzsu0F4

Managing the Social Graph
Social relationships between people provide a classic example of how a
relationship graph is used. It’s been said that all people on the planet are
separated by only six degrees — that is, we’re all within six steps of knowing
someone who knows someone, who knows someone . . .

Social graphs are important in several instances, including the following:

▶✓ Social networks: Include the likes of Facebook, Twitter, and LinkedIn.

▶✓ Professional organizations: To identify individuals or groups in large
organizations with required expertise. Also can be used for organiza-
tional charts.

http://www.w3.org/TR/sparql11-federated-query/#optionalTwoServices
http://www.w3.org/TR/sparql11-federated-query/#optionalTwoServices
http://www.w3.org/2001/sw/rdb2rdf
http://www.w3.org/TR/rdb-direct-mapping
http://www.w3.org/TR/rdb-direct-mapping
https://www.youtube.com/watch?v=4cUqMzsu0F4
https://www.youtube.com/watch?v=4cUqMzsu0F4

291 Chapter 21: Triple Store Use Cases

▶✓ Organized crime detection: Police and security organizations perform
multi‐year million‐dollar investigations of organized crime networks with
many points of contact and relationships.

▶✓ Family tree: Includes many parent, grandparent, uncle, and other
 relationships. Some assertions from such research may or may not be
accurate. One source may list a George Fowler who may or may not
be the same George Fowler in another source.

Managing this information has its challenges. Different approaches can be
taken, depending on whether you’re describing relationships between people
or whether you’re describing individuals and their activities.

Storing social information
You can find ontologies to model social data. One of the oldest, but still
useful, models is Friend of a Friend (FOAF).

The FOAF RDF model gives individuals the ability to describe themselves,
their interests, their contact details, as well as a list of people they know.
This model includes Linked Open Data links to their contacts’ FOAF
descriptions, when it’s known.

This data can be discovered and mined to produce spheres of influence
around particular subject areas. The downside is that typically only Semantic
Web computer scientists use FOAF to describe themselves on their websites!

When describing family trees, most people use the Genealogical Data
Communication (GEDCOM) file format. This file format is designed
specifically for this information rather than combining with other data. Using
a common RDF‐based expression would instead have allowed this data to be
easily integrated into a triple store.

However, the Defense Advanced Research Projects Agency (DARPA) funded
the DARPA Agent Markup Language (DAML) to model family relationships.
Despite its spooky name, this project created an RDF expression of GEDCOM.
You can find this standard documented at www.daml.org/2001/01/
gedcom/gedcom.

Performing social graph queries
Triple and graph stores can be used to perform queries on a social graph in
several ways. For example, to

http://www.daml.org/2001/01/gedcom/gedcom
http://www.daml.org/2001/01/gedcom/gedcom

292 Part V: Graph and Triple Stores

▶✓ Suggest a product to users based on similar items purchased by other
people.

▶✓ Suggest that users add new friends based on their being friends of your
existing friends.

▶✓ Suggest groups that users can be a member of based on existing group
memberships, friends with similar group memberships, or others with
similar likes and dislikes who aren’t in their network.

You can do the preceding by constructing SPARQL to enable users to do the
following:

1. Find all customers who share the same or who have similar product
purchases.

2. Order customers by descending value of the number of matches.

3. Find all products those people have ordered that the user hasn’t.

4. Order the list of products by descending value according to the total
number of orders for each item across all similar customers.

Here’s an example of using SPARQL to find potential new friends in a social
network (listing friends of my friends who are not me):

SELECT ?newfriend WHERE {
 ?me ex:username “adamfowler” .
 ?me ex:friend ?friend .
 ?friend ex:friend ?newfriend .
 FILTER NOT EXISTS (?me ex:friend ?newfriend) .
 FILTER NOT EXISTS (?me = ?newfriend) .
} limit 10

Selecting friends based on second‐level matches is pretty straightforward.
To enable users to find the first ten people who are potential friends, you can
use SPARQL as you did in the preceding example.

The preceding example shows traversal of a graph of relationships using
SPARQL. Group membership suggestions use a similar query, except instead
of traversing friends of friends, you traverse memberships of groups.

Triple Store Products
In This Chapter

▶▶ Documenting relationships

▶▶ Creating scripts

▶▶ Running fast graph traversal operations

W
ith two key approaches to managing semantic facts — triple stores
with RDF and graph stores — you have a wide variety of functionality

to consider. This abundance makes choosing which database to use difficult.

My advice is to follow the queries. Both graph and triple stores are capable
in their data models of describing things — subjects or vertices — and their
properties and relationships. So, the deciding factor isn’t a list of features; it’s
what you want to do with the queries.

Perhaps you want to store a set of facts on related concepts, maybe to drive
a product-suggestion engine, or to link disparate data sources or reports,
or just to provide a very flexible data model for querying that, unlike other
NoSQL databases, includes relationships. In this case, a triple store may well
work for you.

In other situations, you may need a graph store. You may need to identify
the similarities (or not) between different networks. Perhaps you’re looking
for parts of your data that match a known pattern of fraud. Maybe you’re
powering a navigation application and need the shortest path between two
points.

Once you decide which route to take — triple store or graph store — you
need to choose which product to use. Is the key difference its open source
or commercial license? Maybe you also need to incorporate hybrid features
such as a document NoSQL database. Or perhaps you need a rich and
expressive graph query language.

Chapter 22

294 Part V: Graph and Triple Stores

But don’t be overwhelmed. Use this chapter to get a flavor of which system
is most likely to have the functionality you need. Given the variability in
this section, I heartily recommend carefully reading your chosen vendor’s
website, too, in order to discover whether all the features you need are
supported.

Managing Documents and Triples
Document NoSQL databases offer a rich way to store and manage variably
structured data. Although document NoSQL databases enable grouping of
data through collections or secondary indexes, what they don’t provide is
the concept of relationships between records held within them.

Document NoSQL databases also don’t allow you to detail complex
relationships about the entities mentioned within documents — for example,
people, places, organizations, or anything about which you’ve found
information.

ArangoDB, MarkLogic Server, and OrientDB all allow you to manage
documents alongside triples in the same database. They are all examples of
distributed triple stores — not graph stores. Their features vary significantly,
though, in what you can do with documents and triples.

Storing documents and relationships
An obvious place to start in unpicking your requirements is by mapping
the relationships between documents. This can be achieved through the
following methods:

▶✓ Provenance of data storage: This includes changes applied over time
and links to previous versions or source documents, perhaps by using
the World Wide Web Consortium’s (W3C) PROV Ontology (PROV-O).

▶✓ Entity extraction: This involves storing facts extracted from free text
about things like people, places, and organizations, along with the fact
that they’re mentioned in particular documents.

▶✓ Management of compound documents: This includes complex
documents that contain other documents that exist in their own right
— for example, modular documentation that can be merged together in
workbooks, online help, or textbooks.

295 Chapter 22: Triple Store Products

Each of these situations requires management of data relationships between
records (documents). Each one also requires linking the subject described
to one or more source documents in your database. For example, a police
report might mention a gang name and a meeting of three people on October
23. These facts can be extracted into person, organization, and event RDF
types.

A separate document could contain the fact that this organization will be
purchasing guns from a particular arms dealer. This linkage provides another
person instance and another event (which may or may not be the same as
the previously mentioned event).

These documents aren’t directly related. Instead, they’re related by way
of the extracted entities mentioned in the text they contain. You need to
maintain the links between the extracted subjects and the source documents,
though, because you may need to prove where you found the facts for a later
court case or investigation.

For instance, say that a police department creates a document requesting an
operation to intercept expected criminal activity, and it bases that request
on the preceding kind of research. In that case, the police need to store the
provenance of their data. The resulting document may undergo multiple
versions, but it’s based on material in the police report’s source documents.

Once the operation is completed, each officer needs to write a statement. A
final file is created as evidence to submit to the prosecutor’s office. This file
comprises summary information, all source intelligence, and the officers’
statements.

In checking evidence, the prosecutors need to know who changed what,
when, and how; with what software, and why? What was the reasoning
behind an arrest (was it the content of other documents, for example)?

Each individual document exists as a record in its own right, but the final
submission exists only because these other documents are combined. This is
an example of a compound document pattern. A prosecution file could contain
an overview describing the contents of the file, multiple statements made by
witnesses, transcripts of an interview of the accused, and photographs of a
crime scene.

All three databases discussed in this book allow you to store triples that
relate to documents. After all, all you need to do is create an RDF class to
represent a document, with a property that links to the ID of the document
you’re making statements about. Use of these facts is left up to your
application.

296 Part V: Graph and Triple Stores

OrientDB also enables you to create triples that relate documents based
on their data. Say that you have a JSON order document that has a list of
order items. These order items could have a “product-id” field related to
the “_id” field within a product document. You can configure OrientDB to
automatically use this information to infer facts about their relationship.
Even better, if you want to present a single order document containing all
related data, you can request OrientDB to do so at document fetch time.

MarkLogic Server provides different document and triple functionality. You
can embed semantic facts within XML documents themselves. These facts
are still available in any standard semantic (SPARQL) query. Then, if the
document is updated, the facts are updated. No need for a separate and RDF-
only way to update facts. This approach is particularly useful when you’re
using an entity enrichment process with products like TEMIS, SmartLogic,
and OpenCalais. You can take the output from these processes and store
them as a document. Here your semantic work is done — all the facts and the
original source text is indexed.

MarkLogic Server’s internal XML representation of facts doesn’t use RDF/
XML. This means you must store these in-document facts as sem:triple XML
elements. This implementation detail is hidden when you’re using standard
interfaces like the W3C Graph Store and SPARQL protocols.

ArangoDB allows you to store documents and triples. It uses a document to
store triples, much like MarkLogic Server does. These are specific classes
of documents in ArangoDB, though. ArangoDB doesn’t support embedding
triples within documents like MarkLogic Server or automatically inferring
document relationships like OrientDB.

Combining documents in real time
OrientDB’s capability to hold the relationships of documents to one another
based on property values in their data is very useful. It allows you to update
individual documents but request a full compound document as required.

OrientDB provides a lazy loading method for fetching these complex
documents and populating Java objects with their data. This makes
processing the main object fast while providing the entire graph of object
relationships to the programmer.

OrientDB also allows the specification of a fetch plan. This allows you to
customize how data is loaded when following these document relationships.
If you know, for example, that a list of related content needs only the first ten
linked documents, then you can specify that. You can also restrict the data
returned to the field level for each object.

297 Chapter 22: Triple Store Products

Combined search
MarkLogic Server is unique in this book in that it provides a very feature-rich
search engine and triple store built in to the same database engine as a single
product.

This enables you to do some interesting content searches in MarkLogic.
Consider a situation like the preceding example where a document has
triples embedded within it.

You can perform a query like “Find me all police reports that mention
members of Dodgy Company, Inc., that contain the word ‘fraud,’ that were
reported at locations in New England, and that were reported between March
and July 2014.” New England isn’t a defined region, so it is provided as a
geospatial polygon (an ordered list of points — like connect the dot
drawings).

This search contains several types of queries:

▶✓ Geospatial: Denotes longitude and latitude places in the document
within the specified polygon for New England.

▶✓ Range: A date range must be matched.

▶✓ Word/Phrase: The word “fraud” must be mentioned. This requires full
text indexing and stemming support. (So “frauds” would also match.)

▶✓ Collection: I want only documents in the police reports collection.

▶✓ Semantic: You’re looking for documents that mention people who are
members of Dodgy Company, Inc.

MarkLogic uses term indexes to provide the types of queries listed above.
Each individual query returns a set of document IDs. These are then
intersected so that only documents that match all of the terms are returned.

I’ve assumed AND logic between terms, but there’s nothing stopping you
from defining very complex tree-like criteria, with queries within queries, as
well as NOT and OR logic.

This checking of term lists is very quick because they’re cached in memory
and store a list of matching document IDs for each indexed value. Supporting
a variety of composable index queries allows semantic (SPARQL) queries to
also be combined with all the preceding query types.

298 Part V: Graph and Triple Stores

Evaluating ArangoDB
ArangoDB is the most popular NoSQL database available that has an open-
source license and that provides both document store and triple store
capabilities. These two features aren’t yet deeply linked, but they can be
used together, if required.

ArangoDB claims to be an ACID-compliant database. This is true only for the
master. ArangoDB writes to the master, but replicas receive changes on an
asynchronous basis. As a result, client code gets an eventually consistent,
non-ACID view of the database, unless it always accesses the master.

ArangoDB, like many NoSQL databases in this book, also supports sharding
of the triple store. This allows very large databases to be split across
(relatively!) cheap commodity servers.

Unlike other triple stores, ArangoDB does support graph query functions
such as shortest path and distance calculation. Careful management of
sharding is required to ensure efficient performance of distributed graph
queries and to avoid many (relatively slow) network trips to other servers to
complete a single graph query.

ArangoDB also supplies its own Annotation Query Language (AQL),
eschewing support for RDF and W3C standards like SPARQL.

ArangoDB is an appropriate choice if you want a single eventually consistent
database cluster that provides JSON document storage and triple store
features in the same product, and if you need an open-source license.

Evaluating OrientDB
OrientDB is a very interesting NoSQL database. It’s fully ACID-compliant and
can run in fully serializable or read committed modes. It’s high availability
replicas are also updated with ACID consistency, ensuring that all data is
saved and all replicas have the same current view of data.

Even more interestingly, OrientDB uses the open-source Hazelcast in-memory
NoSQL database to provide high availability replication. I didn’t include
Hazelcast in this book because it’s in-memory only — it doesn’t store data
to disk, and thus isn’t fully durable. However, it’s a very promising ACID-
compliant NoSQL technology, as evidenced by its use in OrientDB.

299 Chapter 22: Triple Store Products

OrientDB has an impressive array of features. JSON, binary, and RDF
storage are all supported. It also allows (optionally) you to enforce schema
constraints on documents within it.

OrientDB also has a range of connectors for both ingestion and query.
Several Extract, Transform, and Load (ETL) connectors are available to
import data from elsewhere (JDBC, row, and JSON). In addition, a Java
Database Connectivity (JDBC) driver is available for querying; it allows
OrientDB to be queried like any relational database or via the Java
Persistence API (JPA) in the Java programming language.

You must manage sharding by manually configuring several partitions (called
clusters, confusingly in OrientDB) and explicitly specifying which partition
you want each record update saved to. This forces a manual check on the
application developer to ensure consistent performance cluster-wide.

OrientDB has great support for compound JSON documents through its
interleaved semantics and document capabilities.

A community license is available under Apache 2 terms, although most
functionality is available only in the commercial edition. Favorable commercial
licensing terms are also available for startups or small organizations.

OrientDB also doesn’t support open standards integration such as RDF data
import/export or SPARQL query language support. Instead, it provides its
own customized HTTP and JSON-based API for these functions.

If you need a JSON database with triple support and compound documents,
then OrientDB could well be the database for you.

Evaluating MarkLogic Server
MarkLogic Server is a long-established database vendor; it emerged in 2001
as a provider of an XML database with enterprise search technology built in.
MarkLogic Server predates the modern usage of the term “NoSQL,” although
its architecture is definitely similar to that of newer NoSQL databases.

MarkLogic Server’s triple store support is built upon a document NoSQL
database foundation. Triples are stored as XML in documents. A special
triple index (actually several indexes) ensures that queries across facts held
in these documents, or embedded within XML documents, are available at
speed in semantic (SPARQL) queries.

300 Part V: Graph and Triple Stores

This functionality was introduced in version 7 in 2013 and is part of a multi-
release cycle of improvements to semantics support in MarkLogic Server.
Version 8 will include support for a wider range of SPARQL features, includ-
ing SPARQL 1.1 update and SPARQL 1.1 aggregations (sum, count, and so on).
Version 9 will complete the roadmap for delivering full semantics capability.

At the moment, MarkLogic Server’s SPARQL 1.1 support isn’t as extensive as
some competitors’ products, although many triple and graph stores haven’t
implemented SPARQL at all.

The commercial-only model will not appeal to some people who have their
own dedicated development teams and prefer to learn and enhance open
source software instead. There’s a free, full-featured Enterprise Developer
version, with a fixed time limit of six months, after which you must approach
MarkLogic to purchase a license.

A change to the licensing terms in version 7 in late 2013 led to a new
“Essential Enterprise” edition that’s available for purchase at a much lower
price point than previous versions. This entry level edition is limited to
nine production server instances, but is otherwise fully featured, including
support for security, high availability, disaster recovery, and backup/restore
as standard.

Although MarkLogic Server provides both a document database and a triple
store and compound search within documents across both content and
semantic querying, integration of these two types of query is weaker than it is
in OrientDB. There’s no support for compound documents using the seman-
tics capability, although by using XInclude, you have some support on the
document database side.

If you need a secure Common Criteria-certified NoSQL database with docu-
ment management, triple store, and advanced search capabilities, then
MarkLogic Server is a good option.

Scripting Graphs
Storing and retrieving triples is great, but you can achieve more by applying
open standards in new and interesting ways.

AllegroGraph from Franz is a triple store that supports open standards and
allows you to use them to script the database. This provides for advanced
triple and quad functionality across indexing, inferencing, defining reusable
functions, and integrating with third-party products.

301 Chapter 22: Triple Store Products

Automatic indexing
AllegroGraph stores seven indexes for every triple in the database. These
indexes are composed of the subject, predicate, object, graph, and identifier
— a unique ID for every triple stored. The seven indexes are

▶✓ S P O G I: Used when the subject is known to find a list of triples.

▶✓ P O S G I: Used to find unknown subjects that contain known predicates
and objects.

▶✓ O S P G I: Used when only the object is known.

▶✓ G S P O I, G P O S I, G O S P I: Used when a subgraph is specified, one
for each of the preceding three scenarios.

▶✓ I: A full index of all triples by identifier. Useful for fast multi-triple
actions, such as deletions.

All triples in AllegroGraph have the these seven indexes, which helps to
quicken both triple (fact returning) queries and subgraph queries that
require graph traversal.

Using the SPIN API
The SPARQL Inferencing Notation (SPIN) API provides behavior for objects
held within a triple store.

SPIN allows you to define a named piece of SPARQL that can be referenced as
a function in future SPARQL queries. An example is a SPARQL CONSTRUCT
query that returns an ?area bound variable to calculate the area of an
instance of a rectangle subject.

You create a function by associating a class with a SPIN rule, which in turn
is an RDF representation of a SPARQL query. The SPIN API was submitted by
semantic web researchers from Rensselaer Polytechnic Institute in New York,
TopQuadrant, and OpenLinkSW. Franz has implemented the SPIN API in its
AllegroGraph triple store product.

SPIN is used in AllegroGraph to

▶✓ Encode SPARQL queries as RDF triples.

▶✓ Define rules and constraints.

302 Part V: Graph and Triple Stores

▶✓ Define new SPARQL functions that can be used in filters or to return
extra bound variables (called magic properties in AllegroGraph).

▶✓ Store SPARQL functions as templates.

These stored SPARQL queries have their own URI, which makes referencing
them easy.

AllegroGraph uses SPIN to provide free text, temporal and geospatial search,
and a Social Networking Analysis (SNA) library. You can use SNA to define
reusable functions, thus easing the work for query developers.

JavaScript scripting
AllegroGraph also allows you to pass in Lisp (or LISP) and JavaScript
functions via a HTTP service, which enables you to execute arbitrary server-
side JavaScript code in the triple store.

The JavaScript API provided allows developers to add triples, query triples,
execute SPARQL, and loop through result sets using a cursor mechanism.
This allows you to step through results one page at a time.

Using this mechanism, you can even define a new HTTP endpoint service.
You provide the API with the service name, HTTP method (GET, PUT, POST,
DELETE), and a callback function. This function is executed each time a
request is received. The same API is available to implement your service to
do whatever functionality you require.

Triple-level security
AllegroGraph provides security at the triple level. As a result, administrators
can set allow/deny rules for particular subjects, predicates, objects, or graph
URIs for roles.

Multiple filters are composed together so that they always produce the same
result regardless of the order in which they’re defined. There are two types
of filter:

▶✓ Allow: Only allows triples matching the pattern; removes all other
triples.

▶✓ Deny: Allows triples, except the ones specified by the filter.

303 Chapter 22: Triple Store Products

In complex situations where you want to deny a subgraph, you may want to
apply filters to named graphs rather than to the triples.

Security filters apply only to remote HTTP clients. Local Lisp clients have full
access to all triples in the database, regardless of what filters are in place.

Integrating with Solr and MongoDB
AllegroGraph provides its own free-text search API. If you need to go beyond
this basic functionality, you can integrate the Solr search engine, too. Using
Solr for free-text searches returns a set of matching AllegroGraph triples.

Solr provides support for multiple languages; has customizable tokenizers
and stemmers to handle language rules; and allows ranking, word boosting,
faceted search, text clustering, and hit highlighting.

Unlike the native free-text indexer, the Solr search indexes are updated
asynchronously at some point after the triples are added to AllegroGraph.
You must manage this indexing to ensure that you don’t return out-of-date
views of triples or miss triple results entirely.

You can also use AllegroGraph to store semantic triples that are linked to
MongoDB documents. You create links to MongoDB documents by using
triples of the following form:

ex:someSubject <http://www.franz.com/hasMongoId> 1234

A magic predicate is used to provide functions that allow querying of
MongoDB data using SPARQL. This enables you to submit JSON property
queries within a string to the mongo:find function. This JSON is used as a
query by example. This means the JSON will restrict matches to just those
documents with the exact same properties and values.

Here’s an example SPARQL query:

prefix mongo: <http://franz.com/ns/allegrograph/4.7/mongo/>
prefix f: <http://www.franz.com/>
select ?good ?bad {
 ?good mongo:find '{ Alignment: "Good" }' .
 ?bad mongo:find '{ Alignment: Bad" }' .
 ?good f:likes ?bad .
}

In the preceding code, note that, rather than returning a document, the
mongo:find function returns the list of subject URIs with associated

304 Part V: Graph and Triple Stores

documents that match the query. This functionality is particularly useful if
you have extracted semantic data that you need to store in a triple store, but
store complex data documents inside MongoDB.

Providing links means you avoid the classic “shredding a document in to
many subjects and properties” problem common to trying to store a
document within a triple store. (The shredding problem also applies to
relational databases, as mentioned in Chapter 2 of this book.)

Evaluating AllegroGraph
AllegroGraph is a commercial graph store product that provides very rich
functionality. Franz, the company behind AllegroGraph, follows the accepted
and emerging standards while providing its own APIs where gaps exist. This
provides customers with a best-of-both-worlds approach to open standards
support. You can use the standards while Franz provides added SPARQL
functions and other scripting mechanisms to allow you to go beyond out of
the box functionality in your application.

AllegroGraph doesn’t support sharding or highly available operations. If a
server fails, you must manually switch the service to another server using
network routing rules or similar techniques.

AllegroGraph is commercial software. A free version, limited to 5 million
triples, is available. A developer version, limited to 50 million triples, is also
available. The enterprise version has no limits.

AllegroGraph does support online backups with point-in-time recovery. It
also provides a useful triple-level security implementation. Its extensive
support for open standards such as SPARQL 1.0 and 1.1, the SPIN API, CLIF++
and RDFS++ reasoning, and stored procedures in Lisp with JavaScript
scripting will make it popular to many developers.

Using a Distributed Graph Store
For some difficult network math problems, you want a dedicated graph-store
approach. Although a graph store means holding all data on a single node, or
a copy on every node in a highly available cluster, having all the data locally
allows for fast graph traversal operations.

Neo4j provides support for nodes and relationships. Nodes can have one or
more labels. Labels are similar to RDF types. Property indexes can be added

305 Chapter 22: Triple Store Products

for specific labels. Any node with a given label will have that labels defined
properties indexed.

Adding metadata to relationships
Unlike the RDF data model and SPARQL query standard, Neo4j enables you
to add properties to relationships, rather than just nodes. This is especially
important when you need to hold information about the relationship itself. A
good example is in-car route planning where you store each town as a node.
The towns nearest it are stored as nodes, too, with a “next to” relationship
between them. The distance between each town is stored as a property of
the relationship.

If you model car route planning in an RDF triple store, you can store the
“journey segment” between towns as a node (subject), with a normal subject
property of distance. Each town can have a “touches journey” relationship to
the journey segment. In this way, the queries are more verbose, and although
they involve more node traversals, the use case can be solved using the RDF
data and SPARQL query models.

Optimizing for query speed
Although you can perform property queries in Neo4j without adding dedi-
cated property indexes, significantly higher query speed is possible by
adding indexes.

Indexes can be configured for any property. These are scoped by the label
and property name. If a property is used for lookup by a number of different
node labels, you need to configure multiple indexes.

Indexes can enforce uniqueness constraints, which allows for a useful guar-
antee when you need to generate, store, and enforce unique ID properties.

You need to index only the properties you use in queries. If you don’t use
properties in queries, then adding indexes for these properties won’t help
your query performance; they’ll just take up disk space.

Using custom graph languages
Neo4j provides a rich custom query language called Cypher that enables you
to configure complex graph queries, including properties and labels attached
to nodes and relationships.

306 Part V: Graph and Triple Stores

If you’re experienced with the Structured Query Language (SQL) of Relational
Database Management Systems (RDBMS), the Cypher query language will be
familiar. An example of a cypher query is shown in Listing 22-1, in which all
actors who performed in any movie with the title Top Gun are found.

This query shows an optional match query. The query returns the Top Gun
movie node and all actors in the movie.

Cypher enables very sophisticated programming, including the programming
of each loop, create, merge, and delete operation.

Neo4j has an interesting web page on modeling (shredding) different data
structures in a graph store. You can find it here: http://neo4j.com/
docs/2.1.5/tutorial-comparing-models.html

Evaluating Neo4j
Neo4j is the leading open-source graph store. It provides ACID-compliant
transactions on the primary master node. Writes can be arranged at any
node in a highly available cluster, with a two-phase commit ensuring that the
master always has the latest copy of the data in the cluster.

The default isolation level is read committed. This means that long-running
transactions will see information committed in other transactions that occur
within the same time period as the long-running transaction. For a long-
running transaction that performs the same query twice — once at the start
of a transaction and once at the end — both queries in the same transaction
could see different views of the data for the same query.

Not all replicas are kept in sync with the master in all situations, though.
Replica updates provide “optimistic transactional consistency.” That is, if the
replica can’t be updated, the transaction still commits on the master. The
replica will be updated later on. Thus replicas are eventually consistent.

Neo4j provides a range of graph operations including shortest path, Dijkstra,
and A* algorithms. Neo4j also provides a graph traversal API for managing
sophisticated graph operations.

Listing 22-1 Example Cypher Query
MATCH (a:Movie { title: 'Top Gun' })
OPTIONAL MATCH (a)-;[r:ACTS_IN]-()
RETURN r

http://neo4j.com/docs/2.1.5/tutorial-comparing-models.html
http://neo4j.com/docs/2.1.5/tutorial-comparing-models.html

307 Chapter 22: Triple Store Products

Many of the enterprise features are available only in the paid-for Neo4j
Enterprise Edition from Neo Technology, Inc. The enterprise edition is also
provided under the AGPL license. However, this license requires you to
either pay for the enterprise edition or license your Neo4j-based application
built on it under an open-source license.

Neo4j does have a startup license that is discounted, too. A community
edition is freely available for commercial applications, but it’s severely
limited. No support is provided in the community edition for backups, highly
available clustering, or systems management.

It’s also worth noting that because Neo4j is designed for heavy graph
traversal problems, all the data of the graph must be storable in each and
every node in the cluster. This means you must invest in significant hardware
for large graphs. Neo4j’s documentation recommends good-quality, fast SSDs
for production.

Neo4j 2.1 included a fix, available only in the enterprise edition, for good
performance on systems with six or more processor cores. Any server you
buy now will have more than six cores, so this is worth noting. It’s also worth
doing significant performance testing at a realistic scale before going in to
production with your application.

Neo4j doesn’t support the open standards of RDF or SPARQL, because it
is designed for graph problems rather than triple storage and querying,
although it can also be used for those tasks, too.

If you have a sophisticated set of hard graph traversal problems or need to
embed a graph store in a Java-based application, then Neo4j may well be a
very good choice, given its concentration on solving hard graph problems.

308 Part V: Graph and Triple Stores

Neo4j and Neo Technologies
In This Chapter

▶▶ Capitalizing on Neo4j

▶▶ Getting support for Neo4j

N
eo4j is the most popular open‐source graph store available today.
Neo4j allows the storage of nodes and relationships and uses

properties to annotate these types of objects. A typing system is provided by
tagging nodes with labels.

Sophisticated queries are supported with the feature‐rich Cypher Query
Language. The syntax of Cypher is easy to pick up if you’re familiar with the
Structured Query Language (SQL) of relational database management
systems. Also, using the correct color coding in a Cypher syntax‐highlighting
text editor makes the queries rather pretty in their own right! Lots of nice
brackets, parentheses, and arrows.

Neo4j’s commercial offering — Neo4j Enterprise from Neo Technologies —
 provides functionality for mission‐critical applications, including high availability,
full and incremental backups, and systems monitoring. Neo4j specializes in
 providing an embeddable and feature‐rich graph store designed for the most
complex graph problems and for storing billions of nodes and relationships.

In this chapter, I discuss the open source software, its commercial counterpart,
and the company with the same name that provides support for both.

Exploiting Neo4j
Neo4j goes beyond the simpler triple store data and query model to provide
support for advanced path‐oriented algorithms. A path is any route between
nodes or a set of traversals that match a particular query.

In this section, I talk about Neo4j’s key benefits and why you may wish to
adopt it for your graph store needs.

Chapter 23

310 Part V: Graph and Triple Stores

Advanced path-finding algorithms
Queries can be performed that return a set of paths. These paths can be tra-
versed by specialist algorithms in order to answer complex graph questions.

A common use for a graph store is to find the shortest path between two
nodes, for example:

▶✓ For route planning applications for car navigation systems

▶✓ For social distance or influence calculations weighted by interactions
between people on the network

▶✓ For determining the most efficient path to route traffic through a data
network

The algorithm that’s most often used for this analysis is Dijkstra’s
algorithm, named after Edsger Dijkstra. The Dijkstra algorithm works by
analyzing each individual link from the source to the destination,
remembering the shortest route found and discarding longer paths, until
the shortest possible route is found.

At a high‐level, the algorithm works by traversing the graph starting with all
nodes related to node A, each with a particular starting distance. The
distance from this node to its relations is added to the initial distance. As the
links to non‐visited nodes expands, nodes with too great a distance are
eliminated until eventually the shortest path is discovered.

The complexity of this graph traversal can sometimes be simplified by
applying known tests during traversal. Perhaps it’s possible to determine the
estimated cost before traversing a whole graph — for example, assuming
that highways are quicker than minor roads for long journeys. This combination
of assumptions to choose the next path to analyze is formalized in the
A* algorithm.

Specifically, the A* algorithm used weighted comparisons based on some
property of each connection in the graph.

Both the A* algorithm and Dijkstra’s algorithm are supported by Neo4j. Neo4j
also allows you to plug in your own traversal algorithms using its Traversal
Framework Java API.

Scaling up versus scaling out
It’s hard to perform well on a distributed cluster when you’re traversing a
large number of paths between nodes, rather than pulling back properties on

311 Chapter 23: Neo4j and Neo Technologies

nodes with a limited number of relations in a query. This is why Neo4j stores
all data on a single server. Setting up replicas is possible, but each replica
contains a full copy of the data, rather than subsets of the data of the whole
graph. This approach differs from triple stores, which share the data between
each server in a cluster, using a sharding approach instead.

Although using a single node for all data provides good query speed for
complex graph operations, this does come at a cost — because for very large
graphs, you may need to use high‐specification server hardware instead of
multiple small and inexpensive commodity servers.

The Neo4j documentation recommends, for instance, that each server use
fast Solid State Disks (SSDs) as the primary storage mechanism. Given that
SSDs provide less capacity than traditional magnetic spinning disks, you will
need more space in your server for SSDs. You’ll also probably want to create
a virtual disk array (a RAID array) so that you can spread the write load
across all disks.

The I/O subsystem of the servers must also be capable of fully utilizing the
number of SSDs attached to it. This typically requires a dedicated I/O
controller card in the server.

Requiring high‐specification hardware in order to provide greater data
storage and query speed is an example of vertical scaling. You basically buy
an ever‐bigger (taller) server to handle more load.

Buying double the specification of a machine may cost three times as much,
whereas buying two servers of the same specification costs only twice as
much. For this reason, vertical scaling is more costly than the horizontal
 scaling of other NoSQL databases.

If you absolutely need high‐performance graph operations and are happy
to pay for the privilege, then the tradeoff between cost and speed may be
worth it.

Complying with open standards
The dominant standards in the triple store and linked (open) data world are

▶✓ Resource Description Framework (RDF) for the data model

▶✓ Web Ontology Language (OWL) for defining an ontology

▶✓ SPARQL Protocol and RDF Query Language (SPARQL) for query

312 Part V: Graph and Triple Stores

Neo4j doesn’t, out of the box, support any of these standards; however, you
can find a variety of third‐party plug‐ins and approaches that enable you to
use Neo4j as a standards‐compliant triple store.

These plug‐ins may not directly map RDF concepts onto those in Neo4j, so be
sure to read about each one in depth before adopting it. Because the plug‐ins
aren’t officially supported by Neo4j, they aren’t full‐featured, nor do they
perform as well as the open standards‐based support that’s built into other
triple stores. You need to test these plugins before implementing them. They
are useful as an add‐on to an existing Neo4j graph store, though.

Using Neo4j for Linked Data applications is documented on the Neo4j
 documentation website at www.neo4j.org/develop/linked_data.

Finding Support for Neo4j
Neo Technologies is the primary commercial company behind the
 development of Neo4j. As well as offering services and support, it offers
an Enterprise Edition.

The Enterprise Edition of Neo4j provides the following enhanced features:

▶✓ Certification on Windows and Linux

▶✓ Emergency patches

▶✓ Enterprise lock manager to prevent deadlocks

▶✓ High‐performance cache for heap sizes greater than 8GB

▶✓ Highly available clustering

▶✓ Hot backups, both full and incremental

▶✓ Advanced system monitoring

▶✓ Commercial email and 24/7 phone support

▶✓ Ability to embed the Enterprise Edition in commercial, closed source,
applications

If you’re using Neo4j for production in mission‐critical systems, these fea-
tures are probably vital, so evaluating the Enterprise Edition is worth the
effort.

http://www.neo4j.org/develop/linked_data

313 Chapter 23: Neo4j and Neo Technologies

Clustering
Neo4j’s Enterprise Edition provides support for highly available clustering.
A Neo4j master server manages the primary data store for all write operations.

You can add other servers to the cluster to provide for failover in case the
master fails and to spread out the query load. These replicas are updated
during a write transaction using an optimistic commit. An optimistic
commit is one where you assume that the write operation has succeeded
without specifically checking for it. This usually happens on secondary
replicas.

If one of the replicas is unavailable, it will be updated at a later date.
Therefore, Neo4j doesn’t guarantee ACID consistency across an entire
 cluster. The inconsistency may last for a very short window of time, but
timing is important in situations where the master fails before a replica
is updated.

High-performance caching
When operating as a cluster, a client API operation can land on any Neo4j
instance, which is okay in many cases. If you receive many queries for the
same data, you want to cache them in memory — doing so is faster than
always fetching data from disk.

Neo4j provides two types of cache:

▶✓ File buffer cache: Caches the data on disk in the same, efficiently
 compressed format.

▶✓ This also acts as a write‐through cache when you’re entering new data
into Neo4j and journaling it to disk.

▶✓ Object cache: Stores nodes, relationships and their properties in a
format for efficient in‐memory graph traversal.

▶✓ This supports multiple techniques, defaulting to the high‐performance
cache (hpc).

By providing these caches, Neo4j helps to increase the speed of both high
ingest rates and common read queries.

314 Part V: Graph and Triple Stores

Cache-based sharding
If your dataset is very large, you need to carefully manage what data is
loaded into Neo4j’s memory to be sure you’re not constantly adding and
removing data from the caches.

A good way of doing so is to send particular API calls to the same server. You
may, for instance, know that user A performs a lot of operations on the same
set of nodes. By always directing this user to the same server, you ensure
that the user’s data is on only a single server’s cache. This approach in Neo4j
is called cache‐based sharding. Remember, it’s the cache that is sharded, not
the Neo4j database itself.

Finding local support
Neo Technologies has offices in the United States, Europe, and the Far East.
In the United States it’s based in San Mateo, California. The company has
European offices in Malmö in Sweden; in London in the UK; in Munich and
Dresden in Germany; and in France. It also has an office in Malaysia.

Neo Technologies provides 24/7 premium support for enterprise customers.
Services are also available for education and for help in the design, imple-
mentation, rollout, and production phases of a deployment project.

Finding skills
As I indicated earlier, Neo4j is the dominant graph store in the NoSQL data-
base world. It’s used extensively in both the open‐source community edition
as well as in production in large enterprises.

Many computer scientists with an interest in graph theory are familiar with
Neo4j, both in theory and practice. Therefore, you can find a broad range of
developers.

For existing organizations, the requirement to learn Cypher will be a barrier,
although its similarity to the SQL of relational databases will help with this
requirement. Third‐party extensions are available to link Neo4j with more
common open standards such as RDF, SPARQL, and OWL.

Visit www.dummies.com/extras/nosql for great Dummies content online.

Search Engines
Part VI

http://www.dummies.com/extras/nosql

In this part . . .
 ✓ Organizing data stores.

 ✓ Building user interfaces.

 ✓ Delivering to external customers.

 ✓ Examining search engine products.

 ✓ Visit www.dummies.com/extras/nosql for great
Dummies content online.

http://www.dummies.com/extras/nosql

Common Features of Search
Engines

In This Chapter
▶▶ Diving into the system

▶▶ Referencing text

▶▶ Organizing data stores

▶▶ Creating alerts

T
he most visible part of a search engine is the search box. Google
 popularized the simple text box as the standard for allowing people to

search vast arrays of digital content.

Words are imprecise, though. Do you mean John Smith the person or John
Smith the beer? Do you mean guinea pig sex or determining the gender of a
guinea pig? A mistake can cost time, but it can also bring a nasty surprise!

Really understanding how a search engine works allows you to create a
shopping list of functionality that you actually need, rather than just conduct
a “beauty pageant” of the search engines with the most features.

You probably need to fully implement only a few features rather than
implement basic support for many features, and identifying the right features
can save a lot of time.

In this chapter, I discuss all the features you’ll commonly find in search
engines, and how they can be applied for fun and profit.

Chapter 24

318 Part VI: Search Engines

Dissecting a Search Engine
Although the most visible part of a search engine is the little text box on
a web page, there are many behind-the-scene features that make the text
box work.

In this section, I discuss how a search engine goes beyond the normal
database concept of querying, and why you should consider search when
selecting a NoSQL database.

Search versus query
A search is different from a query. A query retrieves information, based on
whether it exactly matches the query. Querying for orders that include a
 specific item or for items in a specific price range are good examples.

A search, on the other hand, is inexact and doesn’t require strict adherence
to a common data model. Terms may be required or optional, with
potentially complex Boolean logic. A relevancy score is typically calculated
rather than simply stating “match” or “not a match” in a query. These
relevancy calculations are tunable and greatly improve a typical user’s
search experience.

Search engines also provide hints for narrowing searches. In addition to
providing a page of results and relevancy scores for each result, you may
also be presented with information about the whole result set, which are
called facets. Facets allow, for example, narrowing a product search by a
product category, by price range, or by the date that the product was added.

Facets enhance the users’ experiences by allowing them to discover
ways to improve their original search criteria without prior knowledge
of data structures.

Web crawlers
Web crawlers are automated programs that check for updates to known
 websites and follow links to new websites and pages, indexing all content
they find on the way. They may also take a copy of the state of a web page
at the time of indexing.

When you’re trying out search, the first order of business is finding some
content! That content can be highly structured relational database records,

319 Chapter 24: Common Features of Search Engines

such as the content on e-commerce websites. Or it may be entirely free text,
or something in between, such as a Microsoft Word document or a web page
with some structure.

You begin by crawling the authoritative source system(s). Some databases
have built-in indexing that allows real-time indexing. The vast majority of
search engines, though, index remote content and update their indexes
periodically. These indexes out of date, but a lot of content stays the same,
so you don’t need to find it within minutes after it’s published.

Web search engines start with a list of URLs (Uniform Resource Locators).
When crawling these URLs, they read the text on the web pages and index
it; they also add newly discovered links to the queue of indexed pages. This
single type of crawler can discover all linked web pages on the web.

Your organization may need to crawl a variety of systems. If so, note that
many search engines, such as IBM OmniFind, HP Autonomy, and Microsoft
FAST, have connectors to a variety of different sources.

These crawlers are typically provided by stand-alone search engines. Some
search engines are embedded within databases, like MarkLogic’s NoSQL
document database. These embedded search engines index their own
content, so they don’t include crawlers for other systems, which means that
you must move or copy content into the NoSQL database in order to have it
indexed.

Although this requires more storage, the advantage of a real-time index for
content stored in a NoSQL database may outweigh the disadvantages of
a separate search engine. The primary disadvantage of a separate search
engine is that crawling occurs on a periodic schedule, leading to inconsistent
data results and false positives — where the document no longer exists or
doesn’t match the search query.

Indexing
After you find content, you need to decide what you want to index. You can
simply store the document title, the link, and the date the content was last
updated. Alternatively, you can extract the text from the content so you can
list the words mentioned in the document.

You can go further and store a copy of the page as it was when indexed. This
is a particularly popular feature in Google search results — especially if a
page was recently deleted by its author, and you still want to access the page
as it was when indexed.

320 Part VI: Search Engines

A standard index stores a document ID followed by a list of the words mentioned
within it. When you’re performing a query, though, this approach isn’t
particularly useful. It’s much better to store document IDs as a list under
each unique word mentioned. Doing so enables a search engine to quickly
determine the set of documents that match a query.

This is called an inverted index and is the key to having good search perfor-
mance. The more content you index, the more important it is that inverted
indexes are stored so that query times are fast. Be sure to ask your vendor about
its product’s index structure and about the scale at which it performs well.

Of course, you may want to index more than words. You can index date fields
(updated, created, indexed at), numbers (page count, version), phrases, or
even things like geospatial coordinates of places mentioned in content. These
are collectively called terms, and their lists of matching documents are called
term lists.

If a query you want to perform requires that all words, dates, and numeric terms
match, the search engine will perform an intersection of the matching term
lists, which means that the search engine returns results only on documents
that include all three term lists. This is known as AND Boolean logic.

More useful perhaps is OR Boolean logic, which means that documents with
more of the matching terms are given a higher relevancy score. The calcula-
tion of relevancy varies depending on the given situation.

For example, you may think results on recent news are more relevant than
older news stories. In addition to this, you may also want to attach more
relevancy to those in which the terms you entered are matched more fre-
quently in the same document. The problem here, though, is that a document
of 20 words (say a tweet) that mentions your word once may be more
relevant than a 20-page document that also mentions the same word once.
One word in 20 is a high frequency within the document.

A common way to offset relevancy problems is to calculate TF-IDF (Term
Frequency-Inverse Document Frequency):

▶✓ Term frequency is how often a term appears in a given document.

▶✓ Inverse document frequency is the total number of documents divided by
the number of documents mentioning that term.

There are various ways to calculate term frequency and inverse document
frequency. I mention it to make the point that indexing and relevancy scor-
ing are useful features, and ones that simple query in most databases cannot
handle on their own.

321 Chapter 24: Common Features of Search Engines

Searching
Once you have all the lovely indexes, you need a way to query them that
doesn’t baffle your application’s users. Google is so popular because a simple
text box can be used for both simple word searches and for searches for very
complex criteria, such as restricting the country of matched web pages, or
the age of web pages returned.

Using a search grammar
The key to making searching easy is to use an easy-to-understand text
format, which relates to what’s called a search grammar. Most search engines
provide a free-text Google-like grammar.

Here you see an example of a search grammar in use:

"grazing land" AND rent site:uk -arable -scotland 2013..2014

This example of Google search text includes several terms:

▶✓ Phrase: A phrase of words that must be next to each other, like
" grazing land".

▶✓ Boolean AND: AND joins the phrase and following word search and
requires that both match.

▶✓ Word: Typically, the word includes stems, so in this case, rent also
includes renting, rents, and rented.

▶✓ Domain: Here, the domain is the UK website domain name (site:uk).

▶✓ Negation: Here, pages with the words arable (for crop land) and
 scotland are excluded.

▶✓ Range: Here the date ranges for the years 2013 to 2014 are included.

This type of grammar is very easy to grasp and remember for future
searches. These rules combined with parentheses enable you to perform
very sophisticated searches.

Specialist publishers often provide enhanced search services that enable users
to query across hundreds of terms in a single search. This capability is especially
useful for niche datasets, such as financial services news reports and filings data.

Many search engines provide a default grammar, with some allowing you to
customize the grammars and how they’re parsed, which is a plus if you’re
considering moving from one search engine to another one that’s more
 scalable, but in doing so, you don’t want to burden the users of your
 application with having to learn how to use a new search grammar.

322 Part VI: Search Engines

Pagination
The earlier Google search query yields over 54,000 results. There’s no point
in showing a user such a big list! Sorting by relevancy and showing the ten
most-relevant matches is generally enough. All search engines provide this
capability.

You may want the user interface you create to provide quick “skip”
 navigation to next and previous pages, and perhaps to the first page.

Sorting
Sorting by relevancy is often the best bet, but in some circumstances, a
user may want to override the order of results. This is most common in
publishing scenarios where a user orders by “most recent” first or on an
e-commerce website where the user chooses to show the least expensive
product first.

Most search engine interfaces provide a drop-down menu that has helpful
options for sorting.

Faceting
A facet is an aspect of the search results that users may decide to use to
further narrow their searches. Facets provide user-friendly ways of traversing
search results to find exactly what’s needed. A facet has a name and shows
many values, each with the number of records returned that match the value
(for example, searching for Harry Potter on Amazon shows a product type
facet with values book (55) and DVD (8)).

Advanced faceting can include hierarchical facet values, calculated buckets
such as “Jun 2013” and “Jul 2013” (rather than individual dates) and even
heat map regions for display as an overlay on a web map.

Snippeting
For text queries, you may often want to show one or more sections of text
that match the given text terms, rather than simply state that a large docu-
ment matches the query. This process is called snippeting.

It’s quite common for search engines to include three snippets per result,
although you can configure this along with the number of characters or
words to return in each snippet.

On Google, these snippets are shown with the continuation characters (. . .)
separating them. Matching words are shown in bold within the snippets.

323 Chapter 24: Common Features of Search Engines

Using dictionaries and thesauri
As an extension to word stemming, you may want to support dictionaries and
thesauri. These are particularly useful for finding synonyms.

Law enforcement agencies, in particular, are awash with synonyms. Drug
dealers may call narcotics “products,” with each product referred to by a
slang term as well as by its chemical or scientific name. Using a third-party
thesaurus (for example, in OpenOffice format) or your own internally
managed one can add breadth to a search term.

Indexing Data Stores
Corporate systems house a large amount of valuable organizational data.
These systems vary from department to department and between different
classes of business.

If you need to keep such systems in place but provide a single search
capability over all of them, you need a search engine that can connect to
these corporate systems.

Alternatively, you can consolidate a variety of IT applications on a common
data platform. This platform may have search capabilities built into the
database. Doing so enables you to instantly update indexes, which results in
proactive alerts as new content arrives.

Using common connectors
You may want to index a variety of enterprise systems, with each containing
useful information for your organization’s staff.

These systems include

▶✓ Relational databases: Used for indexing products sold on a website.

▶✓ Network file shares: Shared network drives, covering commonly
formatted file documents such as Microsoft Word and Excel. These store
content very similar to that found on any office computer.

▶✓ Microsoft SharePoint: This and other enterprise content management
(ECM) systems like IBM FileNet and EMC Documentum control access to
managed and versioned documents.

324 Part VI: Search Engines

▶✓ Email: For email discovery and records management, storing and
searching the text of emails and their attachments, as well as social
 relationships is useful (who emails whom, and how often).

▶✓ Forms and images: Paper forms sent in by customers are scanned as
images; then, using optical character recognition (OCR) technology,
words are extracted from the pages.

▶✓ Metadata: Data about data. Usually properties of a document or file.
Includes date created, by whom, when last accessed or updated, title,
keywords, and so on. May also include information extracted from the
file itself, like the camera used to take a photo.

If you need to index these external content sources, then a stand-alone
search engine may be useful.

Periodic indexing
These connectors are typically pull-based. That is, they run on a timed
interval for each data source. Therefore, they’re always outdated. This isn’t
an issue for a lot of content, such as products that are rarely updated, other
than regarding their availability. For organization’s internal processes data,
though, and certainly for financial services or feeds of live defense data,
outdated content can lead to financial losses or, in the latter case, the risk of
harm to personnel.

In such situations, you may want to push data onto a common data platform.
A NoSQL database is ideal for this purpose, especially where a great variety
of data is being stored.

If a NoSQL database has a built-in search engine, you can update its indexes
at the same time the data is updated.

Many NoSQL databases embed a third-party search engine like Solr but don’t
provide live updated indexes. If you need an absolutely live set of indexes,
you need a NoSQL database that has a built-in search engine.

Alerting
One advantage of live indexes is that they bring alerting within reach.
Alerting is where a query is saved, and a user receives an alert box when new
documents arrive that match the saved query.

325 Chapter 24: Common Features of Search Engines

This is particularly useful in the following situations:

▶✓ A user completes a manual search and wants to be notified when new
matching content arrives.

▶✓ It’s particularly useful for human expert information analysis use cases,
be it commercial or otherwise. Or imagine that a business deal is on hold
waiting for the arrival of certain matching content that will allow the
process to continue (for example, proof of address documentation for a
new client).

▶✓ Content needs to be processed if it matches a query. This is common in
entity extraction and enrichment.

▶✓ A good example is matching an address in order to embed geospatial
coordinates within a record. This enables geospatial search, rather than
just text search.

In most search engines, only a subset of the search features are available
when you’re saving searches for alerts. Be sure that your search engine
 supports all the common query types that you want your users to be able
to use for alerting.

Using reverse queries
A reverse query is where you say, “Give me all saved searches that match this
document” rather than “Give me all documents that match this search.” Search
engines that support thousands rather than only a handful of search alerts
incorporate a special reverse query index to ensure scalability. A reverse index
is where a search is saved as a document and its search plan is indexed.
This approach results in fast candidate matching when a new record arrives
in the system.

Matchmaking queries
You can also combine reverse queries with normal forward queries. Doing so
is useful where a record contains search criteria as well as data. This
behavior is customary in matchmaking queries.

Here are some examples of matchmaking queries:

▶✓ People searching for jobs have criteria for the jobs they’re seeking;
equally, employers have criteria for the positions being sought.

▶✓ A dating website comprises information about individuals as well as the
criteria those individuals have in making a match.

326 Part VI: Search Engines

These queries can’t be satisfied by manual queries or alerts alone; rather,
they require a combination of forward and reverse query matching.

Here’s an example of how a search engine might process this kind of matching:

1. Notice of a new job is added to a website.

2. An alert is sent to a user because the notice matches her job-search
 criteria.

3. Before sending the alert, the alert-processing code checks to make sure
that the person matches the criteria of the employer, too.

4. If there is a match, an alert is sent to the user.

A separate alert process may also send information about relevant new
job seekers to the employer.

Matchmaking queries can be done with overnight batch processing, but this
results in long lead-times on matches, which isn’t desirable in some cases
(such as short-lived auction listings on the web).

Search Engines in the Enterprise
In This Chapter

▶▶ Finding unstructured data

▶▶ Providing a user-friendly search experience

P
roviding search engine functionality for your local computer files is
easy, and the same is true for adding basic text search to a web shop

front end.

Where things start to get really complex is when you try and provide a single
search application over multiple sources of information. Not only are the
data formats different but also the individual systems are different.

Some data must have text snippets in search results; others need image
 previews. Each data source displays its own set of facets about its data.
Some of these facets (or search fields) may be similar across different
 systems. The security access rules are also different within each system,
requiring a central concept of identity and permissions to map effectively
in a search application.

This is why enterprise search — that is, searching across a large enterprise’s
information stores — is a difficult problem to solve. However, you can
 mitigate this complexity in a number of ways.

In this chapter I discuss the unique issues of applying search across a large
Enterprise, and making such a complex system accessible to end users.

Searching the Enterprise
Web search engines have long had to index web pages, images, PDF files,
word documents, and other formats. As a result, the main issue in enter-
prise search solutions stems from the differences between source systems’

Chapter 25

328 Part VI: Search Engines

 architectures (the systems where the content resides) and the variety of
available data. For example, there is a great variance in the functionality
needed to easily collate different data from a range of sources and in how to
provide a consistent way to manage the indexes of that data.

In this section, I talk about the variety of systems that typically contain
useful data that needs searching, and how to recognize challenges that arise
because of the differences in implementation between these systems.

Connecting to systems
As I discuss in detail in Chapter 24, many enterprise search engines provide
out-of-the-box connectors for source systems; IBM OmniFind, HP Autonomy,
and Microsoft FAST all have connectors for common systems and databases.

These connectors provide an easy way to pull data from many sources into
a single repository — there’s no need to code your own integrations. The
downside is that these connectors invariably are run on a timed basis; they
don’t show the exact live state of all your enterprise’s data, which is very
similar to how web search engines work.

In some cases, you may be better off consolidating all your unstructured data
in a common database platform. NoSQL document databases are ideal for
this situation, because they provide a schema-free way to store data sourced
from a variety of systems.

This data consolidation also means you reduce costs by replacing multiple
data sources used to power your custom applications with a single enterprise
data platform. Another side benefit is that you’re not duplicating the storage
of data, unlike traditional search engines where the primary data store’s own
indexes are separate from the search engines.

Finally, because a database with search capabilities knows when new data
arrives, there’s the possibility of real time, or at least improved latency,
between the data and the search indexes.

Ensuring data security
An often overlooked problem is that of mapping different stores’ security
models onto a common model used to lock down information in the search
application.

329 Chapter 25: Search Engines in the Enterprise

A relational database has a very different security model from an enterprise
content management system, which in turn differs from a network file share.

Being able to reconcile roles and users in one system with roles and users in
other systems is vital to ensuring the security of data. If this is not done cor-
rectly, then the best case scenario is that only the existence of a document
(for example, its title or source system ID) is revealed in the search results.
This is called a false positive because, when users try to access the source
document, they’re told they don’t have permission to do so. For high-security
systems, you don’t even want users to know the document exists!

Now for the worst case scenario. If someone uses “the right” search words in
a query, entire paragraphs of the should-be secured document are revealed
in the snippets of the search results! A “snippet” showing text that matches a
query may contain 30 words. A user could keep typing the last three words in
each snippet to reveal the next 30 words — until the whole document is read!

In an enterprise search application, it’s vital that a standard security model
and auditing checks be created and enforced in order to prevent data leak-
age. To a certain extent, a consolidated single database is easier to secure (if
security of records is provided by the database itself) than multiple systems
linked to a single search engine through role mappings.

Creating a Search Application
Search has become the default way we all find information on websites. You
no longer click through departments and categories on websites to find what
you want; instead, you simply type a description of what you’re looking for in
a search bar.

Providing a user-friendly search experience, therefore, is vital in ensuring
that customers find your products quickly and that the product is right for
them, and it helps you in terms of sales.

In this section, I discuss how users access a system, both from an interface
usability standpoint and in common search engine features used to aid users
in locating the most relevant results.

Configuring user interfaces
Many enterprise search engines provide their own web application for
searching through their catalogs. You can configure your application so that

330 Part VI: Search Engines

it’s branded, and you can design its navigation system according to your
 website’s user-interface styles and layout.

Some search engines provide widgets — small pieces of JavaScript web
application code — that you can embed into your website. This is a good
approach if you want fine control over how the site looks, but don’t want to
write a search web application entirely from scratch.

Other search engines, especially those embedded within databases, provide
an API, which gives you an easy way to access advanced search functionality,
without having to create the entire user interface yourself.

However, for complex custom applications, you may have to live with the API
approach and writing your own application; otherwise, your website might
wind up looking like a competitor’s.

What a good search API gives you
Users don’t just want an empty text field in which to type search text. They
need guidance on what terms or phrases to use, and how to drill down into
search results. A good search API provides some or all of the following
 features:

▶✓ Suggestions: Phrases or criteria that appear as the user types. The sug-
gestions could be phrases from search indexes or could be based on
previous or commonly used search terms.

▶✓ Facets: Facets are a listing of fields and the most common values for
them from the matching search results. They show values for particular
fields in the whole search result (not just the ten results shown in the
first page) and how common that value is. Facets are great for narrowing
result sets.

▶✓ Grammar: A rich default or configurable search grammar that is easy
to use and expressive in the ease of control over the search experience
that the users have when using it. Here are some examples:

• Double quotes to specify phrases

• AND and OR keywords with parentheses to indicate complex
Boolean logic

• The negation character (-) to exclude a search term

▶✓ Snippets: For text searches. Snippets are one or more short sections of
the matching text with the matching search terms highlighted.

331 Chapter 25: Search Engines in the Enterprise

▶✓ Similar results: For each search result shown, also listing the three most
similar records to this search result.

▶ ▶Similar result matching is useful for identifying common sets of docu-
ments in the results that are closely related by content.

▶✓ Preview: For images or documents. These are previews of the matching
image, or document cover, or PDF front page, shown as a thumbnail in
the search results.

Going beyond basic search with analytics
Rather than just providing the ten most-relevant search results, it’s some-
times more appropriate to display statistics about the results to the user.
The use of facets is the most typical example of returning information about
the set of search results. Figure 25-1 shows how Amazon uses snippets to
assist in navigation.

As you can see in Figure 25-1, the Children’s Books category facet has
many values (ten shown, more available), and each value has a count of
the number of results matching. For example, the Children’s Books Science
Fiction and Fantasy value with a count of 419 matching search results. These
clickable facet values allow users to drill into the datasets.

However, in some search engines, you can configure the preceding mecha-
nism to provide other aggregated statistics for document values. Here
are some statistics that you can calculate from facet or other range index
 calculations:

▶✓ Count of the number of results matching a particular facet value.

▶✓ Age buckets for children’s reading age groups (refer to Children’s Books
Age Range in Figure 25-1).

▶✓ Average age of people diagnosed with conditions, grouped by condition
name, across a search of medical records.

▶✓ Geographic dispersal of search results across a country, typically shown
as either a heat map or color-coded counties/states/countries.

▶✓ Co-occurrence of different fields in the search results. How often a par-
ticular actor is shown in each genre of the search results, for example.
This is an example of two-way co-occurrence.

332 Part VI: Search Engines

Figure 25-1:
Amazon

search
results

showing
facets.

333 Chapter 25: Search Engines in the Enterprise

Some search engines support N-way co-occurrences, which is particularly
useful for discovering patterns you didn’t know existed. Examples include
products mentioned with other products or with medical conditions on
Twitter.

All of these calculations are performed at high speeds by accessing just the
search indexes. These can be calculated as one of the following:

▶✓ Part of the search results (such as for facets or heat maps)

▶✓ A separate statistical operation over the same indexes (such as
co-occurrence)

A typical way to provide analytics over a dataset is to delegate the respon-
sibility to a business intelligence tool such as Cognos, Business Objects, or
Tableau. The problem with these tools is that they typically pull information
from the data store and perform analytics over a stored copy of the data.
This is called a data warehouse. The problem is that the information isn’t in
real time; often it’s updated only once in 24 hours.

If BI tools don’t pull a copy of the data, then performing a wide ranging analy-
sis affects the performance of the underlying database or search engine,
which has obvious implications for the cost of hardware and software licenses
to provide analytical functionality. Business intelligence (BI) tools typically
charge per user, making the cost prohibitive for end-user applications.

Using the built-in analytical capabilities of the database or search engine may
be a better solution. Rather than shift vast amounts of data to a BI tool, you
perform fast calculations over an in-memory copy of the search indexes.

Doing so enables the support of many users for both search and analytical
workloads. Many organizations in financial services and government are
 looking at NoSQL databases with search functionality to provide near-real-time
analytics for their data, without a complex, separate BI or data warehouse
infrastructure.

334 Part VI: Search Engines

Search Engine Use Cases
In This Chapter

▶▶ Enabling customers to find your products online

▶▶ Making best use of all your enterprise’s data

▶▶ Supporting proactive user working processes

S
earch applications vary widely both in the kind of information that’s
cataloged and in how users interact with search engines. For example, a

hotel-booking website differs greatly from eBay’s site, which is different from
Amazon’s site. Each use case has its particular features and approaches.

In this chapter, I discuss some aspects involved in providing user-friendly
search capabilities in your application and in providing the behavior that you
want your application to have.

Searching E-Commerce Products
There is an old adage in sales — “A customer not only needs your product,
they need to know that they need your product.” However, the trick is to lead
customers not only to the product most relevant to their search terms, but to
what they really need.

The simplest form of search is a search of a single-product catalog; for
example, searching for printer toner on Amazon.

In this chapter, I discuss how to use a search engine to provide e-commerce
website product search capabilities.

Amazon-type cataloguing
Many people, myself included, see Amazon.com as the default place to go
when shopping online. Some key features make it the go-to place, and those

Chapter 26

336 Part VI: Search Engines

features have nothing to do with the variety of products available or to
Amazon’s size.

Instead, the features are more personal in nature. For example, when I search
for a book on a particular topic, Amazon lets me know what other people
think about the book and how it compares to similar titles. I also appreciate
Amazon’s relevant suggestions based other shoppers’ purchases. (I find this
aspect of Amazon’s search technology to be weirdly accurate!)

A list of recommendations isn’t typically what people expect from a search
engine interface, but, at its core, recommendations are absolutely powered
by search indexes. This search isn’t over the products themselves; rather,
the search is of purchases, order history, and products I’ve viewed but not
yet bought.

Geospatial distance scoring
Every hotel website of note provides a search-based interface that shows
summary information about the hotel and often a map view of the results as
well. Positional search functionality is called geospatial search, which I
introduce in Chapter 25.

Figure 26-1 shows the trivago website, which is my default site for finding
hotel deals. It provides search federation rather than just its own indexes.
With search federation, trivago performs a search over a wide range of hotel
websites and displays the consolidated result — it does not store the hotel
availability information itself, instead asking individual hotel providers’
websites.

The interesting thing about the view in Figure 26-1 is that the order of the
results is determined not by a field within the hotel’s description, but rather
by a value calculated from a difference of the field’s information and my
search criteria.

I didn’t ask for just all hotels with positions within a particular area; I asked
for the distance from them to a central point to be calculated and used for
sorting.

Some search engines go further, allowing you to take this geospatial distance
and use it to affect relevancy scoring. I may prefer closer hotels but want
this factor weighed against hotels with good ratings. Therefore, the website’s
search engine recommends hotels that are further away at a higher relevance
if they have substantially better reviews.

337 Chapter 26: Search Engine Use Cases

Figure 26-1:
Trivago

hotel search
results

ordered by
distance on

a map.

338 Part VI: Search Engines

Enterprise Data Searching
Being able to bring together disparate types of data while providing a single
search interface is the main challenge in enterprise searches.

In this section, I discuss challenges around discovering and providing a
consistent search interface over the variety of information stores present in a
modern enterprise.

Storing web data
Web data includes the text on web pages, images shown on those pages, and
files linked for downloads on those pages. Being able to extract text from
web-page markup while preserving paragraphs and concepts of a summary
or title are basic features of web search indexers.

Web data also requires that metadata and text be extracted from binary files.
Where an image was taken, on what camera, and at what resolution are now
common search criteria.

Similarly, being able to extract text from PDFs and Word documents and
metadata such as author and publisher is also useful for search applications.

Searching corporate data
Most corporate data is still held on people’s laptops, network file shares,
or increasingly in email or instant messages. Understanding the similarities
and differences between these types of data is key to creating a user-friendly
search experience.

A good example is searching by people. Perhaps it’s an email address within
an email, or a person’s full name in the author field of a document, or an
employee id in an instant message. Being able to identify all these different
sources as the same person is a useful piece of functionality in an enterprise
search engine.

As I mention in Chapter 25, reconciling the different data source’s security
models into a single search security model and enforcing auditing are
essential to preventing unauthorized access to corporate data in a search
engine.

339 Chapter 26: Search Engine Use Cases

Searching application data
Many applications include their own search functionality. You can provide a
single search interface for this information in one of two ways. You can

▶✓ Consolidate the information, or an extract, in a central search engine.

▶✓ Federate the query, effectively performing one query on each of a set
of sources and consolidating and interpreting the results, showing one
search result set to the user.

Because application versions and functionality change over time, setting up
and maintaining a federated search engine is complex. For example, each
application provides its own subset of search functionality that may or may
not map well onto a central search grammar. You often end up with the
lowest common denominator of functionality when implementing search
federation.

A consolidated index does cost more in storage, but it allows fine control
over what is indexed and which search functionality is exposed to end users.
Also, you can consolidate multiple databases into a single data and search
platform, which reduces cost when compared to the search federation
approach.

Alerting
Users don’t want to waste their time staring at a search interface and
pressing the refresh button. Similarly, lengthy, complex business processes
that pause while waiting for new content to arrive can be hard to manage.

With search alerts, a search can be saved and actions can be configured to
perform useful functionality when new content that matches the search
criteria arrives.

In this section, I discuss the various interesting ways that alerting can be
used in order to support more proactive and responsive working practices.

Enabling proactive working
Imagine a senior police investigator whose job requires surveillance of all
drug-related activity in one area of a city. This investigator can’t be effective
if he has to scan through reports and arrests every day. A better route for

340 Part VI: Search Engines

him is to include specific, related terms in search query over all this content,
including, for example, names of organizations and individuals of interest,
a geospatial area he works in, crime terms such as drug names, or people’s
nicknames.

By saving his exact information query requirements as an alert, the
investigator is notified about new, relevant information as it arrives, which
shortens the time it takes to react to new information.

Finding bad guys
Using the preceding intelligence-gathering scenario, a long-term investiga-
tive officer might be made aware of crucial and actionable intelligence that
could prevent a crime. The same mechanism can be used across public data
sources. This gathering of information from public sources is called open-
source intelligence. Here “open” refers to the fact information is published
to the web and requires no special description devices or legal warrants to
obtain, and includes mining such sources as Twitter, Facebook, data.gov and
other publicly available sources for data of interest.

When new data arrives, the NoSQL database can perform some of the
analysis and enrichment functions before adding the data to the search
engine’s index and making it available to intelligence officers. This way, the
officer doesn’t have to do the enrichment manually, trawling through
paragraphs of text and highlighting and tagging key terms and phrases, and
he winds up with a rich set of search fields to save for search alerts with
minimal human work.

Another example is in a military context. Suppose that, by using alerting,
an agent discovers that a person of interest isn’t in the current operation’s
targeted area as expected, but in an entirely different location. This
information could prevent a failed mission and perhaps even civilian
casualties. Moreover, the data could lead to a better use of resources.

In defense and intelligence search use cases, it’s important to combine a
range of functions, but especially geospatial search. Knowing where and
when things occur is key to planning operations. Also very important are
links (relationships) between physical objects, such as people and places,
and also intangible objects, such as meetings, organizational hierarchies, and
social networks of influence. This emerging approach is called object-based
intelligence and includes aspects of full text, geospatial, and semantic (web of
facts and relationships) search.

Types of Search Engines
In This Chapter

▶▶ Indexing and searching text

▶▶ Creating secondary indexes

▶▶ Applying legacy products

▶▶ Implementing JSON search

S
earch engines are as diverse as the kinds of content they index. Large
software companies acquired enterprise-level search engines aimed at

corporate data five to ten years ago. These search engines are largely
outdated or are embedded within applications used by their purchasers.

During the same period, Google has become the dominant player in web
crawling and search. Through Google’s Search Appliance (GSA), its patented
algorithms and simple search interface provide ample service on the public
web and on corporate websites.

Open-source projects were developed, incorporating lessons learned in web
search technology, and closed the gap left by stagnant enterprise search
engines. These open source productsare undergoing rapid development at
the moment and, to achieve scale, are integrating many of the architectural
design features of NoSQL databases. Indeed, many search engines are often
integrated into NoSQL databases to provide unstructured search.

In this chapter, I discuss the uses of these search engines, and how they can
be used both alongside and instead of a NoSQL database.

Using Common Open-Source
Text Indexing

Apache’s Lucene, the most popular open-source indexing and search engine
technology, has been around since 1999. It’s written in Java and is a

Chapter 27

342 Part VI: Search Engines

lightweight library aimed purely at indexing text within fields and providing
search functionality over those indexes.

In this section, I discuss the challenges around text indexing, and software
typically used to solve those challenges.

Using Lucene
Lucene performs text indexing and search; it’s not an end-to-end search
engine. This means its developers concentrated on building a very
flexible indexing mechanism that supports multiple fields in an indexed
document.

Lucene doesn’t include web crawlers, binary text extractors, or advanced
search functionality such as faceting. It’s purely for full-text indexing and
search, which it does very well.

Lucene’s key innovation is that it is an embeddable library that allows you
to index a wide range of source data for full-text searches. It powers many
search engines and websites in its own right, being embedded into these
products.

Distributing Lucene
Lucene isn’t a distributed search server environment. Instead, you present
Lucene with text to be indexed in fields of a document, and it allows searches
to run against the indexes. This flexibility makes it appropriate for a wide
range of uses.

To provide indexing for terabytes of data, you need to select an open-source
search engine that uses a library like Lucene for its full-text indexing, and
fortunately, there are several to choose from. The most popular ones are
Apache Solr and Elasticsearch.

These search engines approach clustering and distributed querying the
same way NoSQL databases I talk about elsewhere in this book do. Instead of
being databases, though, products like Solr and Elasticsearch hold document
extracts and indexes and distribute those pieces of data.

343 Chapter 27: Types of Search Engines

Evaluating Lucene/SolrCloud
SolrCloud provides Lucene with a highly available, failure-tolerant,
distributed indexing and search layer. You can use SolrCloud to enable a Solr
cluster to do the following:

▶✓ Create multiple replica shard searches that can be distributed across
different servers holding the same information, providing faster query
response times.

▶✓ Create multiple master shards so that data can be split across multiple
machines, which reduces the indexes per machine and optimizes write
operations. It also increases the amount of an index that can fit into
memory, which improves query times.

SolrCloud (Solr version 4 and above) operates a master-slave replication
mechanism. This means a write happens locally and is eventually pushed to
all replicas. Therefore, a Lucene/Solr cluster is eventually consistent —
clients may not see a new or updated document for a while, although usually
only for milliseconds. This delay could be an issue if you absolutely need an
up to date view of your data. A good example of this is when looking for the
latest billion dollar trade you just made.

Solr also acts as a NoSQL database, allowing documents to be written and
committed. They can also be patched without a full replacement, much as
they are in document NoSQL databases.

A manual commit is required to ensure that the documents are written to the
transaction log and, thus, preserved if a server failure occurs.

SolrCloud uses Apache ZooKeeper to track the state of the cluster and to
elect new master shards in the event of server failure. This prevents a “split
brain” of two parts of the same cluster operating independently.

Apache also recommends that you set up ZooKeeper in a highly available
manner, spread over a set of servers. This is called a ZooKeeper ensemble.
Apache also recommends doing so on dedicated hardware, because if you
don’t, you will have to restart ZooKeeper to modify and do updates. If it is
also located on a Solr machine, a forced failover will occur.

ZooKeeper is required for all new database client applications to connect to
in order to determine the state of the cluster and perform a query. To ensure
that your SolrCloud instance is highly available, you must set up a ZooKeeper
ensemble across multiple machines. Otherwise, you’ll have a very stable
SolrCloud cluster that no one can query!

344 Part VI: Search Engines

Solr doesn’t handle disaster recovery clusters. The current recommendation
is to set up two SolrCloud clusters that know nothing about each other. When
adding documents (updating indexes), you must commit changes to both
clusters. As a result, application developers bear the burden of establishing
consistency.

SolrCloud is a solid, distributed search platform, though. It goes beyond what
is provided by Lucene — it isn’t merely a distributed set of indexes. These
features make Solr a leading open-source search engine that will appeal to
many developers of enterprise Java applications. SolrCloud offers:

▶✓ Faceted navigation and filtering

▶✓ Geospatial search, including points and polygons

▶✓ Structured search format as well as a free text search grammar

▶✓ Text analytics

▶✓ Dynamic fields, allowing new fields to be incorporated into existing
indexes without reconfiguration of an entire system

▶✓ Multiple search index configurations for the same field

▶✓ Configurable caching

▶✓ Storage of XML, JSON, CSV, and binary documents

▶✓ Text extraction from binary documents using Apache Tika and metadata
extraction using Apache UIMA

Solr is accessible via an HTTP-based API, allowing any programming language
to use the search platform’s services.

Combining Document Stores and
Search Engines

The way to guarantee the highest write performance of a database with
a real-time, advanced search engine is to use a database that is a search
engine. MarkLogic server is unique in the NoSQL database landscape by
being built using search engine indexing techniques from the start, rather
than just for storing and retrieving data and having search indexing and
query execution added on later.

345 Chapter 27: Types of Search Engines

MarkLogic Server is built with data integrity and consistency foremost in its
design, while also providing for clusters of hundreds of servers in a highly
available cluster.

In this section, I discuss MarkLogic Server’s approach to search indexing
and query.

Universal indexing
A useful feature to enable search to be used instantly in MarkLogic Server
is the universal index. When a document is added to MarkLogic, certain
information is automatically indexed without special configuration being
required. This indexed information is

▶✓ All elements and properties within the document

▶✓ Parent-child relationships of elements within elements

▶✓ Exact values of each element and attribute

▶✓ Words, word stems, and phrases

▶✓ Security permissions on the document

▶✓ All associated properties, including collections and creation and update
times, which are stored in an XML document

The universal index allows any (XML or JSON) content to be added to the
database and made immediately available for search. This is particularly
useful in situations where you’re loading an unknown set of content and need
to browse it before adding specialized indexes.

MarkLogic Server also includes support for text and metadata extraction for
more than 200 binary file types, including common office document formats,
email, and image and video metadata.

Using range indexes
After you load your data and browse it via the universal index, you can start
adding data-aware indexes, which are often referred to as secondary indexes
in NoSQL.

Typically, range indexes are set up on numeric and data types to provide
support for range queries. A range query includes one or more less than and
greater than operations.

346 Part VI: Search Engines

You set up range indexes by storing an ordered set of values and a list of the
documents they relate to — for example, ascertaining all news articles in
September by taking a block of document ids between two date values.

Operating on in-memory data
Indexes in MarkLogic Server are cached in a server’s memory, using
whatever spare memory capacity is available. This makes operations on
that data very fast. In addition to range queries, you can use range indexes
for sorting and faceted navigation.

You can also use range indexes to perform mathematical functions over field
values across a set of results. The most common calculation is a count of the
documents mentioning a particular value, which is used to calculate facets.

Other operations are also supported, including summation, average (mean,
mode, and median), standard deviation, and variance. You can also write
user-defined functions in C++ and plug them into MarkLogic Server at runtime
to provide custom, complex range mathematical calculations. This approach
is like Hadoop’s in-database MapReduce operation, except it’s much faster
and without the baggage of a large Hadoop installation.

Other operations on range indexes include calculating heat map density
of search results, which can be overlaid on a map. You can also perform
co-occurrence calculations, which allows you to take two or more fields in
each search result and see how often their values occur simultaneously.
This is useful for discovering patterns, such as the link between medical
conditions and products mentioned on Twitter.

Retrieving fine-grained results
Most search engines provide search queries over the entire document.
MarkLogic Server, however, allows you to specify a subset of the document
and perform a search for it. This is particularly useful when you want to
restrict the search to a specific section, rather than search a whole document
or one field. Examples include book summaries, comments on an article, or
just the text of a tweet (tweets actually have dozens of fields; they’re not just
a short string of text).

347 Chapter 27: Types of Search Engines

Evaluating MarkLogic
MarkLogic Server is an enterprise NoSQL database, providing functionality
demanded by enterprise-grade mission-critical applications. MarkLogic
Server favors consistency and durability of data and the operation of rich
functionality on that data more than it does throughput speed for adding
new data, and querying that data.

If you have sophisticated search requirements including full text, free
schema, binary content, XML and JSON, real-time alerting, and support for
text, semantic and geospatial search across hundreds of terabytes of
mission-critical data, then I recommend that you check out MarkLogic Server.

The downside to a database that also does search is that the front-end user
interface is lacking in functionality when compared to legacy enterprise
search platforms such as HP Autonomy, IBM OmniFind, and Microsoft FAST.

MarkLogic does provide an HTTP-based API supporting document operation
and structure and free text grammar search, but you must develop the user
interface yourself.

MarkLogic includes an application builder web application that you can use
to configure a basic search web application. In a convenient wizard driven
interface, The application generated by this wizard is very simple though,
always requiring customization via code to create a final production-ready
application.

MarkLogic provides a range of open-source language bindings, including
Java, JavaScript, C# .NET, Ruby on Rails, C++, and PHP. This means you can
plug MarkLogic Server into your application stack of choice.

MarkLogic Server does lag behind other enterprise search platforms in that it
doesn’t provide natural language processing (NLP) functionality — for
example, splitting “Hotels in London” into a product type query of “hotel”
and a geospatial query matching hotels near to the center of London.

Although it’s a closed-source project, MarkLogic provides detailed docu-
mentation and free online training courses. Meetups are also available for
MarkLogic in the United States, Europe, and Japan.

MarkLogic Server is the only NoSQL database product mentioned in a
variety of analyst reports, including those covering both data management
and search, from a range of analyst firms.

348 Part VI: Search Engines

Evaluating Enterprise Search
There are many legacy search engines deployed in enterprises today.
Understanding those available is useful when deciding to adopt them, or
replace them with a modern alternative for use with NoSQL databases.

Here are the most commonly used legacy enterprise search engines:

▶✓ HP Autonomy, which incorporates the Verity K2 search engine business

▶✓ IBM OmniFind

▶✓ Oracle Endeca

▶✓ Microsoft FAST

These search engines haven’t undergone significant development as
stand-alone products in recent years, but they have been embedded in their
sponsor companies’ other products.

In this section, I describe these search engines’ common use in enterprises
today.

Using SharePoint search
The Norwegian FAST company was the newest player in the enterprise
search space before being acquired by Microsoft. FAST now is incorporated
into Microsoft’s SharePoint platform and is no longer available or supported
as a separate search platform.

Integrating NoSQL and HP Autonomy
HP acquired the independent British firm Autonomy and has incorporated
the software into many products. Autonomy is now a brand within HP.
The HP Autonomy IDOL search platform incorporates the search engine
products.

IDOL has more than 400 system connectors for search, supporting over 1,000
different binary file types of text and metadata extraction, as well as image,
document, and video-processing capabilities.

Advanced functionality includes deduplication, and the creation of reports
and dashboards. IDOL also works well with Hadoop HBase and Hive.

349 Chapter 27: Types of Search Engines

As the only enterprise search platform still available as a comprehensive
suite of search products, HP Autonomy is the leading vendor in corporate
search platforms.

Using IBM OmniFind
IBM OmniFind was at one point a very popular search engine with IBM
customers. Many people may be familiar with the Yahoo! Desktop Search
application, which was actually a limited version of IBM OmniFind provided
free for desktop users.

I worked for IBM from 2006 to 2008, and at that time, we often used OmniFind
on our laptops to manage a search index of our customer documents and
emails. It was a great way to demonstrate the software to potential
customers — as long as we were careful about we searched for, of course.
Now OmniFind’s functionality is included in the IBM Watson Content
Analytics product. This product provides for significant data analytics and
dashboard creation, although from an end user’s perspective, the search
functionality hasn’t advanced in the intervening years.

Evaluating Google search appliance
Google provides a search engine called Google Search Appliance (or GSA,
as it’s often referred to). This appliance provides the familiar Google search
experience for corporate data sources and internal websites.

Because it’s easy to install and so many users are familiar with its features,
GSA is very popular. It supports the usual Google features, including faceted
 navigation and also a limited set of corporate system search crawler connectors.

Its price is based on the number of documents you index for search, and
there’s a significant initial investment for GSA. However, if you have a large
(but not overly large) number of intranet sites that employees search or an
application that external users access, then Google Search Appliance may
work well for you.

Storing and Searching JSON
Solr and MarkLogic support XML, JSON, text, CSV, and binary documents and
provide searchable indexes over them. However, the leader in JSON storage
and search is Elasticsearch. Elasticsearch provides a JSON-only document

350 Part VI: Search Engines

store with a universal JSON index. The complete package is provided by what
is referred to as the ELK stack, which stands for Elasticsearch, Logstash, and
Kibana. They are all Elasticsearch products.

The Logstash product processes log files and indexes them for search. As
you can see in Figure 27-1, Kibana provides a very sexy dashboard set of
widgets that allows you to design a search interface just by using a web
browser.

In this section, I discuss the key features of Elasticsearch and why you may
choose to deploy this for your search platform.

JSON universal indexing
Elasticsearch will index every property and value in any JSON document
you store in its universal index. In addition to simply storing values as text,
Elasticsearch will attempt to guess the data type of the property being stored.

This provides a quick start when storing and searching JSON documents.
Elasticsearch, like Solr, is built on top of the Lucene indexer and search
engine. Elasticsearch provides a distributed architecture for indexing large
amounts of data using Lucene.

Elasticsearch makes a better attempt than Solr at providing a fully consistent
master-slave replication of saved data. This means all replicas are consistent
with any changes applied to the master as soon as a transaction completes.
Transaction logs in Elasticsearch are also committed immediately to disk,
minimizing the chances of data loss if a server fails immediately after a
document is saved.

Scriptable querying
Elasticsearch doesn’t provide a free Google-style query grammar. Instead,
you create a structured query using an Elasticsearch-specific JSON format.

This format provides queries that return relevance-ranked results and filters
that return exact matches to the filter terms. Many types of query and filter
terms are supported. Filtering also allows the use of a query within a filter.

The script filter enables simple JavaScript Boolean terms to be submitted as
text and executed in order to filter the documents. These can also be
parameterized and cached, allowing for a facility similar to bound variables
from the relational database world’s stored procedures.

351 Chapter 27: Types of Search Engines

Figure 27-1:
Kibana

dashboard
application

from Elastic
search.com.

352 Part VI: Search Engines

Evaluating Elasticsearch
Elasticsearch is a good place to start if you need to store data as JSON
documents primarily for full-text searches or for range query searches. The
ELK stack allows very rapid use of Elasticsearch for log file storing, search,
and analytics in an attractive and high-performance front end.

Beyond log file use, though, you must plug Elasticsearch’s HTTP-based REST
API into your programming language and user interface layer of choice.
Support is provided for a wide range of languages.

Elasticsearch doesn’t handle binary documents or XML natively, so if these
are among your needs, then you need to look at other solutions. No
connectors are provided for Elasticsearch to pull in information from other
corporate systems or applications.

Elasticsearch does handle JSON documents better than Solr. This is
especially true with complex nested tree structures and parent/child
relationships within documents.

Elasticsearch is also schema-less with a universal index, unlike Solr where
you need to specifically instruct the search engine about the format and
fields in the indexed documents. In Solr, schema changes also require a
cluster restart — they cannot be done live. In Elasticsearch, you can alter
them live as long as the changes don’t break existing indexes.

If you have a variety of ever-changing JSON documents and need to search
them, then Elasticsearch is a good choice.

Microsoft’s entry into the JSON document NoSQL market with its
DocumentDB service on Azure could prove a more attractive option to
managing and search JSON documents as it matures over the next two years.
At the moment, Microsoft DocumentDB has no free text search capability,
preferring instead to use Structured Query Language (SQL) queries from the
relational database world. If Microsoft were to take its FAST database
technology and apply it to its DocumentDB product with its existing
universal index, and then allow on-premise installations, then DocumentDB
will become an attractive alternative in large enterprise deployments.

At the moment, though, Elasticsearch is the dominant JSON search engine,
but it will have to adapt in order to pull ahead of Solr or MarkLogic, which
both support a wider range of document formats.

Elasticsearch
In This Chapter

▶▶ Using the product

▶▶ Finding support

E
lasticsearch is one of the more recent additions to the enterprise
search world of products. Using Apache Lucene internally as the core

indexing and search library, Elasticsearch provides a distributed search
 platform designed for NoSQL database-style storage and high availability.

In this chapter, I discuss this product specifically as Elasticsearch introduces
a number of innovations over traditional search engines. Elasticsearch also
uses several core architecture concepts common with NoSQL databases —
having the ability itself to store and manage JSON documents.

Using the Elasticsearch Product
Elasticsearch is an open-source product that anyone can download and
use. Elasticsearch, the company, provides support for this product as well
as value-added products, including systems management software in its
 product, Marvel. This provides system administrators with information on
the current health of the Elasticsearch cluster — and will therefore be of
 interest for large, complex enterprise installations of Elasticsearch.

In this section, I discuss the Elasticsearch product and complementary
 products ecosystem.

Chapter 28

354 Part VI: Search Engines

ELK stack
The Elasticsearch ELK stack suite comprises the separate but complementary
open-source projects, Elasticsearch, Logstash, and Kibana, which do the
following:

▶✓ Elasticsearch provides the search platform.

▶✓ Logstash provides the processing and extracts data from a variety of log
file formats.

▶✓ Kibana provides an easy way to create a dashboard-based search and
analytics application on top of Elasticsearch.

With this suite of products, you can quickly create an Elasticsearch
application.

Using Elasticsearch
Elasticsearch is a rich search platform capable of indexing JSON data. Source
records — whether they’re database tables, CSV or text files, or extracted
text from Microsoft Word documents — are stored as JSON documents and
indexed in Elasticsearch.

Elasticsearch provides a highly available service with no single point of failure.
Even if a server dies, the service is unaffected, thanks to Elasticsearch’s sup-
port of consistent replicas and transaction logs. This ensures that no data
added to Elasticsearch is lost, unlike eventually consistent systems such as
SolrCloud, where it’s possible under certain circumstances to lose data.

Elasticsearch provides document creation, update, patch, and deletion
functions, along with a rich search and index API. Because these operations
are based on common RESTful HTTP standards, you can access these APIs
from a wide range of programming language client APIs.

Elasticsearch makes it very easy to add or remove servers to a cluster at
runtime. Shards can be automatically redistributed as servers are added.
Sharding in Elasticsearch also takes into account the physical location of
servers — Elasticsearch is aware of machine and rack configurations and of
the availability of zone/data center physical servers; and it adapts the shard
locations automatically.

After an Elasticsearch cluster installed and running you’ll need to manage its
health over time. The Marvel application provided by Elasticsearch BV (the
company), as a separate commercial add on product, enables you to monitor

355 Chapter 28: Elasticsearch

and manage an Elasticsearch cluster. Consequently, organizations can
discover potential performance problems before their services go live.

Marvel also gives you the ability to look at historical data so that you can
track spikes in usage and issues that occur intermittently over time. Marvel
also includes a developer console that allows testing of REST requests
processed by Elasticsearch.

Marvel is available to everyone who buys a development or production
support plan from Elasticsearch BV, and not as an open source product.

Using Logstash
In Logstash, custom formats are handled through configuration files. These
files specify how Logstash processes each log file line, and how to convert
and store data within log files.

However, you can configure the Logstash application to process a broad
range of common log file formats, including Linux syslog and Apache
Combined log File (CLF) format. As a result, you can take many log files and
store them consistently within Elasticsearch, ready for search and analytics
to be applied.

Logstash, by default, creates a new index file in Elasticsearch each day.
These logs are restarted (known also as rotated) at midnight, which gives
you a convenient way to restrict the log entries you search to only those in a
particular time period referenced by an index.

Using Kibana
After you store and index all your log information in a consistent manner, you
need a way to slice and dice the information and then show it to end users.
This is where Kibana comes in.

Kibana is a web application with a set of configurable widgets, or panels. You
can create a search or dashboard page in Kibana without writing a single
piece of code! You just place the widgets where you need them on a page.

As you can see in Figure 28-1, you can easily create some compelling
 dashboard pages in Kibana. You can even create and share dashboard
pages and import dashboard configurations from other systems.

356 Part VI: Search Engines

Figure 28-1:
A Kibana

Search
dashboard

page.

357 Chapter 28: Elasticsearch

Finding Support for Elasticsearch
Elasticsearch is supported by the commercial entity, Elasticsearch BV. This
company provides support, services, and add-on products as I discussed
earlier in this chapter.

Various cloud service providers are also available for Elasticsearch, including
Bonsai.io, Indexisto, Qbox.io, and IndexDepot.

Elasticsearch has a broad and dedicated community base that supports
development and the creation of extensions. The community site —
www.elasticsearch.org — contains a wealth of information about install-
ing and using Elasticsearch.

Online communities such as StackOverflow.com contain thousands of
messages about using Elasticsearch that are useful to people interested in
Elasticsearch technology and in using it for their particular needs.

Evaluating Elasticsearch BV
Elasticsearch is a trademark of Elasticsearch BV, which is based in the
Netherlands, with a major hub in the San Francisco Bay Area, and with
branches throughout the world.

Many members of Elasticsearch BV also commit code to the Apache Lucene
open-source project. So, these people are skilled in supporting customers
with complex search indexing needs.

Elasticsearch BV provides both development and production support
subscriptions. The developer subscription is aimed to help customers
implement Elasticsearch in their own environments in order to make their
applications more powerful. This support includes web and email support
channels, support for Kibana and Logstash, and access to the Marvel
management application.

Production support is available in Silver, Gold, and Platinum packages, each
with its own Service Level Agreements (SLAs) for incident response times.
For example, Platinum support includes 24/7 support with a guaranteed
 one-hour critical-issue response time. It also includes emergency patch
access for urgent fixes.

Elasticsearch BV is the most comprehensive partner available for
Elasticsearch deployments, and is where the experts on Elasticsearch mostly

HTTP://WWW.COUCHBASE.COM/DOCUMENTATION
HTTP://WWW.COUCHBASE.COM/DOCUMENTATION

358 Part VI: Search Engines

work. If you’re considering Elasticsearch as a technology, then you need to
evaluate the cost of the commercial version designed for large enterprise
deployments, and the support provided by Elasticsearch BV. This support
may vary at the different places the company is located — so be sure to
check these issues before committing to Elasticsearch.

Visit www.dummies.com/extras/nosql for great Dummies content online.

Hybrid NoSQL Databases
Part VII

http://www.dummies.com/extras/nosql

In this part . . .
 ✓ Merging features from many categories.

 ✓ Creating multifaceted applications.

 ✓ Examining hybrid NoSQL products.

 ✓ Visit www.dummies.com/extras/nosql for great
Dummies content online.

http://www.dummies.com/extras/nosql

Common Hybrid NoSQL Features
In This Chapter

▶▶ Combining features in one product

▶▶ Reducing cost

▶▶ Saving space

▶▶ Accelerating searches

N
oSQL databases are evolving. Much as relational databases added data
types over time — like character (text) long objects (CLOB), binary

long objects (BLOB), and XML data — NoSQL databases are adding support
for new types of data.

If you’ve read other parts of this book, by now you probably understand that
a given business problem can be solved different ways in each of the
databases (key-value, Bigtable, graph / triple stores, and document
databases) covered in this book. storing a document for a unique ID, for
example, is a feature of both key-value stores and document databases.

Various databases can, therefore, technically be called hybrid in that they
support multiple paradigms of data management. I restricted the list
of hybrid databases in this chapter to those that provide significant
functionality in more than one area — note that support for a new data
type doesn’t qualify as a hybrid database unless common management
operations related to that type of data are also provided — column aggregate
functions in Bigtable clones, for example. Also, document databases aren’t
automatically classified as key-value stores even though they can technically
store values against a unique key. Likewise, not all databases that provide
in-memory caching of property values are classified as column stores.

All that said, my purpose is be sure that neither I nor NoSQL vendors’
marketing departments create confusion and leave you thinking that all
NoSQL databases can provide all features for all kinds of problems. Instead, if
you really need a hybrid approach, I want to help you correctly identify and
select the right NoSQL solution.

Chapter 29

362 Part VII: Hybrid NoSQL Databases

The Death of Polyglot Persistence
In some cases, a single application has to communicate with a mainframe
system, a relational database management system (RDBMS), and a NoSQL
database management system (DBMS). However, as I mention in Chapter 2,
the idea that a single app needs multiple NoSQL database management
systems is temporary because NoSQL databases are rapidly evolving. For
example, OrientDB has a database that blends a triple store and a document
database. Why buy two products if one does the same job?

When relational database management systems first became mainstream,
they tended to offer different advantages. For instance, some had support for
triggers, whereas others had cascade delete capabilities. Over time, such
features became standard in all relational database management systems.
The same will be true for NoSQL databases as new features are added by
vendors to encourage customers to choose their database from among
the many.

One product, many features
Customers may find that they prefer a single-product approach because one
rich product makes training developers and administering the IT landscape
easier than using multiple databases would.

A single product also means that you don’t have to become a coding
plumber. You don’t have to figure out how to join two different systems
together. With a single product, vendors generally do these things
themselves.

In OrientDB, which I discuss later in this chapter, adding an order
document with a link to a product (say a product_id=29 document value)
generates a triple that links the order to a product document in the system.
Also, OrientDB blends this product data with the order document when the
order document is requested by the application.

The makers of OrientDB provide this mechanism through the configuration
of their server. I think you’ll agree that not having to write code that
communicates with two systems — one managing the relationships (triple
store) and the other managing the data (document store) — will save you a
lot of time.

363 Chapter 29: Common Hybrid NoSQL Features

Best-of-breed solution versus
single product
The main risk with a single-product approach is that the product may
provide weak functionality in every area rather than doing one thing well.
Sometimes you do need advanced features, in which case, you want to use
multiple products.

As an IT professional seen as your clients’ “trusted adviser,” it’s your job
to figure out where to draw the line between using multiple products and a
single product.

It’s very rare, though, that one application needs the ten most common
features of each type of data store. (Although that certainly doesn’t keep
business analysts from writing requirements saying that the application
needs all possible features!)

Advantages of a Hybrid Approach
Hyrbid databases can provide a number of additional benefits beyond
minimizing the number of components in your application’s IT infrastructure.
In this section, I discuss these additional benefits.

Hybrid approaches provide important advantages, including the following:

▶✓ Single strategic tech stack: Implements a single data layer to power all
your applications. As an IT professionals you’ve probably unknowingly
been using relational database management systems to do this, but
NoSQL means there’s no up-front schema design, which gives you the
flexibility to create an operational database and achieve fast application
builds.

▶✓ Common indexes / no duplication: Storing a single index rather than
having an index of the same data in multiple products is advantageous.
Storing a document in an enterprise content management (ECM)
platform means indexes are held in an RDBMS. Separate indexes will
also exist in a search engine that indexes content held in that repository.
A hybrid NoSQL system that supports search means a single set of
indexes, which results in lower costs for storage and faster reindexing.

▶✓ More real-time data through the stack (fewer moving parts): Because
indexes are updated as information is added to a hybrid NoSQL
 document database and search engine, fewer indexes as well as nearly

364 Part VII: Hybrid NoSQL Databases

real-time indexes are produced, or at least they’re transactionally
 consistent. This real-time indexing powers alerting and messaging
 applications, such as the backbone of HealthCare.gov.

▶✓ Easy administration (fewer moving parts): Database admins need to be
absolute experts on the systems they manage. The level of complexity
in all products is great, and it increases over time. Therefore, having
multiple products typically means the need for multiple administrators,
each with different skillsets.

Single product means lower cost
A single product offers a number of advantages. If you add them up, the fol-
lowing cost-saving measures are huge. They can easily mean half the cost of
implementing a new database layer:

▶✓ Less integration code between your application and its persistence layer

▶✓ Less ETL code to convert data formats between products

▶✓ Lower software license, maintenance, and consulting costs

▶✓ Lower training costs for developers and administrators (and a single API
to access all your data)

▶✓ Lower salary costs because fewer experts for each system are needed

▶✓ Fewer moving parts with backups and maintenance, such as patches
and security updates

You gain some of these benefits by adopting any kind of NoSQL technology.
The ability to load data “as is” into a schema-less document store, for
example, means lower ETL (Extract, Transform, and Load) costs. As soon
as you introduce two NoSQL stores, though, moving data between them or
merging data from each of them still entails more ETL costs than adopting a
single NoSQL database.

ETL is very expensive. An entire industry has developed for ETL tools.
There’s also the related problem of data warehouses. Data warehousing
exists because a single relational structure is hard to use both operationally
and for business intelligence. A data warehouse stores the exact same
information in a structure that enables faster aggregate reporting and
statistics. Requiring two separate structures for the same data may not be
the case of NoSQL databases in certain circumstances, though.

365 Chapter 29: Common Hybrid NoSQL Features

How search technology gives a better
column store
Applying search technology to document stores for analytical operations is
one example of how a hybrid approach provides additional benefits over just
IT simplification.

A column store database performs rapid aggregate calculations, and it
returns sets of atomic data (column families) of a whole row (record). Using
column stores requires transforming data into a row and column structure,
and supporting multiple instances of data within some column families
(avoiding cross table joins like in an RDBMS).

You have to effectively do some ETL (Extract, Transform, and Load data) in
order to store data in a way that makes it work better for the type of queries
and analysis you do over it.

When Google approached the problem of indexing the web, what they didn’t
do was to let the administrators of every website know they had to adopt a
single structure. Instead, Google stored what was there, and indexed it for
retrieval via search.

By applying the same search technology to documents, hybrid NoSQL
databases can provide an in-memory cached set of ordered column values
that lend themselves not only to fast search, range queries and sorting, but
also to high-speed analytical operations.

Because document NoSQL databases with search also update their indexes
during the transaction that updates a document, these indexes are also
updated in real-time, which is great for an analytics platform.

When looking at column stores for analytical operations, don’t discount
hybrid document and search NoSQL databases, especially if the source data
is already in XML, JSON, or other document structures.

Document stores that also sport comprehensive search features tend to
provide a set of analytical functions. Customers, being customers, always ask
companies to do more with the same feature!

All common aggregation algorithms are present: mean, mode, median,
standard deviation, and more — plus support for user-defined aggregate
functions written in fast C++ that work next to the data, processing the data
throughout the cluster.

366 Part VII: Hybrid NoSQL Databases

How semantic technology assists
content discovery
When most people think of accessing large sets of document data, they
immediately think search. We’re so used to using search that we even apply
our own technical workarounds.

When you search for information about a health problem on Google, you type
a phrase that you think will return the right result.

If I’m concerned a family member’s diet may be placing them at risk of heart
attack, I access the UK National Health Service website at www.nhs.uk. It has
a range of excellent health FAQs.

In the search bar, I type “heart attack.” When I get a page of results. I see that
the first result is a page that describes heart attacks. Clicking through to that
page reveals subpages, including one for risk factors.

Hang on, though. Why didn’t I type “heart attack risk factors”? It’s because
I, like you, instinctively know that search engines aren’t very good at getting
the context.

For the same reason, people search for “NFL standings” rather than “Green
Bay NFL record” — they know a simple search will get less noise and that we
can as humans navigate from the general information picture (all NFL
standings) and filter down to just what we need (Green Bay’s standings).

Understanding context, therefore, is important in navigating directly to the
most appropriate data. The way to describe these contexts is to use an
ontology, which is a set of terms and definitions that applications use to
describe a unique information domain.

This technology is associated with the semantic web and triple stores. It’s
not a graph store problem because you’re not interested in analyzing the
links or the minimum distance between subjects; you’re just using the links.

Often, when publishing data, you know a lot about its context. Adding
this information into a database helps later on when the data is queried.
Understanding what people searched for previously and linking those queries
to subjects as triples may also be advantageous.

So, back to my earlier scenario. If I want to search for “heart attack,” the most
important keywords are “risk factors” and “How can I prevent being at risk of
a Heart Attack?” By showing this semantic information in context with the

https://www.nhs.uk

367 Chapter 29: Common Hybrid NoSQL Features

content search results, I can shortcut the step of reading through results to
manually filter content.

This is exactly what Google is doing now. Search for a common person or
place or organization, and you’ll see an Info Box next to the search results.
These are semantically modeled facts culled by Google from information on
the web.

The idea is to provide people with a set of answers rather than a set of
search results. Imagine how rich and immediate semantic information will
make the web for researchers or students in the future!

If you have a similar requirement for rapid discovery of content or for
context-aware search, then investigate a hybrid document or triple store
NoSQL database with search capabilities.

368 Part VII: Hybrid NoSQL Databases

Hybrid Databases in the Enterprise
In This Chapter

▶▶ Selecting the right product

▶▶ Keeping your data intact and available

I
n the enterprise, hybrid databases have the advantage of fewer moving
parts than using multiple databases in the same application. This is

because they comprise a single system rather than separate entities that
require manual integration.

There are still difficult problems to overcome, though. In this chapter,
I identify the key issues to consider when looking at deploying a hybrid
NoSQL database in the enterprise.

Selecting a Database by Functionality
Most people like to work with tick lists. For example, tick marks are great for
comparison tables with multiple products listed next to their prices and
functionality. You might use big green tick marks or red crosses to help
identify the options with least functionality; then a purchaser could select
the best compromise between price and functionality.

This type of “beauty pageant” can be distracting, though. It tempts you as
purchasers to prioritize the number of functions available versus the value
of those functions (or not) to your organization. What is needed is an
assessment of the overall data management needs of your organization. This
should include weightings for how important a feature is (critical, optional,
nice to have). This analysis is more balanced, providing a better picture of
both technical and business fit with your organization’s needs.

This comparison mechanism is especially important when selecting a hybrid
NoSQL database. This is because a single product likely covers a wider range

Chapter 30

370 Part VII: Hybrid NoSQL Databases

of functionality, but perhaps at a lower depth of detail than in products
covering just a single type of data management.

In this section, I describe the key challenges when selecting a hybrid NoSQL
database, and how you can accurately analyze a product’s fit with your
organization now and in future software releases.

Ensuring functional depth and breadth
The number of functions it supports gives you an idea of a product’s
functional breadth, although this may not be a reliable method to determine
how useful that functionality is. A good example is support for full-text search,
which is a typical line item in a comparison of hybrid databases. It includes
not only word searches but also multiple language support, word stemming,
thesaurus support, complex Boolean logic, and a range of other topics.

The breadth-versus-depth argument is important when you’re selecting a
hybrid NoSQL database because, as the name suggests, these databases
support a wider array of functionality than other NoSQL databases. So, it’s
important to ensure that the features provided truly have the functionality
you require, and aren’t just tick-box features designed to avoid a thorough
analysis of the product’s features.

I recommend dividing comparisons into sections, with the important
functionality of each feature you want spelled out. This approach forces
vendors to respond to the question you actually have, which ultimately is,
will this database work for me?

Following a single product’s roadmap
By product roadmap, I mean the long term view of upcoming features, or
themes, for upcoming versions of database software. Typically products have
rough outlines for 2 or 3 versions in to the future, over a 2 to 5 year period.

Tracking a single product’s lifecycle is difficult, but tracking the several that
you may use instead of a hybrid database is even more difficult. I’ve already
mentioned that if you have multiple products that need to be integrated, the
complexity means more expense. The situation is even worse when you con-
sider that each product you integrate has its own roadmap of upcoming func-
tionality, as well as dates when the current support of the version expires.

371 Chapter 30: Hybrid Databases in the Enterprise

You must monitor each of the product’s roadmaps for new functionality
you want to take advantage of. You also need to consider how upgrading
one component will affect the integration of another component. Often
integration code updates lag behind the main product updates, so you don’t
necessarily want to upgrade as soon as a new version is released.

If you don’t upgrade immediately, though, in a couple of years, your
current version may no longer be supported, which makes it impossible to
get support from vendors for the version you have. (Vendors always advise
to upgrade to the latest version, or at least a supported version, in order to
fix an issue.)

An advantage of hybrid NoSQL databases is that there’s just a single
product’s roadmap to consider, which also means that each part of the
product is tested thoroughly to be sure that it works with all the database’s
other features. In this way, you don’t have to worry about whether the
integration code between several distinct products will work after an
upgrade cycle.

Building Mission-Critical Applications
Multiple issues are involved in putting a new solution into production.
Businesses won’t bet the bank on it, and executives won’t bet their careers
on implementing technology that may lose data. A down day is a death day
when it comes to keeping services online in today’s world.

In this section, I discuss how a hybrid NoSQL database can make overall
system architectures more robust, by minimizing the number of parts of an
end to end solution, and simplifying data management tasks.

Ensuring data safety
The first order of business is ensuring that data is kept safe. When databases
indicate that data is saved, you need to be guaranteed that is the case. This
guarantee requires ACID-compliant durability guarantees. Data needs to be
written to disk, or at least to journals, in order to ensure that it is in fact safe.

The disks need some form of built-in failover, which you can do using a
redundant array of independent disks (RAID) on a single machine.

372 Part VII: Hybrid NoSQL Databases

There are various RAID levels, with the most common being

▶✓ RAID 0 is a single hard disk with no data duplicated, or an array of hard
disks exposed as a single logical disk, but still without data duplication.
This allows higher throughput than a single hard disk, but provides no
additional durability guarantees.

▶✓ RAID 1 is where each disk has an exact duplicate.

▶✓ RAID 10 is where there is a RAID 1 array of two RAID 0 arrays. This
provides higher throughput with one exact duplicate copy of each file.

▶✓ RAID 5 and 6 are technologies that allow multiple disks to be joined and
data stored two or three times, but without reducing the storage space
available by one-half or two-thirds. You achieve this level of space
savings by using check bits rather than storing full copies of the data.
This comes with the disadvantage of longer times to rebuild a new disk
after failure.

▶✓ RAID 50 and 60 are several RAID 0 arrays configured as a single RAID 5
or 6 array. This provides higher throughput while ensuring greater data
density.

These configurations trade off storage space, storage times, access times,
and disk rebuild on failure times. For high performance environments, RAID
10 is typically used. RAID 50 is often used for high-density environments.
RAID 60 takes longer to rebuild and requires more disks, so it’s used less
often than RAID 50.

When a failure of a single hard disk occurs, files held there are still accessible
from the other disks in the array. If the system has a hot standby disk, the
system can manage failover without requiring administrative help.

Ensuring data is accessible
There are occasions when entire systems fail or entire clusters disappear
on a network. Workmen and excavating machines are the biggest culprits
of these types of failures! They either dig up network cables or take out the
power of the entire site.

To solve this problem, you can distribute data to other nodes (servers) in the
same cluster and to other sites. By using multiple nodes within a cluster and
storing multiple copies of data, you’re ensuring that a cluster is highly
available.

373 Chapter 30: Hybrid Databases in the Enterprise

Many NoSQL systems don’t immediately ensure that all their data is held on
a second node in the cluster. Many, instead, distribute data after it’s saved.
This approach is called being eventually consistent, which could cause you
to still lose data.

Every day more and more NoSQL databases support ensuring that their
replicas are up to date within the bounds of a database update. This requires
a two-phase commit, which is basically committing the change locally and
then to a second node (or more) before confirming to the client that the
update transaction is complete. MarkLogic Server is an example of a hybrid
NoSQL database that supports two-phase commits within a cluster.

Between clusters that are geographically dispersed, though, the norm is to
provide eventually consistent replicas. Eventual consistency between
clusters is to even out the bursts or lag time for data flowing between
clusters. If you don’t even out this lag, replicating data to another cluster
over the Internet will slow down local site database operations too. This is
why the tradeoff of consistency versus lag time is often made in multi
datacenter replication.

Using a separate cluster that is available for use only when the first cluster
becomes unavailable is referred to as disaster recovery (DR). One or more
DR sites can be replicated to, ensuring maximum service availability even if
the replicas are a few seconds out of date.

Having local ACID compliant replicas within a cluster provides resilience
in case of hardware failure. Having cross site DR database replication
also means you don’t have to worry about a single site being unavailable.
Ensuring your chosen hybrid NoSQL database supports both of these
mechanisms ensures maximum service availability.

Operating in high-security environments
When using separate pieces of technology and gluing them together, one of
the more subtle (but infuriating!) problems you’ll come upon is an impedance
mismatch, which is when different systems have a different view of the same
data or concept.

When it comes to security, this mismatch is most obvious between document
databases and search engines. Many NoSQL databases support record-level
(document) security. Some databases can also be used to enforce label-based
access control (LBAC) within documents. This means parts of a document
may require a higher level of security permissions, or roles, to access than
others.

374 Part VII: Hybrid NoSQL Databases

Separate search engines typically provide security at either the collection
(set of documents) or document level. These two mechanisms therefore
support access to the same information at different levels of granularity.
Most of the time, search engines index updates lag behind the updates of the
database they’re linked to, which means that indexes are also out of date.

The best you can hope for in this case is a false positive pointer to a
document. With a false positive pointer, a document ID or name is returned
in the result set, showing you a document that you don’t have clearance for,
or a document to which security labels have not yet been applied (and thus
visible to all).

The worst kind of scenario is one in which a document is marked as
“Confidential” with a section within it marked as “Top Secret,” and
the top secret portion is leaked. Perhaps typing a word that happens to be in
the top secret section shows a user with confidential-level access the full
content of that paragraph in the search snippet. The top secret section
shows up because the user has the appropriate level of access for the
document, but the search engine doesn’t “understand” that sections in
documents may require higher security levels.

A hybrid NoSQL database that enforces the same security policies, roles, and
permissions means this impedance mismatch is impossible. Whether you
fetch a document by ID (an example of a database operation) or it happens
to match a text phrase (an example of a search operation) is irrelevant. The
hybrid NoSQL database will always enforce the same security policy against
that document.

If you need to operate in a high-security environment, then using a hybrid
NoSQL database will be easier than integrating multiple technologies. Some
hybrid NoSQL databases, such as MarkLogic Server, are used in high-security
environments in systems that are independently accredited for classified
information. These databases probably have the right security controls for a
range of commercial and government clients.

Hybrid NoSQL Database
Use Cases

In This Chapter
▶▶ Directing readers to relevant articles

▶▶ Cataloging all available information

M
any use cases straddle the worlds of document NoSQL databases,
triple stores, and search. As a result, combinations of these functions

form the basis of the most common hybrid NoSQL databases.

In this chapter, I explain these use cases and how they combine the features
of each world so that you can apply them to similar use cases in your
own organization.

Digital Semantic Publishing
Publishing and managing a news website that changes on a daily basis is hard
to do. Deciding exactly where each story should appear on the site is even
harder. Stories on soccer may be relevant in one area, but what about stories
about a soccer star’s fashion label? These kinds of stories may belong in
multiple areas on a website.

Traditionally, journalists and their senior editors decide where news stories
are posted. However, in the fast-paced and ever-changing world of news, it’s
difficult for editors and journalists to categorize information in a timely way.

As a result, a more reactive way of publishing news stories is needed. Editors
and journalists need to react to the various entities mentioned in news
stories, allowing the relationships among these entities to drive where
information is placed in a publication.

Chapter 31

376 Part VII: Hybrid NoSQL Databases

In this section, I discuss the challenges and solutions available for digital
semantic publishing.

Journalists and web publishing
In web publishing, journalists have traditionally been asked to write a story
and tag it with metadata, including

▶✓ What the story is relevant to

▶✓ Who is mentioned in it

▶✓ The names of relevant organizations or topics

▶✓ The most germane place on the website for the news story

Obviously, these tasks require a lot of time and effort. It’s not as simple as
typing names of people; you must find the exact name as it exists in some
organizational taxonomy.

Digital semantic publishing on the web eliminates this problem. Digital
semantic publishing is where entities (for example people, places, and
organizations) and their relationships to each other drive the placement of
an article that mentions one or more of those entities. This avoids forcing the
individual journalists and editors from manually trying to learn and apply a
complex and ever changing taxonomy (topic and sub topic hierarchy).

Therefore, digital semantic publishing provides a way for news publishers to
store a set of interrelated facts separate from the stories themselves. In this
way, facts drive navigation. These facts might include who plays for which
teams, which organizations people belong to, which news stories they’re
mentioned in, and what fashion labels they’re associated with.

As a result, users can simply use search terms that identify a story’s main
topics, and the story will show up in all relevant sections on the website. This
capability means that, as they are preparing the story, journalists don’t have
to consider all the items that relate to it, freeing them to spend more time on
journalism itself.

For example, the BBC Sport and BBC Olympics websites combine a document
store and a triple store in a sophisticated web publishing application, making
them great examples of digital semantic publishing. (Turn to Chapter 36 for
more details on this NoSQL application.)

377 Chapter 31: Hybrid NoSQL Database Use Cases

Changing legislation over time
Many documents change over time, and legislation covering an entire
country is no different. Laws are revised by the legislature and clarified by
the courts. Some elements of laws are activated by the secretary of state
(they’re called a Statutory Instrument in the UK, similar to Executive Orders
in the United States) for a particular department. Activation happens at a
time decided by the government of the day.

Determining which laws and particular clauses are applicable at any given
time is a very complex task. Many pieces of legislation affect other existing
clauses throughout the body of law. This is particularly difficult when your
legal system dates back a thousand years, like it does in the United Kingdom.

The www.legislation.gov.uk website uses a document NoSQL database
and a triple store to hold the legislation, as well as relationships between
clauses and future and past modifications from Acts of Parliament and
Statutory Instruments. The website even lets you know about legislation
going through Parliament and upcoming clauses to be activated at a
future date.

These complex interrelations can occur between any Act for any reason,
which means that the possible combinations of relationships aren’t known at
design time. A schema-less approach to the content of acts and the
relationships between them is, therefore, advantageous.

Metadata Catalogs
In many systems, it isn’t possible or desirable to replace multiple systems
with a single new system. When a single view of all available information is
required, you need to pull in the relevant data pointers from each source
system and join them together.

This is particularly important in the media and intelligence worlds. Video and
audio files are maintained in their own specialist systems. Users, though,
generally want to search across all programming from a particular company
in order to see what is relevant for them.

In this section, I describe how a metadata catalog approach is different to
consolidating (copying) data from source systems in to a single master
database to rule them all, and why you would consider applying the
metadata catalog use case in your organization.

https://www.legislation.gov.uk

378 Part VII: Hybrid NoSQL Databases

Creating a single view
Perhaps there’s a film about Harry Potter, a TV interview with J.K. Rowling,
and a syndicated program interviewing the cast of the Harry Potter movies.
A search for Harry Potter should show all programs, no matter what the
source repository.

This single view approach is designed to provide a user-friendly interface.
Consumers don’t need to know what source systems or separation exist
between content systems. This makes searching for content a seamless and
consistent process and increases the likelihood for content to be discovered
and played, which is vital for increasing the use of public and commercial
broadcasting services.

Intelligence agencies also closely guard their information, yet they must
provide a catalog of their intelligence reports to other agencies for searching.
So the high-level metadata on each piece of intelligence must be combined
to help other agencies discover what intelligence is available on a particular
subject. Once the reports are discovered, analysts can request access to the
source material they need in order to perform their tasks.

Replacing legacy systems
After a single view of existing data is created, you may find opportunities to
look at older legacy systems and switch them off in favor of a new catalog.
In fact, it isn’t unusual for metadata catalogs to expand and include entire
records of legacy systems before the source systems are switched off. This
is particularly true of costly mainframe systems that were used to manage
documents in a way that makes it difficult to migrate from these systems to
a relational database management system (RDBMS).These migrations are
best done over time and in a way that’s transparent to users of the services.
A common pattern is to have several RDBMS schemas configured for the
same data, each organized slightly differently, depending on the application
accessing them. Typically, doing so involves representing the data at
different levels of granularity.

Replacing these multiple RDBMS systems with a single hybrid NoSQL
database may be desirable. Doing so could provide one or more of the
following benefits:

▶✓ Lower cost by storing the data once

▶✓ Simpler data management, altering the view through automatic
denormalization or at query time (called schema on read)

379 Chapter 31: Hybrid NoSQL Database Use Cases

▶✓ More comprehensible mental model for data organization

▶✓ Less complexity when one schema needs changing

▶✓ Fewer different integration points for downstream systems and
user interfaces

A recent media company’s metadata catalog implementation I was involved
with replaced three MySQL databases (and their sizeable hardware
environments), along with a large set of APIs built on top of those three
databases, with a single NoSQL hybrid database cluster and one API.
The new system provided the following advantages:

▶✓ Wholly accurate search over all metadata records

▶✓ Denormalizations of metadata records at the program availability level,
in line with user expectations

▶✓ Shorter time to achieve availability for new program information online

▶✓ Less outlay of hardware

▶✓ Easier to maintain API codebase

When the use case is correct, a hybrid NoSQL database approach, as
compared to traditional approaches, can save a great deal of money in terms
of maintaining code and hardware.

Exploring data
In many of the use cases throughout this book, I assume that the format
of the data is known prior to the application being designed to access that
information. In most cases, this is a fair assumption; however, there are some
situations where the structure may not be known prior to the design of the
application, for example:

▶✓ A dump of digital data from a hard disk in computers obtained when
police execute a search warrant on a house

▶✓ Data and contact information from an arrested suspect’s mobile phone
(in countries where this is legal!)

▶✓ Messages on social media where the underlying data format changes,
depending on the application that creates it

▶✓ Data feeds from external organizations where the format is out of your
control and changes rapidly (such as CSV format files on http://
data.gov.uk that change monthly without warning)

http://data.gov.uk
http://data.gov.uk

380 Part VII: Hybrid NoSQL Databases

▶✓ Largely free text information, such as that found in emails and mailed
correspondence

▶✓ Binary documents that allow unstructured information (PDF, Word, and
XHTML documents are typical examples)

The preceding content types are wide-ranging, but they must have these two
features in order to be accessed:

▶✓ Text and metadata structures must be understood, or converted to
a format (JSON, XML, or plain text, for example) that can be natively
understood and indexed.

▶✓ A search engine that, at a minimum, understands free-text content, but
that can also understand metadata extracted or the inherent structure
within the document (such as the JSON of a tweet or XML nodes in an
XHTML web page).

Being able to perform both of the preceding processes enables users to
immediately access value in all stored data, even if the inherent structures
aren’t yet known, and so cannot be built in to a system’s design. This is an
example of using an exploration application.

After the data formats are better understood, specific indexes and user-
interface components can be added to the application to take advantage of
emerging structures, including metadata fields such as the date created, the
author, or GPS coordinates at which an image was taken.

From day one, an exploration application enables end users to take
advantage of data captured. This data can be searched immediately, and
analysed later to determine fields that are present. These fields could be
configured in an application later to make it easier to categorize or search
data. This avoids a complex testing and rollout process, ensuring a system
can handle all data before it is first released.

Hybrid NoSQL databases, such as MarkLogic Server, that support document
storage and search along with binary file extraction features provide a good
foundation on which to build exploration applications.

Hybrid NoSQL Database Products
In this chapter

▶▶ Managing documents alongside semantic information

▶▶ Managing documents, search, semantics, and analytics

H

ybrid NoSQL databases fall into two categories:

▶✓ Those that use a non-relational data type and triples to store
 relationships and metadata about those records

▶✓ Those that integrate search with document structures (whether they are
key-value stores or document databases)

Using a triple store approach to provide schema agnosticism in the relationships
mirrors the way that NoSQL databases provide schema agnosticism in their own
records’ data models. A triple store approach to relationships between records
goes some way towards providing cross record information links, avoiding some
of the need for producing denormalizations.

OrientDB, ArangoDB, and MarkLogic Server all take the document-oriented
approach, using triples to store relationship information either within, or
independently of, the document records they describe.

There is a level of depth required in multiple NoSQL areas (such as
document, triples, and search) that is required to be a true hybrid NoSQL
database.

In this chapter, I describe the most common data management use cases that
hybrid NoSQL databases are used for.

Managing Triples and Aggregates
Rarely do I gush about NoSQL databases, but I really like OrientDB’s
simplicity in terms of synergies between a document database and a triple

Chapter 32

382 Part VII: Hybrid NoSQL Databases

store. Many NoSQL databases are criticized for being unnecessarily
complicated or esoteric, so it’s refreshing to find one that solves complex
problems in compact and easy-to-use ways.

For example, document NoSQL databases are often used to achieve
denormalization, which means that, rather than follow the relational
model and split data into constituent parts, you put all the data in a single
document.

Product orders are typical examples. An order may include a product id, a
name, a price, the quantity ordered, customer and delivery details, and
payment information. It makes sense to model information in a single
container (document) so that all the information can be accessed at the
same time.

In some circumstances, though, it still makes sense to treat the information
as discrete documents. What do you do then? Do you manage many
denormalizations (“probably” is the honest answer!), or do you keep atomic
structures, such as relational tables, and piece them together at query time?

Merging data at query time isn’t fun, as anyone who has written a complex
system in relational databases can tell you! Complex inner and outer joins are
hard to get right at query time, and it’s even harder to make them run fast.

Generating triples from documents
OrientDB has a nice solution to the problem of managing these compound
document use cases. As well as being a full-featured document NoSQL
database, OrientDB gives you the ability to configure it so that it generates
the triples (relationships) between documents as they’re added, and to
materialize views automatically at query time based on those relationships.
All without nasty complex SQL-like queries or complex triggers to maintain
multiple denormalized documents.

OrientDB actually achieves this through lazy loading of the child documents,
transparent from the calling code. This means that the OrientDB client API
will receive the definition of a compound document and only fetch the parts
needed from the server when the host application accesses them.

Lazy loading avoids materializing every relationship before returning the full
document to the client. For many applications where a user drives accessing
parts of a document this approach is likely a better performing one overall.

In the preceding example, you can configure OrientDB so that any JSON
 document being added that has a product_id field also generates a triple

383 Chapter 32: Hybrid NoSQL Database Products

(relationship), thereby linking the document and the relevant product
 document it refers to.

Enforcing schema on read
Schema on read means that, as an app developer, you can design an app so
that when the details on a customer’s latest order are shown, the application
asks for the order document and indicates that the product details should
be embedded within the order document. This procedure puts data merging
activities into the database where they belong and relieves application
 developers of having to deal with all the complex code and modeling of
 client-side manual data aggregation.

If you have numerous JSON documents that need to be maintained individually
but combined at retrieval time, or if you want triples generated automatically,
then consider using OrientDB.

Evaluating OrientDB
OrientDB is available both as an open-source product and as a commercially
supported product. The company that makes it is based in the UK and is
relatively small, although it succeeded in being included in the 2013 Gartner
Magic Quadrant for Operational Database Management Systems.

I have only one criticism about OrientDB: It provides only its proprietary API
for accessing triples. I’d liked to see a more open-standards approach, such
as support in the core platform for the Resource Description Format (RDF)
and SPARQL semantic query standards.

I definitely recommend that you take a look at OrientDB if you need a
database that goes beyond JSON document storage and that requires
complex relationship modeling.

Combining Documents and Triples with
Enterprise Capabilities

MarkLogic Server is one of the oldest NoSQL databases included in this book.
In fact, MarkLogic has been around even longer the term NoSQL.

384 Part VII: Hybrid NoSQL Databases

MarkLogic was originally an ACID-compliant XML database with a built-in
search engine. It was developed for the U.S. government’s clients that wanted
the enterprise features in XML documents that they used in their relational
DBMS systems.

MarkLogic adopts a lot of the approaches to indexing and search that you
see in standalone search engines.

Full Disclosure: I work as a principal sales engineer for MarkLogic, so
 obviously I have a bias; however, as author of this book, I cover both
MarkLogic’s strengths and its weaknesses. (The Publisher wouldn’t let me
do otherwise!) Some of these strengths and weaknesses are mentioned
in Chapter 17, such as MarkLogic’s historic dependency on the XQuery
 language, not familiar to many developers. (JavaScript is supported in the
version 8 release of MarkLogic Server.)

Combined database, search, and
application services
MarkLogic’s abundant uniqueness is why I included it in this book. First, it’s
commercial-only software, which is rare in the NoSQL world, in which most
NoSQL databases are perceived as being open-source, meaning they have
free developer licenses.

MarkLogic Server is a single product that combines a document-orientated
NoSQL database, a sophisticated search engine, and a set of application
services that expose the functionality of the server.

MarkLogic currently supports XML, binary, and text documents. At the time
of this writing, the MarkLogic 8 Early Access version also includes support
for native JSON storage — although an automatic translation between JSON
and XML had been available for two years.

The primary reason I include MarkLogic in the hybrid section is because
it has a built-in triple store with support for both the W3C graph store and
SPARQL protocols and for ingestion and production of RDF data in a variety
of formats. This means MarkLogic Server is both a document-orientated
NoSQL database and a triple store, as well as a search engine — all in a single
product. You’re free to use only document operations or only semantic
operations. You can use both at the same time, and combine this data format
support with free text, range query operations (less than and greater than),
and geospatial search.

385 Chapter 32: Hybrid NoSQL Database Products

These are two layers in MarkLogic Server:

▶✓ The database layer provides ACID compliance, compressed storage, and
indexing during a transaction.

▶✓ The evaluation layer is a query layer that supports several query
 languages.

▶✓ There is a high-level, Google-style grammar search API (the Search API)
and a lower-level structured query (CTS API — CTS is an abbreviation
for MarkLogic’s former name, Celoquent Text Search). This layer also
provides support for the W3C SPARQL 1.0 and 1.1 API and the W3C
graph store protocol for semantic queries.

In terms of the programming language used in the evaluation layer, the server
is written in C++ and uses the XQuery native language (and thus XPath) and
XSLT. MarkLogic Server 8 adds server-side JavaScript support to this mix.
Anything you can currently do in XQuery, you’ll be able to do in JavaScript.

Schema free versus schema agnostic
Most document NoSQL databases are schema agnostic — that is, they don’t
enforce schema. MarkLogic is a schema-free database. You don’t normally
enforce XML schema, but you can do so if you wish.

MarkLogic hailed from the XML standards world, so as you might expect,
there’s a lot of XML standards support. If you need to enter data into the
database and still validate (compare) a document to a schema and generate a
compliance report, you can do so with a schematron approach. Although this
isn’t one of MarkLogic’s standard features, it’s been implemented for several
customers in the evaluation layer as a pluggable extension module.

Providing Bigtable features
The fastest way to perform aggregate functions, sorting, and search is to use
an in-memory data representation. Column stores do this by storing ordered
columns or column families in RAM. Search engines do this by storing one or
more term lists (including forward, reverse, and text indexes) in RAM.

In-memory databases, in contrast, store all data in RAM, so you can quickly
churn through it. The problem with in-memory databases is that if your data
runs beyond the amount of RAM you have in a cluster, issues with the
system’s stability or with data consistency arise.

386 Part VII: Hybrid NoSQL Databases

MarkLogic’s indexes are used both for normal database queries — like Give
me document with ID 'MyDocument' or 'where owner=afowler' —
and search engine operations — like “Give me all suspicious activity report
documents that talk about places in this geospatial polygon, that mention
‘pedestrians’ and that are related to vehicles with ABC* on the license plate.”

The same indexes are also used for range queries, sorting, and aggregate
functions. Storing these in memory makes accessing them fast, and ACID
compliance ensures that they’re also kept on disk keeping them safe should a
system failure occur.

Consider a common column store operation like counting the number of
kernel panics in a log file from a particular system over a specified day. You
perform an exact-value-match query to match the system name, and a range
query to set the upper and lower limits of the time of the log entry. You then
perform an aggregate function over the result — in this case, a simple count
(summation) operation.

Aggregate functions can be much more complex — such as calculating a
standard deviation over a set of matching range index values, or even a user
defined function written in C++ and installed in a cluster.

Once you have range indexes, and thus in memory columns, defined and
associated with a document, you can do another interesting thing. Take the
document id as a record ID, and a set of range indexes as columns. Using
this approach, you can model a relational view of the co-occurrence of these
fields within a particular set of documents.

MarkLogic Server uses this approach to provide Open Database Connectivity
(ODBC) driver access. This allows business intelligence tools to query
MarkLogic Server’s documents as though they were relational database rows.

MarkLogic Server handles in-memory data aggregation at high speed, much
like a column store. Therefore, you can use MarkLogic Server both as an
Operational Database Management System (OpDBMS, a term used by Gartner
to refer to both relational databases and NoSQL databases used for live
operational workloads) and as an analytics/data warehousing database.

Securing access to information
Many of the first MarkLogic customers were in the defense sector. This
sector realized early on that they needed the same business capabilities
across unstructured and semi-structured documents as they had in their
relational database systems.

387 Chapter 32: Hybrid NoSQL Database Products

A key requirement in defense is security of the data. I cover this functionality
in detail in Chapter 17, but I include a summary here for convenience.

MarkLogic provides granular access to information by supporting the
following functionality at the document level:

▶✓ Authentication: Checks users to be sure they’re who they say they are.
This is done either in a database or through an external mechanism like
LDAP or Kerberos.

▶✓ Permissions: A list of roles with whether they have read or update
access to documents, URIs (directories), and code modules.

▶✓ Authorization through role based access control: Users are assigned
roles, and these roles are associated with permissions at the document
level. User roles can be set in MarkLogic Server or read from an external
directory server through LDAP.

▶✓ Compartment security: Enforces AND logic on roles rather than OR
logic. Basically, a user must have all roles attached to a named security
compartment in order to have that permission on a document, rather
than just one role with that permission. This role logic mode is useful
for combining citizenship, job function, organization, and mission
involvement criteria required for any user to access information.

These permissions are indexed against the document like any other term list
in the internal workings of the MarkLogic Server search engine. This makes
permission checking just as fast as any other search lookup, and just as
scalable.

MarkLogic Server is also used in security accredited systems at a very high
level in defense. It’s also the only NoSQL database to achieve independent
accreditation through the NIAP Common Criteria at EAL 2. This is an industry
standard, recognized throughout NATO countries, that states that a product
and its development process has been checked so that it complies to
industry best practice for producing systems used in secure environments.

Evaluating MarkLogic
A key advantage of MarkLogic is that you can use the same database cluster
for both types of operations. In the relational world, you have two separate
databases, with different structures (schema) — each requiring timed pushes
to an alternatives database warehouse structure, typically only updated
every 24 hours.

388 Part VII: Hybrid NoSQL Databases

MarkLogic Server provides a wide range of functionality spanning document
ingestion, conversion, alerting, search, exploration, denormalization,
aggregation, and analytics functions. It does so in a commercial product with
strong support for open W3C standards across the document, search, and
semantic areas of functionality.

As a hybrid NoSQL database MarkLogic Server spans several NoSQL areas —
document management, search, and storing triples. MarkLogic Server also
supports fast in memory data aggregate operations, and access to its data
from legacy relational, SQL query based, Business Intelligence (BI) tools.

If you need a wide variety of functionality spanning a single or combined
areas within document, search and triple store capabilities then you should
consider MarkLogic Server.

MarkLogic
In This Chapter

▶▶ Evaluating MarkLogic Server as a technology

▶▶ Getting support from MarkLogic Corporation

M
arkLogic Server functionality ranges from simple document storage,
to search, to semantic triple store capabilities. Document lifecycle is

supported through creation, conversion, entity extraction, alerting, search,
content processing, storage tiering, and disposition.

Often the difficulty in fully understanding MarkLogic Server relates to which
areas of functionality are relevant for which business solutions. It’s easy to
become overwhelmed by the science and list of functionality. So, you need
to focus on the areas that are likely to provide you with the most value, both
in the short-term and in the long-term as your NoSQL installation (inevitably)
expands.

In this chapter, I discuss the key areas of technology within MarkLogic
Server, and how it provides a comprehensive hybrid NoSQL database.

Understanding MarkLogic Server
MarkLogic Server is a single product that serves three main areas:

▶✓ Document NoSQL database: Persisting data and providing consistent
views of data, this database stores and provides access to your JSON,
XML, text, or binary documents.

▶✓ Search: Provides content and/or semantic search, including full text,
range (greater than, less than) and geospatial.

▶✓ Application services: Provides access to functionality through the REST
API and programming language wrappers, and provides high-level APIs
(for example, a Google-like text string search grammar) for end users.

Chapter 33

390 Part VII: Hybrid NoSQL Databases

MarkLogic Server is the only product mentioned in each of the Gartner Magic
Quadrants for enterprise search, operational database management systems,
and data warehouse systems. MarkLogic Server is also mentioned as a leader
for NoSQL databases in the Forrester Wave for NoSQL.

Universal Indexing
MarkLogic Server includes a universal index of all content. All text, XML, and
JSON document content are indexed for their structure, the elements and
attributes present, and their values. The universal index also includes full
text indexing with many options for including indexes for specific cases, such
as 2 (Ad*) and 3 (Ada*) character wildcards.

This universal index is MarkLogic’s secret sauce. It’s what allows you to load
your content into the database without needing to tell MarkLogic how that
data is structured before loading it.

You load the data “as-is,” and the structure, value, and text queries can
immediately be used to search and explore your data. Later on, you can add
specific range indexes for your application needs.

MarkLogic Server can store binary documents efficiently, but the universal
index doesn’t automatically process them for text searching. To do that, you
need to enable one or more of the Content Processing Framework’s (CPF)
content filtering pipelines.

CPF moves documents through predefined states. It’s basically a finite-state
automata. Various pipelines are available, including for converting Word
documents to Docbook XML and for extracting text from PDF files.

Over 200 binary file formats are supported for extracting text, ranging
from office formats to photos (extracting metadata about the camera, for
example), and to email and other formats.

The universal index allows very fast resolution of text query terms.
Each word is stored in a reverse index. Instead of saying, “Look through all
documents and list their words — now, which ones include ‘Fred’?” you say,
“Store all words in every document, and keep a list of document IDs for
each word.”

This term list makes search engine lookups very fast. Say that you have a
complex “and” query of 200 terms. And queries are where all terms must
match a document in order for it to be included in the results.

391 Chapter 33: MarkLogic

Rather than churn through the documents (boring!), you fetch the list of
terms and perform a simple (fast!) intersection of the lists. The resulting
shorter result set includes all documents that match your whole query!
Simple.

MarkLogic uses its indexes for document retrieval, search, and sorting opera-
tions. Rather than have a document database with its own indexes and a sepa-
rate search engine with its indexes — some of which will be duplicated — you
have a single set of indexes.

Range indexing and aggregate queries
Often you don’t need to index the exact values of elements and attributes,
or words and phrases. Instead, you need to perform a range operation like
these:

▶✓ Find me all documents updated in the last week.

▶✓ List all articles published in August 2009.

▶✓ List all employees who are between 5 feet and 6 feet tall.

▶✓ List all types of cheese with a Wendy Rating greater than three stars.

My wife, Wendy, loves cheese!

These are all queries that fall before or after a single value, or that lie
between two values — a value range.

MarkLogic stores range indexes similarly to those in the universal index,
except that the values are stored in order, which makes finding lists of
matching documents even faster.

Rather than scanning the entire index for all values and checking that they
are between the two limits of your range query, MarkLogic finds the lower
limit value, then the upper limit value, then aggregates the document IDs of
every list of terms in between, which results in much faster search
resolution.

These indexes are also cached in memory. They can be combined with
structure, value, and term queries in a single index resolution — that is, one
hit on the indexes.

Each range index obviously has its own type. All the basic XML types are
supported — integers, positive integers, W3C dates and date-times, floating
point numbers, and so on.

392 Part VII: Hybrid NoSQL Databases

There are also two types of special range indexes. The first is a geospatial
index. Rather than index a set of single values, this indexes two — one for
longitude another for latitude. You are, in effect, indexing a 2D plane, which
also makes geospatial searches fast.

MarkLogic Server supports the World Geodetic System 1984 (WGS84)
standard for longitude and latitude, and considers the uneven curvature of
the Earth. Various operations are supported, including basic point and radius
and bounding box, and complex polygon searches. MarkLogic also has an
optional license for polygon-polygon intersection and other advanced
geospatial operations, although most customers outside of the defense
industry rarely use it.

Range indexes aren’t just used for searching, though. They are key to
performing fast aggregation functions. MarkLogic Server supports several
of these:

▶✓ Count (document or fragment frequency)

▶✓ Sum

▶✓ Maximum and minimum values

▶✓ Correlation

▶✓ Mean and median averages

▶✓ Standard deviation, variance and co-variance (including population
functions)

▶✓ Custom aggregate functions through creating your own user-defined
functions (UDFs) in C++

Combining content and
semantic technologies
A key example of combined content and semantic search is around document
provenance. Say that you’re a publisher and you find a mistake in a published
article. This mistake is in regard to incorrect experimental results around a
specific scientific term, making the proof of a scientific theory questionable.

This scientific theory claims that if your author’s belly becomes any larger, it
will start to have its own micro climate, called the Adamosphere. As you can
guess, the results of the article are suspect. (I’m slim, honest!)

393 Chapter 33: MarkLogic

You could do a content search to pull back all documents with the term
Adamosphere, but you’d spend ages checking to see if the mistake is
referenced in the article. Likewise, you could find all documents that refer to
the article, but then you’d have to manually find just those that mention the
specific term.

The World Wide Web Consortium’s (W3C) Provenance Ontology could help
you here. Say that, with every newly published document, you create a set of
triples to indicate that a new document is a derivative work or refers to a list
of other documents.

You could save a lot of time by using the SPARQL query language to search
all references; then you could use the resulting list of documents and do a
content search to find the exact documents that need to be corrected.

It’s also possible to do this combined search in a single call to MarkLogic via
its XQuery API, thereby executing a search that includes a SPARQL term. This
assumes the triples are embedded within the document, though, because
such a query uses search index resolution at the document level.

Adding Hadoop support
MarkLogic supports various technologies for storage, including local disk
(SSD and spinning), shared disk (NAS, SAN) and cloud (HDFS, Amazon EBS,
and Amazon S3).

MarkLogic also supports tiering data automatically on the fly without any
downtime or transactional inconsistency. You can use any range index in a
rule to define when data is moved between tiers.

Doing so enables you to use, for example, a fast local disk for the last 90 days
of trades, a shared and slower disk (say a NAS) for trades up to one year, and
HDFS as an inexpensive albeit slower storage layer for older information.

Using MarkLogic with HDFS has some advantages over using the HBase
NoSQL database with HDFS. First, the indexes stored on HDFS are also
cached in RAM, so you may avoid a remote HDFS fetch penalty when
querying data held on HDFS.

MarkLogic Server also has a map/reduce connector. This enables map reduce
jobs to call data held in MarkLogic Server (whatever the storage mechanism).
This option exposes current inflight data to your map reduce analyses.

394 Part VII: Hybrid NoSQL Databases

These map/reduce jobs are fast, too, because you can use MarkLogic Search
to reduce the amount of data operated on in your map/reduce job, rather
than churning through all the stored data just in case it’s relevant.

MarkLogic HDFS forests (a storage directory, akin to a shard — many forests
form a database) can also be used as an archive format. You can take these
forests offline and move them to a tape tier, or they can be kept in HDFS but
not updated by MarkLogic. This reduces the number of forests the MarkLogic
tier is managing.

MarkLogic provides a JAR file for its proprietary storage format so that map/
reduce jobs — outside of MarkLogic — can access the data held in these
offline forests. No need to reattach to MarkLogic before accessing the data in
them, or indeed the index values!

Replication on intermittent networks
Not all systems can rely on a constant connection to their networks. This
is particularly true in the defense industry’s working environment — for
example, forward operating bases with limited satellite communications,
naval vessels, or even Special Forces soldiers with laptops in the middle of
nowhere. Before these operators are detached, they want to search for and
replicate useful information to their laptops or base portable servers.

Replication configurations of this kind aren’t entire replicas of a whole data
center like traditional replication is. Instead, it’s a subset of data specified by
a query, a collection, or a directory of information. You can prioritize these
datasets for replication. Doing so is particularly useful if you’ve added
information over time.

However, returning to the military scenario, an operator may have only a
brief window of time to connect to a higher echelon of command. During this
time, the operator needs to replicate high-priority items first, followed by
lower-priority items.

This is where query-based, flexible replication comes in, because it allows
users to specify and prioritize multiple replication datasets.

Ensuring data integrity
MarkLogic Server is built as an ACID-compliant, fully consistent database
with data durability guarantees. Making a change in MarkLogic Server

395 Chapter 33: MarkLogic

updates all available replicas within the transactional boundary, including all
search indexes, which provides entirely accurate search results.

MarkLogic Server takes this ACID compliance one step further and
guarantees fully serializable transactions. I discuss fully serializable
transactions in Chapter 1. Fully serializable means that a long-running
transaction sees the database’s state at the point in time when the query
started. Even if a short transaction updates information or deletes it, this
long-running transaction still sees the database state at the point in time
when the transaction started. This approach allows for repeatable reads
within the same transaction.

MarkLogic Server supports multiversion concurrency control (MVCC). I discuss
MVCC in Chapter 2. MVCC is an internal database versioning mechanism that
provides for very high write and update rates, while maintaining access to
existing information for reads (that is, without blocking the information until
the writes are finished).

MarkLogic Server also uses an in-memory stand. A stand is a storage area
within a forest, which is a MarkLogic term for a shard. There are many stands
within a forest, which is the unit of partitioning in MarkLogic Server. This
means all writes happen in memory with only the transaction log being
written to disk in case of system failure. This provides ACID consistency
guarantees while ensuring fast data ingest and query speeds.

Compartmentalizing information
MarkLogic Server’s universal index has a hidden index for document
security permissions. This indexed list of permissions is always consulted by
MarkLogic Server for all database read and search operations, ensuring that
data doesn’t leak to those without permission to access it.

MarkLogic Server provides both classic role based access control (RBAC) and
compartmentalization — that is restricting access to a group of people with a
very specific set of roles.

A typical document using standard RBAC lists the roles that have permission
to read a document. A user with any one of those roles will have access to a
document.

However, if one or more document permission roles belong to a named
compartment, the user must have all those roles in order to read the
document — this role check uses AND logic. For example, this approach is
particularly useful if you want to give access to information only to users

396 Part VII: Hybrid NoSQL Databases

with all the following roles: the UK role in the Citizenship compartment, the
Senior Analyst role in the Job Title compartment, and the Chastise role in the
Operation compartment.

MarkLogic’s document transformation functionality (using XSLT, XQuery,
or JavaScript transform modules) also provides a way to proactively redact
parts of a document upon request or search. This approach is useful in
situations where you want to provide access to a summary but not to the raw
information. You can also use this functionality during flexible replication to
transform data before sending to or receiving from another MarkLogic
cluster. Using transforms on flexible replication is therefore a good way
to move some information from a high security system to a lower security
system (such an information movement system is called a Guard in the
defense industry).

For more on the inner workings of MarkLogic, go to developer.marklogic.com
and check out Jason Hunter’s paper entitled, “Inside MarkLogic Server,”
which you can download at no cost.

MarkLogic Corporation
MarkLogic Corporation is the commercial company behind MarkLogic Server —
and my employer! Headquartered in San Carlos south of San Francisco,
California, MarkLogic has worldwide field offices, support, sales, consulting,
and engineering staff.

MarkLogic Corporation is, by revenue, the largest NoSQL company,
according to the latest Wikibon analysis of the Hadoop and NoSQL database
markets.

Finding trained developers
A historic irony in MarkLogic is that, although it’s arguably the most
 open-standards-compliant NoSQL database — having been built on published
open standards, including XML, XPath, XQuery, and XSLT — a problem has
been finding trained developers for these languages, especially XQuery experts.

However, MarkLogic Server version 8 will embed a JavaScript engine in
MarkLogic Server. JavaScript support will provide all existing functionality
of the core server to server-side JavaScript developers. So, JavaScript
developers will be able to create database triggers, content processing
scripts, search alert handlers, and reusable libraries in the database.

http://developer.marklogic.com

397 Chapter 33: MarkLogic

JavaScript is the most commonly used scripting language available today.
Although it has limitations for processing XML, it’s very adept at providing an
easy-to-understand language for general scripting and JSON document
management functions.

Support for server-side JavaScript should go a long way in alleviating the
shortage of expert MarkLogic Server developers, and in reducing barriers to
adoption throughout the market.

Finding 24/7 support
MarkLogic Corporation provides 24/7 global support at customer sites. An
interesting thing about all MarkLogic support engineers is that they are
full-blown product engineers with access to the support code — they just
happen to work on the support team. This means they can often find and
suggest workarounds and fixes for system issues without having to wait for
product developers to wake up halfway around the world.

MarkLogic also provides free online training for its products. Custom courses
can be designed by its own developers. All presales personnel can deliver
one-day MarkLogic Foundation courses to instruct staff on how to install and
use MarkLogic Server. MarkLogic has also introduced a developer
certification program, with training pathways and certification tests.

MarkLogic’s Consulting Services team provides customers with expert
services, project management, and business analysts. During the early stages
of a new deployment, many customers particularly value this expertise,
 especially in terms of “sanity-checking” on decisions about sizing and
system design.

Using MarkLogic in the cloud
MarkLogic Server is available in traditional core-based license packs for
development (non-production) and perpetual licenses for cluster production
systems.

MarkLogic Server version 7 also introduced yearly term-based licensing and
a 99-cent per hour, per vCPU (Virtual CPU, which is like half a CPU processor
core) subscription option on Amazon Web Services.

You can also use MarkLogic perpetual and term licenses on public and
private cloud installations, which is useful because the 99-cent Amazon
option doesn’t include support or advanced options.

398 Part VII: Hybrid NoSQL Databases

MarkLogic’s term and perpetual licenses are available in two models:

▶✓ Essential Enterprise: This model is typically designed for applications. It
requires up to nine servers of 8 CPU cores each and has optional license
models for semantics and language packs.

▶✓ Global Enterprise: This model supports any number of servers in a
cluster; options include semantics, language packs, tiered storage, and
advanced geospatial alerting (including polygon-polygon intersection,
which is primarily used in defense solutions).

Even though they include a yearly maintenance charge, over time, the
perpetual licenses work out to be less expensive than the annual term
licenses, because the maintenance charge is less expensive than the annual
term license.

To compare the licensing options available, go to www.marklogic.com/
pricing.

http://www.marklogic.com/pricing
http://www.marklogic.com/pricing

Visit www.dummies.com for great Dummies content online.

The Part of Tens
Part VIII

http://www.dummies.com

In this part . . .
 ✓ Surpass RDBMS.

 ✓ Correct misunderstandings.

 ✓ Connect with the world.

 ✓ Visit www.dummies.com for great Dummies content
online.

http://www.dummies.com

Ten Advantages of NoSQL
over RDBMS

In This Chapter
▶▶ Saving development time

▶▶ Increasing flexibility

▶▶ Reducing cost

I
’ve said throughout this book that NoSQL databases are not a direct
replacement for an relational database management system (RDBMS). For

many data problems, though, NoSQL is a better match than an RDBMS.
I point out the most useful advantages in this chapter.

Less Need for ETL
NoSQL databases support storing data “as is.” Key‐value stores give you the
ability to store simple data structures, whereas document NoSQL databases
provide you with the ability to handle a range of flat or nested structures.

Most of the data flying between systems does so as a message. Typically, the
data takes one of these formats:

▶✓ A binary object to be passed through a set of layers

▶✓ An XML document

▶✓ A JSON document

Being able to handle these formats natively in a range of NoSQL databases
lessens the amount of code you have to convert from the source data format

Chapter 34

402 Part VIII: The Part of Tens

to the format that needs storing. This is called extract, transform, and
load (ETL).

Using this approach, you greatly reduce the amount of code required to
start using a NoSQL database. Moreover, because you don’t have to pay for
updates to this “plumbing” code, ongoing maintenance costs are significantly
decreased.

Support for Unstructured Text
The vast majority of data in enterprise systems is unstructured. Many NoSQL
databases can handle indexing of unstructured text either as a native
feature (MarkLogic Server) or an integrated set of services including Solr or
Elasticsearch.

Being able to manage unstructured text greatly increases information and
can help organizations make better decisions. For example, advanced uses
include support for multiple languages with facetted search, snippet
functionality, and word‐stemming support. Advanced features also include
support for dictionaries and thesauri.

Furthermore, using search alert actions on data ingest, you can extract
named entities from directories such as those listing people, places, and
organizations, which allows text data to be better categorized, tagged, and
searched.

Entity enrichment services such as SmartLogic, OpenCalais, NetOwl, and
TEMIS Luxid that combine extracted information with other information
provide a rich interleaved information web and enhance efficient analysis
and use.

Ability to Handle Change over Time
Because of the schema agnostic nature of NoSQL databases, they’re very
capable of managing change — you don’t have to rewrite ETL routines if the
XML message structure between systems changes.

Some NoSQL databases take this a step further and provide a universal
index for the structure, values, and text found in information. Microsoft
DocumentDB and MarkLogic Server both provide this capability.

403 Chapter 34: Ten Advantages of NoSQL over RDBMS

If a document structure changes, these indexes allow organizations to use
the information immediately, rather than having to wait for several months
before you can test and rewrite systems.

No Reliance on SQL Magic
Structured Query Language (SQL) is the predominant language used to query
relational database management systems. Being able to structure queries
so that they perform well has over the years become a thorny art. Complex
multi‐table joins are not easy to write from memory.

Although several NoSQL databases support SQL access, they do so for
compatibility with existing applications such as business intelligence (BI)
tools. NoSQL databases support their own access languages that can
interpret the data being stored, rather than require a relational model within
the underlying database.

This more developer‐centric mentality to the design of databases and their
access application programming interfaces (API) are the reason NoSQL
databases have become very popular among application developers.

Application developers don’t need to know the inner workings and vagaries
of databases before using them. NoSQL databases empower developers to
work on what is required in the applications instead of trying to force
relational databases to do what is required.

Ability to Scale Horizontally on
Commodity Hardware

NoSQL databases handle partitioning (sharding) of a database across several
servers. So, if your data storage requirements grow too much, you can
continue to add inexpensive servers and connect them to your database
cluster (horizontal scaling) making them work as a single data service.

Contrast this to the relational database world where you need to buy new,
more powerful and thus more expensive hardware to scale up (vertical
scaling). If you were to double the amount of data you store, you would easily
quadruple the cost of the hardware you need.

404 Part VIII: The Part of Tens

Providing durability and high availability of a NoSQL database by using
inexpensive hardware and storage is one of NoSQL’s major assets. Being able
to do so while providing generous scalability for many uses also doesn’t hurt!

Breadth of Functionality
Most relational databases support the same features but in a slightly
different way, so they are all similar.

NoSQL databases, in contrast, come in four core types: key‐value, columnar,
document, and triple stores. Within these types, you can find a database
to suit your particular (and peculiar!) needs. With so much choice, you’re
bound to find a NoSQL database that will solve your application woes.

Support for Multiple Data Structures
Many applications need simple object storage, whereas others require highly
complex and interrelated structure storage. NoSQL databases provide
support for a range of data structures.

▶✓ Simple binary values, lists, maps, and strings can be handled at high
speed in key‐value stores.

▶✓ Related information values can be grouped in column families within
Bigtable clones.

▶✓ Highly complex parent‐child hierarchal structures can be managed
within document databases.

▶✓ A web of interrelated information can be described flexibly and related
in triple and graph stores.

Vendor Choice
The NoSQL industry is awash with databases, though many have been
around for less than ten years. For example, IBM, Microsoft, and Oracle only
recently dipped their toes into this market. Consequently, many vendors are
targeting particular audiences with their own brew of innovation.

405 Chapter 34: Ten Advantages of NoSQL over RDBMS

Open‐source variants are available for most NoSQL databases, which enables
companies to explore and start using NoSQL databases at minimal risk.
These companies can then take their new methods to a production platform
by using enterprise offerings.

No Legacy Code
Because they are so new, NoSQL databases don’t have legacy code, which
means they don’t need to provide support for old hardware platforms or
keep strange and infrequently used functionality updated.

NoSQL databases enjoy a quick pace in terms of development and
maturation. New features are released all the time, and new and existing
features are updated frequently (so NoSQL vendors don’t need to maintain a
very large code base). In fact, new major releases occur annually rather than
every three to five years.

Executing Code Next to the Data
NoSQL databases were created in the era of Hadoop. Hadoop’s highly
distributed file‐system (HDFS) and batch‐processing environment (Map/
Reduce) signaled changes in the way data is stored, queried, and processed.

Queries and processing work now pass to several servers, which provides
high levels of parallelization for both ingest and query workloads. Being able
to calculate aggregations next to the data has also become the norm.

You no longer need a separate data warehouse system that is updated
overnight. With fast aggregations and query handling, analysis is passed to
the database for execution next to the data, which means you don’t have to
ship a lot of data around a network to achieve locally combined analysis.

406 Part VIII: The Part of Tens

Ten NoSQL Misconceptions
In This Chapter

▶▶ Blowing away misinformation

▶▶ Bringing clear facts

A
s I mention in earlier chapters, NoSQL is a rapidly evolving market
with products undergoing constant change. Having so many NoSQL

 databases available is a double-edged sword. With so many differences out
there, common misconceptions form and become lore. I highlight the most
common misconceptions in this chapter.

NoSQL Is a Single Type of Database
NoSQL is a catch-all term for a variety of database types that exhibit common
architectural approaches. These databases aren’t intended for related table,
rows, and columns data. They are highly distributed, which means data is
spread across several servers, and they’re tolerant of data structure changes
(that is, they’re schema agnostic).

You can find several types of databases under the NoSQL banner:

▶✓ Key-value stores provide easy and fast storage of simple data through
use of a key.

▶✓ Column stores provide support for very wide tables but not for
relationships between tables.

▶✓ Document stores support JSON and/or XML hierarchical structures.

▶✓ Triple (and graph) stores provide the same flexibility to relationships
that document NoSQL databases provide to record structures.

Chapter 35

408 Part VIII: The Part of Tens

NoSQL Databases Aren’t
ACID-Compliant

ACID compliance is the gold standard of data safety. By ensuring that
operations are atomic, views of data are consistent, operations don’t
interfere with each other, and data is durably saved to disk, you protect your
data. People often think NoSQL databases do not provide ACID compliance.

Many NoSQL databases provide full ACID support across clusters. MarkLogic
Server, OrientDB, Aerospike, and Hypertable are all fully ACID-compliant,
providing either fully serializable or read-commit ACID compliance.

Many other NoSQL databases can provide ACID-like consistency by using
sensible settings in client code. This typically involves a Quorum or All
setting for both read and write operations. These databases include Riak,
MongoDB, and Microsoft DocumentDB.

NoSQL Databases Lose Data
This misconception occurs when NoSQL databases are used incorrectly or
when less mature products are used. Some NoSQL products are less mature,
having only been around for fewer than five years, so they haven’t developed
data loss prevention features yet.

The guarantee of durability in ACID compliance is vital for enterprise
systems, and ACID-compliant NoSQL databases provide this guarantee.
Therefore, you’re assured that no data is lost once the database confirms the
data is saved.

Furthermore, eventually consistent databases can also provide data
durability by careful use of a write ahead logging (WAL). Many NoSQL
databases provide this capability.

409 Chapter 35: Ten NoSQL Misconceptions

NoSQL Databases Aren’t Ready for
Mission-Critical Enterprise Applications

On the contrary, many organizations are using NoSQL databases for
mission-critical workloads, including the following:

▶✓ Defense and intelligence agencies storing and sharing information

▶✓ Media companies storing all their digital assets for publication and
purchasing in NoSQL databases

▶✓ Media companies providing searchable metadata catalogs for their
video and audio media

▶✓ Banks using NoSQL databases as primary trade stores or back office
anti-fraud and risk-assessment systems

▶✓ Government agencies using NoSQL databases as the primary back ends
for their health care systems

These are not small systems or simple caches for relational systems. They
are cases for which NoSQL is well suited. Of course, some NoSQL databases
are more ready for enterprise systems than others, which is why I wrote
this book!

NoSQL Databases Aren’t Secure
Not so! Many NoSQL databases now provide record-level and even data-item-
level (cell) security. Microsoft DocumentDB, MarkLogic Server, OrientDB,
AllegroGraph, and Accumulo all provide fine-grained role-based access
 control (RBAC) to access records stored within these NoSQL databases.

Many NoSQL databases provide integration to existing Lightweight Directory
Access Protocol (LDAP), Kerberos, and certificate-based security systems.
Support for encryption over the wire in all client-to-server communications,
and internode communications within a cluster, is also provided by these
databases.

Some NoSQL databases are even accredited and used by defense
organizations. Accumulo came from a National Security Agency (NSA)
project. MarkLogic Server is independently accredited under the U.S.
Department of Defense’s (DoD) Common Criteria certification.

Not all NoSQL databases provide this functionality, though I expect that the
majority of them will in the future. For now, you have choices that enable you
to secure information.

410 Part VIII: The Part of Tens

All NoSQL Databases Are Open-Source
There are numerous open-source databases in the NoSQL world. Many
commercial companies have attempted to replicate Red Hat’s success by
offering a subset of their products’ capabilities to be used for free under an
open-source license.

Many of these companies’ platforms don’t support open standards, though.
Also, most of the code is contributed by those companies. Limited features
are provided in the base version by these “open-source” companies.

There are many fully commercial companies in the NoSQL space. Microsoft,
MarkLogic, Franz (Allegrograph), Hypertable, and Aerospike are all great
commercial companies offering NoSQL databases, and they’re being very
successful doing so.

NoSQL Databases Are Only for
Web 2.0 Applications

Their use in new web and mobile application stacks have made NoSQL
databases popular. They’re easy to use from the start, and many operate
under a for-free license agreement, making them attractive to startups.

Social media applications commonly use NoSQL databases. Social media
applications bring in web published data and aggregate it together in order to
discover valuable information.

The vast majority of use cases, though, aren’t Web 2.0-type applications.
They’re the same applications that have been around a long time, but where
relational databases no longer provide an adequate solution. This includes
scenarios where the data being stored is very sparse, with many blank (null)
values, or where there is frequent change over time of the structure of the
information being stored.

NoSQL Is Just Hype
Microsoft, Oracle, and IBM each have their own NoSQL database on the
market right now. Although susceptible to bluster, these companies invest in
technology only when they see a profit.

411 Chapter 35: Ten NoSQL Misconceptions

Established players like MarkLogic with years on the market have also
proved that NoSQL technology isn’t just hype and is valuable to a range of
real-world customers across industries in mission-critical systems.

NoSQL Developers Don’t Understand
How to Use an RDBMS

There is a common misconception (by evil relational database application
developers; you know who you are!) that NoSQL is used because developers
don’t have a grasp on the fundamentals needed to configure relational
databases so that they perform well.

This is completely incorrect. NoSQL comprises a range of approaches
brought together to answer fundamentally different data problems than a
relational database management system (RDBMS) solves.

If you’re comparing an RDBMS to a NoSQL database, then you’re comparing
apples to motorbikes! NoSQL databases will not replace RDBMS. They are
intended for data that’s structured fundamentally different, as well as for
different data problems.

Updated RDBMS Technology Will
Remove the Need for NoSQL

Many of the highly distributed approaches of NoSQL are being blended with
RDBMS technology, which has resulted in the emergence of many NewSQL
databases.

Although NewSQL is helping to deal with NoSQL developers’ criticisms of
RDBMS technology, NewSQL is organized around the same data structures as
an RDBMS is.

NoSQL databases are for different data problems, with different data
structures and use cases.

412 Part VIII: The Part of Tens

Ten Reasons Developers
Love NoSQL

In This Chapter
▶▶ Saving time

▶▶ Saving money

▶▶ Saving headaches

T
he popularity of NoSQL databases arises from the sheer number of
developers who are excited about using them. Developers see NoSQL

as an enabling and liberating technology. Unlike the traditional relational
approach, NoSQL gives you a way to work with data that is closer to the
application than the relational data model.

Developers adopt NoSQL technologies for many reasons, some of which are
highlighted in this chapter.

No Need to Write SQL
Writing Structured Query Language (SQL) — and doing it well — is the bane
of many enterprise developers’ existence. This pain is because writing very
complex queries with multiple joins across related tables isn’t easy to do.
Moreover, in light of regular database changes over time, maintaining
complex query code is a job in and of itself.

Enterprise developers have invented a number of ways to avoid writing
SQL. One of the most popular ways is through the use of the Object-Relational
Mapping (ORM) library, Hibernate. Hibernate takes a configuration file and
one or more objects and abstracts away the nasty SQL so that developers
don’t have to use it. This comes at a cost in terms of performance, of course,
and doesn’t solve all query use cases. Sometimes you have to fall back to SQL.

Chapter 36

414 Part VIII: The Part of Tens

NoSQL databases provide their own query languages, which are tuned to the
way the data is managed by the database and to the operations that
developers most often perform. This approach provides a simpler query
mechanism than nested SQL statements do.

Some NoSQL databases also provide an SQL interface to query NoSQL
databases, in case developers can’t break the SQL habit!

Don’t Have to Spend Months
Designing Schema

Schema agnosticism in NoSQL databases allows you to load data quickly
without having to create a relational schema over a period of months. You
don’t have to analyze up front every single data item you need to store in
NoSQL, as you do with an RDBMS.

Less Data Transform Code (ETL)
A common problem with relational databases that comes from having an up-
front schema design is that you have to force nonrelational data into rows
and columns. This shredding mechanism, along with other code methods
that preprocess information for storage and post-process it for retrieval is
referred to as extract, transform, and load (ETL).

This code forces developers to take their nice shiny object and document
models and write code to store every last element. Doing so is nasty and also
leads to highly skilled developers writing poor performing and uninteresting
plumbing code.

NoSQL databases allow you to keep the stored data structures much closer
to their original form. Data flowing in between systems is typically in an XML
format, whereas when it comes to web applications, data is formatted in a
JSON document. Being able to natively store, manage, and search JSON is a
huge benefit to application developers.

415 Chapter 36: Ten Reasons Developers Love NoSQL

Easier to Maintain Code
All the code that you write must be maintained. By keeping database
structures close to the application code’s data formats, you minimize the
amount of code, which in turn minimizes the maintenance of code and
regression testing that you need to do over time.

When data structures change on an RDBMS, you have to review all SQL code
that may use the changed tables. In NoSQL, you simply add support for the
new elements, or just ignore them! Much easier to maintain, thanks to the
schema-agnostic nature of NoSQL databases.

Execute Code Close to the Data
for the Best Performance

An RDBMS provides stored procedures for executing code on a database
server. This code is executed in one place. This useful approach is the basis
of many analytical and complex data-management applications.

Many NoSQL databases allow this type of code to be distributed across all
servers that store relevant data, which allows for greater parallelization of the
workload. This approach is especially important for large ingestions of data
that need processing and for complex aggregation analytics at query time.

User-defined functions (UDFs) and server-side scripting in a variety of NoSQL
databases provide this distributed capability. UDFs are similar to Hadoop’s
MapReduce capability, except UDFs can happen in real time rather than
in batch mode and doesn’t require the same outlay in infrastructure that
Hadoop plus a database would require.

Lots of Open-Source Options
In many enterprise software areas, the choice of a solid open-source solution
is lacking. Only one or two widespread options may exist. Availability of skills
and local in-country support are even bigger problems.

However, there are a myriad of open-source NoSQL databases. Many of these
have full-fledged commercial companies that offer support and have offices
globally. So, if you do need support or more features, you can move to those
versions eventually.

416 Part VIII: The Part of Tens

This reduces the cost of adopting NoSQL technology and allows you to “try
before you buy.” This availability of open-source alternatives has caused
commercial companies in the NoSQL space to offer free but well-featured
versions of their software or to offer special startup licenses to small
organizations.

Easy to Scale
You don’t need to get a costly DBA to spend days refactoring SQL and
creating materialized views in order to eek every inch of performance out
of NoSQL systems.

Key-value stores can handle hundreds of thousands of operations per server.
All types of NoSQL can scale horizontally across relatively cheap commodity
servers. So, it’s much easier to scale your database cluster with NoSQL than
with traditional relational databases.

In addition, because of their ability to scale, NoSQL databases also fit well
into public and private clouds. NoSQL databases are designed to be flexible
and expand and contract as the uses for your application change. This
capability is often called elasticity.

Eventual Consistency Data Model
Although I believe that mission-critical cases require ACID compliance, not
every application needs to do so. Being able to relax consistency across very
large clusters can be useful for some applications.

NoSQL databases allow you to relax these constraints or to mix and match
strong consistency and weak consistency in the same database, for different
record types.

Esoteric Language Support
Pretty much all databases support the main programming languages such
as Java and C# .NET. Many databases support the likes of PHP, Python, and
Ruby on Rails.

417 Chapter 36: Ten Reasons Developers Love NoSQL

NoSQL has a flourishing set of language drivers for an even wider range of
programming languages. I’ve counted more than 34 different programming
languages and platforms that are supported by NoSQL databases. If your
organization has a domain-specific language, you may well find support for it
in a NoSQL database.

JavaScript End-to-End
JavaScript use has exploded in recent years. It’s a convenient scripting
language both on the web and, thanks to Node.js, on the server-side.

Many NoSQL databases now support full end-to-end JavaScript development.
This means your organization can now use the same pool of programming
language skills to craft web applications and middle tier data APIs and
business logic, as well as handle back-end database triggers and
MapReduce-based analytical processing next to the data.

As a result, in comparison to other database technologies, the total cost of
ownership (TCO) of NoSQL is lower.

418 Part VIII: The Part of Tens

Index

• A •
ABAC (attribute-based access control),

82–84
abstraction, 9
acceptance testing, 92
access control

attribute-based, 82–84
compartment security, 81–82
external authentication, 85–86
Identity and Access Management, 84–85
MarkLogic, 386–387
role-based, 80–81, 181
Single Sign-On, 85–86

access groups, 159
Accumulo

aggregating data, 162
block compression support, 150
Bloom filter support, 151
cell-level security, 182–183
history of NoSQL, 10
locality groups, 159
overview, 183–184
support for, 161

ACID (Atomic, Consistent, Isolation, Durable)
Aerospike support, 122
ArangoDB support, 298
BASE versus, 45
Bigtables, 185–186
document stores, 219
for key-value stores, 99
Neo4j support, 306
NoSQL support, 17–18, 408
Oracle NoSQL and, 126
OrientDB support, 298
overview, 42–43
timeliness of index updates, 63
triple stores, 276–277

ACORD (insurance policies), 60

active anti-entropy, 129
Active Directory, 86
active-active clustering, 197–198
advertisements, 112
Aerospike

ACID support, 99
context-aware computing, 121–122
memory usage prioritization, 107
overview, 122–123
slave support, 119

Affero General Public License (AGPL), 251
aggregate databases, 36
aggregate functions, 31, 50, 70
aggregating data, 162
AGPL (Affero General Public License), 251
alerting capabilities, 70, 324–326, 339–340
AllegroGraph

automatic indexing, 301
integrating graph store with document

store, 281
integrating with Solr and MongoDB,

303–304
JavaScript scripting, 302
overview, 304
security, 302–303
SPIN API, 301–302

Amazon
cataloguing similar to, 335–336
cloud environment from, 57–58
Dynamo paper, 10
founding of, 9
key-value stores and, 118
MongoDB support, 252, 255
NoSQL history, 1
Riak support, 137

amps, 245–246
analytics

aggregating data, 162
with Cassandra, 195
for enterprise search, 331–333

420 NoSQL For Dummies

AND Boolean logic, 320, 321
Annotation Query Language (AQL), 298
anti-patterns, 180
AOF (append only file), 120
Apache Cassandra. See Cassandra
Apache Lucene. See Lucene
Apache Stanbol, 69
Apache ZooKeeper, 343
API for enterprise search, 330–331
append only file (AOF), 120
AQL (Annotation Query Language), 298
ArangoDB, 278, 296, 298
article documents, 204
assertions, 284
Atomic, Consistent, Isolation, Durable.

See ACID
attribute-based access control (ABAC), 82–84
austere clusters, 217
authentication, 85–86, 387
Autonomy (HP), 347, 348–349
availability. See also HA

consistency and, 45–47
Dynamo paper, 10
enterprise application requirements, 19
key-value stores, 98–99

Avro schemas
Oracle NoSQL support, 127
strong typing using, 102
Voldermort support, 124

• B •
backward inferencing, 285–286
BASE (Basically Available, Soft State,

Eventual Consistency)
ACID versus, 45
defined, 42
overview, 44

Basho Technologies, 136–137
batch processing

Bigtables, 177–178
map/reduce, 54–55

Berkeley DB, 125–126
BI (business intelligence)

evaluating NoSQL options, 71
integrating technologies for, 53–54

big data, 172
Bigtables. See also Bigtables performance;

Bigtables scalability; names of specific
Bigtable clones

Accumulo, 183–184
active-active clustering, 154
adding features in hybrid NoSQL

databases, 385–386
batch processing, 177–178
binary values in, 143
Bloom filters, 175–176
Cassandra, 190–191
cell-level security, 182–183
clusters, 145–146
column families, 142–143
columnar data type and, 31
compartment security, 181–182
consistency, 185–186
denormalizing data, 146–147, 175
document stores versus, 202–204
fast insertion of data, 189
general discussion, 141
Google paper on, 1, 8, 156–157
HBase, 179
HDFS with, 176–177
high availability, 157–158
history of, 171–172
Hypertable, 186–187
locking data, 148
map/reduce for, 177–178
partitions, 144
relationships and, 142
reliability, 156–158
replication, 149, 190
role-based access control, 181
row keys, 142, 172–175
security, 180–181
sparse data in, 167–168
substituting key-value store with, 188–189
synchronizing clocks, 154–155
tablet servers, 148–149
timestamps in, 143
use cases, 167–170

Bigtables performance
C++ versus Java, 184
caching data, 150

421421 Index

compression, 150
filtering data, 151
indexes, 184–185

Bigtables scalability
aggregating data, 162
dynamic clusters, 163
indexing, 160–162
ingesting data in parallel, 159
in-memory caching, 159–160

binary data, 143
Binary JSON (BSON), 252
bins, 32
block compression, 150
Bloom filters, 151, 172, 175–176
Bonsai.io, 357
Boolean logic, 318, 320, 321
BPM (business process management),

222
Brewer, Eric, 46
BSON (Binary JSON), 252
business evaluation for NoSQL

adding needed features, 75–76
cloud environment, 77
international considerations, 76–77
obtaining value, 73
open-source versus commercial, 74–75
skillset requirements, 73
support, 73–74
vendor capabilities, 76

business intelligence. See BI
business process management

(BPM), 222

• C •
C++, 158, 184, 253
cache-based sharding, 314
caching

Bigtables performance, 150
in-memory, 107, 118
key-value store for, 114
Neo4j, 313
Oracle Coherence, 126
scaling Bigtables, 159–160

CAP (consistency, availability,
partitioning) theorem, 45–47

CAS (check-and-set), 43, 127
Cassandra

active-active clustering, 197–198
advantages of, 188
analytics with, 195
block compression support, 150
Bloom filter support, 151
clusters, 194
column name ordering in, 175
consistency, 194–195
defined, 2
fast insertion of data, 189
global replication, 190
history of NoSQL, 10
indexes, 195–196
as logging database, 54
monitoring, 197
null values and, 14
overview, 190–191
partitions and, 46
security, 196

Cassandra Query Language (CQL), 193
CC (Common Criteria), 87
cell-level security, 182–183
check-and-set (CAS), 43, 127
Chubby, 171
CLF (Combined log File), 355
clocks, synchronizing, 154–155
cloud environment

cluster scalability, 91
evaluating NoSQL options, 77
MarkLogic in, 397–398
MongoDB in, 254–255
NoSQL support for, 57–58
Riak in, 136–137

Cloudera, 179, 184
clusters

active-active clustering, 154, 197–198
avoiding discovery latency, 101
Bigtables, 145–146
Cassandra, 194
defined, 41
disaster recovery, 89
dynamic, 163
HDFS, 176–177
Neo4j, 313

422 NoSQL For Dummies

clusters (continued)
in OrientDB, 299
partitions and, 100
Redis support, 120
scalability, 91–92
shared-nothing, 44

code maintenance, 415
Coherence, 126, 234
collections, 39
column families, 142–143
column name ordering, 175
columnar data type. See also Bigtables

defined, 28
overview, 30–32
product listing for, 38

Combined log File (CLF), 355
combined queries, 280–281
comma separated values (CSV), 240
commodity hardware

advantages of, 145
defined, 8
NoSQL advantages, 403–404
NoSQL support for, 12, 16
scaling across, 65–67

Common Criteria (CC), 87
compaction, 150, 242
compartment security

for Bigtables, 181–182
for document stores, 244–245
for hybrid NoSQL databases, 387
for MarkLogic, 395–396
overview, 81–82

compiled programming languages,
158, 184

compound document pattern, 295
compound indexes, 250, 253
compression, 150
conflict resolution

in key-value stores, 103–104
read repair method, 129

connectors, 328
consistency

ACID overview, 42–43
availability and, 45–47
BASE overview, 44
Bigtables, 185–186

Cassandra, 194–195
choosing method, 45
document stores, 218–219, 241–242
Dynamo paper, 10
eventual consistency model, 25, 416
key-value stores, 98
Oracle NoSQL, 127
overview, 42
partitions and, 129
performance tradeoffs, 26
Riak, 130–131
speed versus, 248
split brain phenomenon and, 128
Voldermort, 124–125

consistency, availability, partitioning
(CAP) theorem, 45–47

Content Processing Framework (CPF), 223,
242, 390

context-aware computing, 121–122
co-occurrences, 331, 333
cookies, 113
coprocessors, 178
cost of hybrid NoSQL products, 364
Couchbase

changing data structures, 227
durability in, 216
as memcached replacement, 234
mobile synchronization, 235
overview, 235–236

CouchDB, 10
couch.io, 10
CPF (Content Processing Framework), 223,

242, 390
CQL (Cassandra Query Language), 193
CRM (customer relationship management), 28
CSV (comma separated values), 240
Culvert, 161
Cypher language, 305

• D •
DAML (DARPA Agent Markup Language), 291
DARPA (Defense Advanced Research

Projects Agency), 291
dashboarding, 54
data centers

423423 Index

active-active clustering, 154
disaster recovery site, 153
high availability, 157–158
reliability, 156–158
replication among, 217
synchronizing clocks, 154–155

data explosion, 7, 8
data farms, 39
data provenance, 272–273
data safety, 67–68
data store types. See also names of specific

data store types
columnar, 30–32
document stores, 36–37
graph stores, 33–36
key-value stores, 32–33
overview, 28–29
search engines and, 37
triple stores, 33–36

data types
in Aerospike, 123
Bigtables columns and, 184–185
Hypertable support for, 143
JSON, 135–136
in key-value stores, 102, 119

data warehouses, 53, 333
Database Change Protocol (DCP), 216
database management system (DBMS), 362
databases, defined, 39
DataStax, 163, 197
DBMS (database management system), 362
DBpedia, 283, 289
DCP (Database Change Protocol), 216
DDoS (distributed denial of service)

attacks, 107
debugging, 93–94
Defense Advanced Research Projects

Agency (DARPA), 291
delimited files, 60
denormalizing data

for Bigtables, 146–147, 175
defined, 15, 141
for document stores, 211–212, 231–232
query scalability and, 90

Department of Defense (DoD), 409
dictionaries, 323

Dijkstra’s algorithm, 310
directed graphs, 34, 270
disaster recovery. See DR
disaster recovery site, 153
disk replication, 41
distributability

HDFS, 176–177
Lucene, 342
of NoSQL, 12, 16
of RDBMS, 25

distributed denial of service (DDoS)
attacks, 107

document partitioning, 102
document stores. See also names of specific

document stores
aggregate functions for, 50
article documents, 204
Bigtables versus, 202–204
combining search engine with, 344–347
compressed representations on disk,

205–206
consistency, 218–219, 241–242
consistency versus speed, 248
Couchbase, 235–236
defined, 29
denormalizing data, 211–212, 231–232
DocumentDB, 239
durability, 215–216
FpML format, 204–205
generating triples from documents, 382–383
incoming streams, 229–230
indexes, 236, 253–254
in-memory caching, 234
as key-value stores, 208–209
managing changing data structures,

226–228
MarkLogic, 246–247, 347, 389
memcached layer, 234
mobile synchronization, 235
MongoDB, 249–250
overview, 36–37, 240
partial updates to documents, 209–210
product listing for, 38
publishing content, 221–224
related data, 230–231
replication for, 216–218

424 NoSQL For Dummies

document stores. (continued)
search engines and, 37
searching, 243–244
security, 244–246
sharding, 214–215
streaming changes, 210–211
supporting XML and JSON, 242–243
tree structures, 202–204
unstructured documents, 206–207, 225–226
using SQL with REST API, 237
web applications for, 247–248

documentation, 75
document-based partitioning, 129
DocumentDB

attachments in, 224
overview, 239
serializing .NET objects with, 238–239
universal index, 227, 236
using SQL with, 237

DoD (Department of Defense), 409
dotCloud, 255
DR (disaster recovery)

enterprise application requirements, 19, 373
evaluating NoSQL options, 89
for MongoDB, 255
replication for, 149
for Riak, 137
for triple stores, 278

Dropbox, 235
durability

for document stores, 215–216
enterprise application requirements, 79
in MarkLogic, 394–395
of NoSQL, 408
overview, 87–88

dynamic clusters, 163
Dynamite, 10
Dynamo paper

key-value stores and, 118
overview, 10

• E •
EAL2 (Evaluation Assurance Level 2), 246
ECM (enterprise content management),

222, 323, 363
e-commerce products search, 335–337

edges, 260
elasticity, 416
Elasticsearch

defined, 2
JSON universal indexing, 350
overview, 352, 354–355
scriptable querying, 350
support for, 357–358

ELK (Elasticsearch, Logstash, and Kibana)
stack, 350, 354

Endpoints, HBase, 178
enterprise applications. See also enterprise

applications using Bigtables; enterprise
applications using key-value stores

active-active clustering, 154
Aerospike, 122–123
aggregating data, 162
data safety, 371–372
durability, 79, 87–88
dynamic clusters, 163
high availability, 157–158, 372–373
high-security environments, 373–374
mission-critical features, 78
MongoDB support, 256
NoSQL support for, 18–20, 409
reliability, 156–158
security, 79
synchronizing clocks, 154–155
using hybrid NoSQL databases, 369–371
using triple stores, 276–277
vendor claims and, 78–79

enterprise applications using Bigtables
ingesting data in parallel, 159
in-memory caching, 159–160
log file analysis, 168–170

enterprise applications using key-value
stores

complex structures, 108–109
scaling, 105–107
simple structures, 108

enterprise content management (ECM),
222, 323, 363

enterprise data platform, 328
enterprise search

analytics for, 331–333
API for, 330–331
data searching, 338–339

425425 Index

e-commerce products, 335–337
Elasticsearch, 352, 354–355
GSA, 349
HP Autonomy, 348–349
IBM OmniFind, 349
Kibana, 355–356
Logstash, 355
overview, 327–328
security, 328–329
SharePoint, 348
user interfaces, 329–330

entity enrichment/extraction
defined, 24
evaluating NoSQL options, 69
storing documents in triple stores, 294
for unstructured documents, 225–226

ETL (extract, transform, and load), 72, 299,
364, 401–402, 414

Evaluation Assurance Level 2 (EAL2), 246
Evans, Eric, 10
eventual consistency model

defined, 25
for document stores, 219
NoSQL advantages, 416
Oracle NoSQL, 127
read repair method, 98
for replication, 216

Evernote, 235
exact match support, 167–168
Excel data, 21
exploration applications, 380
extending database, 71–72
Extensible Hypertext Markup Language

(XHTML), 204
Extensible Markup Language. See XML
Extensible Stylesheet Language (XSLT),

9, 224
external authentication, 85–86
extract, transform, and load (ETL), 72, 299,

364, 401–402, 414

• F •
Facebook, 10
faceted search navigation

aggregate functions and, 70
Amazon example, 69–70

defined, 62, 318, 322, 330
SolrCloud support, 344

failures, handling, 156–158
false positive pointers, 374
false positives, 329
FAST (Microsoft), 347, 348
fetch plan, 296
fields, 40
file buffer cache, 313
filtering data, 151
Financial products Markup Language.

See FpML
financial services, 115
flash databases, 30
flash storage, 121–123
flexibility, 14
flexible replication, 41, 218
FOAF (Friend of a Friend), 291
forced fsync flushing, 120
foreign key, 40
forests (MarkLogic), 242
forward inferencing, 285–286
FpML (Financial products Markup

Language)
defined, 22–23
in document stores, 204–205
use cases, 60

Franz, 304
Friend of a Friend (FOAF), 291
fsync flushing, 120
fully serializable, 395, 408

• G •
GEDCOM (Genealogical Data

Communication), 291
GeoNames, 283, 288
geospatial search, 336–337, 344
GFS (Google File System), 171, 176
global replication, 190
Google

Bigtable paper, 8, 156–157
Bigtables history, 171–172
ETL and, 365
founding of, 9
MongoDB support, 255
NoSQL history, 1

426 NoSQL For Dummies

Google (continued)
search engines overview, 321–322
semantic technologies, 367
TrueTime API, 155

Google File System (GFS), 171, 176
Google Search Appliance (GSA), 341, 349
grammar, search, 321, 330
graph stores. See also names of specific

graph stores; triple stores
adding metadata to relationships, 305
custom graph languages, 305–306
distributability of, 16
dynamically changing relationships, 25
named graphs, 268–269, 280
Neo4j, 306–307
optimizing for query speed, 305
overview, 33–36
product listing for, 38
queries in, 262–263
relationships in, 15, 263
scaling up versus out, 310–311
server setup approach, 277
sharding and, 276
triple stores versus, 263–264

GSA (Google Search Appliance), 341, 349
gzip compression, 150

• H •
HA (high availability)

Bigtables, 146, 157–158
Elasticsearch, 354
enterprise application requirements, 19,

372–373
evaluating NoSQL options, 88–89
support for, 16
triple stores, 277–278

Hadoop
Aerospike support, 122
batch processing with map/reduce,

54–55, 177–178
HDFS, 55–56
integrating key-value stores with, 134–135
MarkLogic support, 393–394

Hadoop Distributed File System. See HDFS

Hazelcast, 234, 298
HBase

aggregating data, 162
altering column definitions in, 13
block compression support, 150
Bloom filter support, 151
cluster example using, 145
coprocessors, 178
denormalizing data, 147
history of NoSQL, 10
locality groups, 159
overview, 179
tablet servers, 148

HDFS (Hadoop Distributed File System)
Bigtables history, 172
MarkLogic support, 393–394
overview, 55–56
scaling requirements, 158
store files in, 146
using with Bigtables, 176–177

Hibernate library, 9
high availability. See HA
high-performance cache (hpc), 313
high-security environments, 373–374
hinted handoff, 129, 194
history

Amazon Dynamo paper, 10
Bigtables, 171–172
commercial organization influence, 1
first meeting NoSQL, 9
Google Bigtable paper, 8
recent developments in NoSQL

movement, 11
second meeting NoSQL, 10

hops, 262, 263
horizontal scaling, 91, 403–404
HP Autonomy, 347, 348–349
hpc (high-performance cache), 313
hybrid NoSQL databases

advantages of, 363–367
Bigtables features in, 385–386
combined services in, 384–385
data safety, 371–372
defined, 29
enterprise applications, 369–371

427427 Index

general discussion, 361
generating triples from documents,

382–383
MarkLogic, 387–388, 389–390
OrientDB, 362, 381–382, 383
overview, 38
polyglot persistence and, 362–363
product listing for, 39
schema on read, 383
security, 386–387
use cases, 375–380

Hypertable
ACID support, 186
block compression support, 150
Bloom filter support, 151
data types and, 143
exact match support, 168
history of NoSQL, 10
overview, 186–187

• I •
IA (information assurance), 87
IBM OmniFind, 347, 349
IdAM (Identity and Access Management),

84–85
image store as use case, 60
impedance mismatch, 373
IndexDepot, 357
indexes

Aerospike secondary indexes, 123
AllegroGraph automatic indexing, 301
Bigtables performance, 184–185
Cassandra, 195–196
compound, 250, 253
for data stores, 323–324
document stores, 236
on keys, 173
Lucene, 342
MongoDB, 253–254
qualifier, 167
range, 52, 391–392
scaling Bigtables, 160–162
search engines, 319–320
secondary indexing, 129–130, 253

terminology, 41
timeliness of updates to, 62–63
universal, 52, 345, 350, 390–391

Indexisto, 357
inferencing, 285–286
information assurance (IA), 87
information explosion, 8
ingestion connectors, 72
inheritance, 81
in-memory caching

for document stores, 234
operating on data, 346
overview, 107
scaling Bigtables, 159–160
in Voldermort, 124

in-memory databases, 30, 106
integrating technologies

batch processing with map/reduce, 54–55
for business intelligence, 53–54
cloud environment, 57–58
extending database functionality, 71–72
HDFS, 55–56
map/reduce and key-value stores,

134–135
search engines, 52–53
semantic technologies, 56–57

international considerations, 76–77
interpreted programming languages, 158
inverse document frequency, 320
inverted indexes, 320

• J •
JAAS (Java Authentication and

Authorization Standard), 85
Java, 184, 253
Java Database Connectivity (JDBC), 71, 299
Java Native Interface (JNI), 124
Java Persistence API (JPA), 299
JavaScript, 302, 417
JavaScript Object Notation. See JSON
JDBC (Java Database Connectivity), 71, 299
JNI (Java Native Interface), 124
Journal, 159
Joyent Cloud, 255

428 NoSQL For Dummies

JPA (Java Persistence API), 299
JSON (JavaScript Object Notation)

Avro schemas, 102
document store overview, 29, 201
FpML format and, 205
MongoDB support, 252
as simple structure, 108
SQL syntax for, 224
supporting in document store, 242–243
universal index, 350
use cases, 60
using in Riak, 135–136
web applications and, 249

• K •
Kerberos authentication, 196, 244, 255
key-based sharding, 214
key-value stores. See also names of specific

key-value stores
ACID support, 99
Aerospike, 122–123
availability in, 98–99
Berkeley DB, 125–126
complex structures, 108–109
consistency in, 98
context-aware computing, 121–122
data modeling in, 119
data types in, 102
defined, 28
document stores as, 208–209
Dynamo paper and, 10, 118
general discussion, 97
handling partitions, 128–129
in-memory caching, 118
JSON data in, 135–136
key management, 99–100
layering over relational database, 123–125
map/reduce integration, 134–135
operations on data, 120
Oracle NoSQL, 126–128
overview, 32–33
partitioning, 100–101
product listing for, 38
Redis, 120
replication, 103, 118–119
Riak, 130–131

scaling, 105–107
secondary indexing, 129–130
selecting, 133
simple structures, 108
skillset requirements, 134
substituting with Bigtables, 188–189
use cases, 112–114
versioning in, 103–104
Voldermort, 124–125

Kibana, 354, 355–356

• L •
label-based access control (LBAC), 373
Last.fm, 10
latency, 101, 115
lazy loading, 382
LBAC (label-based access control), 373
LDAP (Lightweight Directory Access

Protocol), 84, 244, 255, 409
legacy applications, 72
Linked Open Data (LOD), 60, 283, 287,

289–290
LinkedIn

history of NoSQL, 10
relationships in, 24–25
Voldermort usage by, 124

locality groups, 159
locking data, 148
LOD (Linked Open Data), 60, 283, 287,

289–290
log file analysis, 168–170
logging databases, 54, 60
Logstash, 354, 355
Lucene

distributability, 342
integrated technologies, 53
overview, 342

LZO compression, 150

• M •
magic predicates, 303
magic properties, 302
major keys, 127
many-to-many relationships, 14
map/reduce

429429 Index

Aerospike support, 122
batch processing with, 54–55
for Bigtables, 177–178
integrating key-value stores with, 134–135
in Riak, 136

maps, defined, 33
MarkLogic

ACID support, 219
cloud environment, 397–398
combined search, 297
combined services in, 384–385
compartment security, 395–396
compressed representations on disk,

205–206
consistency in, 241–242
data type for, 49
defined, 2
documents and triples, 296
durability, 394–395
fine-grained results, 346
Hadoop support, 393–394
operating on in-memory data, 346
overview, 246–247, 299–300, 347, 389–390
query scalability, 90
range indexes, 391–392
replication, 47, 394
role-based access control, 395–396
schemas and, 385
searching in, 52, 243–244
security in, 244–246, 386–387
support for, 396–398
universal index, 227, 236, 345, 390–391

Marvel, 354–355
master processes, 157–158
master-master replication, 103
master-slave replication, 103
matchmaking queries, 325–326
materialized views, 15, 211, 232
memcached, 233–234
memory

caching data in, 118
caching in using key-value store, 114
caching in Voldermort, 124
in-memory writing, 106
RAM, 118
writing using Journal, 159

merge
Cassandra, 189
MarkLogic, 242

metadata
adding to relationships, 305
catalogs of, 377–380
use cases, 60

micro-sharding, 248
Microsoft

DocumentDB, 224, 227, 239
FAST, 347, 348
REST API, 237

minor keys, 127
mlcplusplus, 247
MLDotNet, 247
MLJS, 247
MMS (MongoDB Management Service), 255
mobile synchronization, 218, 235
MongoDB

AllegroGraph with, 281, 303–304
changing data structures, 227
Check and Set capabilities, 43
cloud support for, 254–255
compressed representations on disk, 205
consistency versus speed, 248
data safety and, 67–68
defined, 2
enterprise support, 256
history of NoSQL, 10
indexes, 253–254
JSON documents in, 249, 252
licensing additional features, 255
online community, 249
open-source license, 251–252
overview, 249–250
programming languages supported, 252–253
query scalability, 90
support for, 254–256
using Redis with, 120

MongoDB Management Service (MMS), 255
monitoring

Cassandra, 197
evaluating NoSQL options, 92–94
Riak Control tool, 131

MVCC (multiversion concurrency control),
43, 241, 395

430 NoSQL For Dummies

• N •
named graphs, 264, 268–269, 280
National Security Agency (NSA), 409
Natural Language Processing (NLP),

225, 284, 347
Neo4j

adding metadata to relationships, 305
caching, 313
clusters, 313
custom graph languages, 305–306
defined, 2
Enterprise Edition overview, 312
history of NoSQL, 10
open standards, 311–312
optimizing for query speed, 305
overview, 306–307
path-finding algorithms, 310
scaling up versus out, 310–311
sharding, 314
support for, 314

network speed, 158
NewSQL, 30, 155
NLP (Natural Language Processing),

225, 284, 347
nonrelational databases, 14–16
normal form, 41, 109
normalizing data, 15
NoSQL

acceptance testing, 92
ACID support, 17–18, 42–43, 408
adding needed features, 75–76
advantages of, 26
aggregate functions, 70
alerting capabilities, 70
attribute-based access control, 82–84
business intelligence, 71
business value, 73
cloud environment, 77
cloud environment support, 57–58
cluster scalability, 91–92
code maintenance and, 415
commodity hardware for, 16
compartment security, 81–82
data security, 67–68
data types, 28–29, 404, 407

defined, 19
disaster recovery, 89
distributability, 16
durability, 87–88
durability of, 408
enterprise application requirements, 79
enterprise applications, 18–20, 409
entity extraction and enrichment, 69
ETL and, 401–402, 414
eventual consistency model, 416
extended functionality, 71–72
external authentication, 85–86
faceted search navigation, 69–70
feature overview, 12
first use of term, 9
high availability, 88–89
hybrid databases, 29, 38, 39
Identity and Access Management, 84–85
international considerations, 76–77
IT trends, 20–21
JavaScript and, 417
language support, 416–417
leading products, 38–39
mission-critical features, 78
monitoring capabilities, 92–94
as movement, 1
as nonrelational database, 14–16
open-source software, 17, 410, 415–416
open-source versus commercial, 74–75
polyglot persistence and, 48–50
precautions, 26
query scalability, 89–90
query versus search, 61–62
RDBMS and, 50–51, 411
recent developments to movement, 11
RFI questions, 64–65
role-based access control, 80–81
scaling, 65–67, 403–404, 416
as schema agnostic, 12–14, 402–403, 414
search engines and, 37
second meeting about, 10
security, 409
security accreditations, 86–87
Single Sign-On, 85–86
skillset requirements, 73
SQL and, 413–414

431431 Index

support, 73–74
timeliness, 62–63
unstructured text support, 402
use cases, 60
vendor capabilities, 76
vendor claims, 78–79
visualization tools, 71

N-Quad format, 289
NSA (National Security Agency), 409
N-Triples format, 266, 289
null values

columnar data type and, 31
handling in Bigtables, 167–168
handling in RDBMS, 13–14, 166
sparse data problem, 24

• O •
object cache, 313
object of triple, 33
object-based intelligence, 340
Object-Relational Mapping (ORM), 413
Observers, HBase, 178
OCR (optical character recognition), 324
ODBC (Open Database Connectivity), 71, 386
Office documents, 60
OLTP (online transaction processing), 30
OmniFind (IBM), 347, 349
ontologies

defined, 34, 260
describing, 269–270
PROV-O, 393

OpDBMS (Operational Database
Management System), 386

Open Database Connectivity (ODBC), 71, 386
open standards, 266
OpenCalais, 69, 226, 284
open-source intelligence, 340
open-source software

commercial versus, 74–75
MongoDB as, 251–252
NoSQL advantages, 415–416
NoSQL misconceptions, 410
overview, 17

Operational Database Management System
(OpDBMS), 386

OpsCenter, 197
optical character recognition (OCR), 324
OR Boolean logic, 320
Oracle

Berkeley DB, 125–126
Coherence layer, 126
general discussion, 125
Oracle NoSQL, 126–128

OrientDB
combining documents in real time, 296
disaster recovery replication, 278
documents and triples, 296
generating triples from documents,

382–383
overview, 298–299, 362, 381–382, 383
relationships in queries, 57
schema on read, 383

ORM (Object-Relational Mapping), 413
Oskarsson, Johan, 10
OWL (Web Ontology Language), 267, 269,

270, 289, 311

• P •
pagination, search, 322
partial updates, document store, 209–210
partitions

Bigtables, 144
Cassandra and, 46
data versus network, 128
defined, 39
handling, 128–129
key-value stores, 100–101, 118–119

path-finding algorithms, 310
PDF (Portable Document Format), 224
performance

Bigtable paper, 8
Bigtables, 150, 151, 184–185
denormalizing data, 109
Dynamo paper, 10
eventual consistency model and, 25
key management and, 99–100
key-value stores, 97, 106
NoSQL advantages, 415
row keys and, 172–173
tradeoffs for, 26

432 NoSQL For Dummies

petabytes, 8
pipeline, 223
polyglot persistence

future of, 51
general discussion, 48–50
hybrid NoSQL databases and, 362–363

Portable Document Format (PDF), 224
Powerset, 10
predicate of triple, 33
primary key, 40
processes, server, 157–158
programming languages

compiled languages, 158, 184
MongoDB support, 252–253

proprietary standards, 266
Protocol Buffers, 124
provenance queries, 286
PROV-O (PROV Ontology), 272–273, 286,

294, 393
publishing content

content lifecycle, 222–223
distributing to sales channels, 223–224

• Q •
QBFR (Query Based Flexible Replication),

218
Qbox.io, 357
qualifier indexes, 167
queries

combined, 280–281
defined, 12, 41
in graph stores, 262–263
matchmaking, 325–326
optimizing Neo4j for speed of, 305
provenance, 286
range, 61
reverse, 325
scalability, 89–90
scriptable querying, 350
search versus, 61–62, 318
of social graphs, 291–292
in triple stores, 260–262

Query Based Flexible Replication
(QBFR), 218

• R •
R2RML (RDB to RDF Mapping Language),

290
Rackspace, 10, 255
RAID (Redundant Array of Inexpensive

Disks)
data safety, 371–372
HDFS and, 55
performance, 106
scalability, 158

RAM (random access memory), 118, 121,
123, 385

range indexes, 52, 244, 391–392
range queries, 61
RBAC (role-based access control)

for Bigtables, 181
for document stores, 244–245
for hybrid NoSQL databases, 387
for MarkLogic, 395–396
NoSQL support for, 409
overview, 80–81

RDB to RDF Mapping Language
(R2RML), 290

RDBMS (relational database management
system)

adoption of, 13
Bigtables and, 8
columnar data type and, 30–31
data types and, 28
database terminology and, 39
distributability, 25
dominance of, 9
dynamically changing relationships, 24–25
ETL and, 401–402
initial meeting about limitations of, 10
layering key-value store over, 123–125
limitations of, 21–22
migrating data to NoSQL, 290
NoSQL and, 411
null values in, 13–14
overview, 14
schema redesign problem, 13, 22–23
sparse data problem, 24, 166
still needed along with NoSQL, 50–51

433433 Index

unstructured data explosion, 23–24
views in, 211

RDF (Resource Description Framework)
defined, 56
describing ontologies, 260
RDF Graph for Oracle NoSQL, 127
standard overview, 265–267
triple stores versus graph stores, 264

RDFS (RDF Schema), 267, 269
read match update (RMU), 104, 120, 127, 148
read match write (RMW), 104
read parallelization, 214
read repair method, 98, 124, 129
records, 40
Red Hat, 17, 255
Redis

advantages of, 97
defined, 2
history of NoSQL, 10
operations on data, 120
overview, 120
slave support, 119

reduce phase, 55. See also map/reduce
Redundant Array of Inexpensive Disks.

See RAID
relational database management system.

See RDBMS
relationships

adding metadata to, 305
Bigtables and, 142
defined, 40
dynamically changing, 24–25
in graph stores, 260, 263
in OrientDB, 57
overview, 14
social graphs, 290–292
storing documents in triple stores,

294–296
in triple stores, 263

reliability
Dynamo paper, 10
overview, 156

replication
active-active clustering, 154
adjusting consistency and availability, 47
Bigtables, 149

defined, 41
document stores, 216–218
global, 190
Hadoop, 146
key-value stores, 103, 118–119
MarkLogic, 394
MongoDB, 255
partitions and, 128
Riak, 136
selective, 217–218
terminology, 41
triple stores, 277–278

reporting, 53–54
Request for Information (RFI), 59, 64–65
Resource Description Framework. See RDF
REST (REpresentational State Transfer)

defined, 54
NoSQL support for, 71
using SQL with, 237

reverse indexes, 41
reverse queries, 325
RFI (Request for Information), 59, 64–65
Riak

conflict resolution in, 103
consistency in, 103
CS service, 136–137
defined, 2
disaster recovery, 137
document partitioning in, 102
handling partitions, 128–129
history of NoSQL, 10
integrating map/reduce with, 134–135
overview, 130–131
replication support, 136
Search, 131, 136
secondary indexing, 129–130
slave support, 119
support for, 136–137
using JSON in, 135–136
using Redis with, 120

rings (Cassandra), 190
RMU (read match update), 104, 120,

127, 148
RMW (read match write), 104
role-based access control. See RBAC
rollback, 276

434 NoSQL For Dummies

row keys (Bigtables)
designing, 172–173
handling very large sets of, 175–176
inverting with values, 173–175
overview, 142

rows
defined, 40
locking, 148

• S •
SaaS (software as a service), 91
scale-back, 91–92
scale-out, 91
scaling. See also scaling Bigtables

Aerospike, 122
clusters, 91–92
dynamic clusters, 163
evaluating NoSQL options, 65–67
key-value stores, 105–107
NoSQL advantages, 403–404, 416
overview, 158–159
queries, 89–90
up versus out, 310–311
vertical, 311

scaling Bigtables
aggregating data, 162
indexing, 160–162
ingesting data in parallel, 159
in-memory caching, 159–160

schemas
agnostic structure of NoSQL, 12–14,

402–403, 414
Avro, 102
defined, 40
Oracle NoSQL support, 127
redesign overhead for RDBMS, 22–23
schema on read, 224, 383

search engine use cases
alerting, 339–340
e-commerce products, 335–337
enterprise data searching, 338–339

search engines
alerting capabilities, 70, 324–326
combining document store with, 344–347
defined, 29
dictionaries, 323

Elasticsearch, 352, 354–355
faceted search navigation, 69–70, 322
grammar, 321
GSA, 349
HP Autonomy, 348–349
hybrid NoSQL databases combined

services, 384–385
IBM OmniFind, 349
indexes, 319–320
indexing data stores, 323–324
integrating technologies, 52–53
Kibana, 355–356
Logstash, 355
Lucene, 342–344
MarkLogic, 347, 389
matchmaking queries, 325–326
overview, 37
pagination, 322
product listing for, 39
query versus search, 61–62, 318
reverse queries, 325
SharePoint, 348
snippeting, 322
SolrCloud, 343–344
sorting, 322
thesauri, 323
timeliness of, 62–63
web crawlers, 318–319

search federation, 336
search index resolution, 281
secondary indexing

defined, 253
in Riak, 129–130
row keys and, 173

security
accreditations, 86–87
attribute-based access control, 82–84
Bigtables, 180–181
Cassandra, 196
cell level, 81
compartment, 81–82
data, 67–68
document stores, 244–246
durability, 87–88
enterprise application requirements, 79
enterprise search, 328–329
external authentication, 85–86

435435 Index

high-security environments, 373–374
hybrid NoSQL databases, 386–387
Identity and Access Management, 84–85
overview, 409
role-based access control, 80–81
security in depth approach, 80
Single Sign-On, 85–86
triple stores, 302–303

semantic facts, 284–286
semantic technologies, 56–57, 366–367
semantic web, 287–290
semi-structured documents, 207
sentinel process, 131
serialization, 124
servers

Cassandra, 194
defined, 41
HDFS, 176–177
high availability, 157–158
reliability, 156–158
synchronizing clocks, 154–155
tablet, 148–149
triple store setup approaches, 277

Service Level Agreements (SLAs), 357
session storage, 112–113
sharding

automatic, 214–215
defined, 214
graph stores and, 276
key-based, 214
Neo4j, 314
NoSQL advantages, 403
triple stores, 277–278

shared-nothing clusters, 44, 99, 120, 122
SharePoint, 348
shredding data, 147
similar results, 331
Simple Knowledge Organization System

(SKOS), 267, 269, 271
Simple Network Management Protocol

(SNMP), 255
Simple Object Access Protocol (SOAP), 48
single point of failure (SPoF), 157
Single Sign-On (SSO), 85–86
skillset requirements, 73, 75–76, 134
SKOS (Simple Knowledge Organization

System), 267, 269, 271

SLAs (Service Level Agreements), 357
slaves, replication to, 118–119
Smartlogic Semaphore Server, 284
SNA (Social Networking Analysis), 302
snippeting, 322, 330
SNMP (Simple Network Management

Protocol), 255
SOAP (Simple Object Access Protocol), 48
social graphs, 290–292
Social Networking Analysis (SNA), 302
software as a service (SaaS), 91
solid-state drives. See SSDs
Solr

AllegroGraph with, 303–304
in Cassandra, 196
integrated technologies, 53

SolrCloud, 343–344
sorted sets, 119
SPARQL (SPARQL Protocol and RDF Query

Language)
defined, 56, 267
queries using, 267–268
using with LOD, 289
version 1.1, 268

sparse data problem
defined, 24, 165
handling in Bigtables, 167–168
handling in RDBMS, 166

SPIN (SPARQL Inferencing Notation) API,
301–302

split brain phenomenon, 128, 198
SPoF (single point of failure), 157
SQL (Structured Query Language)

columnar data type and, 32
for JSON documents, 224
NoSQL advantages, 403, 413–414
NoSQL term and, 9
search engines and, 37

Sqrrl Enterprise, 161
SSDs (solid-state drives)

Aerospike support, 121–123
cost of, 99
enterprise application requirements, 106
Neo4j and, 311
performance, 189

SSO (Single Sign-On), 85–86
SSTable format, 150, 172

436 NoSQL For Dummies

StackOverflow.com, 74, 249, 357
stacks, 22
Stanbol, 69
stands (MarkLogic), 242
stemmed text queries, 62
store files, 146
streaming changes to document stores,

210–211
strong typing, 102, 184–185
Strozzi, Carlo, 9
Structured Query Language. See SQL
Stumbleupon, 10
subgraphs, 37
subject of triple, 33
SugarSync, 235
support

Accumulo, 161
Elasticsearch, 357–358
enterprise application requirements, 19
MarkLogic, 396–398
MongoDB, 254–256
Neo4j, 314
NoSQL for business and, 73–74
open-source versus commercial, 75
Riak, 136–137
vendor claims, 78–79

synchronizing clocks, 154–155

• T •
Tableau, 54
tables, 40
tablespaces, 39
tablet servers, 148–149
TCO (total cost of ownership), 26, 417
TEMIS Luxid, 284
term frequency, 320
Term Frequency-Inverse Document

Frequency (TF-IDF), 320
term lists, 61, 320
terminology

clusters, 41
collections, 39
data farms, 39
database replication, 41
databases, 39

disk replication, 41
fields, 40
flexible replication, 41
foreign key, 40
indexes, 41
normal form, 41
partitions, 39
primary key, 40
queries, 41
records, 40
relationships, database, 40
replication, 41
reverse index, 41
rows, 40
schemas, 40
servers, 41
tables, 40
tablespaces, 39

Terracotta, 234
testing, acceptance, 92
TF-IDF (Term Frequency-Inverse Document

Frequency), 320
thesaurus queries, 61, 323
Thrift, 124
timeliness

overview, 62–63
RFI questions about, 65

timestamps
in Bigtables, 143
conflict resolution using, 103–104
synchronizing clocks, 154–155

tombstoning data, 113
total cost of ownership (TCO), 26, 417
transactions. See also ACID

ACID guarantees, 42–43
NoSQL support for, 17–18
replication during, 216
two-phase commit, 149

trends, 20–21
triggers, 83
triple stores. See also names of specific

triple stores
ACID support, 276–277
AllegroGraph, 304
ArangoDB, 298
automatic indexing, 301

437437 Index

combined queries, 280–281
combined search, 297
data provenance, 272–273
defined, 28–29
describing ontology, 269–270
directed graphs, 270
disaster recovery, 278
distributability of, 16
document storage with, 278–279
dynamically changing relationships, 25
extracting semantic facts, 284–286
forward inferencing, 285–286
graph stores versus, 263–264
high availability, 277–278
integrating with Solr and MongoDB,

303–304
JavaScript scripting, 302
MarkLogic, 299–300
migrating RDBMS, 290
named graphs, 268–269, 280
OrientDB, 298–299
overview, 33–36, 264–265
product listing for, 38
queries in, 260–262
RDF standard, 265–267
relationships in, 15, 263
security, 302–303
semantic technologies, 56–57
server setup approach, 277
SKOS, 271
social graphs, 290–292
SPARQL queries, 267–268
SPIN API, 301–302
storing documents and relationships,

294–296
tracking provenance, 286

Turtle, 266
two-phase commit, 44, 103, 149, 216, 373
two-way co-occurrence, 331

• U •
UAT (User Acceptance Testing), 92
UDFs (user-defined functions), 50, 122, 209,

392, 415
Uniform Resource Locators (URLs), 319

United States Geological Survey
(USGS), 287

universal indexes, 52, 345, 350, 390–391
Universal Unique Identifier (UUID), 106,

113, 144
unstructured data explosion, 23–24
unstructured documents, 206–207,

225–226, 402
URLs (Uniform Resource Locators), 319
use cases for Bigtables

log file analysis, 168–170
sparse data, 167–168

use cases for document stores, 221–224
use cases for hybrid NoSQL databases

digital semantic publishing, 375–377
metadata catalogs, 377–380

use cases for key-value stores
caching, 114
session storage, 112–113
user service personalization, 113–114
web advertisements, 112

use cases for search engines
alerting, 339–340
e-commerce products, 335–337
enterprise data searching, 338–339

use cases for triple stores
building semantic web, 287–290
extracting semantic facts, 284–286
forward inferencing, 285–286
social graphs, 290–292
tracking provenance, 286

User Acceptance Testing (UAT), 92
user-defined functions (UDFs), 50, 122, 209,

392, 415
USGS (United States Geological Survey),

287
UUID (Universal Unique Identifier),

106, 113, 144

• V •
versioning, 103–104
vertical scaling, 311, 403–404
vertices, 260, 263
visualization tools, 71
VMWare Cloud Foundry, 255

438 NoSQL For Dummies

Voldermort
history of NoSQL, 10
in-memory caching, 124
key-value store as API, 123–124
overview, 124–125
partitions in, 100

• W •
W3C (World Wide Web Consortium), 33,

266, 286, 393
WAL (write ahead logging), 408
web applications

advertisements, 112
backend for, 247–248
consistency versus speed, 248
NoSQL misconceptions, 410
session storage, 112–113
using JSON as data structure, 108, 249

web crawlers, 318–319
Web Ontology Language (OWL), 267, 269,

270, 289, 311
WGS84 (World Geodetic System 1984), 392
widgets, 330
Windows Azure, 255
World Wide Web Consortium (W3C),

33, 266, 286, 393
write ahead logging (WAL), 408

• X •
XDBC (XML Database Connectivity), 246
XHTML (Extensible Hypertext Markup

Language), 204
XML (Extensible Markup Language)

document store overview, 29, 201
FpML format, 22–23
history of, 9
supporting in document store, 242–243

XML Database Connectivity (XDBC), 246
XQuery language, 83, 243, 246
XSD (XML Schema Definition), 201,

205, 224
XSLT (Extensible Stylesheet Language),

9, 224

• Y •
Yahoo, 9

• Z •
ZooKeeper, 343
ZRANGEBYLEX command, 120
ZVents, 10

About the Authors
Adam Fowler is a principal sales engineer at MarkLogic Corporation, an
Enterprise NoSQL database company, located in the UK. He previously
worked for small UK e‐forms companies like edge IPK (now part of Temenos
group) and for larger vendors in the enterprise content management (ECM)
and business process management (BPM) spheres such as IBM FileNet.

While working for IBM FileNet, he coauthored an IBM Redbook on IBM FileNet
P8 Platform and Architecture and wrote much of the platform, content, use
cases, and security information in the book.

He is an enterprise Java software engineer by training and worked on content
management and student management systems for several companies and
universities in the UK.

He is passionate about enterprise class software solutions that solve really
difficult problems for customers. He works primarily in the public sector in
both civilian and defense areas, but has previous experience in diverse areas,
including media, retail banking, retail insurance, and reinsurance.

In his spare time, he’s a cadet forces instructor with Trent Wing Air Training
Corps (ATC), where he instructs teenagers on drill, dress, discipline, and
adventure training activities in the UK and abroad.

Adam lives in Chesterfield, which is a borough of Derbyshire, United Kingdom,
and he works throughout the UK. He tries to spend as much time as
 possible with his wife, Wendy, and Leo, their young labradinger, which is a
cross between a Labrador retriever and an English springer spaniel.

Dedication
To all lovers of using new technology to solve really hard problems.

Authors’ Acknowledgments
First, I want to thank my wife, Wendy, for putting up with me over the past
year as I retreated into the study to write (and, yes, agonize over) this book.
Wendy, I would not have finished this book without your support.

Also, my thanks to the many great people at MarkLogic who supported me
in writing this book and to the other passionate people working for NoSQL
companies who communicated with me via Twitter and email to provide
timely input for the book.

Publisher’s Acknowledgments

Project Editor: Pat O’Brien

Copy Editor: Melba Hopper

Technical Editor: Allen G. Taylor

Editorial Assistant: Claire Brock

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Patrick Redmond

Cover Image: ©iStock.com/cosmin4000

wiley end user license agreement
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I Getting Started with NoSQL
	Chapter 1 Introducing NoSQL: The Big Picture
	A Brief History of NoSQL
	Amazon and Google papers
	What NoSQL means today

	Features of NoSQL
	Common features
	Not-so-common features
	Enterprise NoSQL

	Why You Should Care about NoSQL
	Recent trends in IT
	Problems with conventional approaches
	NoSQL benefits and precautions

	Chapter 2 NoSQL Database Design and Terminology
	Managing Different Data Types
	Columnar
	Key‐value stores
	Triple and graph stores
	Document
	Search engines
	Hybrid NoSQL databases
	Available NoSQL products

	Describing NoSQL
	Applying Consistency Methods
	ACID
	BASE
	Choosing ACID or BASE?
	Availability approaches
	Developing applications on NoSQL
	Polyglot persistence
	Polyglot persistence explained
	The death of the RDBMS?

	Integrating Related Technologies
	Search engine techniques
	Business Intelligence, dashboarding, and reporting
	Batch processing with Hadoop Map/Reduce
	Hadoop HDFS
	Semantics
	Public cloud

	Chapter 3 Evaluating NoSQL
	The Technical Evaluation
	Which type of NoSQL is for you?
	Search features
	Scaling NoSQL
	Keeping data safe
	Visualizing NoSQL
	Extending your data layer

	The Business Evaluation
	Developing skills
	Getting value quickly
	Finding help
	Deciding on open-source versus commercial software
	Building versus buying
	Evaluating vendor capabilities
	Finding support worldwide
	Expanding to the cloud

	Getting Support
	Business or mission-critical features
	Vendor claims
	Enterprise system issues
	Security
	Preparing for failure
	Scaling up
	Acceptance testing
	Monitoring

	Part II Key-Value Stores
	Chapter 4 Common Features of Key-Value Stores
	Managing Availability
	Trading consistency
	Implementing ACID support

	Managing Keys
	Partitioning
	Accessing data on partitions

	Managing Data
	Data types in key-value stores
	Replicating data
	Versioning data

	Chapter 5 Key-Value Stores in the Enterprise
	Scaling
	Simple data model – fast retrieval
	In-memory caching

	Reducing Time to Value
	Using simple structures
	Complex structure handling

	Chapter 6 Key-Value Use Cases
	Managing User Information
	Delivering web advertisements
	Handling user sessions
	Supporting personalization

	High-Speed Data Caching

	Chapter 7 Key-Value Store Products
	High-Speed Key Access
	Caching data in memory
	Replicating data to slaves
	Data modeling in key-value stores
	Operating on data
	Evaluating Redis

	Taking Advantage of Flash
	Spending money for speed
	Context computing
	Evaluating Aerospike

	Using Pluggable Storage
	Changing storage engines
	Caching data in memory
	Evaluating Voldemort

	Separating Data Storage and Distribution
	Using Berkeley DB for single node storage
	Distributing data
	Evaluating Oracle NoSQL

	Handling Partitions
	Tolerating partitions
	Secondary indexing
	Evaluating Riak

	Chapter 8 Riak and Basho
	Choosing a Key-Value Store
	Ensuring skill availability
	Integrating with Hadoop Map/Reduce
	Using JSON

	Finding Riak Support (Basho)
	Enabling cloud service
	Handling disasters
	Evaluating Basho

	Part III Bigtable Clones
	Chapter 9 Common Features of Bigtables
	Storing Data in Bigtables
	Using row keys
	Creating column families
	Using timestamps
	Handling binary values

	Working with Data
	Partitioning your database
	Clustering
	Denormalizing

	Managing Data
	Locking data
	Using tablets
	Configuring replication

	Improving Performance
	Compressing data
	Caching data
	Filtering data

	Chapter 10 Bigtable in the Enterprise
	Managing Multiple Data Centers
	Active-active clustering
	Managing time

	Reliability
	Being Google
	Ensuring availability

	Scalability
	Ingesting data in parallel
	In-memory caching
	Indexing
	Aggregating data
	Configuring dynamic clusters

	Chapter 11 Bigtable Use Cases
	Handling Sparse Data
	Using an RDBMS to store sparse data
	Using a Bigtable

	Analyzing Log Files
	Analyzing data in-flight
	Building data summaries

	Chapter 12 Bigtable Products
	Managing Tabular Big Data
	Designing a row key
	Distributing data with HDFS
	Batch processing Bigtable data
	Assessing HBase

	Securing Your Data
	Cell-level security
	Assessing Accumulo

	High-Performing Bigtables
	Using a native Bigtable
	Indexing data
	Ensuring data consistency
	Assessing Hypertable

	Distributing Data Globally
	Substituting a key-value store
	Inserting data fast
	Replicating data globally
	Assessing Cassandra

	Chapter 13 Cassandra and DataStax
	Designing a Modern Bigtable
	Clustering
	Tuning consistency
	Analyzing data
	Searching data
	Securing Cassandra

	Finding Support for Cassandra
	Managing and monitoring Cassandra
	Active-active clustering

	Part IV Document Databases
	Chapter 14 Common Features of Document Databases
	Using a Tree-Based Data Model
	Handling article documents
	Managing trades in financial services
	Discovering document structure
	Supporting unstructured documents

	Document Databases as Key-Value Stores
	Modeling values as documents
	Using value information

	Patching Documents
	Supporting partial updates
	Streaming changes
	Providing alternate structures in real time

	Chapter 15 Document Databases in the Enterprise
	Sharding
	Key-based sharding
	Automatic sharding

	Preventing Loss of Data
	Replicating data locally
	Using multiple datacenters
	Selectively replicating data

	Managing Consistency
	Using eventual consistency
	Using ACID consistency

	Chapter 16 Document Database Use Cases
	Publishing Content
	Managing content lifecycle
	Distributing content to sales channels

	Managing Unstructured Data Feeds
	Entity extraction and enrichment

	Managing Changing Data Structures
	Handling variety
	Managing change over time

	Consolidating Data
	Handling incoming streams
	Amalgamating related data
	Providing answers as documents

	Chapter 17 Document Database Products
	Providing a Memcache Replacement
	Ensuring high-speed reads
	Using in-memory document caching
	Supporting mobile synchronization
	Evaluating Couchbase

	Providing a Familiar Developer Experience
	Indexing all your data
	Using SQL
	Linking to your programming language
	Evaluating Microsoft DocumentDB

	Providing an End-to-End Document Platform
	Ensuring consistent fast reads and writes
	Supporting XML and JSON
	Using advanced content search
	Securing documents
	Evaluating MarkLogic Server

	Providing a Web Application Back End
	Trading consistency for speed
	Sticking with JavaScript and JSON
	Finding a web community
	Evaluating MongoDB

	Chapter 18 MongoDB
	Using an Open-Source Document Database
	Handling JSON documents
	Finding a language binding
	Effective indexing

	Finding Support for MongoDB
	MongoDB in the cloud
	Licensing advanced features
	Ensuring a sustainable partner

	Part V Graph and Triple Stores
	Chapter 19 Common Features of Triple and Graph Stores
	Deciding on Graph or Triple Stores
	Triple queries
	Graph queries
	Describing relationships
	Making a decision

	Deciding on Triples or Quads
	Storing RDF
	Querying with SPARQL
	Using SPARQL 1.1
	Modifying a named graph

	Managing Triple Store Structures
	Describing your ontology
	Enhancing your vocabulary with SKOS
	Describing data provenance

	Chapter 20 Triple Stores in the Enterprise
	Ensuring Data Integrity
	Enabling ACID compliance
	Sharding and replication for high availability
	Replication for disaster recovery

	Storing Documents with Triples
	Describing documents
	Combining queries

	Chapter 21 Triple Store Use Cases
	Extracting Semantic Facts
	Extracting context with subjects
	Forward inferencing

	Tracking Provenance
	Building a Web of Facts
	Taking advantage of open data
	Incorporating data from GeoNames
	Incorporating data from DBpedia
	Linked open-data publishing
	Migrating RDBMS data

	Managing the Social Graph
	Storing social information
	Performing social graph queries

	Chapter 22 Triple Store Products
	Managing Documents and Triples
	Storing documents and relationships
	Combining documents in real time
	Combined search
	Evaluating ArangoDB
	Evaluating OrientDB
	Evaluating MarkLogic Server

	Scripting Graphs
	Automatic indexing
	Using the SPIN API
	JavaScript scripting
	Triple-level security
	Integrating with Solr and MongoDB
	Evaluating AllegroGraph

	Using a Distributed Graph Store
	Adding metadata to relationships
	Optimizing for query speed
	Using custom graph languages
	Evaluating Neo4j

	Chapter 23 Neo4j and Neo Technologies
	Exploiting Neo4j
	Advanced path-finding algorithms
	Scaling up versus scaling out
	Complying with open standards

	Finding Support for Neo4j
	Clustering
	High-performance caching
	Cache-based sharding
	Finding local support
	Finding skills

	Part VI Search Engines
	Chapter 24 Common Features of Search Engines
	Dissecting a Search Engine
	Search versus query
	Web crawlers
	Indexing
	Searching

	Indexing Data Stores
	Using common connectors
	Periodic indexing

	Alerting
	Using reverse queries
	Matchmaking queries

	Chapter 25 Search Engines in the Enterprise
	Searching the Enterprise
	Connecting to systems
	Ensuring data security

	Creating a Search Application
	Configuring user interfaces
	What a good search API gives you
	Going beyond basic search with analytics

	Chapter 26 Search Engine Use Cases
	Searching E-Commerce Products
	Amazon-type cataloguing
	Geospatial distance scoring

	Enterprise Data Searching
	Storing web data
	Searching corporate data
	Searching application data

	Alerting
	Enabling proactive working
	Finding bad guys

	Chapter 27 Types of Search Engines
	Using Common Open-Source Text Indexing
	Using Lucene
	Distributing Lucene
	Evaluating Lucene/SolrCloud

	Combining Document Stores and Search Engines
	Universal indexing
	Using range indexes
	Operating on in-memory data
	Retrieving fine-grained results
	Evaluating MarkLogic

	Evaluating Enterprise Search
	Using SharePoint search
	Integrating NoSQL and HP Autonomy
	Using IBM OmniFind
	Evaluating Google search appliance

	Storing and Searching JSON
	JSON universal indexing
	Scriptable querying
	Evaluating Elasticsearch

	Chapter 28 Elasticsearch
	Using the Elasticsearch Product
	ELK stack
	Using Elasticsearch
	Using Logstash
	Using Kibana

	Finding Support for Elasticsearch
	Evaluating Elasticsearch BV

	Part VII Hybrid NoSQL Databases
	Chapter 29 Common Hybrid NoSQL Features
	The Death of Polyglot Persistence
	One product, many features
	Best-of-breed solution versus single product

	Advantages of a Hybrid Approach
	Single product means lower cost
	How search technology gives a better column store
	How semantic technology assists content discovery

	Chapter 30 Hybrid Databases in the Enterprise
	Selecting a Database by Functionality
	Ensuring functional depth and breadth
	Following a single product’s roadmap

	Building Mission-Critical Applications
	Ensuring data safety
	Ensuring data is accessible
	Operating in high-security environments

	Chapter 31 Hybrid NoSQL Database Use Cases
	Digital Semantic Publishing
	Journalists and web publishing
	Changing legislation over time

	Metadata Catalogs
	Creating a single view
	Replacing legacy systems
	Exploring data

	Chapter 32 Hybrid NoSQL Database Products
	Managing Triples and Aggregates
	Generating triples from documents
	Enforcing schema on read
	Evaluating OrientDB

	Combining Documents and Triples with Enterprise Capabilities
	Combined database, search, and application services
	Schema free versus schema agnostic
	Providing Bigtable features
	Securing access to information
	Evaluating MarkLogic

	Chapter 33 MarkLogic
	Understanding MarkLogic Server
	Universal Indexing
	Range indexing and aggregate queries
	Combining content and semantic technologies
	Adding Hadoop support
	Replication on intermittent networks
	Ensuring data integrity
	Compartmentalizing information

	MarkLogic Corporation
	Finding trained developers
	Finding 24/7 support
	Using MarkLogic in the cloud

	Part VIII The Part of Tens
	Chapter 34 Ten Advantages of NoSQL over RDBMS
	Chapter 35 Ten NoSQL Misconceptions
	Chapter 36 Ten Reasons Developers Love NoSQL

	Index
	EULA

