
http://www.it-ebooks.info/

http://www.dummies.com/cheatsheet/javafx

by Doug Lowe

JavaFX ®

JavaF X® For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For tech-
nical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2014941051

ISBN 978-1-118-38534-0 (pbk); ISBN 978-1-118-41743-0 (ebk); ISBN 978-1-118-42166-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com/
http://www.wiley.com/

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
How This Book Is Organized .. 3

Part I: Getting Started with JavaFX .. 3
Part II: JavaFX Controls ... 3
Part III: Enhancing Your Scenic Design ... 3
Part IV: Making Your Programs Come Alive 4
Part V: The Part of Tens .. 4

Icons Used in This Book ... 4
Beyond the Book ... 5
Where to Go from Here ... 5

Part I: Getting Started with JavaFX 7

Chapter 1: Hello, JavaFX! . 9
What Is JavaFX? ... 10
Perusing the Possibilities of JavaFX .. 11
Looking at a Simple JavaFX Program .. 13
Downloading and Installing JavaFX ... 16

Downloading JDK 8 .. 16
Installing JDK 8 ... 17
Setting the path .. 17

Developing the Click Me Program with Notepad 19
Developing the Click Me Program with TextPad 22
Using an IDE to Create the Click Me Program .. 24

Chapter 2: Looking Closer at JavaFX Programming 31
Looking Again at the Click Me Program .. 31
Importing JavaFX Packages .. 34
Extending the Application Class .. 34
Launching the Application ... 36
Overriding the start Method .. 36
Creating a Button ... 38
Handling an Action Event ... 39
Creating a Layout Pane ... 41
Making a Scene ... 42
Setting the Stage .. 42
Examining the Click Counter Program .. 43

JavaFX For Dummies iv
Chapter 3: Handling Events . 49

Examining Events .. 50
Handling Events ... 52
Implementing the EventHandler Interface ... 53
Handling Events with Inner Classes .. 57
Handling Events with Anonymous Inner Classes 59
Using Lambda Expressions to Handle Events .. 61

Chapter 4: Setting the Stage and Scene Layout 67
Examining the Stage Class .. 68
Examining the Scene Class ... 72
Switching Scenes ... 73
Creating a Dialog Box .. 77
Creating a Confirmation Box .. 82
Exit, Stage Right ... 85

Creating a Close button... 87
Handling the CloseRequest event .. 88
Putting it all together... 90

Chapter 5: Using Layout Panes to Arrange Your Scenes 93
Working with Layout Panes .. 93

Introducing four JavaFX layout panes... 94
Creating layout panes.. 95
Combining layout panes ... 96

Using the HBox Layout ... 96
Spacing Things Out ... 98
Adding Space with Margins .. 100
Adding Space by Growing Nodes .. 101
Using the VBox Layout .. 104
Aligning Nodes in a Layout Pane ... 106
Making Nodes the Same Width .. 107
Using the Flow Layout ... 108
Using the Border Layout ... 113

Chapter 6: Getting Input from the User . 117
Using Text Fields ... 118
Validating Numeric Data ... 125
Using Check Boxes .. 126
Using Radio Buttons .. 129
Looking at a Pizza Order Application ... 131

v Table of Contents

Part II: JavaFX Controls .. 141

Chapter 7: Introducing the JavaFX Node Hierarchy 143
An Overview of JavaFX Packages .. 144
The Node Class .. 146
The Parent Class .. 148
The Region Class ... 150
The Control Class .. 153

Chapter 8: Choosing from a List . 155
Using Choice Boxes ... 155

Creating a choice box .. 157
Setting a default value ... 158
Getting the selected item .. 159

Working with Observable Lists .. 160
Listening for Selection Changes ... 163
Using Combo Boxes ... 164

Creating combo boxes .. 166
Getting the selected item .. 167
Handling combo box events ... 168

Using List Views ... 169
Creating a list view .. 171
Getting the selected items .. 171

Using Tree Views ... 172
Building a tree .. 173
Creating a TreeView control... 177
Getting the selected node ... 179
Looking at a complete program that uses a tree view 180

Chapter 9: Working with Tables . 185
Creating the Data for a Table ... 186
Creating a Read-Only Table .. 191

Using the TableColumn class ... 192
Using the TableView class .. 194

A Program That Creates a Read-Only Table .. 196
Creating an Editable Table ... 198

Adding table rows .. 198
Deleting table rows .. 199
Editing table cells ... 200

A Program That Creates an Editable Table .. 202

Chapter 10: Making Menus . 209
Introducing Classes for Creating Menus ... 209
Creating a Basic Menu Bar ... 210
Creating Menus .. 211
Creating Menu Items ... 212

JavaFX For Dummies vi
Using Separators .. 214
Using Action Listeners .. 214
Creating Menus That Change ... 216
Using Check and Radio Menu Items .. 217
Creating Submenus ... 220
Creating Custom Menu Items ... 221

Part III: Enhancing Your Scenic Design 225

Chapter 11: More about Layout Panes for Precise Scene Design . . . 227
Using the StackPane Layout ... 228
Using the TilePane layout ... 232
Using the ScrollPane Layout .. 236
Using the GridPane Layout ... 241

Sketching out a plan .. 242
Creating a grid pane .. 243
Working with grid pane constraints .. 245
Examining a grid pane example ... 248

Chapter 12: Skinning Your Application with CSS 255
Using Default Style Sheets .. 256
Adding a Style Sheet to a Scene ... 257
Using Inline Styling .. 260
Creating a Style Sheet ... 260

Using type selectors .. 261
Creating your own style class names .. 262
Using id selectors... 262
Using multiple selectors ... 263

Specifying Style Properties ... 263
Specifying font properties .. 264
Specifying background colors .. 265
Specifying border properties ... 266

Chapter 13: Drawing Shapes . 267
Introducing the Shape Class .. 267

Creating lines .. 271
Creating rectangles .. 272
Creating circles and ellipses... 273
Creating arcs .. 273
Looking at the ShapeMaker program .. 274

Fancy Fills ... 277
Drawing transparently .. 277
Using a gradient fill .. 278

Translating, Scaling, and Rotating ... 283
Drawing Text .. 284
Combining Shapes ... 286

vii Table of Contents

Chapter 14: Adding Special Effects . 289
Introducing Special Effects ... 289
Adding Shadows .. 290
Creating Reflections .. 295
Making Things Blurry .. 296
Blooming and Glowing .. 298
Gaining Perspective ... 300
Combining Effects .. 304

Part IV: Making Your Programs Come Alive 307

Chapter 15: Using Properties to Create Dynamic Scenes 309
Introducing JavaFX Properties .. 309
Java API Properties ... 311
JavaFX Property Classes ... 312
Creating a Read/Write Property .. 314
Creating a Read-Only Property .. 316
Creating Properties More Efficiently ... 318
Using Property Events .. 320
Binding Properties ... 323

Chapter 16: Using Images and Media . 327
Using Images .. 327

Using the Image class .. 328
Using the ImageView class.. 330
Viewing an Image example.. 332

Playing Audio Files .. 334
Playing Video Files .. 337

Chapter 17: Animating Your Scenes . 341
Introducing JavaFX Animation .. 341
Using Transition Classes .. 342
Looking at a Transition Example ... 348
Combining Transitions ... 351
Animating the Hard Way ... 354
Improving the Ball Bouncer ... 358

Chapter 18: Targeting Touch Devices . 365
Introducing Gestures and Touch Events .. 365
Listening for Gestures ... 368
Looking at an Example Program .. 370

JavaFX For Dummies viii

Part V: The Part of Tens .. 375

Chapter 19: Ten More JavaFX Controls . 377
TitledPane ... 377
Accordion ... 379
ColorPicker ... 380
DatePicker .. 382
Hyperlink .. 383
ProgressIndicator and ProgressBar .. 383
Slider ... 384
ScrollBar ... 386
PasswordField .. 387

Chapter 20: Ten Steps to Building a 3D World 389
Step One: Add a Perspective Camera ... 390
Step Two: Add a Cylinder ... 392
Step Three: Create a Material .. 392
Step Four: Translate the Cylinder ... 393
Step Five: Add a Box .. 394
Step Six: Rotate the Box .. 395
Step Seven: Add a Sphere ... 397
Step Eight: Add a Mesh Object .. 398
Step Nine: Animate the Objects ... 401
Step Ten: Add a Light Source ... 401
Putting It All Together: The Complete 3D World Program 402

Index ... 407

Introduction

I
n the beginning there was AWT, the Abstract Window Toolkit. AWT was
Java’s first system for displaying window-based user interfaces in Java.

AWT begat Swing, which soon became the preferred way to create user-
friendly applications in Java.

But then there was JavaFX, the worthy successor to the GUI throne. JavaFX
is designed to create stunning user interfaces that can run on a wide variety
of devices, including traditional desktop and portable computers, tablets,
smartphones, TV set-top boxes, game consoles, and many other types of
devices.

Until recently, JavaFX was the red-headed stepchild of the Java world. It co-
existed with Java, but wasn’t an official part of Java. But beginning with Java
version 8, JavaFX is now fully integrated into Java. And while JavaFX and
Swing coexist today, Oracle has made it clear that Swing is in its twilight and
JavaFX represents the future of user-interface programming.

So you’re holding the right book in your hands. JavaFX is an essential skill for
every Java programmer to have at his or her disposal, and this book will help
you master that skill.

About This Book
This isn’t the kind of book you pick up and read from start to finish, as if it
was a cheap novel. If I ever see you reading it at the beach, I’ll kick sand in
your face. Beaches are for reading romance novels or murder mysteries, not
programming books.

Assuming, then, that you have found a more suitable location to read this
book, you can, if you want, read it straight through starting with Chapter 1
and finishing with Chapter 20. However, this sequence isn’t necessary. If you
are brand new to JavaFX programming, I suggest you read at least Part I in
sequence so that you’ll gain a basic understanding of how JavaFX works.
But after you have the basics down, you can read the chapters in whatever
sequence makes sense for you. If you need to know about adding effects to
a shape, skip straight to Chapter 14. For information about about animation,
skip ahead to Chapter 17.

2 JavaFX For Dummies

You don’t have to memorize anything in this book. It’s a need-to-know book:
You pick it up when you need to know something. Need a reminder on how to
rotate a shape? Pick up the book. Can’t remember the details of the TilePane
class? Pick up the book. After you find what you need, put down the book and
get on with your life.

This book works like a reference. Start with the topic you want to find out
about. Look for it in the Table of Contents or in the index. The Table of
Contents is detailed enough that you can find most of the topics you’re look-
ing for. If not, turn to the index, where you can find even more detail.

Of course, the book is loaded with information — so if you want to take a
brief excursion into your topic, you’re more than welcome. If you want to
know the big picture on the scene graph, read Chapter 7. But if you just want
a reminder on how to set the maximum scene size, read just the section on
the Scene class.

Whenever I describe sample Java code, I present it as follows:

@override public void start(Stage primaryStage)

And Java class names, keywords, or other language elements are always
shown in monospace type.

Foolish Assumptions
In this book, I make very few assumptions about what you already may or
may not know about JavaFX. But I do have to make two basic assumptions:

 ✓ You own or have access to a computer on which Java JDK 8 has been
installed or on which you have permission to install.

 JavaFX 8 is an integral part of JDK 8, so JDK 8 is a requirement for figur-
ing out JavaFX. If you have not yet installed it, you’ll find instructions on
how to do so in Chapter 1.

 ✓ You know the basics of Java programming.

 If you’re new to Java, may I suggest one of two books: my own Java All-
In-One For Dummies, 4th Edition, or Barry Burd’s Java For Dummies, 6th
Edition. Both are published by Wiley.

There are no other prerequisites to this book.

3 Introduction

How This Book Is Organized
This book is organized into five parts. Here’s a brief description of what you
find in each part.

Part I: Getting Started with JavaFX
This part contains the information you need to get started with JavaFX
 programming. After a brief introduction to what JavaFX is and why it’s so
popular, you discover the basics of creating simple JavaFX programs. You
figure out how to create simple JavaFX scenes populated with common con-
trols such as labels, text field, and buttons. Then, you find out how to write
programs that respond to user input, such as when the user clicks a button
or enters text into a text field. And finally, you read how to use basic layout
managers to control the arrangement of controls in your JavaFX scene.

Part II: JavaFX Controls
The chapters in this part focus on the various types of controls you can use
in a JavaFX application. Chapter 7 starts by explaining the details of how the
JavaFX scene graph works and presents the details of the class hierarchy
used by the various controls. Then, the remaining chapters in this part pres-
ent information about specific types of controls, ranging from check boxes
and radio buttons to tables and menus.

Part III: Enhancing Your Scenic Design
The chapters in this part help you improve the appearance of your applica-
tions. First, you read about additional types of layout managers that give you
more precise control over the way your user interface is arranged. Then, you
discover how to use CSS styles to apply formatting details. Next, you figure
out how to incorporate simple shapes into your scenes. And finally, you can
read about JavaFX’s special effects, which let you embellish your display with
shadows, motion blurs, and so on.

4 JavaFX For Dummies

Part IV: Making Your Programs
Come Alive
The chapters in this part focus on various ways to make your programs more
responsive and engaging. You discover how to work with properties, which
you can use to make one part of your user interface respond to changes in
another part of your user interface. Then, you discover how to incorporate
media including sound and video. Next, you figure out how to create sophis-
ticated animations that make the objects on the screen dance about. And
finally, you read how to create programs that respond to multi-finger gestures
on touch-enabled devices.

Part V: The Part of Tens
This wouldn’t be a For Dummies book without a Part of Tens. Each of the
chapters here presents ten items of special interest. Chapter 19 presents ten
additional JavaFX controls that didn’t fit in Part II. And Chapter 20 presents
ten steps to creating a JavaFX application that displays a three-dimensional
scene.

Icons Used in This Book
Like any For Dummies book, this book is chock-full of helpful icons that draw
your attention to items of particular importance. You find the following icons
throughout this book:

 Danger, Will Robinson! This icon highlights information that may help you
avert disaster.

 Did I tell you about the memory course I took?

 Pay special attention to this icon; it lets you know that some particularly
useful tidbit is at hand.

5 Introduction

 Hold it — overly technical stuff is just around the corner. Obviously, because
this is a programming book, almost every paragraph of the next 400 or so
pages could get this icon. So I reserve it for those paragraphs that go into
greater depth, down into explaining how something works under the covers —
probably deeper than you really need to know to use a feature, but often
enlightening. You also sometimes find this icon when I want to illustrate a point
with an example that uses some Java feature that hasn’t been covered so far in
the book, but that is covered later. In those cases, the icon is just a reminder
that you shouldn’t get bogged down in the details of the illustration, and
instead focus on the larger point.

Beyond the Book
A lot of extra content that you won’t find in this book is available at www.
dummies.com. Go online to find the following:

 ✓ Online articles covering additional topics at

www.dummies.com/extras/javafx

 Here you find articles covering additional features of JavaFX that didn’t
quite fit in the book.

 ✓ The Cheat Sheet for this book is at

www.dummies.com/cheatsheet/javafx

 Here you’ll find a convenient summary of some of the most important
JavaFX classes.

 ✓ Code listings for this book at

www.dummies.com/extras/javafx

 All the code listings used in this book are available for download.

 ✓ Updates to this book, if I have any, are also available at

www.dummies.com/extras/javafx

Where to Go from Here
Yes, you can get there from here. With this book in hand, you’re ready to
dive right into to the cool and refreshing water of the JavaFX pool. Browse
through the Table of Contents and decide where you want to start. Be bold!
Be courageous! Be adventurous! And above all, have fun!

http://www.dummies.com/
http://www.dummies.com/
http://www.dummies.com/extras/javafx
http://www.dummies.com/cheatsheet/javafx
http://www.dummies.com/extras/javafx
http://www.dummies.com/extras/javafx

6 JavaFX For Dummies

Part I
Getting Started with

JavaFX

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com/

In this part . . .
 ✓ Figuring out a basic program

 ✓ Handling events

 ✓ Displaying simple scenes

 ✓ Arranging nodes

 ✓ Responding to input controls

 ✓ Visit www.dummies.com for great Dummies content
online.

http://www.dummies.com/

Chapter 1

Hello, JavaFX!
In This Chapter
▶ Getting a quick overview of what JavaFX is and what you can do with it

▶ Looking at a basic JavaFX program

▶ Downloading, installing, and configuring Java 8 so you can build your own JavaFX
programs

▶ Building a JavaFX program the hard way, using nothing but Notepad and a command
prompt

▶ Using TextPad to simplify JavaFX programming

▶ Using an IDE, such as Eclipse or NetBeans, for JavaFX programming

W
elcome to the wonderful world of JavaFX programming!

This chapter offers a gentle introduction to JavaFX programming. In the next
few pages, you find out what JavaFX is, where it came from, and where it’s
going. You see an example of the classic Hello, World! program implemented
in JavaFX. And you discover how to set up your computer to develop your
own JavaFX programs using several popular development tools for JavaFX.

Incidentally, I assume that you’re already somewhat familiar with Java pro-
gramming. You don’t need to be a master programmer by any means, but you
should have a solid understanding of the basics, such as creating programs
that work with variables and statements (such as if and for) as well as cre-
ating your own classes and using the various classes that are part of the Java
API (Application Programming Interface). I don’t take the time to explain such
basics in this book, so if you need an introduction to Java before you dive
into the details of JavaFX, I suggest you get a copy of my masterpiece, Java
All-in-One For Dummies (Wiley Publishing, Inc.).

The intent of this chapter is to get you ready to start learning how to write
JavaFX programs. As such, you see a brief example of a simple JavaFX pro-
gram in this chapter, which might not make complete sense at this early

10 Part I: Getting Started with JavaFX

stage of your JavaFX journey. Please don’t become discouraged. In Chapter 2,
I dissect that simple JavaFX program line-by-line so you can see what makes
it tick. For this chapter, I focus on the high-level details of what JavaFX is,
what you can do with it, and how to get your computer set up for JavaFX
programming.

 All the code listings used in this book are available for download at
www.dummies.com/extras/javafx.

What Is JavaFX?
Simply put, JavaFX is a collection of Java packages that lets you add fancy
graphical user interfaces to your Java applications. With JavaFX, you can
create traditional windows-style user interfaces that include familiar controls
such as labels, buttons, text boxes, check boxes, drop-down lists, and so on.
But you can also adorn these user interfaces with fancy effects such as light
sources, perspective, and animation. Hence the FX in JavaFX.

 Prior to JavaFX, the main way to create graphical user interfaces in Java was
through the Swing API. JavaFX is similar to Swing in many ways, so if you’ve
ever used Swing to create a user interface for a Java program, you have a good
head start at learning JavaFX.

JavaFX has been around as an add-on package for a while, but beginning with
Java version 8, JavaFX is now an official standard part of the Java platform.
Thus, after you install the Java 8 Development Kit (JDK 8), you can begin
developing your own JavaFX applications with your favorite development
tools. Later in this chapter, you discover how to download and install JDK 8,
and you figure out how to create a simple JavaFX program using three popu-
lar Java development tools: TextPad, Eclipse, and NetBeans.

Because JavaFX is now a standard part of Java, you can run your JavaFX pro-
grams on any device that includes version 8 of the Java Runtime Environment
(JRE). That includes computers, tablet devices, smartphones, and any other
device that can support JDK8.

 Oracle has announced that JavaFX will eventually replace Swing. Although
Swing is still supported in Java 8 and will be supported for the foreseeable
future, Oracle is concentrating new features on JavaFX. Eventually, Swing will
become obsolete.

http://www.dummies.com/extras/javafx

11 Chapter 1: Hello, JavaFX!

Perusing the Possibilities of JavaFX
One of the basic strengths of JavaFX is its ability to let you easily create compli-
cated graphical user interfaces with all the classic user interface gizmos every-
one knows and loves. Thus, JavaFX provides a full range of controls — dozens
of them in fact, including the classics such as buttons, labels, text boxes, check
boxes, drop-down lists, and menus, as well as more exotic controls such as
tabbed panes and accordion panes. Figure 1-1 shows a typical JavaFX user
interface that uses several of these control types to create a form for data entry.

Figure 1-1:
A typical

JavaFX
program.

Truthfully, the data-entry form shown in Figure 1-1 isn’t very remarkable. In fact,
you can easily create data-entry forms like this using Swing with about the same
amount of effort. The real advantages of using JavaFX over Swing don’t become
apparent until you start using some of the more advanced JavaFX features.

For starters, consider the general appearance of the data-entry form shown
in Figure 1-1. The appearance of the buttons, labels, text fields, radio buttons,
and check boxes are a bit dated. The visual differences between the dialog
box shown in Figure 1-1 and one you could’ve created in Visual Basic on a
Windows 95 computer 20 years ago are minor.

Where JavaFX begins to shine is in its ability to easily allow you to improve
the appearance of your user interface by using Cascading Style Sheets (CSS).
CSS makes it easy to customize many aspects of the appearance of your user

12 Part I: Getting Started with JavaFX

interface controls by placing all the formatting information in a separate file
dubbed a style sheet. A style sheet is a simple text file that provides a set of
rules for formatting the various elements of the user interface. You can use
CSS to control literally hundreds of formatting properties. For example, you
can easily change the text properties such as font, size, color, and weight,
and you can add a background image, gradient fills, borders, and special
effects such as shadows, blurs, and light sources.

Figure 1-2 shows a variation of the form that was shown in Figure 1-1, this time
formatted with CSS. The simple CSS file for this form adds a background image,
enhances the text formatting, and modifies the appearance of the buttons.

Figure 1-2:
JavaFX lets

you use CSS
to specify

formatting
for user

interface
elements.

Besides CSS, JavaFX offers many other capabilities. These are the most
important:

 ✓ Visual effects: You can add a wide variety of visual effects to your user
interface elements, including shadows, reflections, blurs, lighting, and
perspective effects.

 ✓ Animation: You can specify animation effects that apply transitions
gradually over time.

 ✓ Charts: You can create bar charts, pie charts, and many other chart
types using the many classes of the javafx.scene.chart package.

 ✓ 3-D objects: You can draw three-dimensional objects such as cubes,
 cylinders, spheres, and more complex shapes.

13 Chapter 1: Hello, JavaFX!

 ✓ Touch interface: JavaFX can handle touchscreen devices, such as smart-
phones and tablet computers with ease.

 ✓ Property bindings: JavaFX lets you create properties, which are special
data types that can be bound to user interface controls. For example,
you can create a property that represents the price of an item being pur-
chased and then bind a label to it. Then, whenever the value of the price
changes, the value displayed by the label is updated automatically.

You discover all these features and more in later chapters of this book. But
for now, it’s time to have a look at a simple JavaFX program so you can get a
feel for what JavaFX programs look like.

Looking at a Simple JavaFX Program
Figure 1-3 shows the user interface for a very simple JavaFX program that
includes just a single button. Initially, the text of this button says Click me
please! When clicked, the text of the button changes to You clicked me!
If you click the button again, the text changes back to Click me please!
Thereafter, each time you click the button, the text cycles between Click me
please! and You clicked me!

Figure 1-3:
The

Click Me
program.

To give you an idea of what JavaFX programming looks like, Listing 1-1 shows
the complete listing for this program. I won’t explain the details of how this
program works — I examine this program in painstaking detail in Chapter 2.
For now, I just want you to get the big picture to give you a feel for what
JavaFX programming looks like.

14 Part I: Getting Started with JavaFX

Listing 1-1: The Click Me Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;

public class ClickMe extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 Button btn;

 @Override public void start(Stage primaryStage)
 {
 // Create the button
 btn = new Button();
 btn.setText("Click me please!");
 btn.setOnAction(e -> buttonClick());

 // Add the button to a layout pane
 BorderPane pane = new BorderPane();
 pane.setCenter(btn);
 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 300, 250);

 // Finalize and show the stage
 primaryStage.setScene(scene);
 primaryStage.setTitle("The Click Me App");
 primaryStage.show();
 }

 public void buttonClick()
 {
 if (btn.getText() == "Click me please!")
 {
 btn.setText("You clicked me!");
 }
 else
 {
 btn.setText("Click me please!");
 }
 }
}

15 Chapter 1: Hello, JavaFX!

The following paragraphs give a brief explanation of the key elements of the
Click Me program:

 ✓ As with any other Java program, JavaFX programs begin with a slew of
import statements that reference the various packages that will be used
by the program.

 For this example, five packages are imported. Most JavaFX programs will
require these five packages as well as additional packages that provide
more advanced features.

 ✓ All JavaFX programs extend a core class named Application, which
provides the basic functionality of the program. When you extend the
Application class, you must override a start method; JavaFX calls
this method when the application starts.

 ✓ Like any Java program, a JavaFX program must have a main method. In
a JavaFX program, the main method simply calls the launch method
of the Application class, which in turn launches the application and
calls the start method.

 ✓ The user interface elements of a JavaFX program are arranged in a hier-
archy of containers. At the highest level is a stage, which represents a
window. Within the stage is a scene, which contains user interface con-
trols. The controls themselves (such as buttons, labels, drop-down lists,
and so on) are usually contained in one or more layout panes that govern
the positional layout of the controls.

 If you study the code in the start method, you see that these elements
are built from the bottom up:

 • A button is created.

 • The button is added to a layout pane (specifically, a StackPane,
which is one of several types of layout panes available).

 • The layout pane is added to a scene and then the scene is added to
the stage.

 • The stage’s show method is called to display the application’s GUI
(Graphical User Interface).

 ✓ The buttonClick method is called whenever the user clicks the button.
This method examines the current text displayed by the button and
changes the text accordingly. Thus, each time the user clicks the button,
the button’s text changes from Click me please! to You clicked
me! or vice-versa.

16 Part I: Getting Started with JavaFX

Please don’t worry if you find some (or even all) of this program confusing at
this point. My intent for this chapter is simply to give you a peek at a simple
JavaFX program, but not to overwhelm you with the details of how this pro-
gram works. As I mention earlier, I will review the details of this program line-
by-line in Chapter 2.

In the remaining sections of this chapter, you figure out how to download,
install, and configure the Java Development Kit and how to compile and test
the Click Me program using popular Java development tools.

Downloading and Installing JavaFX
Actually, the above heading is a bit of a trick. Prior to Java 8, JavaFX was a
separate entity from Java. Thus, to use JavaFX, you had to download and
install a separate JavaFX package. But beginning with Java 8, JavaFX is now
an integral part of Java. So if you’ve downloaded and installed Java 8, you
already have JavaFX.

In the following sections, I discuss how to download, install, and configure
the Java 8 Development Kit (JDK 8) so that you can code and test JavaFX pro-
grams. If you’ve already installed JDK 8, you can skip the rest of this section.

Downloading JDK 8
To get to the download page, point your browser to http://java.oracle.
com/technetwork/java and then follow the appropriate links to download
the JDK 8 for your operating system.

When you get to the Java download page, you find links to download the JDK
or the JRE. Follow the JDK link; the JRE link gets you only the Java Runtime
Environment, not the complete Java Development Kit.

The JDK download comes in two versions:

 ✓ The online version requires an active Internet connection to install the
JDK.

 The offline version lets you download the JDK installation file to your
computer and install it later.

 I recommend that you use the offline version; it installs faster, and you can
reinstall the JDK later if you need to without downloading it again.

http://java.oracle.com/technetwork/java
http://java.oracle.com/technetwork/java

17 Chapter 1: Hello, JavaFX!

Installing JDK 8
After you download the JDK file, you can install it by running the executable
file you downloaded. The procedure varies slightly depending on your oper-
ating system, but basically, you just run the JDK installation program file after
you download it, as follows:

 ✓ On a Windows system, open the folder in which you saved the installa-
tion program and double-click the installation program’s icon.

 ✓ On a Linux or Solaris system, use console commands to change to the
directory to which you downloaded the file and then run the program.

 ✓ On a Mac, open the Downloads window and double-click the JDK .dmg
file you downloaded. A Finder window appears containing an icon of an
open box. Double-click this icon to launch the installer.

After you start the installation program, it prompts you for any information
that it needs to install the JDK properly, such as which features you want to
install and what folder you want to install the JDK in. You can safely choose
the default answer for each option.

Setting the path
After you install the JDK, you need to configure your operating system so
that it can find the JDK command-line tools. To do that, you must set the
Path environment variable — a list of folders that the operating system
uses to locate executable programs. To do this on a Windows system, follow
these steps. You must be logged in as an administrator to make the changes
described in this procedure.

 1. Open the Control Panel.

 • On a Windows 7 or earlier system, open the Start menu and choose
Control Panel.

 • On a Windows 8 or later system, click the Start button or press the
Windows key, type Control Panel, and then press Enter.

 2. Double-click the System icon.

 The System Properties page appears.

 3. Click the Advanced System Settings link and then click the
Environment Variables button.

 The Environment Variables dialog box appears, as shown in Figure 1-4.

18 Part I: Getting Started with JavaFX

Figure 1-4:
The

Environment
Variables

dialog box.

 4. In the System Variables list, scroll to the Path variable, select it, and
then click the Edit button.

 A little dialog box pops up to let you edit the value of the Path variable.

 5. Add the JDK bin folder to the beginning of the Path value.

 Use a semicolon to separate the bin folder from the rest of the informa-
tion that may already be in the path.

 Note: The name of the bin folder may vary on your system, as in this
example:

c:\Program Files\Java\jdk1.8.0\bin;other directories...

 6. Click OK three times to exit.

 The first OK gets you back to the Environment Variables dialog box; the
second OK gets you back to the System Properties page; and the third
OK closes the System Properties page.

For Linux or Solaris, the procedure depends on which shell you’re using. For
more information, consult the documentation for the shell you’re using. Note
that this step is not necessary on Mac systems.

19 Chapter 1: Hello, JavaFX!

Developing the Click Me Program
with Notepad

After you install JDK 8, JavaFX is at your disposal. Strictly speaking, the only
other tools besides JDK 8 you need to develop Java programs is a text editor
and access to a command prompt. With the text editor, you create the Java
source file, saving the file with the extension .java. Then, at the command
prompt, you use Java’s command-line tools to compile and run the program.

Windows comes with the free text-editor Notepad that is adequate enough
for creating simple Java source files. Notepad is a generic text editor that
doesn’t know anything about the peculiarities of Java source code. As a result,
Notepad doesn’t give you any assistance with details such as indenting,
matching up left and right braces, or drawing your attention to syntax errors.

Nor will Notepad give you any help with compiling, running, or debugging a
Java program. But Notepad does have the advantage of being free and simple
to use. And, it’s already on your computer, so there’s nothing else to install.

Here are the steps for creating the Click Me program using Notepad and
Java’s command-line tools:

 1. Start Notepad.

 To do that in Windows 7 or 8:

 a. Click the Start button (or press the Windows key on your keyboard).

 b. Type notepad and then press Enter.

 Notepad comes to life, presenting you with an empty text editing window.

 2. Type the Click Me program text shown in Listing 1-1 into the editing
window.

 Be sure to type the text exactly as it appears in the listing. When you’re
done, carefully review your work to make sure you typed it correctly.

 Figure 1-5 shows how the Click Me program appears when correctly
entered into Notepad. (Note that the Notepad window shown in the
figure is not large enough to display the entire source file; you must
scroll the window to see the entire file.)

20 Part I: Getting Started with JavaFX

Figure 1-5:
The Click

Me program
in Notepad.

 3. Choose File➪Save to save the file using the name ClickMe.java.

 You can save the file in any folder you wish, but it is very important that
the name be exactly ClickMe.java.

 The name of a Java source file must exactly match the name of the
class it contains, right down to capitalization. Thus, if you save the file
as clickme.java instead of ClickMe.java, the Click Me program
won’t work.

 4. Open a command prompt window.

 In Windows 7 or 8, to open the window:

 a. Click the Start button or press the Windows key

 b. Type cmd and press Enter.

 5. Use the cd command to change to the folder in which you saved the
source file in Step 3.

 For example, if you saved the file in C:\Java, enter the following
command:

cd C:\Java

21 Chapter 1: Hello, JavaFX!

 6. Use the javac command to compile the program.

 Enter the following command:

javac ClickMe.java

 Assuming you typed the program exactly right, the javac command
doesn’t display any messages at all. If the program contains any errors,
the compiler displays one or more error messages. If that happens, open
the source file in Notepad, edit the text to correct the errors, save the
file, and then repeat this step until no errors display.

 7. Use the java command to run the program.

 Enter the following command:

java ClickMe

 The window, as shown in Figure 1-6, appears.

Figure 1-6:
The Click

Me program
in action.

 8. Click the Click Me Please! button.

 When you click the button, the text displayed on the button changes to
You clicked me!.

 9. Close the Click Me program by clicking its Close button.

 Congratulations! You’ve successfully created your first JavaFX program!

22 Part I: Getting Started with JavaFX

Developing the Click Me Program
with TextPad

TextPad is an inexpensive ($33) text editor that you can integrate with the
Java Development Kit (JDK) to simplify the task of coding, compiling, and
running Java programs. It isn’t a true integrated development environment
(IDE), as it lacks features such as integrated debugging, code generators, and
drag-and-drop tools for creating graphical user interfaces.

TextPad is a popular tool for developing Java programs because of its sim-
plicity and speed. It’s ideal for learning Java because it’s easy to use, so you
can concentrate on learning Java rather than on learning how to use a com-
plicated development environment.

You can download a free evaluation version of TextPad from Helios Software
Solutions at www.textpad.com. You can use the evaluation version free of
charge, but if you decide to keep the program, you must pay for it. (Helios
accepts credit card payments online.)

If the Java JDK is already installed on your computer, when you install TextPad,
TextPad automatically configures itself to compile and run Java programs. If you
install the JDK after you install TextPad, you need to configure TextPad for Java
by opening the Preferences dialog box (by choosing Configure➪Preferences),
selecting Tools in the tree on the left side of the dialog box, and then choosing
Add➪Java SDK Commands.

After you configure TextPad to compile and run Java programs, you can
create the Click Me program by following these steps:

 1. Start TextPad.

 TextPad automatically opens with an empty source document named
Document1.

 2. Choose File➪Save, type ClickMe.java, and then click Save.

 This saves the file with the name ClickMe.java. Saving the file with a
name that uses the extension .java before you enter any text into the
file lets TextPad slip into Java editing mode, which makes it easier for
you to enter and edit the Java source code for the Click Me program.

 3. Type the text of the Click Me program from Listing 1-1 into the
Document1 window.

http://www.textpad.com/

23 Chapter 1: Hello, JavaFX!

 The basic text-editing capabilities of TextPad are similar to just about
any other text editor you’ve worked with, so you should have no trouble
entering and editing the text of the Click Me program.

 As you edit the text, you may notice some of TextPad’s useful Java edit-
ing features. For example, TextPad automatically indents your code
whenever you type an opening bracket, and then reverts to the previ-
ous indent when you type a closing bracket. TextPad also uses different
colors to indicate keywords, variables, and other Java programming
elements.

 Figure 1-7 shows how the Click Me program appears in TextPad.

Figure 1-7:
The Click

Me program
in TextPad.

 4. Choose Tools➪Compile Java to compile the program.

 If you prefer, you can use the keyboard shortcut Ctrl+1. Either way, the
changes to your source file are automatically saved and the javac com-
mand is invoked to compile the program. If the program compiles suc-
cessfully, the message Tool completed successfully appears in
the Tool Results pane.

24 Part I: Getting Started with JavaFX

 If you made a mistake entering the Click Me program, the compiler
generates error messages that display in the Tool Results pane. If you
double-click the first line of each error message, TextPad takes you to
the spot where the error occurred so you can correct the error.

 5. Choose Tools➪Run Java Application to run the program.

 A command prompt window opens and then the Click Me program
window opens (refer to Figure 1-6).

 6. Click the Click Me Please! button.

 When you click the button, the text displayed on the button changes to
You clicked me!.

 7. Close the Click Me program by clicking its Close button.

 The Click Me program window is closed, but the command prompt
window remains visible, displaying the message Press any key to
continue. . .

 8. Press any key to close the command prompt window.

 That’s all there is to it!

Using an IDE to Create the
Click Me Program

An IDE, or integrated development environment, is a powerful tool that com-
bines sophisticated text-editing features along with the ability to compile,
execute, and debug programs in a variety of programming languages. An IDE
can keep track of multiple source files that make up a single Java program-
ming project and can even keep track of multiple versions of the source files.

The two most popular IDEs for Java programming are Eclipse and NetBeans.
Both are free, and both are comparable in their features. So the choice of
which to use is a matter of preference. You can download Eclipse from
www.eclipse.org. You can get NetBeans at https://netbeans.org.

In the rest of this chapter, I show you how to create the Click Me program in
Eclipse. Although the steps for creating the Click Me program in NetBeans are
different, the concepts are the same.

http://www.eclipse.org/
https://netbeans.org/

25 Chapter 1: Hello, JavaFX!

To get started with Eclipse, go to www.eclipse.org, click the Download
Eclipse button, and download the current version of Eclipse IDE for Java
Developers. Unlike most programs, Eclipse doesn’t have a complicated setup
program. You just download the Zip file, extract all the files, and then run the
Eclipse executable file (eclipse.exe) directly from the folder you extracted
it to.

 If you’re using Windows, you may want to add a desktop shortcut for Eclipse
to make it more convenient to start. To do that, open the folder that contains
the eclipse.exe file, right-click the file and drag it to the desktop, release the
mouse button, and choose Create Shortcut from the menu that appears. Then
you can start Eclipse by double-clicking this desktop shortcut.

Here are the steps for creating the Click Me program in Eclipse:

 1. Start Eclipse by running the Eclipse.exe program file or double-
clicking its desktop shortcut.

 Eclipse comes to life, as shown in Figure 1-8.

Figure 1-8:
Eclipse

awaits your
command.

http://www.eclipse.org/

26 Part I: Getting Started with JavaFX

 2. Choose File➪New➪Java Project.

 The New Java Project dialog box appears, as shown in Figure 1-9.

Figure 1-9:
Creating a
new Java

project.

 3. Type ClickMe in the Project Name field and then click Finish.

 Eclipse sets up the project and adds the project to the Package Explorer
pane at the left side of the screen, as shown in Figure 1-10. (Initially, the
project is collapsed so that just the top line of the project appears. For
this figure, I expanded the project to reveal the subfolders named src
and JRE System Library.)

27 Chapter 1: Hello, JavaFX!

Figure 1-10:
The ClickMe

project
shows up in

the Package
Explorer

pane.

 4. Choose File➪New➪Class.

 The New Java Class dialog box appears, as shown in Figure 1-11.

 5. Type ClickMe in the Name field and then click Finish.

 Eclipse adds a file named ClickMe.java to the src folder and opens
the file in the editing pane, as shown in Figure 1-12. Notice that Eclipse
has also added a short stub of code to help you get started with the
class.

 6. Delete the code stub in the ClickMe.java file; then type the text from
Listing 1-1 into the editing pane.

 Figure 1-13 shows what the ClickMe.java file looks like when you have
correctly entered the program text.

28 Part I: Getting Started with JavaFX

Figure 1-11:
Adding a

class file to
the ClickMe

project.

 7. Choose Run➪Run to run the program.

 The Click Me program window opens, as shown earlier in Figure 1-6.

 8. Click the Click Me Please! button.

 When you click the button, the text displayed on the button changes to
You clicked me!.

 9. Close the Click Me program by clicking its Close button.

 Congratulations! You have successfully created and run the Click Me
program using Eclipse.

Now that you’ve seen you can develop the simple Click Me program using
Notepad and command-line tools, the simple TextPad Java text editor, or a
more complicated IDE such as Eclipse, you’re ready to start discovering the
specifics of how JavaFX programs work. So, in Chapter 2, I detail what every
line of this simple program does. Onward and upward!

29 Chapter 1: Hello, JavaFX!

Figure 1-12:
Eclipse

displays
the newly

created
ClickMe.
java file.

Figure 1-13:
The finished

Click Me
program in

Eclipse.

30 Part I: Getting Started with JavaFX

Chapter 2

Looking Closer at JavaFX
Programming

In This Chapter
▶ Importing the classes you need to create a JavaFX program

▶ Creating a class that extends the JavaFX Application class

▶ Using classes such as Button, BorderPane, and Scene to create a user interface

▶ Creating an event handler that will be called when the user clicks a button

▶ Examining an enhanced version of the Click Me program

I
n Chapter 1, I introduce you to a simple JavaFX program called the Click
Me program and briefly describe how that program works. In this chapter,

I put this program under the microscope and examine it in close detail. By
the time you finish this chapter, you’ll understand how every line of the Click
Me program works and why it’s required. Then, you’ll be ready to start figur-
ing out more nuanced techniques of JavaFX programming.

Looking Again at the
Click Me Program

Figure 2-1 shows the Click Me program in action. As you can see, this program
displays a simple button that contains the words Click me please!. What
the figure does not show is that when the user clicks the button, the text on
the button becomes I’ve Been Clicked!.

32 Part I: Getting Started with JavaFX

Figure 2-1:
The Click

Me program
in action.

Although this program is simple, it demonstrates most of the essential tech-
niques you need to master to figure out how to write JavaFX programs:

 ✓ It displays a user interface that includes a standard type of user inter-
face control — in this case, a button.

 ✓ It responds to the user’s input, generated when the user clicks the
button.

 ✓ It updates the display to confirm the user’s action.

Many JavaFX programs are variations of this simple theme: Create a user
interface, respond to the user’s input, and then update the display to reflect
the user’s input. The user interface displayed by a more realistic JavaFX pro-
gram will undoubtedly display more than just a single button. The processing
performed in response to user input will likely include additional steps, such
as looking up information in a database or performing calculations. And the
display will undoubtedly be updated in more complicated ways than simply
changing the text displayed on a button. But variations on these basic ele-
ments are found in most real-world JavaFX programs.

Listing 2-1 shows the actual JavaFX code for the Click Me program. In the
remaining sections of this chapter, I explain every line of this program in
detail.

33 Chapter 2: Looking Closer at JavaFX Programming

Listing 2-1: The Click Me Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;

public class ClickMe extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 Button btn;

 @Override public void start(Stage primaryStage)
 {
 // Create the button
 btn = new Button();
 btn.setText("Click me please!");
 btn.setOnAction(e -> buttonClick());

 // Add the button to a layout pane
 BorderPane pane = new BorderPane();
 pane.setCenter(btn);

 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 300, 250);

 // Finalize and show the stage
 primaryStage.setScene(scene);
 primaryStage.setTitle("The Click Me App");
 primaryStage.show();
 }

 public void buttonClick()
 {
 if (btn.getText() == "Click me please!")
 {
 btn.setText("You clicked me!");
 }
 else
 {
 btn.setText("Click me please!");
 }
 }
}

34 Part I: Getting Started with JavaFX

Importing JavaFX Packages
Like any Java program, JavaFX programs begin with a series of import state-
ments that reference the various JavaFX packages that the program will use.
The Click Me program includes the following five import statements:

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;

As you can see, all the JavaFX packages begin with javafx. The Click Me
program uses classes from five distinct JavaFX packages:

 ✓ javafx.application: This package defines the core class on which
all JavaFX applications depend: Application. You read more about
the Application class in the section “Extending the Application Class”
later in this chapter.

 ✓ javafx.stage: The most important class in this package is Stage
class, which defines the top-level container for all user interface objects.
Stage is a JavaFX application’s highest-level window, within which all
the application’s user-interface elements are displayed.

 ✓ javafx.scene: The most important class in this package is the Scene
class, which is a container that holds all the user interface elements dis-
played by the program.

 ✓ javafx.scene.layout: This package defines a special type of user-
interface element called a layout manager. The job of a layout manager is
to determine the position of each control displayed in the user interface.

 ✓ javafx.scene.control: This package contains the classes that define
individual user interface controls such as buttons, text boxes, and labels.

 The Click Me program uses just one class from this package: Button,
which represents a button that the user can click.

Extending the Application Class
A JavaFX application is a Java class that extends the javafx.application.
Application class. Thus, the declaration for the Click Me application’s
main class is this:

public class ClickMe extends Application

35 Chapter 2: Looking Closer at JavaFX Programming

Here, the Click Me application is defined by a class named ClickMe, which
extends the Application class.

 Because the entire javafx.application package is imported in line 1 of the
Click Me program, the Application class does not have to be fully qualified.
If you omit the import statement for the javafx.application package, the
ClickMe class declaration would have to look like this:

public class ClickMe
 extends javafx.application.Application

The Application class is responsible for managing what is called the life-
cycle of a JavaFX application. The lifecycle consists of the following steps:

 1. Create an instance of the Application class.

 2. Call the init method.

 The default implementation of the init method does nothing, but you
can override the init method to provide any processing you want to be
performed before the application’s user interface displays.

 3. Call the start method.

 The start method is an abstract method, which means that there is no
default implementation provided as a part of the Application class.
Therefore, you must provide your own version of the start method.
The start method is responsible for building and displaying the user
interface. (For more information, see the section “Overriding the start
Method” later in this chapter.

 4. Wait for the application to end, which typically happens when the user
signals the end of the program by closing the main application window
or choosing the program’s exit command.

 During this time, the application isn’t really idle. Instead, it’s busy per-
forming actions in response to user events, such as clicking a button or
choosing an item from a drop-down list.

 5. Call the stop method.

 Like the init method, the default implementation of the stop method
doesn’t do anything, but you can override it to perform any process-
ing necessary as the program terminates, such as closing database
resources or saving files.

36 Part I: Getting Started with JavaFX

Launching the Application
As you know, the standard entry-point for Java programs is the main method.
Here is the main method for the Click Me program:

public static void main(String[] args)
{
 launch(args);
}

As you can see, the main method consists of just one statement, a call to the
Application class’ launch method.

The launch method is what actually starts a JavaFX application. The launch
method is a static method, so it can be called in the static context of the
main method. It creates an instance of the Application class and then
starts the JavaFX lifecycle, calling the init and start methods, waiting for
the application to finish, and then calling the stop method.

The launch method doesn’t return until the JavaFX application ends.
Suppose you wrote the main method for the Click Me program like this:

public static void main(String[] args)
{
 System.out.println("Launching JavaFX");
 launch(args);
 System.out.println("Finished");
}

Then, you would see Launching JavaFX displayed in the console window
while the JavaFX application window opens. When you close the JavaFX
application window, you would then see Finished in the console window.

Overriding the start Method
Every JavaFX application must include a start method. You write the code
that creates the user interface elements your program’s user will interact
with in the start method. For example, the start method in Listing 2-1
contains code that displays a button with the text Click me please!

When a JavaFX application is launched, the JavaFX framework calls the
start method after the Application class has been initialized.

37 Chapter 2: Looking Closer at JavaFX Programming

The start method for the Click Me program looks like this:

@Override public void start(Stage primaryStage)
{
 // Create the button
 btn = new Button();
 btn.setText("Click me please!");
 btn.setOnAction(e -> buttonClick());

 // Add the button to a layout pane
 BorderPane pane = new BorderPane();
 pane.setCenter(btn);

 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 300, 250);

 // Finalize and show the stage
 primaryStage.setScene(scene);
 primaryStage.setTitle("The Click Me App");
 primaryStage.show();
}

To create the user interface for the Click Me program, the start method per-
forms the following four basic steps:

 1. Create a button control named btn, set its text to Click me please!,
and specify that a method named buttonClick will be called when the
user clicks the button.

 For a more detailed explanation of this code, see the sections “Creating
a Button” and “Handling an Action Event” later in this chapter.

 2. Create a layout pane named pane and add the button to it.

 For more details, see the section “Creating a Layout Pane” later in this
chapter.

 3. Create a scene named scene and add the layout pane to it.

 For more details, see the “Making a Scene” section later in this chapter.

 4. Finalize the stage by setting the scene, setting the stage title, and show-
ing the stage.

 See the “Setting the Stage” section later in this chapter for more details.

38 Part I: Getting Started with JavaFX

You find pertinent details of each of these blocks of code later in this chapter.
But before I proceed, I want to point out a few additional salient details about
the start method:

 ✓ The start method is defined as an abstract method in the Application
class, so when you include a start method in a JavaFX program, you’re
actually overriding the abstract start method.

 Although it isn’t required, it’s always a good idea to include the
@override annotation to explicitly state that you’re overriding the
start method. If you omit this annotation and then make a mistake in
spelling the method named (for example, Start instead of start) or
if you list the parameters incorrectly, Java thinks you’re defining a new
method instead of overriding the start method.

 ✓ Unlike the main method, the start method is not a static method.
When you call the launch method from the static main method, the
launch method creates an instance of your Application class and
then calls the start method.

 ✓ The start method accepts one parameter: the Stage object on which
the application’s user interface will display. When the application calls
your start method, the application passes the main stage — known as
the primary stage — via the primaryStage parameter. Thus, you can
use the primaryStage parameter later in the start method to refer to
the application’s stage.

Creating a Button
The button displayed by the Click Me program is created using a class named
Button. This class is one of many classes that you can use to create user
interface controls. The Button class and most of the other control classes
are found in the package javafx.scene.control.

To create a button, simply define a variable of type Button and then call the
Button constructor like this:

Button btn;
btn = new Button();

In the code in Listing 2-1, the btn variable is declared as a class variable out-
side of the start method but the Button object is actually created within
the start method. Controls are often declared as class variables so that you
can access them from any method defined within the class. As you discover
in the following section (“Handling an Action Event”), a separate method
named buttonClicked is called when the user clicks the button. By defin-
ing the btn variable as a class variable, both the start method and the
buttonClicked method have access to the button.

39 Chapter 2: Looking Closer at JavaFX Programming

To set the text value displayed by the button, call the setText method, pass-
ing the text to be displayed as a string:

btn.setText("Click me please!");

Here are a few additional tidbits about buttons:

 ✓ The Button constructor allows you to pass the text to be displayed on
the button as a parameter, as in this example:

Btn = new Button("Click me please!");

 If you set the button’s text in this way, you don’t need to call the
setTitle method.

 ✓ The Button class is one of many classes that are derived from a parent
class known as javafx.scene.control.Control. Many other classes
derive from this class, including Label, TextField, ComboBox,
CheckBox, and RadioButton.

 ✓ The Control class is one of several different classes that are derived
from higher-level parent class called javafx.scene.Node. Node is the
base class of all user-interface elements that can be displayed in a scene.
A control is a specific type of node, but there are other types of nodes.
In other words, all controls are nodes, but not all nodes are controls.
You can read more about several other types of nodes later in this book.

Handling an Action Event
When the user clicks a button, an action event is triggered. Your program can
respond to the event by providing an event handler, which is simply a bit of
code that will be executed whenever the event occurs. The Click Me program
works by setting up an event handler for the button; the code for the event
handler changes the text displayed on the button.

As you read in Chapter 3, there are several ways to handle events in JavaFX.
For now, I look briefly at one of the simplest methods, which requires simply
that you specify that a method be called whenever the event occurs and then
provide the code to implement that method.

To specify the method to be called when the user clicks a button, you call the
setOnAction method of the button class. Here’s how it’s done in Listing 2-1:

btn.setOnAction(e -> buttonClick());

40 Part I: Getting Started with JavaFX

If the syntax used here seems a little foreign, that’s because it uses a new fea-
ture of Java 8 called Lambda expressions. As used in this example, there are
three elements to this new syntax:

 ✓ The argument e represents an object of type ActionEvent, which the
program can use to get detailed information about the event.

 The Click Me program ignores this argument, so you can ignore it too, at
least for now.

 ✓ The arrow operator (->) is a new operator introduced in Java 8 for use
with Lambda expressions.

 ✓ The method call buttonClick() simply calls the method named
buttonClick.

I discuss Lambda expressions in Chapter 3.

After buttonClick has been established as the method to call when the
user clicks the button, the next step is to code the buttonClick method.
You find it near the bottom of Listing 2-1:

public void buttonClick()
{
 if (btn.getText() == "Click me please!")
 {
 btn.setText("You clicked me!");
 }
 else
 {
 btn.setText("Click me please!");
 }
}

This method uses an if statement to alternately change the text displayed
by the button to either You clicked me! or Click me please!. In other
words, if the button’s text is Click me please! when the user clicks the
button, the buttonClicked method changes the text to You clicked me!.
Otherwise, the if statement changes the button’s text back to Click me
please!.

The buttonClicked method uses two methods of the Button class to
perform its work:

 ✓ getText: Returns the text displayed by the button as a string

 ✓ setText: Sets the text displayed by the button

 For more information about handling events, see Chapter 3.

41 Chapter 2: Looking Closer at JavaFX Programming

Creating a Layout Pane
By itself, a button is not very useful. You must actually display it on the
screen for the user to be able to click it. And any realistic JavaFX program will
have more than one control. The moment you add a second control to your
user interface, you need a way to specify how the controls are positioned
relative to one another. For example, if your application has two buttons, do
you want them to be stacked vertically, one above the other, or side by side?

That’s where layout panes come in. A layout pane is a container class to
which you can add one or more user-interface elements. The layout pane
then determines exactly how to display those elements relative to each other.

To use a layout pane, you first create an instance of the pane. Then, you
add one or more controls to the pane. When you do so, you can specify the
details of how the controls will be arranged when the pane is displayed. After
you add all the controls to the pane and arrange them just so, you add the
pane to the scene.

JavaFX provides a total of eight distinct types of layout panes, all defined by
classes in the package javafx.scene.layout. The Click Me program uses
a type of layout called a border pane, which arranges the contents of the pane
into five general regions: top, left, right, bottom, and center. The BorderPane
class is ideal for layouts in which you have elements such as a menu and
toolbar at the top, a status bar at the bottom, optional task panes or toolbars
on the left or right, and a main working area in the center of the screen.

The lines that create the border pane in the Click Me program are

BorderPane pane = new BorderPane();
pane.setCenter(btn);

Here, a variable of type BorderPane is declared with the name pane, and
the BorderPane constructor is called to create a new BorderPane object.
Then, the setCenter method is used to display the button (btn) in the
center region of the pane.

Here are a few other interesting details about layout panes:

 ✓ Layout panes automatically adjust the exact position of the elements
they contain based on the size of the elements contained in the layout as
well as on the size of the space in which the layout pane is displayed.

 ✓ I said earlier that controls are a type of node, and that you would read
about other types of nodes later in this book. Well, you just read about
one: A layout pane is also a type of node.

42 Part I: Getting Started with JavaFX

 ✓ Each region of a border pane can contain a node. Because a layout
pane itself is a type of node, each region of a border pane can contain
another layout pane. For example, suppose you want to display three
controls in the center region of a border pane. To do that, you’d create
a second layout pane and add the three controls to it. Then, you’d
set the second layout pane as the node to be displayed in the center
region of the first layout pane.

 ✓ You read more about the BorderPane class and a few other commonly
used layout panes in Chapter 5. You also can read about the layout
panes that aren’t as commonly used in Chapter 13.

Making a Scene
After you create a layout pane that contains the controls you want to display,
the next step is to create a scene that will display the layout pane. You can do
that in a single line of code that declares a variable of type Scene and calls the
Scene class constructor. Here’s how I did it in the Click Me program:

Scene scene = new Scene(pane, 300, 250);

The Scene constructor accepts three arguments:

 ✓ A node object that represents the root node to be displayed by the
scene.

 A scene can have only one root node, so the root node is usually a
layout pane, which in turn contains other controls to be displayed. In
the Click Me program, the root note is the border layout pane that con-
tains the button.

 ✓ The width of the scene in pixels.

 ✓ The height of the scene in pixels.

Note: If you omit the width and height, the scene will be sized automatically
based on the size of the elements contained within the root node.

You can find out about some additional capabilities of the Scene class in
Chapter 4.

Setting the Stage
If the scene represents the nodes (controls and layout panes) that are dis-
played by the application, the stage represents the window in which the scene
is displayed. When the JavaFX framework calls your application’s start

43 Chapter 2: Looking Closer at JavaFX Programming

method, it passes you an instance of the Stage class that represents the appli-
cation’s primary stage — that is, the stage that represents the application’s
main window. This reference is passed via the primaryStage argument.

Having created your scene, you’re now ready to finalize the primary stage so
that the scene can be displayed. To do that, you must do at least two things:

 ✓ Call the setScene method of the primary stage to set the scene to be
displayed.

 ✓ Call the show method of the primary stage to display the scene.

 After you call the show method, your application’s window becomes vis-
ible to the user and the user can then begin to interact with its controls.

It’s also customary to set the title displayed in the application’s title bar. You do
that by calling the setTitle method of the primary stage. The last three lines of
the start method for the Click Me application perform these functions:

primaryStage.setScene(scene);
primaryStage.setTitle("The Click Me App");
primaryStage.show();

When the last line calls the show method, the Stage displays — in other
words, the window that was shown in Figure 2-1 displays onscreen.

You can read about additional capabilities of the Stage class in Chapter 4.

Examining the Click Counter Program
Now that I’ve explained the details of every line of the Click Me program, I
look at a slightly enhanced version of the Click Me program called the Click
Counter program. In the Click Me program that was shown in Listing 1-1 (in
Chapter 1), the text displayed on the button changes when the user clicks the
button. In the Click Counter program, an additional type of control called a
label displays the number of times the user has clicked the button.

Figure 2-2 shows the Click Counter program in operation. The window at the
top of this figure shows how the Click Counter program appears when you
first start it. As you can see, the text label at the top of the window displays
the text You have not clicked the button. The second window
shows what the program looks like after you click the button the first time.
Here, the label reads You have clicked once. When the button is clicked
a second time, the label changes again, as shown in the third window. Here,
the label reads You have clicked 2 times. After that, the number dis-
played by the label updates each time you click the button to indicate how
many times the button has been clicked.

44 Part I: Getting Started with JavaFX

Figure 2-2:
The Click

Counter
program in

action.

Listing 2-2 shows the source code for the Click Counter program, and the fol-
lowing paragraphs describe the key points of how it works:

Listing 2-2: The Click Counter Program

import javafx.application.*; ➝1
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;

public class ClickCounter extends Application ➝7
{
 public static void main(String[] args) ➝9
 {
 launch(args); ➝11
 }

45 Chapter 2: Looking Closer at JavaFX Programming

 Button btn; ➝14
 Label lbl; ➝15
 int iClickCount = 0; ➝16

 @Override public void start(Stage primaryStage) ➝18
 {
 // Create the button
 btn = new Button(); ➝21
 btn.setText("Click me please!"); ➝22
 btn.setOnAction(e -> buttonClick()); ➝23

 // Create the Label
 lbl = new Label(); ➝26
 lbl.setText("You have not clicked the button."); ➝27

 // Add the label and the button to a layout pane
 BorderPane pane = new BorderPane(); ➝30
 pane.setTop(lbl); ➝31
 pane.setCenter(btn); ➝32

 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 250, 150); ➝35

 // Add the scene to the stage, set the title
 // and show the stage
 primaryStage.setScene(scene); ➝39
 primaryStage.setTitle("Click Counter"); ➝40
 primaryStage.show(); ➝41
 }

 public void buttonClick() ➝44
 {
 iClickCount++; ➝46
 if (iClickCount == 1) ➝47
 {
 lbl.setText("You have clicked once."); ➝49
 }
 else
 {
 lbl.setText("You have clicked " ➝53
 + iClickCount + " times.");
 }
 }

}

46 Part I: Getting Started with JavaFX

The following paragraphs explain the key points of the Click Me program:

 ➝ 1: The import statements reference the javafx packages that will
be used by the Click Me program.

 ➝ 7: The ClickMe class extends javafx.application.Application,
thus specifying that the ClickMe class is a JavaFX application.

 ➝ 9: As with any Java program, the main method is the main entry
point for all JavaFX programs.

 ➝ 11: The main method calls the launch method, which is defined by
the Application class. The launch method, in turn, creates an
instance of the ClickMe class and then calls the start method.

 ➝ 14: A variable named btn of type javafx.scene.control.Button
is declared as a class variable. Variables representing JavaFX con-
trols are commonly defined as class variables so that they can be
accessed by any method in the class.

 ➝ 15: A class variable named lbl of type javafx.scene.control.
Label represents the Label control so that it can be accessed
from any method in the class.

 ➝ 16: A class variable named iClickCount will be used to keep track
of the number of times the user clicks the button.

 ➝ 18: The declaration of the start method uses the @override anno-
tation, indicating that this method overrides the default start
method provided by the Application class. The start method
accepts a parameter named primaryStage, which represents
the window in which the Click Me application will display its user
interface.

 ➝ 21: The start method begins by creating a Button object and
assigning it to a variable named btn.

 ➝ 22: The button’s setText method is called to set the text displayed
by the button to Click me please!.

 ➝ 23: The setOnAction is called to create an event handler for the
button. Here, a Lambda expression is used to simply call the
buttonClick method whenever the user clicks the button.

 ➝ 26: The constructor of the Label class is called to create a new label.

 ➝ 27: The label’s setText method is called to set the initial text value
of the label to You have not clicked the button.

47 Chapter 2: Looking Closer at JavaFX Programming

 ➝ 30: A border pane object is created by calling the constructor of the
BorderPane class, referencing the border pane via a variable
named pane. The border pane will be used to control the layout of
the controls displayed on the screen.

 ➝ 31: The border pane’s setTop method is called to add the label to the
top region of the border pane.

 ➝ 32: The border pane’s setCenter method is called to add the button
to the center region of the border pane.

 ➝ 35: A scene object is created by calling the constructor of the Scene
class, passing the border pane created in line 30 to the construc-
tor to establish the border pane as the root node of the scene. In
addition, the dimensions of the scene are set to 300 pixels in width
and 250 pixels in height.

 ➝ 39: The setScene method of the primaryStage is used to add the
scene to the primary stage.

 ➝ 40: The setTitle method is used to set the text displayed in the pri-
mary stage’s title bar.

 ➝ 41: The show method is called to display the primary stage. When
this line is executed, the window that was shown in Figure 2-1
displays on the screen and the user can begin to interact with the
program.

 ➝ 44: The buttonClick method is called whenever the user clicks the
button.

 ➝ 46: The iClickCount variable is incremented to indicate that the
user has clicked the button.

 ➝ 47: An if statement is used to determine whether the button has
been clicked one or more times.

 ➝ 49: If the button has been clicked once, the label text is set to You
have clicked once.

 ➝ 53: Otherwise, the label text is set to a string that indicates how many
times the button has been clicked.

That’s all there is to it. If you understand the details of how the Click Counter
program works, you’re ready to move on to Chapter 3. If you’re still strug-
gling with a few points, I suggest you spend some time reviewing this chapter
and experimenting with the Click Counter program in TextPad, Eclipse, or
NetBeans.

48 Part I: Getting Started with JavaFX

The following paragraphs help clarify some of the key sticking points that
might be tripping you up about the Click Counter program and JavaFX in
general:

 ✓ When does the program switch from static to non-static? Like every
Java program, the main entry point of a JavaFX program is the static
main method.

 In most JavaFX programs, the static main method does just one thing:
It calls the launch method to start the JavaFX portion of the program.
The launch method creates an instance of the ClickCounter class
and then calls the start method. At that point, the program is no longer
running in a static context because an instance of the ClickCounter
class has been created.

 ✓ Where does the primaryStage variable come from? The primaryStage
variable is passed to the start method when the launch method calls the
start method. Thus, the start method receives the primaryStage vari-
able as a parameter.

 That’s why you won’t find a separate variable declaration for the
primaryStage variable.

 ✓ How does the -> operator work? The -> operator is used to create
what is known as a Lambda expression. Lambda expressions are a new
feature of Java 8 that are used in situations that would’ve previously
required an anonymous class. Don’t worry if you don’t understand how
the Lambda expression works. I explain them in detail in Chapter 3.

Chapter 3

Handling Events
In This Chapter
▶ Understanding important event concepts

▶ Working with event-handling classes and interfaces

▶ Extending the EventHandler interface

▶ Using inner and anonymous classes for event handling

▶ Using Lambda expressions for event handling

I
n Chapter 2, I discuss two programs that display simple scenes that
include a button and that respond when the user clicks the button. These

programs respond to the event triggered when the user clicks the button by
providing an event handler that’s executed when the event occurs.

In this chapter, you read more details about how event handling works in
JavaFX. I discuss how events are generated and how they’re dispatched by
JavaFX so that your programs can respond to them. You discover the many
varieties of events that can be processed by a JavaFX program. And you
figure out several programming techniques for handling JavaFX events.

Finally, in this chapter you’re introduced to the idea of property bindings,
which let you write code that responds to changes in the value of certain
types of class fields, dubbed property fields. In JavaFX, property bindings are
sometimes used in situations that would’ve called for an event handler in
Swing.

 Although event handling is used mostly to respond to button clicks, it can
also be used to respond to other types of user interactions. You can use event
handling, for example, to write code that’s executed when the user makes a
selection from a combo box, moves the mouse over a label, or presses a key
on the keyboard. The event-handling techniques in this chapter work for those
events as well.

50 Part I: Getting Started with JavaFX

Examining Events
An event is an object that’s generated when the user does something note-
worthy with one of your user-interface components. Then this event object
is passed to a special method you create, called an event handler. The event
handler can examine the event object, determine exactly what type of event
occurred, and respond accordingly. If the user clicks a button, the event han-
dler might write any data entered by the user via text fields to a file. If the
user passes the mouse cursor over a label, the event handler might change
the text displayed by the label. And if the user selects an item from a combo
box, the event handler might use the value that was selected to look up infor-
mation in a database. The possibilities are endless!

An event is represented by an instance of the class javafx.event.Event
or one of its many subclasses. Table 3-1 lists the most commonly used event
classes.

Table 3-1 Commonly Used Event Classes
Event Class Package Description
ActionEvent javafx.event Created when the user performs

an action with a button or other
component. Usually this means that
the user clicked the button, but the
user can also invoke a button action
by tabbing to the button and press-
ing the Enter key. This is the most
commonly used event class, as it
represents the most common types
of user-interface events.

InputEvent javafx.
scene.input

Created when an event that results
from user input, such as a mouse or
key click, occurs.

KeyEvent javafx.
scene.input

Created when the user presses a
key on the keyboard. This event
can be used to watch for specific
keystrokes entered by the user.
(KeyEvent is a subclass of
InputEvent.)

51 Chapter 3: Handling Events

Event Class Package Description

MouseEvent javafx.
scene.input

Created when the user does some-
thing interesting with the mouse, such
as clicking one of the buttons, drag-
ging the mouse, or simply moving the
mouse cursor over another object.
(MouseEvent is a subclass of
InputEvent.)

TouchEvent javafx.
scene.input

Created when a user initiates a
touch event on a device that allows
touch input.

WindowEvent javafx.stage Created when the status of the
window (stage) changes.

 Here are four important terms you need to know:

 ✓ Event: An object that’s created when the user does something note-
worthy with a component, such as clicking it.

 ✓ Event source: The object on which the event initially occurred.

 ✓ Event target: The node that the event is directed at.

 This is usually the button or other control that the user clicked or other-
wise manipulated. (In most cases, the event source and the event target
are the same.)

 ✓ Event handler: The object that listens for events and handles them
when they occur.

 The event-listener object must implement the EventHandler inter-
face, which defines a single method named handle (see Table 3-2). The
EventHandler interface is defined in the package javafx.event.

Table 3-2 The EventHandler Interface
Method Description

void handle<T event> Called when an event occurs

52 Part I: Getting Started with JavaFX

Handling Events
Now that you know the basic classes and interfaces that are used for event
handling, you’re ready to figure out how to wire them to create a program
that responds to events.

In this section, I discuss how to implement the event handler by coding the
program’s Application so that in addition to extending the Application
class, it also implements the EventHandler interface. In subsequent sec-
tions of this chapter, I discuss alternative techniques to implement event han-
dlers that are more concise and, in many cases, easier to work with.

Note that the programs that were shown in Chapters 1 and 2 use the concise
Lambda expressions technique, and most of the programs featured through-
out the rest of this book also use Lambda expressions. But it’s important that
you know the other techniques so that you have a complete understanding of
how event handling actually works.

Here are three steps you must take to handle a JavaFX event:

 1. Create an event source.

 An event source is simply a control, such as a button, that can generate
events. Usually, you declare the variable that refers to the event source as a
private class field, outside the start method or any other class methods:

private Button btn;

 Then, in the start method, you can create the button like this:

btn = new Button();
btn.setText("Click me please!");

 2. Create an event handler.

 To create an event handler, you must create an object that implements
the EventHandler interface and provides an implementation of the
handle method.

 Here are four ways to create an event handler:

 • Add implements EventHandler to the program’s Application
class and provide an implementation of the handle method.

 You figure out how to use this technique in the section
“Implementing the EventHandler Interface.”

 • Create an inner class that implements EventHandler within the
Application class.

53 Chapter 3: Handling Events

 You figure out how to use this technique in the section “Handling
Events with Inner Classes.”

 • Create an anonymous class that implements EventHandler.

 I show you how to use this technique in the section “Handling
Events with Anonymous Inner Classes.”

 • Use a Lambda expression to implement the handle method.

 You read about how to use this technique in the section “Using
Lambda Expressions to Handle Events.”

 3. Register the event handler with the event source.

 The final step is to register the event handler with the event source so
that the handle method is called whenever the event occurs.

 Every component that serves as an event source provides a method that
lets you register event handlers to listen for the event. For example, a
Button control provides a setOnAction method that lets you register
an event handler for the action event. In the setOnAction method, you
specify the event handler object as a parameter. The exact way you do
that depends on which of the various techniques you used to create the
event handler.

Implementing the EventHandler
Interface

To see how all these elements work together in a complete program,
Figure 3-1 shows the output from a simple program called AddSubtract1. This
program displays a label and two buttons, one titled Add and the other titled
Subtract. The label initially displays the number 0. Each time the user clicks
the Add button, the value displayed by the label is increased by one; each
time the user clicks the Subtract button, the value is decreased by one.

Listing 3-1 shows the complete code for this program.

Figure 3-1:
The Add-
Subtract1
program.

54 Part I: Getting Started with JavaFX

Listing 3-1: The AddSubtract1 Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*; ➝6

public class AddSubtract extends Application
 implements EventHandler <ActionEvent> ➝9
{
 public static void main(String[] args) ➝11
 {
 launch(args);
 }

 Button btnAdd; ➝16
 Button btnSubtract;
 Label lbl;
 int iCounter = 0; ➝19

 @Override public void start(Stage primaryStage) ➝21
 {
 // Create the Add button
 btnAdd = new Button(); ➝24
 btnAdd.setText("Add");
 btnAdd.setOnAction(this); ➝26

 // Create the Subtract button
 btnSubtract = new Button(); ➝29
 btnSubtract.setText("Subtract");
 btnSubtract.setOnAction(this);

 // Create the Label ➝33
 lbl = new Label();
 lbl.setText(Integer.toString(iCounter));

 // Add the buttons and label to an HBox pane
 HBox pane = new HBox(10); ➝38
 pane.getChildren().addAll(lbl, btnAdd, btnSubtract); ➝39

 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 200, 75); ➝42

 // Add the scene to the stage, set the title
 // and show the stage
 primaryStage.setScene(scene); ➝46
 primaryStage.setTitle("Add/Sub");
 primaryStage.show();
 }

55 Chapter 3: Handling Events

 @Override public void handle(ActionEvent e) ➝51
 {
 if (e.getSource()==btnAdd) ➝53
 {
 iCounter++;
 }
 else
 {
 if (e.getSource()==btnSubtract) ➝59
 {
 iCounter--;
 }
 }
 lbl.setText(Integer.toString(iCounter)); ➝64
 }

}

The following paragraphs point out some key lines of the program:

 ➝ 6: The program must import the javafx.event package, which
defines the ActionEvent class and the EventHandler interfaces.

 ➝ 9: As in any JavaFX program, the AddSubtract1 class extends the
Application class. However, the AddSubtract1 class also
implements the EventHandler interface so that it can define a
handle method that will handle ActionEvent events that are
generated by the buttons.

 The EventHandler interface is a generic interface, which means
that you must specify the specific event type that the interface
will implement. In this case, the class will handle ActionEvent
events.

 ➝ 11: The main method is required as usual. This method simply calls
the launch method to create an instance of the AddSubtract
class, which in turn calls the start method.

 ➝ 16: Two buttons (btnAdd and btnSubtract) and a label (lbl) are
defined as class fields so that they can be accessed throughout
the class.

 ➝ 19: The iCounter variable keeps track of the value displayed by
the label. The value will be incremented when the user clicks
the btnAdd button and decremented when the user clicks the
btnSubtract button.

 ➝ 21: The start method is called when the application is started.

 ➝ 24: This line and the next line create the Add button and set its text to
display the word Add.

56 Part I: Getting Started with JavaFX

 ➝ 26: This line sets the current object as the event handler for the btnAdd
button. The this keyword is used here because the AddSubtract
class implements the EventHandler. In effect, the AddSubtract
class itself handles any events that are created by its own controls.

 ➝ 29: These lines create the Subtract button, set its text to the word
Subtract, and set the current object (this) as the event handler
for the button.

 ➝ 33: These two lines create the label and set its initial text value to a
string equivalent of the iCounter variable.

 ➝ 38: For this program, a border pane is not the appropriate type of
layout pane. Instead, for this program, use a new type of layout
pane called an HBox. An HBox pane arranges any controls you add
to it in a horizontal row. The parameter 10 indicates that the con-
trols should be separated from one another by a space ten pixels
wide.

 ➝ 39: This line adds the label and the two buttons to the horizontal
box. The code required to do this is admittedly a bit convoluted.
First, you must call the getChildren method to get a list of all
the child nodes that are in the HBox. Then, you call the addAll
method to add one or more controls. In this case, three controls
are added: the label (lbl), the Add button (btnAdd), and the
Subtract button (btnSubtract).

 ➝ 42: This line creates a new scene, using the HBox pane as its root
node.

 ➝ 46: This line sets the scene created in line 42 as the primary scene for
the stage, sets the stage title, and then shows the stage.

 ➝ 51: The handle method must be coded because the AddSubtract
class implements the EventHandler interface. This method is
called by either of the button objects whenever the user clicks
one of the buttons. The ActionEvent parameter is the event gen-
erated by the button click and passed to the handle method.

 ➝ 53: The getSource method of the ActionEvent parameter is called
to determine the event source. If the event source is btnAdd, the
iCounter variable is incremented.

 ➝ 59: If, on the other hand, the event source is btnSubtract, the
iCounter variable is decremented.

 ➝ 64: The label’s text value is set to the string equivalent of the
iCounter variable.

57 Chapter 3: Handling Events

Handling Events with Inner Classes
An inner class is a class that’s nested within another class. Inner classes are
commonly used for event handlers. That way, the class that defines the appli-
cation doesn’t also have to implement the event handler. Instead, it includes
an inner class that handles the events.

Listing 3-2 shows the AddSubtract2 program, which uses an inner class to
handle the action event for the buttons.

Listing 3-2: The AddSubtract2 Program with an Inner Class

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;

public class AddSubtract2 extends Application ➝8
{
 public static void main(String[] args)
 {
 launch(args);
 }

 Button btnAdd;
 Button btnSubtract;
 Label lbl;
 int iCounter = 0;

 @Override public void start(Stage primaryStage)
 {
 // Create a ClickHandler instance
 ClickHandler ch = new ClickHandler(); ➝23

 // Create the Add button
 btnAdd = new Button();
 btnAdd.setText("Add");
 btnAdd.setOnAction(ch); ➝28

 // Create the Subtract button
 btnSubtract = new Button();
 btnSubtract.setText("Subtract");
 btnSubtract.setOnAction(ch); ➝33

(continued)

58 Part I: Getting Started with JavaFX

 // Create the Label
 lbl = new Label();
 lbl.setText(Integer.toString(iCounter));

 // Add the buttons and label to an HBox pane
 HBox pane = new HBox(10);
 pane.getChildren().addAll(lbl, btnAdd, btnSubtract);

 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 200, 75);

 // Add the scene to the stage, set the title
 // and show the stage
 primaryStage.setScene(scene);
 primaryStage.setTitle("Add/Sub");
 primaryStage.show();
 }

 private class ClickHandler ➝53
 implements EventHandler <ActionEvent>
 {
 @Override public void handle(ActionEvent e) ➝56
 {
 if (e.getSource()==btnAdd)
 {
 iCounter++;
 }
 else
 {
 if (e.getSource()==btnSubtract)
 {
 iCounter--;
 }
 }
 lbl.setText(Integer.toString(iCounter));
 }
 }

}

This program works essentially the same way as the program shown
in Listing 3-1, so I don’t review every detail. Instead, I just highlight the
differences:

 ➝ 8: The AddSubtract2 class still extends Application but doesn’t
implement EventHandler.

 ➝ 23: This statement creates an instance of the ClickHandler class
(the inner class) and assigns it to the variable ch.

Listing 3-2 (continued)

59 Chapter 3: Handling Events

 ➝ 28: This statement sets ch as the action listener for the Add button.

 ➝ 33: This statement sets ch as the action listener for the Subtract
button.

 ➝ 53: The ClickHandler class is declared as an inner class by placing
its declaration completely within the AddSubtract2 class. The
ClickHandler class implements the EventHandler interface so
that it can handle events.

 ➝ 56: The handle method here is identical to the handle method in
the AddSubtract1 program (see Listing 3-1) but resides in the
inner ClickHandler class instead of in the outer class.

Handling Events with Anonymous
Inner Classes

An anonymous inner class, usually just called an anonymous class, is a class
that’s defined on the spot, right at the point where you need it. Because you
code the body of the class right where you need it, you don’t have to give it a
name; that’s why it’s called an anonymous class.

Anonymous classes are often used for event handlers to avoid the need
to create a separate class that explicitly implements the EventHandler
interface.

One advantage of using anonymous classes for event handlers is that you can
easily create a separate event handler for each control that generates events.
Then, in the handle method for those event handlers, you can dispense with
the if statements that check the event source.

Consider the event handler for the AddSubtract2 program shown earlier in
Listing 3-2: It must check the event source to determine whether to increment
or decrement the iCounter variable. By using anonymous classes, you can
create separate event handlers for the Add and Subtract buttons. The event
handler for the Add button increments iCounter, and the event handler for
the Subtract button decrements it. Neither event handler needs to check the
event source because the event handler’s handle method will be called only
when an event is raised on the button with which the handler is associated.

Listing 3-3 shows the AddSubtract3 program, which uses anonymous inner
classes in this way.

60 Part I: Getting Started with JavaFX

Listing 3-3: The AddSubtract3 Program with Anonymous Inner Classes

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;

public class AddSubtract3 extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 Button btnAdd;
 Button btnSubtract;
 Label lbl;
 int iCounter = 0;

 @Override public void start(Stage primaryStage)
 {
 // Create the Add button
 btnAdd = new Button();
 btnAdd.setText("Add");
 btnAdd.setOnAction(
 new EventHandler<ActionEvent>() ➝26
 {
 public void handle(ActionEvent e) ➝28
 {
 iCounter++; ➝30
 lbl.setText(Integer.toString(iCounter));
 }
 });

 // Create the Subtract button
 btnSubtract = new Button();
 btnSubtract.setText("Subtract");
 btnSubtract.setOnAction(
 new EventHandler<ActionEvent>() ➝39
 {
 public void handle(ActionEvent e) ➝41
 {
 iCounter--;
 lbl.setText(Integer.toString(iCounter));
 }
 });

61 Chapter 3: Handling Events

 // Create the Label
 lbl = new Label();
 lbl.setText(Integer.toString(iCounter));

 // Add the buttons and label to an HBox pane
 HBox pane = new HBox(10);
 pane.getChildren().addAll(lbl, btnAdd, btnSubtract);

 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 200, 75);

 // Add the scene to the stage, set the title
 // and show the stage
 primaryStage.setScene(scene);
 primaryStage.setTitle("Add/Sub");
 primaryStage.show();
 }
}

The following paragraphs highlight the key points of how this program uses
anonymous inner classes to handle the button events:

 ➝ 26: This line calls the setOnAction method of the Add button and
creates an anonymous instance of the EventHandler class, spec-
ifying ActionEvent as the type.

 ➝ 28: The handle method must be defined within the body of the anon-
ymous class.

 ➝ 30: Because this handle method will be called only when the Add
button is clicked (not when the Subtract button is clicked), it
does not need to determine the event source. Instead, the method
simply increments the counter variable and sets the label text to
display the new value of the counter.

 ➝ 39: This line calls the setOnAction method of the Subtract button
and creates another anonymous instance of the EventHandler
class.

 ➝ 41: This time, the handle method decrements the counter variable
and updates the label text to display the new counter value.

Using Lambda Expressions
to Handle Events

Java 8 introduces a new feature that in some ways is similar to anonymous
classes, but with more concise syntax. More specifically, a Lambda expression
lets you create an anonymous class that implements a specific type of inter-
face — a functional interface — which has one and only one abstract method.

62 Part I: Getting Started with JavaFX

The EventHandler interface used to handle JavaFX events meets that defi-
nition: It has just one abstract method, handle. Thus, EventHandler is a
functional interface and can be used with Lambda expressions.

A Lambda expression is a concise way to create an anonymous class that
implements a functional interface. Instead of providing a formal method dec-
laration that includes the return type, method name, parameter types, and
method body, you simply define the parameter types and the method body.
The Java compiler infers the rest based on the context in which you use the
Lambda expression.

The parameter types are separated from the method body by a new opera-
tor — the arrow operator — which consists of a hyphen followed by a greater-
than symbol. Here’s an example of a Lambda expression that implements the
EventHandler interface:

e ->
 {
 iCounter++;
 lbl.setText(Integer.toString(iCounter);
 }

In this case the Lambda expression implements a functional interface whose
single method accepts a single parameter, identified as e. When the method
is called, the iCounter variable is incremented and the label text is updated
to display the new counter value.

Here’s how you’d register this Lambda expression as the event handler for a
button:

btnAdd.setOnAction(e ->
 {
 iCounter++;
 lbl.setText(Integer.toString(iCounter));
 });

One of the interesting things about Lambda expressions is that you don’t
need to know the name of the method being called. This is possible because
a functional interface used with a Lambda expression can have only one
abstract method. In the case of the EventHandler interface, the method is
named handle.

You also do not need to know the name of the interface being implemented.
This is possible because the interface is determined by the context. The
setOnAction method takes a single parameter of type EventHandler.
Thus, when you use a Lambda expression in a call to setOnAction, the
Java compiler can deduce that the Lambda expression will implement
the EventHandler interface. And because the only abstract method of
EventHandler is the handle method, the compiler can deduce that the
method body you supply is an implementation of the handle method.

63 Chapter 3: Handling Events

In a way, Lambda expressions take the concept of anonymous classes two
steps further. When you use an anonymous class to set an event handler, you
must know and specify the name of the class (EventHandler) and the name
of the method to be called (handle), so the only sense in which the class is
anonymous is that you don’t need to provide a name for a variable that will
reference the class. But when you use a Lambda expression, you don’t have
to know or specify the name of the class, the method, or a variable used to
reference it. All you have to do, essentially, is provide the body of the handle
method.

Listing 3-4 shows the AddSubtract4 program, which uses Lambda expres-
sions to handle the button clicks.

Listing 3-4: The AddSubtract4 Program with Lambda Expressions

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;

public class AddSubtract4 extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 Button btnAdd;
 Button btnSubtract;
 Label lbl;
 int iCounter = 0;

 @Override public void start(Stage primaryStage)
 {
 // Create the Add button
 btnAdd = new Button();
 btnAdd.setText("Add");
 btnAdd.setOnAction(e -> ➝25
 {
 iCounter++;
 lbl.setText(Integer.toString(iCounter));
 });

 // Create the Subtract button
 btnSubtract = new Button();
 btnSubtract.setText("Subtract");
 btnSubtract.setOnAction(e -> ➝34

(continued)

64 Part I: Getting Started with JavaFX

 {
 iCounter--;
 lbl.setText(Integer.toString(iCounter));
 });

 // Create the Label
 lbl = new Label();
 lbl.setText(Integer.toString(iCounter));

 // Add the buttons and label to an HBox pane
 HBox pane = new HBox(10);
 pane.getChildren().addAll(lbl, btnAdd, btnSubtract);

 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 200, 75);

 // Add the scene to the stage, set the title
 // and show the stage
 primaryStage.setScene(scene);
 primaryStage.setTitle("Add/Sub");
 primaryStage.show();
 }

}

This program works essentially the same way as the program shown in
Listing 3-3, so I just point out the features directly related to the use of the
Lambda expression:

 ➝ 25: This statement uses a Lambda expression to add an event handler
to the Add button. The method body of this Lambda expression
increments the counter variable and then sets the label text to
reflect the updated value.

 ➝ 34: This statement uses a similar Lambda expression to create
the event handler for the Subtract button. The only difference
between this Lambda expression and the one for the Add button
is that here the counter variable is decremented instead of
incremented.

Note that in this example, the Lambda expressions for the two event handlers
are simple because very little processing needs to be done when either of the
buttons in this program are clicked. What would the program look like, how-
ever, if the processing required for one or more of the button clicks required
hundreds of lines of Java code to implement? The Lambda expression would

Listing 3-4 (continued)

65 Chapter 3: Handling Events

become unwieldy. For this reason, I often prefer to isolate the actual process-
ing to be done by an event handler in a separate method. Then, the Lambda
expression itself includes just one line of code that simply calls the method.

Listing 3-5 shows another variation of the AddSubtract5 program imple-
mented using that technique. Note that the technique used in Listing 3-5 is
the technique that most of the remaining programs in this book use.

Listing 3-5: The AddSubtract5 Program with Lambda Expressions

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;

public class AddSubtract5 extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 Button btnAdd;
 Button btnSubtract;
 Label lbl;
 int iCounter = 0;

 @Override public void start(Stage primaryStage)
 {
 // Create the Add button
 btnAdd = new Button();
 btnAdd.setText("Add");
 btnAdd.setOnAction(e -> btnAdd_Click()); ➝25

 // Create the Subtract button
 btnSubtract = new Button();
 btnSubtract.setText("Subtract");
 btnSubtract.setOnAction(e -> btnSubtract_Click()); ➝30

 // Create the Label
 lbl = new Label();
 lbl.setText(Integer.toString(iCounter));

 // Add the buttons and label to an HBox pane
 HBox pane = new HBox(10);
 pane.getChildren().addAll(lbl, btnAdd, btnSubtract);

(continued)

66 Part I: Getting Started with JavaFX

 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 200, 75);

 // Add the scene to the stage, set the title
 // and show the stage
 primaryStage.setScene(scene);
 primaryStage.setTitle("Add/Sub");
 primaryStage.show();
 }

 private void btnAdd_Click() ➝50
 {
 iCounter++;
 lbl.setText(Integer.toString(iCounter));
 }

 private void btnSubtract_Click() ➝56
 {
 iCounter--;
 lbl.setText(Integer.toString(iCounter));
 }

}

The following paragraphs highlight the important points of this version of the
program:

 ➝ 25: The setOnAction method for the Add button uses a Lambda
expression to specify that the method named btnAdd_Click
should be called when the user clicks the button.

 ➝ 30: The setOnAction method for the Subtract button uses a Lambda
expression to specify that the method named btnSubtract_
Click should be called when the user clicks the button.

 ➝ 50: The btnAdd_Click method increments the counter and updates
the label’s text to reflect the updated counter value.

 ➝ 56: Likewise, the btnSubtract_Click method decrements the coun-
ter and updates the label’s text accordingly.

Listing 3-5 (continued)

Chapter 4

Setting the Stage and
Scene Layout

In This Chapter
▶ Looking at some useful methods of the Stage and Scene classes

▶ Alternating scenes within a single stage

▶ Displaying additional stages as message and confirmation boxes

▶ Discovering the proper way to exit a JavaFX program

O for a Muse of fire, that would ascend
The brightest heaven of Invention,

A kingdom for a stage, princes to act,
And monarchs to behold the swelling scene!

S
o begins William Shakespeare’s play Henry V, and so also begins this
chapter, in which I explore the various ways to manipulate the appear-

ance of a JavaFX application by manipulating its stage and its swelling
scenes.

Specifically, you read important details about the Stage class and the Scene
class so that you can control such things as whether the window is resizable
and if so, whether it has a maximum or a minimum size. You also read how to
coerce your programs into displaying additional stages beyond the primary
stage, such as an alert or confirmation dialog box. And finally, you read the
proper way to end a JavaFX program by handling the events generated when
the user closes the stage.

68 Part I: Getting Started with JavaFX

Examining the Stage Class
A stage, which is represented by the Stage class, is the topmost container
in which a JavaFX user interface appears. In Windows, on a Mac, or in Linux,
a stage is usually a window. On other types of devices, such as a smartphone
or tablet, the stage may be the full screen or a tiled region of the screen.

When a JavaFX application is launched, a stage known as the primary stage is
automatically created. A reference to this stage is passed to the application’s
start method via the primaryStage parameter:

@Override public void start(Stage primaryStage)
{
 // primaryStage refers to the
 // application's primary stage.
}

You can then use the primary stage to create the application’s user interface
by adding a scene, which contains one or more controls or other user-interface
nodes.

 In many cases, you will need to access the primary stage outside of the scope
of the start method. You can easily make this possible by defining a class
field and using it to reference the primary stage. You see an example of how to
do that later in this chapter, in the section “Switching Scenes.”

The primary stage initially takes on the default characteristics of a normal
windowed application, which depends on the operating system within which
the program will run. You can, if you choose, change these defaults to suit
the needs of your application. At the minimum, you should always set the
window title. You may also want to change details, such as whether the stage
is resizable and various aspects of the stage’s appearance.

The Stage class comes equipped with many methods that let you manipu-
late the appearance and behavior of a stage. Table 4-1 lists the ones you’re
most likely to use.

69 Chapter 4: Setting the Stage and Scene Layout

Table 4-1 Commonly Used Methods of the Stage Class
Method Description
void close() Closes the stage.
void initModality(Modality
modality)

Sets the modality of the stage. This
method must be called before the
show method is called. The modality
can be one of the following:

Modality.NONE
Modality.APPLICATION_MODAL
Modality.WINDOW_MODAL

void initStyle(StageStyle
style)

Sets the style for the stage. This
method must be called before the
show method is called. The style can
be one of the following:

StageStyle.DECORATED
StageStyle.UNDECORATED
StageStyle.TRANSPARENT
StageStyle.UNIFIED
StageStyle.UTILITY

void getMaxHeight(double
maxheight)

Gets the maximum height for the stage.

void getMaxWidth(double
maxwidth)

Gets the maximum width for the stage.

void getMinHeight(double
maxheight)

Gets the minimum height for the stage.

void getMinWidth(double
maxwidth)

Gets the minimum width for the stage.

void setFullScreen(boolean
fullscreen)

Sets the fullscreen status of the stage.

void setIconified(boolean
iconified)

Sets the iconified status of the stage.

void setMaximized(boolean
maximized)

Sets the maximized status of the stage.

(continued)

70 Part I: Getting Started with JavaFX

Method Description
void setMaxHeight(double
maxheight)

Sets the maximum height for the stage.

void setMaxWidth(double
maxwidth)

Sets the maximum width for the stage.

void setMinHeight(double
maxheight)

Sets the minimum height for the stage.

void setMinWidth(double
maxwidth)

Sets the minimum width for the stage.

void setResizable(boolean
resizable)

Sets the fullscreen status of the stage.

void setScene(Scene
scene)

Sets the scene to be displayed on the
stage.

void setTitle(String
title)

Sets the title to be displayed in the
stage’s title bar, if a title bar is visible.

void show() Makes the stage visible.

void showAndWait() Makes the stage visible and then
waits until the stage is closed before
continuing.

void toFront() Forces the stage to the foreground.

void toBack() Forces the stage to the background.

The following paragraphs point out some of the ins and outs of using the
Stage class methods listed in Table 4-1:

 ✓ For many (if not most) applications, the only three methods from
Table 4-1 you need to use are setScene, setTitle, and show.

 • Every stage must have a scene.

 • Every stage should have a title.

 • There’s not much point in creating a stage if you don’t intend on
showing it to the user.

 The other methods in the table let you change the appearance or behav-
ior of the stage, but the defaults are acceptable in most cases.

Table 4-1 (continued)

71 Chapter 4: Setting the Stage and Scene Layout

 ✓ If you want to prevent the user from resizing the stage, use the
setResizable method like this:

primaryStage.setResizable(false);

 Then, the user can’t change the size of the window. (By default, the stage
is resizable. Thus, you don’t need to call the setResizable method
unless you want to make the stage non-resizable.)

 ✓ If the stage is resizable, you can set the minimum and maximum size
for the window. For example:

primaryStage.setResizable(true);
primaryStage.setMinWidth(200);
primaryStage.setMinHeight(200);
primaryStage.setMaxWidth(600);
primaryStage.setMaxHeight(600);

 In this example, the user can resize the window, but the smallest allow-
able size is 200-x-200 pixels and the largest allowable size is 600-x-600
pixels.

 ✓ If you want to display the stage in a maximized window, call
setMaximized:

primaryStage.setMaximized(true);

 A maximized window still has the usual decorations (a title bar, window
borders, and Minimize, Restore, and Close buttons). If you want the
stage to completely take over the screen with no such decorations, use
the setFullScreen method instead:

primaryStage.setFullScreen(true);

 When your stage enters fullscreen mode, JavaFX displays a message
advising the user on how to exit fullscreen mode.

 ✓ If, for some reason, you want to start your program minimized to an
icon, use the setIconified method:

primaryStage.setIconified(true);

 ✓ For more information about the close method, see the section “Exit,
Stage Right” later in this chapter.

 ✓ The initModality and initStyle methods are interesting because
they can be called only before you call the show method. The
initModality method allows you to create a modal dialog box — that
is, a window that must be closed before the user can continue using
other functions within the program. And the initStyle method lets
you create windows that do not have the usual decorations such as a
title bar or Minimize, Restore, and Close buttons. You typically use these
methods when you need to create additional stages for your application
beyond the primary stage. You can read more about how that works
later in this chapter, in the section “Creating a Dialog Box.”

72 Part I: Getting Started with JavaFX

Examining the Scene Class
Like the Stage class, the Scene class is fundamental to JavaFX programs.
In every JavaFX program, you use at least one instance of the Scene class to
hold the user-interface controls that your users will interact with as they use
your program.

Table 4-2 lists the more commonly used constructors and methods of the
Scene class.

Table 4-2 Commonly Used Constructors and
 Methods of the Scene class
Constructor Description
Scene(Parent root) Creates a new scene with the specified

root node.
Scene(Parent root, double
width, double height)

Creates a new scene with the specified
root node, width, and height.

Method Description

double getHeight() Gets the height of the scene.

double getWidth() Gets the width of the scene.

double getX() Gets the horizontal position of the
scene.

double getY() Gets the vertical position of the screen.

void setRoot(Parent root) Sets the root node.

The following paragraphs explain some of the more interesting details of the
constructors and methods of the Scene class:

 ✓ All the Scene class constructors require that you specify the root
node.

 You can change the root node later by calling the setRoot method, but
it’s not possible to create a scene without a root node.

 ✓ You might be wondering why the root node is an instance of the
Parent class rather than an instance of the Node class. The Parent
class is actually a subclass of the Node class, which represents a node
that can have child nodes. There are several other subclasses of Node,
which represent nodes that can’t have children; those nodes can’t be
used as the root node for a scene.

73 Chapter 4: Setting the Stage and Scene Layout

 ✓ You can set the scene’s initial size when you create it by specifying the
Width and Height parameters.

 If you don’t set the size, the scene will determine its own size based on
its content.

 ✓ You can retrieve the size of the scene via the getHeight and
getWidth methods.

 There are no corresponding set methods that let you set the height or
width.

 ✓ In general, the size of the scene determines the size of the stage, pro-
vided that that scene is not smaller than the minimum size specified for
the stage or larger than the maximum size.

 ✓ If the user resizes the stage, the size of the scene is resized accordingly.

Switching Scenes
The primary stage of a JavaFX program (or any other stage, for that matter)
can have only one scene displayed within it at any given time. However, that
doesn’t mean that your program can’t create several scenes and then swap
them as needed. For example, suppose you’re developing a word-processing
program and you want to let the user switch between an editing view and a
page preview view. You could do that by creating two distinct scenes, one
for each view. Then, to switch the user between views, you simply call the
stage’s setScene method to switch the scene.

In Chapter 2, you read about a ClickCounter program whose scene displays a
label and a button and then updates the label to indicate how many times the
user has clicked the button. Then, in Chapter 3, you saw several variations of
an AddSubtract program whose scene displayed a label and two buttons: One
button added one to a counter when clicked, the other subtracted one from
the counter.

Listing 4-1 shows a program named SceneSwitcher that combines the scenes
from the ClickCounter and AddSubtract programs into a single program.
Figure 4-1 shows this program in action:

 ✓ When the SceneSwitcher program is first run, it displays the
ClickCounter scene as shown on the left side of the figure.

 ✓ When the user clicks the Switch Scene button, the scene switches to
the AddSubtract scene, as shown in the right side of the figure.

74 Part I: Getting Started with JavaFX

Figure 4-1:
The Scene-

Switcher
program.

Listing 4-1: The SceneSwitcher Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;

public class SceneSwitcher extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 // class fields for Click-Counter scene ➝15
 int iClickCount = 0;
 Label lblClicks;
 Button btnClickMe;
 Button btnSwitchToScene2;
 Scene scene1;

 // class fields for Add-Subtract scene ➝22
 int iCounter = 0;
 Label lblCounter;
 Button btnAdd;
 Button btnSubtract;
 Button btnSwitchToScene1;
 Scene scene2;

 // class field for stage
 Stage stage; ➝31

 @Override public void start(Stage primaryStage)
 {
 stage = primaryStage; ➝35

 // Build the Click-Counter scene ➝37

 lblClicks = new Label();
 lblClicks.setText("You have not clicked the button.");

75 Chapter 4: Setting the Stage and Scene Layout

 btnClickMe = new Button();
 btnClickMe.setText("Click me please!");
 btnClickMe.setOnAction(
 e -> btnClickMe_Click());

 btnSwitchToScene2 = new Button();
 btnSwitchToScene2.setText("Switch!");
 btnSwitchToScene2.setOnAction(
 e -> btnSwitchToScene2_Click());

 VBox pane1 = new VBox(10);
 pane1.getChildren().addAll(lblClicks, btnClickMe,
 btnSwitchToScene2);

 scene1 = new Scene(pane1, 250, 150);

 // Build the Add-Subtract scene ➝59

 lblCounter = new Label();
 lblCounter.setText(Integer.toString(iCounter));

 btnAdd = new Button();
 btnAdd.setText("Add");
 btnAdd.setOnAction(
 e -> btnAdd_Click());

 btnSubtract = new Button();
 btnSubtract.setText("Subtract");
 btnSubtract.setOnAction(
 e -> btnSubtract_Click());

 btnSwitchToScene2 = new Button();
 btnSwitchToScene2.setText("Switch!");
 btnSwitchToScene2.setOnAction(
 e -> btnSwitchToScene1_Click());

 HBox pane2 = new HBox(10);
 pane2.getChildren().addAll(lblCounter, btnAdd,
 btnSubtract, btnSwitchToScene2);

 scene2 = new Scene(pane2, 300, 75);

 // Set the stage with scene 1 and show the stage ➝84
 primaryStage.setScene(scene1);
 primaryStage.setTitle("Scene Switcher");
 primaryStage.show();
 }

 // Event handlers for scene 1 ➝91

(continued)

76 Part I: Getting Started with JavaFX

 public void btnClickMe_Click()
 {
 iClickCount++;
 if (iClickCount == 1)
 {
 lblClicks.setText("You have clicked once.");
 }
 else
 {
 lblClicks.setText("You have clicked "
 + iClickCount + " times.");
 }
 }

 private void btnSwitchToScene2_Click()
 {
 stage.setScene(scene2);
 }

 // Event handlers for scene 2 ➝112

 private void btnAdd_Click()
 {
 iCounter++;
 lblCounter.setText(Integer.toString(iCounter));
 }

 private void btnSubtract_Click()
 {
 iCounter--;
 lblCounter.setText(Integer.toString(iCounter));
 }

 private void btnSwitchToScene1_Click()
 {
 stage.setScene(scene1);
 }

}

The following paragraphs point out some key sections of the program:

 ➝ 15: This section of the program defines class fields that will be used
by the scene for the Click-Counter portion of the program. These
fields include iClickCount, used to count the number of times
the user has clicked the Click Me! Button; the label used to dis-
play the count of how many times the Click Me! button has been
clicked; the Click Me! button itself; and the button used to switch
to the Add-Subtract scene. Also included is a Scene field named
scene1 that will be used to reference the Click Counter scene.

Listing 4-1 (continued)

77 Chapter 4: Setting the Stage and Scene Layout

 ➝ 22: These lines define class variables used by the Add-Subtract por-
tion of the program, including the counter (iCounter), the label
used to display the counter, the two buttons used to increment and
decrement the counter, the button used to switch back to the Click-
Counter scene, and a Scene field named scene2 that will be used to
reference the Add-Subtract scene.

 ➝ 31: A class field named stage is used to hold a reference to the pri-
mary stage so that it can be accessed throughout the program.

 ➝ 35: This line sets stage class field to reference the primary stage.

 ➝ 37: This section of the program builds the Click-Counter scene. First,
it creates the label and buttons displayed by the scene. Then it
creates a VBox layout pane (which lays out its controls in a verti-
cal stack) and adds the label and buttons to the pane. Finally, it
creates the scene using the VBox pane as its root.

 ➝ 59: This section of the program builds the Add-Subtract scene by
creating the label and the buttons displayed by the scene, arrang-
ing them in an HBox layout pane, and creating the scene using the
HBox pane as its root.

 ➝ 84: These lines set the Click-Counter scene as the root scene for the
primary stage, sets the stage title, and then shows the stage.

 ➝ 91: This section of the program provides the event handlers for the but-
tons in the Click-Counter scene. The event handler for the Click Me!
button increments the click counter, then sets the label to display an
appropriate message. The handler for btnSwitchToScene2 simply
switches the scene of the primary stage to scene2, which instantly
switches the display to the Add-Subtract scene as shown in the
right side of Figure 4-1.

 ➝ 112: This section of the program provides the event handlers for the
buttons in the Add-Subtract scene. The event handler for the
Add and Subtract buttons increment or decrement the counter
and update the text displayed by the label. The handler for
btnSwitchToScene1 switches the scene back to scene1, which
switches the display back to the Click-Counter scene shown in the
left right side of Figure 4-1.

Creating a Dialog Box
Every JavaFX program has at least one stage — the primary stage. In addition
to the primary stage, most JavaFX programs at some point find the need to
create additional stages to

 ✓ Display informational or warning messages (commonly called alert
boxes or a message boxes)

78 Part I: Getting Started with JavaFX

 ✓ Ask for confirmation from the user before performing a task

 ✓ Show complex dialog boxes that ask the user to enter data or select
options

Many GUI programming packages or languages contain provisions for creat-
ing such dialog boxes. For example, Swing includes a built-in class called
JOptionPane that makes it easy to create a simple alert box. With the
JOptionPane class, you can create a simple alert box, such as the one shown in
Figure 4-2, with a single call to the static showMessageDialog method, like this:

JOptionPane.showMessageDialog(null,
 "Thanks for stopping by", "Say Thanks",
 JOptionPane.INFORMATION_MESSAGE);

Figure 4-2:
The Click-

Counter
program in

action.

Unfortunately (and a little inexplicably), JavaFX provides no such facility. To
display a similar message box in JavaFX, you must write code to create a new
stage, create a new scene, create a label or other type of text control to dis-
play the message, create an OK button, create a layout pane, add the controls
to the layout pane, add the pane to the scene, add the scene to the stage, set
the stage’s modality to WINDOW_MODAL, and then display the stage. You end
up needing well over a dozen lines of code to do this.

That’s a lot of work to display a simple message box. Fortunately, it doesn’t
take a lot of effort to create a simple class that you can use to display
common message, alert, or confirmation boxes. You can use the class
throughout your project, or you can place the class in a package so you can
import it into any JavaFX project.

Listing 4-2 shows a simple class named MessageBox that has one method,
show, which you can call to display a dialog box that displays a message. To
display a message box, simply call the show method, like this:

MessageBox.show("Hello!", "Greetings!");

The show method accepts two parameters — the message to be displayed
and the title displayed in the dialog box.

79 Chapter 4: Setting the Stage and Scene Layout

Listing 4-2: The MessageBox Class

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.geometry.*;

public class MessageBox ➝8
{
 public static void show(String message, String title) ➝10
 {
 Stage stage = new Stage(); ➝12
 stage.initModality(Modality.APPLICATION_MODAL); ➝13
 stage.setTitle(title); ➝14
 stage.setMinWidth(250); ➝15

 Label lbl = new Label(); ➝17
 lbl.setText(message);

 Button btnOK = new Button(); ➝20
 btnOK.setText("OK");
 btnOK.setOnAction(e -> stage.close()); ➝22

 VBox pane = new VBox(20); ➝24
 pane.getChildren().addAll(lbl, btnOK);
 pane.setAlignment(Pos.CENTER); ➝26

 Scene scene = new Scene(pane); ➝28
 stage.setScene(scene);
 stage.showAndWait(); ➝30
 }
}

The following paragraphs highlight the key points of this program:

 ➝ 8: The MessageBox class creates and shows a simple dialog box
that displays a message.

 ➝ 10: The show method accepts two parameters — the message to be
displayed and the title for the dialog box.

 ➝ 12: The show method creates a new stage by calling the Stage class
constructor.

 ➝ 13: The initModality method is called to specify that the stage will
be displayed in application modal mode, which means that when dis-
played, the stage will block all events from reaching any other stages
in the application. Thus, the user must close the message box before
using any part of the rest of the application’s user interface.

 ➝ 14: The message box title is set to the title parameter passed to the
show method.

80 Part I: Getting Started with JavaFX

 ➝ 15: The message box’s minimum width is set to 250 pixels. The actual
width of the message box will be increased automatically if neces-
sary based on the length of the message to be displayed.

 ➝ 17: A label control is created and its text set to the value of the
message parameter.

 ➝ 20: A button is created; its text is set to the string OK.

 ➝ 22: An event handler is created by using a Lambda expression to call the
close method of the stage object. Thus, when the user clicks OK,
the stage is closed. This, in turn, causes the message box to disappear.

 ➝ 24: A VBox layout pane is created, and the label and button are added
to it.

 ➝ 26: The setAlignment method of the VBox class is called to specify
that the label and button should be centered within the VBox
layout pane. (You can read more about this method and other
methods of the VBox class in Chapter 5.)

 ➝ 28: A scene object is created using the layout pane as its root node.
Then, in the next line, the setScene method of the primary stage
is called to establish the scene to be displayed on the stage.

 ➝ 30: The showAndWait method is called to display the message box.
This method doesn’t return until the stage has been closed, which
ensures that the message box is modal — no other part of the pro-
gram will receive events until the user has closed the message box.

To demonstrate how you might use the MessageBox class, the program
shown in Listing 4-3 is a variation of the ClickCounter program that was origi-
nally discussed in Chapter 2. The original version of this program displayed a
label and a button, using the label to display a count of how many times the
user has clicked the button. This version of the program dispenses with the
label and instead uses the MessageBox class to display a message indicating
how many times the user has clicked the button.

Listing 4-3: The ClickCounter Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;

public class ClickCounter extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 int iClickCount = 0;

81 Chapter 4: Setting the Stage and Scene Layout

 @Override public void start(Stage primaryStage)
 {
 // Create the button
 btn = new Button();
 btn.setText("Click me please!");
 btn.setOnAction(e -> buttonClick());

 // Add the button to a layout pane
 BorderPane pane = new BorderPane();
 pane.setCenter(btn);

 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 250, 150);

 // Add the scene to the stage, set the title
 // and show the stage
 primaryStage.setScene(scene);
 primaryStage.setTitle("Click Counter");
 primaryStage.show();
 }

 public void buttonClick()
 {
 iClickCount++;
 if (iClickCount == 1)
 {
 MessageBox.show("You have clicked once.", "Click!");
 }
 else
 {
 MessageBox.show("You have clicked "
 + iClickCount + " times." , "Click!");
 }
 }

}

This program is nearly identical to the version that was presented in
Chapter 2 (in Listing 2-2). In fact, here are the only two differences:

 ✓ No label is defined in this program because a message box, not a label, is
used to display the number of times the button has been clicked.

 ✓ In the buttonClick method of the Chapter 2 version, the label’s
setText method was called to display the number of times the button
has been clicked. In this version, MessageBox.show is used instead.

Figure 4-2 shows the new version of the ClickCounter program in action.
Here, you can see the message box displayed when the user clicks the button
the first time. (In this example, I moved the message box to the side a little
so that you can see the primary stage beneath it. When you actually run the
program, the message box is centered over the primary stage.)

82 Part I: Getting Started with JavaFX

Creating a Confirmation Box
A confirmation box is a dialog box that asks the user for confirmation before
proceeding with some action. For example, if the user of a word processing
program closes the program without first saving changes to the current docu-
ment, the program typically asks the user whether he really wants to quit
without saving changes. A confirmation box displays a text message, which
is often as simple as “Are you sure?” along with two buttons, typically labeled
Yes and No or OK and Cancel.

Creating a confirmation box is a little more complicated than creating a mes-
sage box because the confirmation box must let the main program know
which button the user clicked. The most common way to do that is to call
a method that displays the confirmation box and returns a result value that
indicates the user’s selection.

In this section, I look at a simple class called ConfirmationBox that has a
static method named show. This method displays a message and two but-
tons and returns a Boolean value true if the user clicks the first button and
false if the user clicks the second button.

The show method accepts four parameters:

 ✓ The message to be displayed

 ✓ The title for the confirmation box

 ✓ The text to be displayed on the first button

 ✓ The text to be displayed on the second button

Here’s an example of how you might use this class to display a confirmation box:

boolean confirm = ConfirmationBox.show(
 "Are you sure?", "Confirmation",
 "Yes", "No");

Figure 4-3 shows the confirmation box displayed by the preceding statement.
If the user clicks the Yes button, the show method returns true; otherwise,
the show method returns false.

Listing 4-4 shows the source for the ConfirmationBox class.

83 Chapter 4: Setting the Stage and Scene Layout

Figure 4-3:
A confirma-

tion box
displayed by

the Confir-
mationBox

class.

Listing 4-4: The ConfirmationBox Class

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.scene.text.*;
import javafx.event.*;
import javafx.geometry.*;

public class ConfirmationBox ➝10
{

 static Stage stage; ➝13
 static boolean btnYesClicked; ➝14

 public static boolean show(String message, String title, ➝16
 String textYes, String textNo)
 {
 btnYesClicked = false;

 stage = new Stage(); ➝21
 stage.initModality(Modality.APPLICATION_MODAL);
 stage.setTitle(title);
 stage.setMinWidth(250);

 Label lbl = new Label(); ➝26
 lbl.setText(message);

 Button btnYes = new Button(); ➝28
 btnYes.setText(textYes);
 btnYes.setOnAction(e -> btnYes_Clicked());

 Button btnNo = new Button(); ➝32
 btnNo.setText(textNo);
 btnNo.setOnAction(e -> btnNo_Clicked());

(continued)

84 Part I: Getting Started with JavaFX

 HBox paneBtn = new HBox(20); ➝36
 paneBtn.getChildren().addAll(btnYes, btnNo);

 VBox pane = new VBox(20); ➝39
 pane.getChildren().addAll(lbl, paneBtn);
 pane.setAlignment(Pos.CENTER);

 Scene scene = new Scene(pane); ➝43
 stage.setScene(scene);
 stage.showAndWait();
 return btnYesClicked; ➝46
 }

 private static void btnYes_Clicked() ➝49
 {
 stage.close();
 btnYesClicked = true;
 }

 private static void btnNo_Clicked() ➝55
 {
 stage.close();
 btnYesClicked = false;
 }

}

The following paragraphs explain some of the key points of this class:

 ➝ 10: The ConfirmationBox class represents a dialog box that asks
the user for a Yes/No confirmation.

 ➝ 13: The stage is defined using a class field so that it will be available
to the event handlers for the buttons, which are implemented in
separate methods that will be called via Lambda expressions.

 ➝ 14: A boolean class field named btnYesClicked indicates whether
the user clicks the Yes or No button.

 ➝ 16: The show method returns a boolean value and accepts four
parameters: the message to display, the dialog box title, the text
to display on the first button (the Yes button), and the text to dis-
play on the second button (the No button).

Listing 4-4 (continued)

85 Chapter 4: Setting the Stage and Scene Layout

 ➝ 21: The stage is created using APPLICATION_MODAL modality so that
no events are processed elsewhere in the program until the user
closes the confirmation box. The title is assigned the value passed
via the title parameter.

 ➝ 26: A label is created and assigned the value passed via the message
parameter.

 ➝ 28: The Yes button is created and assigned the text value passed via
the textYes property. The setOnAction method uses a Lambda
expression to call a method named btnYes_Clicked when the
user clicks this button.

 ➝ 32: The No button is created and assigned the text value passed via
the textNo property. The setOnAction method uses a Lambda
expression to call a method named btnNo_Clicked when the
user clicks this button.

 ➝ 36: The buttons are added to an HBox layout pane so they will appear
side by side in the confirmation box.

 ➝ 39: The label and the HBox are added to a VBox layout pane so the label
will appear centered above the buttons in the confirmation box.

 ➝ 43: The scene is created using the VBox pane as its root node. Then,
the scene is added to the stage and the stage is displayed.

 ➝ 46: When the user closes the confirmation box, the show method
returns the value of btnYesClicked to indicate which button the
user clicked.

 ➝ 49: The btnYes_Clicked method is called if the user clicks the Yes
button. In this method, the stage is closed and the btnYesClicked
class field is set to true.

 ➝ 55: The btnNo_Clicked method is called if the user clicks the No
button. Here, the stage is closed and the btnYesClicked class
field is set to false.

Exit, Stage Right
Because I started this chapter by quoting Shakespeare, I thought it’d be nice
to end it by quoting Snagglepuss, the famous pink mountain lion from the old
Hanna-Barbera cartoons. He’d often leave the scene by saying, “Exit, stage
left” or “Exit, stage right.”

86 Part I: Getting Started with JavaFX

Heavens to Mergatroyd!

There’s a right way and a wrong way to exit the stage, even. And so far, none
of the programs presented in this book have done it the right way. The only
mechanism the programs you’ve seen so far have provided to quit the pro-
gram is for the user to click the standard window close button, typically rep-
resented by an X in the upper-right corner of the window’s title bar. That is
almost always the wrong way to exit a program.

In most cases, the correct way to exit a program involves the following
details:

 ✓ Adding a button, menu command, or other way for the user to signal
that she wishes to close the program.

 Many programs include a button labeled Exit or Close, and programs
that use a menu usually have an Exit command.

 ✓ Optionally displaying a confirmation box that verifies whether the
user really wants to close the program. You can do that by using the
ConfirmationBox class shown in the preceding section or by using a
similar class.

 Depending on the program, you might want to display this dialog box
only if the user has made changes to a document, database, or other file
that have not yet been saved.

 ✓ If the user really does want to close the program, the program should
perform any necessary clean-up work, such as

 • Saving changes to documents, databases, or other files.

 • Properly closing databases and other resources.

 ✓ After you’ve done any necessary clean-up work, you can close the
application by calling the primary stage’s close method.

 ✓ The verification and clean-up steps should be taken whether the user
attempts to close the program by using a button or menu command
you’ve provided in your user interface or by clicking the built-in window
close button.

In the following sections, you read about how to add a Close button to your
application, how to prevent the window close button from unceremoniously
terminating your application, and how to put these two elements together in
a complete program.

87 Chapter 4: Setting the Stage and Scene Layout

Creating a Close button
To add a button or other user-interface element that allows the user to close
the button, all you have to do is provide an action event handler that calls
the stage’s close method.

For example, suppose you create a Close button using the following code:

Button btnClose = new Button();
btnClose.setText("Close");
btnClose.setOnAction(e -> primaryStage.close());

In this case, the action event handler simply calls primaryStage.close()
to close the application.

If you want to do more than simply call the close method in the action event
handler, you may want to isolate the event handler in a separate method, as
in this example:

btnClose.setOnAction(e -> btnClose_Clicked());

Because the btnClose_Clicked method will need to access the primary
stage to close it, you need to define a class field of type Stage and use it to
reference the primary stage. Then, your btnClose_Clicked method can
easily perform additional tasks. For example:

private void btnClose_Click()
{
 boolean reallyQuit = false;
 reallyQuit = ConfirmationBox.show(
 "Are you sure you want to quit?",
 "Confirmation",
 "Yes", "No");
 if (reallyQuit)
 {
 // Perform cleanup tasks here
 // such as saving files or freeing resources
 stage.close();
 }
}

In this example, a confirmation box is displayed to make sure the user really
wants to exit the program.

88 Part I: Getting Started with JavaFX

Handling the CloseRequest event
Providing a Close button is an excellent way to allow your users to cleanly
exit from your program. However, the user can bypass your exit processing
by simply closing the window — that is, by clicking the window close button,
usually represented as an X in the upper-right corner of the window border.
Unless you provide otherwise, clicking this button unceremoniously termi-
nates the application, bypassing all your nice code that confirms whether the
user wants to save his work, closes any open resources, and otherwise pro-
vides for a graceful exit.

Fortunately, you can easily avoid such ungraceful exits. Whenever the user
attempts to close the window within which a JavaFX stage is displayed,
JavaFX generates a CloseRequest event, which is sent to the stage. You can
provide an event handler for this event by calling the setOnCloseRequest
method of the Stage class. Then, the event handler is called whenever the
user tries to close the window.

Shakespeare’s Best Stage Direction
So far in this chapter, I’ve quoted William
Shakespeare once and Snagglepuss once.
Both quotes are appropriate for the topic of
this chapter: The Shakespeare quotation from
Henry V refers to stages and scenes, and the
Snagglepuss quotation refers to the proper way
to exit the stage. Even so, quoting Snagglepuss
as often as Shakespeare seems a little out
of balance. Thus, I think it’s best to throw in
another Shakespeare quote to save what little
respect I may still have from my college English
professors.

Shakespeare’s plays are liberally sprinkled with
stage directions. Most of them are very brief,
such as Enter Tybalt or Exit Romeo found in
Romeo and Juliet. A few are a bit more detailed,
such as Enter several of both houses, who
join the fray, also from Romeo and Juliet. And

sometimes they’re a bit ambiguous, such as
Enter a messenger with two heads and a hand
from Titus Andronicus.

But in my opinion, the most interesting of all
Shakespeare’s stage directions is found in The
Winter’s Tale, when Antigonus is thwarted from
rescuing Perdita following a shipwreck: Exit,
pursued by a bear.

When you exit the stage because you’re pursued
by a bear, you don’t get to collect your things or
accomplish any of the other important tasks you
had set out to do, such as saving the princess
or saving the important changes the user made
to a document. Instead, you just turn and run,
which is pretty much what happens when the
user clicks the window close button unless you
properly handle the CloseRequest event.

89 Chapter 4: Setting the Stage and Scene Layout

You might be tempted to create a single method that can serve as the
event handler for both the Action event of your Close button and the
CloseRequest event, like this:

btnClose.setText("Close");
btnClose.setOnAction(e -> btnClose_Click ());
primaryStage.setOnCloseRequest(e -> btnClose_Click ());

Here, the intent is to handle the CloseRequest event exactly as if the user
had clicked the btnClose button.

That’s a good idea, but it doesn’t work if the btnClose_Click event dis-
plays a confirmation box and closes the stage only if the user confirms that
she really wants to quit the program. That’s because when the event handler
for the CloseRequest event ends, JavaFX automatically closes the stage if
the event handler doesn’t explicitly close the stage.

To prevent that from happening, you call the consume method of the
CloseRequest event object. Consuming the event causes it to be stopped
in its tracks within the event handler, thus preventing JavaFX from automati-
cally closing the stage when the event handler ends.

In the Lambda expression passed to the setOnCloseRequest method, the
CloseRequest event object is represented by the argument e. Thus, you can
consume the CloseRequest event by calling e.consume().

An easy way to provide a method that handles both the Action event for a
Close button and the CloseRequest event for a stage is to craft the Lambda
expression for the setOnCloseRequest method so that it consumes the
event before calling the method that will handle the event:

btnClose.setText("Close");
btnClose.setOnAction(e -> btnClose_Click ());
primaryStage.setOnCloseRequest(
 e -> {
 e.consume();
 btnClose_Click ();
 });

Here, the event handler for the CloseRequest event first consumes the
event and then calls btnClose_Click. The btnClose_Click method, in
turn, displays a confirmation box and closes the stage if the user confirms
that this is indeed what he wishes to do.

90 Part I: Getting Started with JavaFX

Putting it all together
Now that you know how to add a Close button to a scene and how to handle
the CloseRequest event, I look at a program that puts together these two
elements to demonstrate the correct way to exit a JavaFX program.

This section presents a variation of the ClickCounter program that includes
a Close button in addition to the Click Me! button. When the user clicks the
Click Me! button, a message box displays to indicate how many times the
button has been clicked. But when the user attempts to exit the program,
whether by clicking the Close button or by simply closing the window, the
ConfirmationBox class that was shown in Listing 4-4 is used to ask the user
whether she really wants to exit the program. Then, the stage is closed only if
the user clicks the Yes button in the confirmation box.

The source code for this program is shown in Listing 4-5.

Listing 4-5: The ClickCounter Exit program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.geometry.*;

public class ClickCounterExit extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 Stage stage;
 int iClickCount = 0;

 @Override public void start(Stage primaryStage)
 {
 stage = primaryStage;

 // Create the Click Me button
 Button btnClickMe = new Button();
 btnClickMe.setText("Click me please!");
 btnClickMe.setOnAction(e -> btnClickMe_Click());

 // Create the Close button ➝27
 Button btnClose = new Button();
 btnClose.setText("Close");
 btnClose.setOnAction(e -> btnClose_Click());

91 Chapter 4: Setting the Stage and Scene Layout

 // Add the buttons to a layout pane
 VBox pane = new VBox(10);
 pane.getChildren().addAll(btnClickMe, btnClose);
 pane.setAlignment(Pos.CENTER);

 // Add the layout pane to a scene
 Scene scene = new Scene(pane, 250, 150);

 // Finish and show the stage
 primaryStage.setScene(scene);
 primaryStage.setTitle("Click Counter");
 primaryStage.setOnCloseRequest(e -> ➝43
 {
 e.consume();
 btnClose_Click();
 });
 primaryStage.show();
 }

 public void btnClickMe_Click()
 {
 iClickCount++;
 if (iClickCount == 1)
 {
 MessageBox.show("You have clicked once.", "Click!");
 }
 else
 {
 MessageBox.show("You have clicked "
 + iClickCount + " times." , "Click!");
 }
 }

 public void btnClose_Click() ➝65
 {
 boolean confirm = false;
 confirm = ConfirmationBox.show(
 "Are you sure you want to quit?", "Confirmation",
 "Yes", "No");
 if (confirm)
 {
 // Place any code needed to save files or
 // close resources here.

 stage.close();
 }
 }

}

92 Part I: Getting Started with JavaFX

The following paragraphs describe the sections of this program that are
responsible for making sure the program exits cleanly:

 ➝ 27: These lines create the Close button. The Lambda expression in
the call to setOnAction causes the method named btnClose_
Click to be called if the user clicks the button.

 ➝ 43: This statement creates an event handler for the CloseRequest
event, which is raised if the user attempts to close the window
by clicking the window close button. The event handler first con-
sumes the CloseRequest event and then calls the btnClose_
Click method. Thus, from the user’s perspective, clicking the
window close button is the same as clicking the Close button.

 ➝ 65: The btnClose_Click method displays a confirmation box to ask
the user whether he really wants to quit. If so, the stage is closed.
I added comments to show where you’d insert any code needed to
save files or do any other cleanup work that might be required in
a more realistic program.

Chapter 5

Using Layout Panes to
Arrange Your Scenes

In This Chapter
▶ Using four popular layout pane classes: HBox, VBox, FlowPane, and BorderPane

▶ Adjusting the size of layout panes and the nodes they contain

▶ Fiddling with various options for spacing out the nodes in a layout pane

C
ontrolling the layout of components in a scene is often one of the most
difficult aspects of working with JavaFX. In fact, at times it can be down-

right exasperating. Often the components almost seem to have minds of
their own. They get stubborn and refuse to budge. They line up on top of one
another when you want them to be side by side. You make a slight change to
a label or text field, and the whole scene seems to rearrange itself. At times,
you want to put your fist through the monitor.

 I recommend against putting your fist through your monitor. You’ll make a
mess, cut your hand, and have to spend money on a new monitor — and when
you get your computer working again, the components still won’t line up the
way you want them to be.

The problem isn’t with the components; it’s with the layout panes, which
determine where each component appears in its frame or panel. Layout panes
are special classes whose sole purpose in life is to control the arrangement
of the nodes that appear in a scene. JavaFX provides several distinct types of
layout panes; each type uses a different approach to controlling the arrange-
ment of nodes. The trick to successfully lay out a scene is to use the layout
panes in the correct combination to achieve the arrangement you want.

Working with Layout Panes
Understanding layout panes is the key to creating JavaFX frames that are
attractive and usable.

94 Part I: Getting Started with JavaFX

Introducing four JavaFX layout panes
JavaFX provides many different layout panes for you to work with. I explain
the following four in this chapter:

 ✓ HBox: This layout pane arranges nodes horizontally, one next to the
other. You use it to create controls arranged neatly in rows.

 ✓ VBox: This layout pane arranges nodes vertically, one above the other.
You use it to create controls arranged neatly in columns.

 ✓ FlowPane: This layout pane arranges nodes next to each other until it
runs out of room; then, it wraps to continue layout nodes. You can con-
figure a FlowPane to arrange nodes horizontally in rows or vertically in
columns.

 ✓ BorderPane: This layout pane divides the pane into five regions: Top,
Left, Center, Right, and Bottom. When you add a node, you can specify
which region you want to place the node in.

 To give you a general idea of the results that can be achieved with each of
these four layout panes, Figure 5-1 shows four sample windows that each use
one of the layout panes.

Chapter 11 discusses additional types of layout panes.

Figure 5-1:
Four com-

monly
used types

of layout
panes.

95 Chapter 5: Using Layout Panes to Arrange Your Scenes

Creating layout panes
The basic process of working with layout panes is simple. Here is the general
procedure for creating a layout node:

 1. Create the controls or other nodes you want to add to the pane.

 For example, if the layout pane will contain two buttons, you should
create the two buttons using code similar to this:

Button btnOK = new Button();
btnOK.setText("OK");
btnOK.setOnAction(e -> btnOK_Click());
Button btnCancel = new Button();
btnCancel.setText("Cancel");
btnCancel.setOnAction(e -> btnCancel_Click());

 2. Create a layout pane by calling its constructor.

 For example:

HBox pane = new HBox();

 3. Fine-tune any of the settings required by the layout pane.

 Each type of layout pane has a unique assortment of parameters that
govern the details of how nodes are laid out within the pane. For exam-
ple, the HBox pane lets you set the number of pixels that will be used to
separate each node in the pane. You can set this value as follows:

HBox.setSpacing(10);

 4. Add each of the nodes that will appear in the layout pane.

 Each type of layout pane provides a method for adding nodes to the
pane. For the HBox pane, you must first call the getChildren method
to get a list of all the nodes that have been added to the pane. Then,
you call the addAll method to add one or more nodes to the pane. For
example:

pane.getChildren().addAll(btnOK, btnCancel);

 5. Create the scene, specifying the layout pane as the scene’s root node.

 For example:

Scene scene = new Scene(pane, 300, 400);

 In this example, pane is added as the root node for the scene.

96 Part I: Getting Started with JavaFX

Combining layout panes
You can combine several layout panes to create layouts that are more compli-
cated than a single layout pane can provide. For example, suppose you want
to create a layout that has a horizontal row of buttons at the bottom and a
vertical column of buttons at the right. To do that, you could create an HBox
for the buttons at the bottom and a VBox for the buttons at the right. Then,
you could create a BorderPane and add the HBox to the bottom region and
the VBox to the right region.

Combinations like this are possible because all the layout panes inherit the
base class javafx.scene.layout.Pane, which in turn inherits the class
javafx.scene.node. In other words, all panes are also nodes. Each node
that you add to a layout pane can be another layout pane. You can nest
layout panes within layout panes as deeply as you need to achieve the exact
layout you need for your application.

Using the HBox Layout
The HBox class provides one of the simplest of all JavaFX’s layout managers:
It arranges one or more nodes into a horizontal row. Table 5-1 presents the
most commonly used constructors and methods of the HBox class.

Table 5-1 HBox Constructors and Methods
Constructor Description

HBox() Creates an empty HBox.

HBox(double spacing) Creates an empty HBox with the
specified spacing.

HBox(Node. . . children) Creates an HBox with the speci-
fied child nodes. This constructor
lets you create an HBox and add
child nodes to it at the same time.

HBox(double spacing,
Node. . . children)

Creates an HBox with the speci-
fied spacing and child nodes.

97 Chapter 5: Using Layout Panes to Arrange Your Scenes

Method Description
ObservableList<Node>
getChildren()

Returns the collection of all
child nodes that have been
added to the HBox. The col-
lection is returned as an
ObservableList type, which
includes the method addAll,
letting you add one or more nodes
to the list.

static void setAlignment(Pos
alignment)

Sets the alignment for child nodes
within the HBox.
See Table 5-5 for an explana-
tion of the Pos enumeration. For
more information, see the sec-
tion “Aligning Nodes in a Layout
Pane” later in this chapter.

static void setHgrow(Node
child, Priority priority)

Sets the growth behavior of the
given child node.
See Table 5-3 for an explanation
of the Priority enumeration.
For more information, see the sec-
tion “Adding Space by Growing
Nodes” later in this chapter.

static void setMargin(Node
child, Insets value)

Sets the margins for a given child
node.
See Table 5-2 for the constructors
of the Insets class.
For more information, see the sec-
tion “Adding Space with Margins”
later in this chapter.

void setPadding(Insets value) Sets the padding around the
inside edges of the Hbox.
See Table 5-2 for the constructors
of the Insets class.
For more information, see the sec-
tion “Spacing Things Out” later in
this chapter.

void setSpacing(double value) Sets the spacing between nodes
displayed within the HBox.
For more information, see the sec-
tion “Spacing Things Out” later in
this chapter.

98 Part I: Getting Started with JavaFX

The HBox class is defined in the javafx.scene.layout package, so you
should include the following import statement in any program that uses an
HBox:

import javafx.scene.layout.*;

The easiest way to create an HBox is to first create the nodes that you want
to place in the HBox and then call the HBox constructor and pass the nodes
as arguments. For example:

Button btn1 = new Button("Button One");
Button btn2 = new Button("Button Two");
Button btn3 = new Button("Button Three");
HBox hbox = new HBox(btn1, btn2, btn3);

If you prefer to create the HBox control in an initially empty state and later
add the controls, you can do so like this:

HBox hbox = new HBox();
Hbox.getChildren().addAll(btn1, btn2, btn3);

Here, the getChildren method is called, which returns a collection of all
the children added to the HBox pane. This collection is defined by the class
ObservableList, which includes a method named addAll that you can use
to add one or more nodes to the list.

Spacing Things Out
By default, child nodes in a layout pane are arranged immediately next to
one another, with no empty space in between. If you want to provide space
between the nodes in the pane, you can do so in four ways:

 ✓ Adding spacing between elements within the pane

 ✓ Adding padding around the inside edges of the pane

 ✓ Adding margins to the individual nodes in the pane

 ✓ Creating spacer nodes that can grow to fill available space

In this section, I show you how to add spacing and padding to an pane. Then,
the next three sections show you how to use the other two techniques.

Note that although I illustrate the techniques in these sections using the
HBox layout pane, the techniques apply to other types of panes as well.

99 Chapter 5: Using Layout Panes to Arrange Your Scenes

To set the spacing for an HBox pane, you can use the spacing parameter on
the HBox constructor or by calling the setSpacing method. For example,
this statement creates an HBox pane with a default spacing of 10 pixels:

HBox hbox = new HBox(10);

This example creates an HBox pane with 10-pixel spacing and adds three
buttons:

HBox hbox = new HBox(10, btn1, btn2, btn3);

And this example creates an HBox pane using the default constructor, and
then calls the setSpacing method to set the spacing to 10 pixels:

HBox hbox = new HBox();
Hbox.setSpacing(10);

Although spacing adds space between nodes in an HBox pane, it doesn’t
provide any space between the nodes and the edges of the pane itself. For
example, if you set the spacing to 10 pixels and add three buttons to the pane,
the three buttons will be separated from one another by a gap of 10 pixels.
However, there won’t be any space at all between the left edge of the first
button and the left edge of the pane itself. Nor will there be any space between
the top of the buttons and the top of the pane. In other words, the three but-
tons will be crowded tightly into the pane.

To add space around the perimeter of the layout pane, use the setPadding
method. This method takes as a parameter an object of type Insets, which
represents the size of the padding (in pixels) for the top, right, bottom, and
left edge of an object. You can create an Insets object using either of the
two constructors listed in Table 5-2. The first provides an even padding for all
four edges of an object; the second lets you set a different padding value for
each edge.

To set the padding to a uniform 10 pixels, call the setPadding method like
this:

hbox.setPadding(new Insets(10));

To set a different padding value for each edge, call it like this:

hbox.setPadding(new Insets(20, 10, 20, 10));

In this example, the top and bottom padding is set to 20 and the right and left
padding is set to 10.

100 Part I: Getting Started with JavaFX

Table 5-2 Insets Constructors
Constructor Description
Insets(double value) Creates an Insets object that uses

the same value for the top, right,
bottom, and left margins.

Insets(double top, double
right, double bottom,
double left)

Creates an Insets object that uses
the specified top, right, bottom, and left
margins.

The Insets enumeration is defined in the javafx.geometry package, so
you should include the following import statement in any program that uses
Insets:

import javafx.geometry.*;

Adding Space with Margins
Another way to add space around the nodes in a layout pane is to create mar-
gins around the individual nodes. This technique allows you to set a different
margin size for each node in the layout pane, giving you complete control
over the spacing of each node.

To create a margin, call the setMargin method for each node you want to
add a margin to. You might think that because each node can have its own
margin, the setMargin method would belong to the Node class. Instead, the
setMargin method is defined by the HBox class. The setMargin method
accepts two parameters:

 ✓ The node you want to add the margin to

 ✓ An Insets object that defines the margins you want to add

Here’s an example that sets a margin of 10 pixels for all sides of a button
named btn1:

HBox hbox = new HBox();
hbox.setMargin(btn1, new Insets(10));

101 Chapter 5: Using Layout Panes to Arrange Your Scenes

The setMargin method is a static method of the HBox class, so when you
call it, you can reference the HBox class itself rather than an actual instance
of an HBox. Thus, the following code will work equally as well:

Hbox.setMargin(btn1, new Insets(10));

(Yes it’s a subtle difference: In the first example, hbox refers to an instance of
the HBox class; in the second example, HBox refers to the class itself.)

Here’s an example that sets a different margin for each side of the pane:

Hbox.setMargin(btn1, new Insets(10, 15, 20, 10));

In this example, the top margin is 10 pixels, the right margin is 15 pixels, the
bottom margin is 20 pixels, and the left margin is 10 pixels.

Note that margins, spacing, and padding can work together. Thus, if you
create a 5-pixel margin on all sides of two buttons, add those two buttons to a
pane whose spacing is set to 10 pixels and whose padding is set to 10 pixels,
the buttons will be separated from one another by a space of 20 pixels and
from the inside edges of the pane by 15 pixels.

Adding Space by Growing Nodes
A third way to add space between nodes in an HBox is to create a node
whose sole purpose is to add space between two HBox nodes. Then, you can
configure the spacer node that will automatically grow to fill any extra space
within the pane. By configuring only the spacer node and no other nodes in
this way, only the spacer node will grow. This has the effect of pushing the
nodes on either side of the spacer node apart from one another.

For example, suppose you want to create an HBox layout pane that contains
three buttons. Instead of spacing all three buttons evenly within the pane,
you want the first two buttons to appear on the left side of the pane and the
third button to appear on the right side of the pane. The amount of space
between the second and third buttons will depend entirely on the size of the
pane. Thus, if the user drags the window to expand the stage, the amount of
space between the second and third buttons should increase accordingly.

The easiest way to create a spacer node is by using the Region class. The
Region class is the base class for both the Control class, from which con-
trols such as Button and Label derive. It is also the based class for the
Pane class, from which all the layout panes described in this chapter and in
Chapter 11 derive.

102 Part I: Getting Started with JavaFX

For my purposes here, I just use the simple default constructor of the
Region class to create a node that serves as a simple spacer in a layout
pane. I don’t provide a specific size for the region. Instead, I configure it so
that it will grow horizontally to fill any unused space within its container.

To do that, you use the static setHgrow method of the HBox class, speci-
fying one of the three constant values defined by an enumeration named
Priority enumeration. Table 5-3 lists these constants and explains what
each one does.

Table 5-3 The Priority enumeration
Constant Description
Priority.NEVER Indicates that the width of the node should never be

adjusted to fill the available space in the pane. This
is the default setting. Thus, by default, nodes are not
resized based on the size of the layout pane that con-
tains them.

Priority.ALWAYS Indicates that the width of the node should always be
adjusted if necessary to fill available space in the pane.
If you set two or more nodes to ALWAYS, the adjust-
ment will be split equally among each of the nodes.

Priority.
SOMETIMES

Indicates that the node’s width may be adjusted if nec-
essary to fill out the pane. However, the adjustment will
be made only if there are no other nodes that specify
ALWAYS.

The Priority enumeration is defined in the javafx.scene.layout
package; the same package that defines the layout managers that require it.
So you don’t need to include an additional import statement to use the
Priority enumeration.

The following example creates three buttons and a spacer, sets the margins
for all three buttons to 10 pixels, and then adds the three buttons and the
spacer to an HBox such that the first two buttons appear on the left of the
HBox and the third button appears on the right:

// Create the buttons
Button btn1 = new Button("One");
Button btn2 = new Button("Two");
Button btn3 = new Button("Three");

// Create the spacer
Region spacer = new Region();

103 Chapter 5: Using Layout Panes to Arrange Your Scenes

// Set the margins
hBox.setMargin(btn1, new Insets(10));
hBox.setMargin(btn2, new Insets(10));
hBox.setMargin(btn3, new Insets(10));

// Set the Hgrow for the spacer
hBox.setHgrow(spacer, Priority.ALWAYS);

// Create the HBox layout pane
HBox hbox = new HBox(10, btn1, btn2, spacer, btn3);

Figure 5-2 shows how this pane appears when added to a stage. So that you
can see how the spacer works, the figure shows three incarnations of the
pane, each with the window dragged to a different size. Notice how the spac-
ing between the second and third buttons is adjusted automatically so that
the first two buttons are on the left side of the pane and the third button is on
the right.

Figure 5-2:
Using a

spacer node
to space

out buttons
in an HBox

pane.

Like the setMargin method, the setHGrow method is a static class of the
HBox class. Thus, you can call it from an instance of the HBox class (as in
the preceding example), or you can call it from the HBox class itself. In other
words, the second two lines in the following code segment are redundant:

HBox pane = new HBox();
pane.setHGrow(spacer, Priority.ALWAYS);
HBOX.setHGrow(spacer, Priority.ALWAYS);

104 Part I: Getting Started with JavaFX

Using the VBox Layout
The VBox class is similar to the HBox class, but instead of arranging nodes
horizontally in a row, it arranges them vertically in a column. Table 5-4 shows
the most commonly used constructors and methods of the VBox class.

Table 5-4 VBox Constructors and Methods
Constructor Description

VBox() Creates an empty VBox.

VBox(double spacing) Creates an empty VBox with the
specified spacing.

VBox(Node. . . children) Creates an VBox with the specified
child nodes. This constructor lets
you create a VBox and add child
nodes to it at the same time.

VBox(double spacing,
Node. . . children)

Creates a VBox with the specified
spacing and child nodes.

Method Description
ObservableList<Node>
getChildren()

Returns the collection of all child
nodes that have been added to the
VBox. The collection is returned as
an ObservableList type, which
includes the method addAll, let-
ting you add one or more nodes to
the list.

static void
setAlignment(Pos alignment)

Sets the alignment for child nodes
within the VBox.
See Table 5-5 for an explana-
tion of the Pos enumeration. For
more information, see the section
“Aligning Nodes in a Layout Pane”
later in this chapter.

static void setMargin(Node
child, Insets value)

Sets the margins for a given child
node.
See Table 5-2 for the constructors
of the Insets class. For more
information, see the section “Adding
Space with Margins” earlier in this
chapter.

105 Chapter 5: Using Layout Panes to Arrange Your Scenes

void setPadding(Insets
value)

Sets the padding around the inside
edges of the VBox.
See Table 5-2 for the constructors of
the Insets class. For more infor-
mation, see the section “Spacing
Things Out” earlier in this chapter.

static void setVgrow(Node
child, Priority priority)

Sets the growth behavior of the
given child node.
See Table 5-3 for an explanation of
the Priority enumeration. For
more information, see the section
“Adding Space by Growing Nodes”
earlier in this chapter.

The VBox class is defined in the javafx.scene.layout package, so you
should include the following import statement in any program that uses a
VBox:

import javafx.scene.layout.*;

Here’s an example that creates three buttons and uses a VBox to arrange
them into a column:

Button btn1 = new Button("Button One");
Button btn2 = new Button("Button Two");
Button btn3 = new Button("Button Three");
VBox vbox = new VBox(btn1, btn2, btn3);

You can accomplish the same thing by using the default constructor and call-
ing the getChildren method, as in this example:

VBox vbox = new VBox();
Vbox.getChildren().addAll(btn1, btn2, btn3);

As with the HBox class, you can use spacing, padding, margins, and spacer
nodes to control the spacing of nodes within a VBox. Here’s an example that
sets 10 pixels of vertical space between nodes and 10 pixels of padding on
each edge of the pane:

Button btn1 = new Button("One");
Button btn2 = new Button("Two");
Button btn3 = new Button("Three");
VBox vbox = new VBox(10, btn1, btn2, btn3);
vbox.setPadding(new Insets(10));

Method Description

106 Part I: Getting Started with JavaFX

Here’s an example that creates a column of three buttons, with one button at
the top of the column and two at the bottom, with 10 pixels of spacing and
padding:

// Create the buttons
Button btn1 = new Button("One");
Button btn2 = new Button("Two");
Button btn3 = new Button("Three");

// Create the spacer
Region spacer = new Region();

// Set the Vgrow for the spacer
VBox.setVgrow(spacer, Priority.ALWAYS);

// Create the VBox layout pane
VBox vbox = new VBox(10, btn1, spacer, btn2, btn3);
vbox.setPadding(new Insets(10));

Aligning Nodes in a Layout Pane
Both the HBox and the VBox layout panes have a setAlignment method
that lets you control how the nodes that are contained within the pane are
aligned with one another. The setAlignment method accepts a single
argument, which is one of the constants defined by the Pos enumeration,
described in Table 5-5.

Table 5-5 The Pos enumeration
Constant Vertical Alignment Horizontal Alignment
Pos.TOP_LEFT Top Left

Pos.TOP_CENTER Top Center

Pos.TOP_RIGHT Top Right

Pos.CENTER_LEFT Center Left

Pos.CENTER Center Center

Pos.CENTER_RIGHT Center Right

Pos.BOTTOM_LEFT Bottom Left

Pos.BOTTOM_CENTER Bottom Center

Pos.BOTTOM_RIGHT Bottom Right

107 Chapter 5: Using Layout Panes to Arrange Your Scenes

Constant Vertical Alignment Horizontal Alignment

Pos.BASELINE_LEFT Baseline Left

Pos.BASELINE_CENTER Baseline Center

Pos.BASELINE_RIGHT Baseline Right

The Pos enumeration is defined in the javafx.geometry package, so you
should include the following import statement in any program that uses
Insets:

import javafx.geometry.*;

The following example shows how you might create a vertical column of
three buttons, centered within the pane:

Button btn1 = new Button("Number One");
Button btn2 = new Button("Two");
Button btn3 = new Button("The Third Button");
VBox vbox = new VBox(10, btn1, btn2, btn3);
vbox.setPadding(new Insets(10));
vbox.setAlignment(Pos.CENTERED);

When this pane is added to a scene and then shown in a stage, the results
resemble the window shown in Figure 5-3.

Figure 5-3:
Three but-
tons cen-
tered in a

VBox layout
pane.

Making Nodes the Same Width
When you place a set of buttons or other controls in a layout pane, you may
want the buttons to all have the same width to create a neat, even appear-
ance. This is especially true when you place them in a vertical column in a
VBox pane because the vertical column will draw attention to any differences
in the widths of the buttons.

108 Part I: Getting Started with JavaFX

You can easily dictate that the buttons all have the same width by setting
the maximum width of each of the buttons to Double.MAX_VALUE. Here’s a
revised version of the preceding example in which the three buttons are set
to the same width:

Button btn1 = new Button("Number One");
Button btn2 = new Button("Two");
Button btn3 = new Button("The Third Button");
btn1.setMaxWidth(Double.MAX_VALUE);
btn2.setMaxWidth(Double.MAX_VALUE);
btn3.setMaxWidth(Double.MAX_VALUE);
VBox vbox = new VBox(10, btn1, btn2, btn3);
vbox.setPadding(new Insets(10));
vbox.setAlignment(Pos.CENTERED);

Figure 5-4 shows how these buttons appear when the pane is added to a
scene and the scene displayed in a stage. Notice that all three buttons have
adopted the width of the widest button (btn3).

Figure 5-4:
Three but-

tons with
the same

width.

Using the Flow Layout
The flow layout comes in two flavors: horizontal and vertical. A horizontal
flow layout arranges its child nodes in a row until the width of the pane
reaches a certain size that you can specify. When that size is reached, the
layout begins a new row of child nodes beneath the first row. This flow con-
tinues, starting a new row each time the size limit is reached, until all the
child nodes have been placed.

A vertical flow layout works the same way except that child nodes are laid
out in columns until the size limit is reached. When the size limit is reached, a
new column immediately to the right of the first column is started.

109 Chapter 5: Using Layout Panes to Arrange Your Scenes

You use the FlowPane class to create a flow layout. Table 5-6 shows the con-
structors and most commonly used methods for the FlowPane class.

Table 5-6 FlowPane Constructors and Methods
Constructor Description

FlowPane() Creates an empty horizontal flow
layout with both the horizontal and ver-
tical gaps set to zero.

FlowPane(double hgap,
double vgap)

Creates an empty horizontal flow
layout with the specified horizontal and
vertical gaps.

FlowPane(double hgap,
double vgap, Node...
children)

Creates a horizontal flow layout with
the specified horizontal and vertical
gaps and populated with the specified
child nodes.

FlowPane(Node...
children)

Creates a horizontal flow layout with
both the horizontal and vertical gaps
set to zero and populated with the
specified child nodes.

Note: In each of the following constructors, Orientation can be
Orientation.HORIZONTAL or Orientation.VERTICAL.
FlowPane(Orientation
orientation)

Creates an empty flow layout with the
specified orientation and both the hori-
zontal and vertical gaps set to zero.

FlowPane(Orientation
orientation, double hgap,
double vgap)

Creates an empty flow layout with the
specified orientation and the specified
horizontal and vertical gaps.

FlowPane(Orientation
orientation, double hgap,
double vgap, Node...
children)

Creates a flow layout with the speci-
fied orientation and horizontal and ver-
tical gaps, populated with the specified
children.

FlowPane(Orientation
orientation, Node...
children)

Creates a flow layout with the speci-
fied orientation and both the horizontal
and vertical gaps set to zero, populated
with the specified children.

Method Description
ObservableList<Node>
getChildren()

Returns the collection of all child
nodes. The collection is returned as
an ObservableList type, which
includes the method addAll, letting
you add one or more nodes to the list.

(continued)

110 Part I: Getting Started with JavaFX

void setAlignment(Pos
alignment)

Sets the alignment for nodes within the
rows and columns.
See Table 5-5 for an explanation
of the Pos enumeration. For more
information, see the section “Aligning
Nodes in a Layout Pane” earlier in this
chapter.

void setColumn
Alignment(Pos alignment)

Sets the alignment for nodes within the
columns.
See Table 5-5 for an explanation
of the Pos enumeration. For more
information, see the section “Aligning
Nodes in a Layout Pane” earlier in this
chapter.

void setHgap(double
value)

Sets the horizontal gap. For a horizon-
tal flow layout, this is the amount of
space between nodes. For a vertical
flow layout, this is the amount of space
between columns.

static void setMargin(Node
child, Insets value)

Sets the margins for a given child
node.
See Table 5-2 for the constructors of
the Insets class. For more informa-
tion, see the section “Adding Space
with Margins” earlier in this chapter.

void
setOrientation(Orientation
orientation)

Sets the orientation of the flow layout,
which can be Orientation.
HORIZONTAL or Orientation.
VERTICAL.

void setPadding(Insets
value)

Sets the padding around the inside
edges of the flow layout.
See Table 5-2 for the constructors of
the Insets class. For more informa-
tion, see the section “Spacing Things
Out” earlier in this chapter.

Table 5-6 (continued)
Method Description

111 Chapter 5: Using Layout Panes to Arrange Your Scenes

void setPrefWrapLength
(double value)

Sets the preferred wrap length for the
pane. For a horizontal flow layout, this
represents the preferred width of the
pane; for a vertical flow layout, it rep-
resents the preferred height.

void setRowAlignment(Pos
alignment)

Sets the alignment for nodes within the
rows.
See Table 5-5 for an explanation
of the Pos enumeration. For more
information, see the section “Aligning
Nodes in a Layout Pane” earlier in this
chapter.

void setSpacing(double
value)

Sets the spacing between nodes dis-
played within the flow layout. For more
information, see the section “Spacing
Things Out” earlier in this chapter.

void setVgap(double
value)

Sets the vertical gap. For a vertical
flow layout, this is the amount of space
between nodes. For a horizontal flow
layout, this is the amount of space
between rows.

The FlowPane class is defined in the javafx.scene.layout package, so
you should include the following import statement in any program that uses
a flow layout:

import javafx.scene.layout.*;

The constructors for this class let you specify the horizontal and vertical
gaps, which provide the spacing between the horizontal and vertical ele-
ments of the layout, the orientation (horizontal or vertical), and the child
nodes with which to populate the layout.

To set the limit at which the flow layout wraps, you use the setPrefWrap
Length method. The wrap length is applied to the dimension in which the
pane flows its contents. Thus, for a horizontal flow layout, the wrap length
specifies the preferred width of the pane; for a vertical flow layout, the wrap
length specifies the pane’s preferred height.

Method Description

112 Part I: Getting Started with JavaFX

Note that regardless of the preferred wrap length, if you don’t call this
method, the wrap length defaults to 400 pixels.

The following example creates a horizontal layout with 10 pixels of horizontal
and vertical gaps, populated by five buttons, and a preferred wrap length of
300 pixels:

Button btn1 = new Button("Button One");
Button btn2 = new Button("Button Two");
Button btn3 = new Button("Button Three");
Button btn4 = new Button("Button Four");
Button btn5 = new Button("Button Five");
FlowPane pane = new FlowPane(Orientation.HORIZONTAL,
 10, 10, btn1, btn2, btn3, btn4, btn5);
pane.setPrefWrapLength(300);

Figure 5-5 shows how these buttons appear when the layout is added to a
scene and the scene displayed in a stage. This figure also shows how the
buttons in the flow layout are rearranged when the user resizes the window.
Notice that initially, the first three buttons appear on the first row and the
next two appear on the second row. When the window is dragged a bit wider,
the buttons reflow so that four fit on the first row and just one spills to the
second row. Then, when the window is dragged smaller, just two buttons
appear on the first two rows and a third row is created for the fifth button.

Figure 5-5: A
flow layout
pane with

five buttons.

113 Chapter 5: Using Layout Panes to Arrange Your Scenes

Using the Border Layout
The border layout is a pane that is carved into five regions: Top, Left, Center,
Right, and Bottom, as shown in Figure 5-6. When you add a component to the
layout, you can specify which of these regions the component goes in.

Figure 5-6:
How the

border
layout

carves
things up.

 Border layout is the ideal layout manager for applications that have a tradi-
tional window arrangement in which menus and toolbars are displayed at the
top of the window, a status bar or OK and Cancel buttons are displayed at the
bottom, a navigation pane is displayed on the left, various task panes are dis-
played on the right, and content is displayed in the middle.

You use the BorderPane class to create a border layout. Table 5-7 lists the
constructors and the most commonly used methods for the BorderPane
class.

Table 5-7 BorderPane Constructors and Methods
Constructor Description
BorderPane () Creates an empty border layout.

BorderPane (Node center) Creates a border layout with the speci-
fied center node.

(continued)

114 Part I: Getting Started with JavaFX

Constructor Description
BorderPane (Node center,
Node top, Node right, Node
bottom, Node left)

Creates a border layout with the speci-
fied center, top, right, bottom, and left
nodes.

Method Description

void setCenter(Node node) Sets the center node.

void setTop(Node node) Sets the top node.

void setRight(Node node) Sets the right node.

void setBottom(Node node) Sets the bottom node.

void setLeft(Node node) Sets the left node.
void setAlignment(Pos
alignment)

Sets the alignment for nodes within
border pane.
See Table 5-5 for an explanation
of the Pos enumeration. For more
information, see the section “Aligning
Nodes in a Layout Pane” earlier in this
chapter.

static void setMargin(Node
child, Insets value)

Sets the margins for a given child
node.
See Table 5-2 for the constructors of
the Insets class. For more informa-
tion, see the section “Adding Space
with Margins” earlier in this chapter.

The BorderPane class is defined in the javafx.scene.layout package, so
you should include the following import statement in any program that uses
a border layout:

import javafx.scene.layout.*;

The default constructor for this class creates an empty border layout, to
which you can add nodes later, as in this example:

Button btn1 = new Button("Button One");
Button btn2 = new Button("Button Two");
Button btn3 = new Button("Button Three");
VBox vbox = new VBox(btn1, btn2, btn3);

BorderPane pane = new BorderPane();
pane.setCenter(vbox);

Table 5-7 (continued)

115 Chapter 5: Using Layout Panes to Arrange Your Scenes

Here, three buttons are created and added to a VBox. Then, a border layout is
created, and the VBox is added to its center region.

Alternatively, you can add a node to the center region via the BorderPane
constructor, like this:

BorderPane pane = new BorderPane(vbox);

The third constructor listed in Table 5-7 lets you add nodes to all five regions
at once. The following example assumes that you have already created
five panes, named centerPane, topPane, rightPane, bottomPane, and
leftPane:

BorderPane pane = new BorderPane(centerPane,
 topPane, rightPane, bottomPane, leftPane);

 Here are a few additional important points to know about the BorderPane
class:

 ✓ If you don’t add a node to one of the regions, that region is not
rendered.

 ✓ The border layout regions are sized according to their contents.

 Thus, if you add a VBox pane to the right region, the width of the VBox
pane will determine the width of the right region.

 ✓ If the user resizes the window to make it wider, the top, center, and
bottom regions will expand in width — the width of the left and right
regions remains unchanged.

 Similarly, if the user drags the window to make it taller, the left, center,
and right regions expand in height; the height of the top and bottom
regions remains the same.

 ✓ The nodes you add to the regions of a border pane will themselves
almost always be other layout panes.

 In Chapter 6, you see a comprehensive example that shows how to
create a complex layout that uses various combinations of VBox,
HBox, and FlowPane layout panes as the nodes for each region of a
BorderPane.

116 Part I: Getting Started with JavaFX

Chapter 6

Getting Input from the User
In This Chapter
▶ Working with text fields and areas

▶ Validating numeric data and creating check boxes

▶ Setting radio buttons

▶ Using some of these components in a complete program

I
n the first five chapters of this book, I discuss how to create JavaFX pro-
grams using only two basic JavaFX input controls: labels and buttons. If

all you ever want to write are programs that display text when the user clicks
a button, you can put the book down now. But if you want to write programs
that actually do something worthwhile, you need to use other JavaFX input
controls.

In this chapter, you find out how to use some of the most common JavaFX
controls. First, you read about the label and controls that get information
from the user. You find out more details about the text field control, which
gets a line of text, and the text area control, which gets multiple lines. Then
I move on to two input controls that get either/or information from the user:
radio buttons and check boxes.

Along the way, you discover an important aspect of any JavaFX program that
collects input data from the user: data validation. Data validation routines
are essential to ensure that the user doesn’t enter bogus data. For example,
you can use data validation to ensure that the user enters data into required
fields or that the data the user enters into a numeric field is indeed a valid
number.

118 Part I: Getting Started with JavaFX

Using Text Fields
A text field is a box into which the user can type a single text. You create text
fields by using the TextField class. Table 6-1 shows some of the more inter-
esting and useful constructors and methods of this class.

Table 6-1 Handy TextField Constructors and Methods
Constructor Description
TextField() Creates a new text field.
TextField(String text, int
cols)

Creates a new text field with an initial
text value.

Method Description

String getText() Gets the text value entered in the field.

void requestFocus() Asks for the focus to be moved to this
text field. Note that the field must be in
a scene for the focus request to work.

void setEditable(boolean
value)

If false, makes the field read-only.

void setMaxWidth(double
width)

Sets the maximum width for the field.

void setMinWidth(double
width)

Sets the minimum width for the field.

void
setPrefColumnCount(int
cols)

Sets the preferred size of the text field
in columns (that is, the number of
average-width text characters).

void setPrefWidth(double
width)

Sets the preferred width for the field.

void setPromptText(String
prompt)

Sets the field’s prompt value. The
prompt value will not be displayed if
the field has a text value or if the field
has focus.

void setText(String text) Sets the field’s text value.

119 Chapter 6: Getting Input from the User

The TextField class is defined in the javafx.scene.control package,
so you should include the following imports statement in any program that
uses a text field:

imports javafx.scene.control.*;

The most common way to create a text field is to call the constructor without
arguments, like this:

TextField text1 = new TextField();

You can set the initial value to be displayed like this:

TextField text1 = new TextField("Initial value");

Or, if you need to set the value later, you can call the setText method:

text1.setText("Text value");

To retrieve the value that the user has entered into a text field, call the
getText method like this:

String value = text1.getText();

As with any JavaFX control, managing the width of a text field can be a bit
tricky. Ultimately, JavaFX will determine the width of the text field based on
a number of factors, including the size of the window that contains the stage
and scene and any size constraints placed on the pane or panes that contain
the text field. You can set minimum and maximum limits for the text field size
by calling the setMinWidth and setMaxWidth methods, and you can indi-
cate the preferred width via the setPrefWidth method, as in this example:

TextField text1 = new TextField();
text1.setMinWidth(150);
text1.setMaxWidth(250);
text1.setPrefWidth(200);

Another way to set the preferred width is with the setPrefColumnCount
method, which sets the width in terms of average-sized characters. For exam-
ple, the following line sizes the field large enough to display approximately 50
characters:

text1.setPrefColumnCount(50);

120 Part I: Getting Started with JavaFX

Note that the setPrefColumnCount method does not limit the number of
characters the user can enter into the field. Instead, it limits the number of
characters the field can display at one time.

Whenever you use a text field, provide a prompt that lets the user know what
data he should enter into the field. One common way to do that is to place a
label control immediately to the left of the text field. For example:

Label lblName = new Label("Name:");
lblName.setMinWidth(75);
TextField txtName = new TextField();
txtName.setMinWidth(200);
HBox pane = new HBox(10, lblName, txtName);

Here, a label and a text field are created and added to an HBox pane so they
will be displayed side-by-side.

JavaFX also allows you to display a prompt inside of a text field. The prompt
is displayed in a lighter text color and disappears when the field receives
focus. You use the setPromptText method to create such a prompt:

TextField txtName = new TextField();
txtName.setPromptText("Enter the customer's name");

Here, the text Enter the customer’s name will appear inside the text field.

To retrieve the value entered by the user into a text field, you use the
getText method, as in this example:

String lastName = textLastName.getText();

Here the value entered by the user in the textLastName text field is
assigned to the String variable lastName.

Figure 6-1 shows the operation of a simple program that uses a text field to allow
the user to enter the name of a character in a play and the name of the actor
who will play the role. Assuming the user enters text in both fields, the program
then displays a message box indicating who will play the role of the character. If
the user omits either or both fields, a message box displays to indicate the error.
(The program uses the MessageBox class that was presented in Listing 4-2 in
Chapter 4 to display the message box.)

Figure 6-1 shows what the main stage for this program looks like, as well as
the message box windows displayed when the user enters both names or
when the user omits a name. The JavaFX code for this program is shown in
Listing 6-1.

121 Chapter 6: Getting Input from the User

Figure 6-1:
The Role

Player
application

in action.

Listing 6-1: The Role Player Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.geometry.*;

public class RolePlayer extends Application ➝8
{
 public static void main(String[] args)
 {
 launch(args);
 }

 TextField txtCharacter; ➝15
 TextField txtActor;

 @Override public void start(Stage primaryStage)
 {

 // Create the Character ➝20
 Label lblCharacter = new Label("Character's Name:");
 lblCharacter.setMinWidth(100);
 lblCharacter.setAlignment(Pos.BOTTOM_RIGHT);

(continued)

122 Part I: Getting Started with JavaFX

 // Create the Character text field ➝25
 txtCharacter = new TextField
 txtCharacter.setMinWidth(200);
 txtCharacter.setMaxWidth(200);
 txtCharacter.setPromptText(
 "Enter the name of the character here.");

 // Create the Actor label ➝32
 Label lblActor = new Label("Actor's Name:");
 lblActor.setMinWidth(100);
 lblActor.setAlignment(Pos.BOTTOM_RIGHT);

 // Create the Actor text field ➝37
 txtActor = new TextField();
 txtActor.setMinWidth(200);
 txtActor.setMaxWidth(200);
 txtActor.setPromptText("Enter the name of the actor here.");

 // Create the OK button ➝43
 Button btnOK = new Button("OK");
 btnOK.setMinWidth(75);
 btnOK.setOnAction(e -> btnOK_Click());

 // Create the Character pane ➝48
 HBox paneCharacter = new HBox(20, lblCharacter, txtCharacter);
 paneCharacter.setPadding(new Insets(10));

 // Create the Actor pane ➝52
 HBox paneActor = new HBox(20, lblActor, txtActor);
 paneActor.setPadding(new Insets(10));

 // Create the Button pane ➝56
 HBox paneButton = new HBox(20, btnOK);
 paneButton.setPadding(new Insets(10));
 paneButton.setAlignment(Pos.BOTTOM_RIGHT);

 // Add the Character, Actor, and Button panes to a VBox ➝61
 VBox pane = new VBox(10, paneCharacter, paneActor, paneButton);

 // Set the stage ➝64
 Scene scene = new Scene(pane);
 primaryStage.setScene(scene);
 primaryStage.setTitle("Role Player");
 primaryStage.show();
 }

Listing 6-1 (continued)

123 Chapter 6: Getting Input from the User

 public void btnOK_Click() ➝71
 {
 String errorMessage = ""; ➝73

 if (txtCharacter.getText().length() == 0) ➝75
 {
 errorMessage += "\nCharacter is a required field.";
 }

 if (txtActor.getText().length() == 0) ➝80
 {
 errorMessage += "\nActor is a required field.";
 }

 if (errorMessage.length() == 0) ➝85
 {
 String message = "The role of "
 + txtCharacter.getText()
 + " will be played by "
 + txtActor.getText()
 + ".";
 MessageBox.show(message,"Cast");
 }
 else
 {
 MessageBox.show(errorMessage, "Missing Data"); ➝96
 }
 }

}

This program isn’t very complicated, so the following paragraphs just hit the
highlights:

 ➝8: The name of the program’s main class is RolePlayer.

 ➝15: These class variables allow any of the RolePlayer class methods
to access the two text fields.

 ➝20: These lines create a label to identify the Character text box. The
field is set to a minimum width of 100 pixels and is right-justified
so that the labels that identify the two text fields will be aligned
properly.

 ➝25: These lines create the Character text field with a minimum and
maximum width of 200 pixels. The prompt text is set to Enter
the name of the character here. This text will appear
within the text field whenever the text field does not have focus.
In Figure 6-1, the Character text field has focus so the prompt text
isn’t visible.

124 Part I: Getting Started with JavaFX

 ➝32: These lines create a label to identify the Actor text field. Like the
Character label, the Actor label’s width is set to 100 pixels and it’s
right-aligned.

 ➝37: These lines create the Actor text field, set its width to 200 pixels,
and assign prompt text. You can see the prompt text in Figure 6-1
because the Actor text field doesn’t have focus.

 ➝43: These lines create the OK button. The btnOK_Click method is
called when the user clicks the button.

 ➝48: These lines create an HBox pane and add the Character label and
text box to it.

 ➝52: These lines create another HBox pane and add the Actor label and
text box to it.

 ➝56: These lines create a third HBox pane to hold the button.

 ➝61: Now that all the controls are created and added to HBox panes,
the three HBox panes are added to a VBox pane so that the text
boxes with their associated labels and the button are stacked
vertically.

 ➝64: These lines create a scene to show the VBox pane and then add
the scene to the primary stage and show the stage.

 ➝71: The btnOK_Click method is called whenever the user clicks OK.

 ➝73: The errorMessage variable holds any error message that might
be necessary to inform the user of missing data.

 ➝75: This if statement ensures that the user has entered data into
the Character text box. If no data is entered, an error message is
created.

 ➝80: This if statement ensures that the user has entered data into the
Actor text box. If no data is entered, an error message is appended
to the errorMessage field.

 ➝85: This if statement determines whether any data validation
errors have occurred by testing the length of the errorMessage
field. If the length is zero, no error has been detected, so the
 program assembles the message variable to display which actor
will be playing which character. Then, the show method of the
MessageBox class is called to display the message. (You can find
the code for the MessageBox class in Listing 4-2 in Chapter 4.)

 ➝96: This line displays the error message if the user forgets to enter
data in the Character or Actor text fields.

125 Chapter 6: Getting Input from the User

Validating Numeric Data
You need to take special care if you’re using a text field to get numeric data
from the user. The getText method returns a string value. You can pass this
value to one of the parse methods of the wrapper classes for the primitive
numeric types. To convert the value entered in a text box to an int, use the
parseInt method:

int count = Integer.parseInt(txtCount.getText());

Here the result of the getText method is used as the parameter of the
parseInt method.

Table 6-2 lists the parse methods for the various wrapper classes. Note:
Each of these methods throws NumberFormatException if the string
can’t be converted. As a result, you need to call the parseInt method in a
try/catch block to catch this exception.

Table 6-2 Methods That Convert Strings to Numbers
Wrapper Class parse Method
Integer parseInt(String)

Short parseShort(String)

Long parseLong(String)

Byte parseByte(String)

Float parseFloat(String)

Double parseDouble(String)

 If your program uses more than one or two numeric-entry text fields, consider
creating separate methods to validate the user’s input. The following code
snippet shows a method that accepts a text field and a string that provides
an error message to be displayed if the data entered in the field can’t be con-
verted to an int. The method returns a Boolean value that indicates whether
the field contains a valid integer:

126 Part I: Getting Started with JavaFX

private boolean isInt(TextField f, String msg)
{
 try
 {
 Integer.parseInt(f.getText());
 return true;
 }
 catch (NumberFormatException e)
 {
 MessageBox.show(msg, "Data Entry Error");
 return false;
 }
}

You can call this method whenever you need to check whether a text
field has a valid integer. (The MessageBox class is the same one used in
Listing 6-1; you find the code for it in Chapter 4, in Listing 4-2.)

Here’s a method that gets the value entered in a txtCount text field and dis-
plays it in message box if the value entered is a valid integer:

public void buttonOKClick()
{
 if (isInt(textCount,
 "You must enter an integer."))
 {
 MessageBox.show("You entered " +
 Integer.parseInt(textCount.getText()),
 "Your Number");
 }
 textCount.requestFocus();
}

Here the isInt method is called to make sure that the text entered by the
user can be converted to an int. If so, the text is converted to an int and
displayed in a message box.

Using Check Boxes
A check box is a control that the user can click to check or clear. Check boxes
let the user specify a Yes or No setting for an option. Figure 6-2 shows a
window with three check boxes.

127 Chapter 6: Getting Input from the User

 Strictly speaking, a check box can have three states: checked, unchecked, and
undefined. The undefined state is most often used in conjunction with a
TreeView control.

Figure 6-2:
Three check

boxes.

To create a check box, you use the CheckBox class. Its favorite constructors
and methods are shown in Table 6-3.

Table 6-3 Notable CheckBox Constructors and Methods
Constructor Description
CheckBox() Creates a new check box that is

initially unchecked.

CheckBox(String text) Creates a new check box that dis-
plays the specified text.

Method Description

String getText() Gets the text displayed by the
check box.

boolean isSelected() Returns true if the check box is
checked or false if the check
box is not checked.

void setOnAction
(EventHandler<ActionEvent>
value)

Sets an ActionEvent listener
to handle action events.

void setSelected(boolean
value)

Checks the check box if the
parameter is true; unchecks it if
the parameter is false.

void setText(String text) Sets the check box text.

128 Part I: Getting Started with JavaFX

As with any JavaFX control, if you want to refer to a check box in any method
within the program, declare a class variable to reference the control:

CheckBox chkPepperoni, chkMushrooms, chkAnchovies;

Then you can use statements like these in the start method to create the
check boxes and add them to a layout pane (in this case, pane1):

chkPepperoni = new CheckBox("Pepperoni");
pane1.add(chkPepperoni);

chkMushrooms = new CheckBox("Mushrooms");
pane1.add(chkMushrooms);

chkAnchovies = new CheckBox("Anchovies");
pane1.add(chkAnchovies);

Notice that I didn’t specify the initial state of these check boxes in the con-
structor. As a result, they’re initially unchecked. If you want to create a check
box that’s initially checked, call setSelected method, like this:

chkPepperoni.setSelected(true);

In an event listener, you can test the state of a check box by using the
isSelected method, and you can set the state of a check box by calling its
setSelected method. Here’s a method that displays a message box and
clears all three check boxes when the user clicks OK:

public void btnOK_Click()
{
 String msg = "";
 if (chkPepperoni.isSelected())
 msg += "Pepperoni\n";
 if (chkMushrooms.isSelected())
 msg += "Mushrooms\n";
 if (chkAnchovies.isSelected())
 msg += "Anchovies\n";
 if (msg.equals(""))
 msg = "You didn't order any toppings.";
 else
 msg = "You ordered these toppings:\n"
 + msg;
 MessageBox.show(msg, "Your Order");
 chkPepperoni.setSelected(false);
 chkMushrooms.setSelected(false);
 chkAnchovies.setSelected(false);
}

129 Chapter 6: Getting Input from the User

Here, the name of each pizza topping selected by the user is added to a text
string. If you select pepperoni and anchovies, for example, the following mes-
sage displays:

You ordered these toppings:
Pepperoni
Anchovies

 If you want, you can add event listeners to check boxes to respond to events
generated when the user clicks those check boxes. Suppose that your res-
taurant has anchovies on the menu, but you refuse to actually make pizzas
with anchovies on them. Here’s a method you can call in an event listener to
display a message if the user tries to check the Anchovies check box; after dis-
playing the message, the method then clears the check box:

public void chkAnchovies_Click(){
 MessageBox.show("We don't do anchovies here.",
 "Yuck!")
 chkAnchovies.setSelected(false);
}

To add this event listener to the Anchovies check box, call its setOnAction
method, like this:

chkAnchovies.setOnAction(e -> chkAnchovies_Click());

 Add a listener to a check box only if you need to provide immediate feedback
to the user when she selects or deselects the box. In most applications, you
wait until the user clicks a button to examine the state of any check boxes in
the frame.

Using Radio Buttons
Radio buttons are similar to check boxes, but with a crucial difference: They
travel in groups, and a user can select only one radio button at a time from
each group. When you click a radio button to select it, the radio button
within the same group that was previously selected is deselected automati-
cally. Figure 6-3 shows a window with three radio buttons.

130 Part I: Getting Started with JavaFX

Figure 6-3:
A window
with three

radio
buttons.

To work with radio buttons, you use two classes. First, you create the radio
buttons themselves with the RadioButton class, whose constructors and
methods are shown in Table 6-4. Then you create a group for the buttons with
the ToggleGroup class and add the radio buttons to the toggle group.

 A ToggleGroup object is simply a way of associating a set of radio buttons so
that only one of the buttons can be selected. The toggle group object itself is
not a control and is not displayed. To display radio buttons, you add the indi-
vidual radio buttons, not the toggle group, to a layout pane.

Table 6-4 Various RadioButton Constructors and Methods
Constructor Description
RadioButton() Creates a new radio button with

no text.

RadioButton(String text) Creates a new radio button with
the specified text.

Method Description

String getText() Gets the text displayed by the
radio button.

boolean isSelected() Returns true if the radio button
is selected or false if the radio
button is not selected.

void setOnAction
(EventHandler<ActionEvent>
value)

Sets an ActionEvent listener
to handle action events.

void setSelected(boolean
value)

Selects the radio button if the
parameter is true; de-selects it if
the parameter is false.

void setText(String text) Sets the check box text.

131 Chapter 6: Getting Input from the User

The usual way to create a radio button is to declare a variable to refer to the
button as a class variable so that it can be accessed anywhere in the class, as
in this example:

RadioButton rdoSmall, rdoMedium, rdoLarge;

Then, in the start method, you call the RadioButton constructor to create
the radio button:

rdoSmall = new RadioButton("Small");

Thereafter, you can add the radio button to a layout pane in the usual way.

To create a toggle group to group radio buttons that work together, call the
ToggleGroup class constructor:

ToggleGroup sizeGroup = new ToggleGroup();

Then call the setToggleGroup method of each radio button:

rdoSmall.setToggleGroup(sizeGroup);
rdoMedium.setToggleGroup(sizeGroup);
rdoLarge.setToggleGroup(sizeGroup);

 Toggle groups have nothing to do with how radio buttons display. To display
radio buttons, you must still add them to a layout pane. And there’s no rule
that says that all the radio buttons within a toggle group must be added to the
same layout pane. However, it is customary to display all the radio buttons in
a single toggle group together on the scene so that the user can easily see that
the radio buttons belong together.

 If you’ve worked with radio buttons in Swing, you’ll want to note an important
distinction between the way JavaFX toggle groups work versus how button
groups work in Swing. In JavaFX, radio buttons that are outside a toggle group
are independent of one another. In Swing, radio buttons that are outside a
button group are all part of a default group. Thus, in JavaFX, always add radio
buttons to a toggle group, even if the scene has only a single toggle group.

Looking at a Pizza Order Application
To give you an idea of how to use the controls that I present in this chapter
together with the layout panes that I present in Chapter 5, this section presents
a fairly complicated application that lets the user order a pizza. The user enters

132 Part I: Getting Started with JavaFX

his name, address, and phone number into text fields, selects the pizza’s size
and crust style using radio buttons, and chooses toppings via check boxes.
Figure 6-4 shows the main window displayed by the Pizza Order application.

Figure 6-4:
The Pizza

Order
applica-

tion’s main
window.

When the user enters the data for his pizza order and clicks OK, this program
displays a message box summarizing the order, as shown in Figure 6-5.

Figure 6-5:
The Pizza

Order
application

confirms the
user’s order.

It may not be obvious at first glance, but the scene displayed by the Pizza
Order application uses a total of 12 layout panes to govern the arrangement
of its controls. The overall scene is organized with a border pane whose top
region displays the title (Order Your Pizza Now!). The center region displays
the text fields, radio buttons, and check boxes that let the user configure her
pizza order. And the bottom region contains the OK and Cancel buttons.

133 Chapter 6: Getting Input from the User

For your reference, Table 6-5 lists the 12 layout panes that are used to orga-
nize this content.

Table 6-5 Layout Panes Used in the Pizza Order Application
Name Class Description
paneMain BorderPane The scene’s main root pane.

paneTop HBox Contains the title text that’s displayed
in the top region of the border pane.

paneName HBox Contains the label and text box
for the customer’s name, placed
side-by-side.

panePhone HBox Contains the label and text box for the
phone number, placed side-by-side.

paneAddress HBox Contains the label and the text box for
the address, placed side-by-side.

paneCustomer VBox Contains the name, phone, and
address panes, stacked vertically.

paneSize VBox Contains a label with the text “Size”
and the three radio buttons that
let the user choose the pizza size,
stacked vertically.

paneCrust VBox Contains a label with the text “Crust”
and the two radio buttons that let the
user choose the crust style, stacked
vertically.

paneToppings FlowPane A flow pane that contains the check
boxes for the toppings.

paneTopping VBox Contains a label with the text
“Toppings” and the flow pane that
lists the toppings, stacked vertically.

paneOrder HBox Contains the three VBox panes that
list the sizes, crust styles, and top-
pings arranged side-by-side. This
pane is displayed in the center region
of the border pane.

paneBottom HBox Contains the OK and Cancel buttons
arranged side-by-side. A spacer is
used to force the buttons to the right
margin. This pane is displayed in the
bottom region of the border pane.

134 Part I: Getting Started with JavaFX

The source code for the Pizza Order application is shown in Listing 6-2.
Note that this program makes use of the MessageBox class that I present in
Chapter 4. The source code for that class can be found in Listing 4-2.

Listing 6-2: The Pizza Order Application

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.geometry.*;
import javafx.scene.text.*;

public class PizzaOrder extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 Stage stage;

 // Customer name, phone, and address fields

 TextField txtName;
 TextField txtPhone;
 TextField txtAddress;

 // Size radio buttons

 RadioButton rdoSmall;
 RadioButton rdoMedium;
 RadioButton rdoLarge;

 // Crust style radio buttons

 RadioButton rdoThin;
 RadioButton rdoThick;

 // Topping radio buttons

 CheckBox chkPepperoni;
 CheckBox chkSausage;

135 Chapter 6: Getting Input from the User

 CheckBox chkLinguica;
 CheckBox chkOlives;
 CheckBox chkMushrooms;
 CheckBox chkTomatoes;
 CheckBox chkAnchovies;

 @Override public void start(Stage primaryStage)
 {
 stage = primaryStage;

 // ----- Create the top pane -----

 Text textHeading = new Text("Order Your Pizza Now!");
 textHeading.setFont(new Font(20));
 HBox paneTop = new HBox(textHeading);
 paneTop.setPadding(new Insets(20, 10, 20, 10));

 // ---------- Create the customer pane ----------

 // Create the name label and text field

 Label lblName = new Label("Name:");
 lblName.setPrefWidth(100);
 txtName = new TextField();
 txtName.setPrefColumnCount(20);
 txtName.setPromptText("Enter the customer's name here");
 txtName.setMaxWidth(Double.MAX_VALUE);
 HBox paneName = new HBox(lblName, txtName);

 // Create the phone number label and text field

 Label lblPhone = new Label("Phone Number:");
 lblPhone.setPrefWidth(100);
 txtPhone = new TextField();
 txtPhone.setPrefColumnCount(20);
 txtPhone.setPromptText("Enter the customer's phone number here");
 HBox panePhone = new HBox(lblPhone, txtPhone);

 // Create the address label and text field

 Label lblAddress = new Label("Address:");
 lblAddress.setPrefWidth(100);
 txtAddress = new TextField();

(continued)

136 Part I: Getting Started with JavaFX

 txtAddress.setPrefColumnCount(20);
 txtAddress.setPromptText("Enter the customer's address here");
 HBox paneAddress = new HBox(lblAddress, txtAddress);

 // Create the customer pane

 VBox paneCustomer = new VBox(10, paneName,
 panePhone, paneAddress);

 // ---------- Create the order pane ----------

 // Create the size pane

 Label lblSize = new Label("Size");
 rdoSmall = new RadioButton("Small");
 rdoMedium = new RadioButton("Medium");
 rdoLarge = new RadioButton("Large");
 rdoMedium.setSelected(true);
 ToggleGroup groupSize = new ToggleGroup();
 rdoSmall.setToggleGroup(groupSize);
 rdoMedium.setToggleGroup(groupSize);
 rdoLarge.setToggleGroup(groupSize);

 VBox paneSize = new VBox(lblSize, rdoSmall, rdoMedium, rdoLarge);
 paneSize.setSpacing(10);

 // Create the crust pane

 Label lblCrust = new Label("Crust");
 rdoThin = new RadioButton("Thin");
 rdoThick = new RadioButton("Thick");
 rdoThin.setSelected(true);
 ToggleGroup groupCrust = new ToggleGroup();
 rdoThin.setToggleGroup(groupCrust);
 rdoThick.setToggleGroup(groupCrust);

 VBox paneCrust = new VBox(lblCrust, rdoThin, rdoThick);
 paneCrust.setSpacing(10);

 // Create the toppings pane

 Label lblToppings = new Label("Toppings");
 chkPepperoni = new CheckBox("Pepperoni");
 chkSausage = new CheckBox("Sausage");
 chkLinguica = new CheckBox("Linguica");
 chkOlives = new CheckBox("Olives");

Listing 6-2 (continued)

137 Chapter 6: Getting Input from the User

 chkMushrooms = new CheckBox("Mushrooms");
 chkTomatoes = new CheckBox("Tomatoes");
 chkAnchovies = new CheckBox("Anchovies");

 FlowPane paneToppings = new FlowPane(Orientation.VERTICAL,
 chkPepperoni, chkSausage, chkLinguica, chkOlives,
 chkMushrooms, chkTomatoes, chkAnchovies);
 paneToppings.setPadding(new Insets(10, 0, 10, 0));
 paneToppings.setHgap(20);
 paneToppings.setVgap(10);
 paneToppings.setPrefWrapLength(100);

 VBox paneTopping = new VBox(lblToppings, paneToppings);

 // Add the size, crust, and toppings pane to the order pane

 HBox paneOrder = new HBox(50, paneSize, paneCrust, paneTopping);

 // Create the center pane

 VBox paneCenter = new VBox(20, paneCustomer, paneOrder);
 paneCenter.setPadding(new Insets(0,10, 0, 10));

 // ---------- Create the bottom pane ----------

 Button btnOK = new Button("OK");
 btnOK.setPrefWidth(80);
 btnOK.setOnAction(e -> btnOK_Click());

 Button btnCancel = new Button("Cancel");
 btnCancel.setPrefWidth(80);
 btnCancel.setOnAction(e -> btnCancel_Click());

 Region spacer = new Region();

 HBox paneBottom = new HBox(10, spacer, btnOK, btnCancel);
 paneBottom.setHgrow(spacer, Priority.ALWAYS);
 paneBottom.setPadding(new Insets(20, 10, 20, 10));

 // ---------- Finish the scene ----------

 BorderPane paneMain = new BorderPane();
 paneMain.setTop(paneTop);
 paneMain.setCenter(paneCenter);
 paneMain.setBottom(paneBottom);

(continued)

138 Part I: Getting Started with JavaFX

 // Create the scene and the stage

 Scene scene = new Scene(paneMain);
 primaryStage.setScene(scene);
 primaryStage.setTitle("Pizza Order");
 primaryStage.show();
 }

 public void btnOK_Click()
 {

 // Create a message string with the customer information

 String msg = "Customer:\n\n";
 msg += "\t" + txtName.getText() + "\n";
 msg += "\t" + txtAddress.getText() + "\n";
 msg += "\t" + txtPhone.getText() + "\n\n";
 msg += "You have ordered a ";

 // Add the pizza size

 if (rdoSmall.isSelected())
 msg += "small ";
 if (rdoMedium.isSelected())
 msg += "medium ";
 if (rdoLarge.isSelected())
 msg += "large ";

 // Add the crust style

 if (rdoThin.isSelected())
 msg += "thin crust pizza with ";
 if (rdoThick.isSelected())
 msg += "thick crust pizza with ";

 // Add the toppings

 String toppings = "";
 toppings = buildToppings(chkPepperoni, toppings);
 toppings = buildToppings(chkSausage, toppings);
 toppings = buildToppings(chkLinguica, toppings);
 toppings = buildToppings(chkOlives, toppings);
 toppings = buildToppings(chkTomatoes, toppings);
 toppings = buildToppings(chkMushrooms, toppings);
 toppings = buildToppings(chkAnchovies, toppings);

Listing 6-2 (continued)

139 Chapter 6: Getting Input from the User

 if (toppings.equals(""))
 msg += "no toppings.";
 else
 msg += "the following toppings:\n"
 + toppings;

 // Display the message

 MessageBox.show(msg, "Order Details");
 }

 public String buildToppings(CheckBox chk, String msg)
 {
 // Helper method for displaying the list of toppings
 if (chk.isSelected())
 {
 if (!msg.equals(""))
 {
 msg += ", ";
 }
 msg += chk.getText();
 }
 return msg;
 }

 public void btnCancel_Click()
 {
 stage.close();
 }

}

140 Part I: Getting Started with JavaFX

Part II
JavaFX Controls

 Visit www.dummies.com/extras/javafx for great Dummies content online.

http://www.dummies.com/extras/javafx

In this part . . .
 ✓ Controlling controls

 ✓ Organizing lists

 ✓ Building tables

 ✓ Creating menus

 ✓ Visit www.dummies.com/extras/javafx for great
Dummies content online.

http://www.dummies.com/extras/javafx

Chapter 7

Introducing the JavaFX Node
Hierarchy

In This Chapter
▶ Introducing the most important packages and classes that make up JavaFX

▶ Looking at the important methods that all controls inherit via the Node, Parent, and
Region classes

T
he simplest definition of a JavaFX control is this: A control is an object
created from a class that directly or indirectly inherits the JavaFX

Control class. The Control class provides all the basic functions that
are required for a JavaFX object to be considered a control. For example,
any class that inherits the Control class has a visual representation in
a scene, can be added to a layout pane, can automatically adjust its size
within parameters you set by calling methods such as setMaxWidth or
setMinHeight, and can have a tooltip that pops up when the user hovers
the mouse over the control.

Although all controls have those features in common, not all those features
are provided directly by the Control class. That’s because the Control
class itself inherits the Region class, which in turn, inherits the Parent
class, which in turn inherits the Node class. Each of these classes along this
inheritance chain contributes features to every JavaFX control.

In this chapter, you read about some of the more important features that are
common to every JavaFX control by virtue of the fact that every control inher-
its the Control class, which in turn inherits the Region, Parent, and Node
classes.

144 Part II: JavaFX Controls

An Overview of JavaFX Packages
Before I look at the classes that make up the Node class hierarchy, I want to
briefly discuss the various packages that make up JavaFX. JavaFX itself con-
sists of a total of 665 classes that are spread out over 36 distinct packages,
which all begin with the root name javafx.

So far in this book, you’ve seen JavaFX classes from the following seven
packages:

 ✓ javafx.application: The most important class in this package is
Application, which provides the basic lifecycle functions of a JavaFX
application.

 As I discuss in Chapter 2, all JavaFX programs extend the Application
class and implement the start method, which is called to initiate the
application. The Application class also creates the application’s pri-
mary stage and passes it to the start method via the primaryStage
parameter. This allows the program to display a scene in the applica-
tion’s window.

 ✓ javafx.stage: The most important class in this package is Stage,
which represents a window in which a user interface can be displayed.
You read about the Stage class in Chapter 4. There are other classes in
this class that may occasionally be useful, such as FileChooser and
DirectoryChooser, which display dialog boxes that let you select files
and directories.

 ✓ javafx.scene: This package contains several important classes that
deal with creating user-interface scenes that can then be displayed in a
stage. The two most important classes in this package are

 • Scene, which creates a scene object.

 You can read about the Scene class in Chapter 4.

 • Node, which is the base class for all objects contained in a scene,
including controls and layout panes.

 For more information about the Node class, see the section “The
Node Class” later in this chapter.

 ✓ javafx.scene.control: This package contains most of JavaFX’s user-
interface control classes, including Button, Label, CheckBox, and
RadioButton. Also included in this package is Control, the base class
from which all user-interface controls are derived. For more information
about the Control class, see the section “The Control Class” later in

145 Chapter 7: Introducing the JavaFX Node Hierarchy

this chapter. (Note: There are a few JavaFX controls that are defined in
other packages, including javafx.scene.control.cell and javafx.
scene.web.)

 ✓ javafx.scene.layout: This package contains the layout pane classes,
such as HBox, VBox, and BorderPane. Two other important classes
defined in this package are Pane and Region. All the layout pane classes
are based on the Pane class, and both the Pane class in this package and
the Control class in the javafx.scene.control class are based on the
Region class. For more information about the Region class, see the sec-
tion “The Region Class” later in this chapter.

 ✓ javafx.geometry: This is a relatively small package that defines sev-
eral classes and enumerations that are related to the geometry of JavaFX
nodes. In Chapter 5, you figure out how to use the Insets class to control
spacing within a layout pane as well as the Pos enumeration to specify
alignments.

 ✓ javafx.collections: This package defines the ObservableList
class, which is used by the getChildren method of the Pane class.
You also encounter several control classes in the next few chapters that
require this package.

Because these seven packages contain most of the JavaFX classes you’ll use
in applications that work mostly with controls (as opposed to classes that
work with other user-interface objects such as graphs, shapes, or anima-
tions), I recommend you import all the classes in these seven packages in all
your programs:

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.control.*;
import javafx.scene.layout.*;
import javafx.scene.geometry.*;
import javafx.collections.*;

Although you don’t need all the classes in all these packages in every pro-
gram, including these entire packages every time eliminates the need to keep
track of which programs need which specific classes.

In the rest of this chapter, I take a closer look at the classes that are inherited
by all JavaFX controls: Node, Parent, Region, and Control.

146 Part II: JavaFX Controls

The Node Class
The JavaFX Control class hierarchy begins at the Node class, which represents
an object that can be added to the JavaFX scene. Well, actually, the topmost
class in the Control class hierarchy is the Object class, but that’s hardly
worth mentioning here because all Java class hierarchies begin with the Object
class — Object is the mother of all Java classes.

All objects that are a part of a scene belong to a scene graph, which is a tree
structure that contains all the nodes that make up a user interface. To be a
part of a scene graph, an object must inherit the Node class. Thus, the Node
class is the base class for all classes that can be added to a JavaFX scene.

Like any other tree structure, a scene graph begins with a single node — the
root node — which can have one or more child nodes, each of which in turn
can have one or more child nodes. A node that has at least one child node is
a branch node; a node that has no children is a leaf node. A scene can have
only one root node, but it can have many branch and leaf nodes.

The Node class is an abstract class, which means that you can’t directly create
an instance of it. In other words, the following code results in a compiler error:

Node myNode = new Node();

However, you can use the Node class to hold nodes whose type you are
uncertain of or don’t care about. For example:

Node myNode = new Button();

In this case, the myNode variable is of type Node, but it’s used to hold a refer-
ence to a Button control.

Many methods of classes up and down the Node hierarchy accept or return
objects of type Node. For example, the getChildren method used with
layout panes, such as HBox and FlowPane, returns list of Node objects. And
the add method used to add an object to a layout pane’s node list accepts a
Node object as a parameter. In other words, any Node object can be added to
a layout pane.

Table 7-1 lists just a few of the methods you’re likely to use in most JavaFX
programs. Note that this table drastically simplifies the complexity of the
Node class. There are actually more than 300 methods defined by this class.
More than one third of them are related to event handling: The Node class is

147 Chapter 7: Introducing the JavaFX Node Hierarchy

the class that’s responsible for most event handling for all nodes, including
events that handle mouse, keyboard, and touchscreen interaction with the
node.

Table 7-1 Commonly Used Methods of the Node Class
Method Explanation
Parent getParent() Returns this node’s Parent node.

String getId() Returns the ID of this node.

void setId(String id) Sets the ID of this node. The ID should be
unique within the scene graph.

Node lookup(String id) Searches the node’s children for a node
whose ID matches the parameter.

String getStyle() Returns the CSS style string for the node.
Void setStyle(String
style)

Sets the CSS style string for the node.

The getParent method returns a node’s parent node. This method returns
an object of type Parent, which is a node that can have children (as you dis-
cover in the following section). Every node in a scene graph except the root
node must have a parent node, and that parent node will always be of type
Parent. If you call this method on the root node, null will be returned.

Notice that every node can have a unique string identifier, which makes it
easy to distinguish nodes from one another in complicated scene graphs and
can also be helpful when you use CSS to format your scenes. You can set the
string identifier by calling the setID method, which accepts a string argu-
ment like this:

myNode.setId("LBL3");

Here, the string LBL3 is associated with the node.

You can later find this node by calling the lookup method. This method is
a little quirky in that you must preface the ID you’re looking for with a hash
symbol (#). For example, here’s how you might search an entire scene graph
for a control whose ID is LBL3:

Node myNode = scene.getRoot().lookup("#LBL3");

148 Part II: JavaFX Controls

Here, the getRoot method of the scene variable (which I assume to be of
type Scene) is called to get the root node of the scene. Then, the lookup
method is called to return the node whose ID is LBL3.

There are many other methods of the Node class that let you apply common
formatting or other features for all types of nodes. For example, the
setStyle method lets you apply CSS-style formatting to any type of node.
And the setRotate method lets you rotate any node. You can read about
these and other Node methods in later chapters of this book.

The Parent Class
Although ten different classes directly inherit the Node class, the only one
you need to be concerned with when working with JavaFX controls is the
Parent class. For an explanation of all ten of the subclasses of Node, see the
sidebar “Ten Different Kinds of Nodes” in this chapter.

The Parent class has all the capabilities of the Node class, plus the added
ability to have child nodes. Its main job is to manage a collection of child
nodes, which is represented as a standard Java list. You can access this list
by calling the getChildren method.

You’ve seen this method in action in layout panes, such as HBox and VBox.
For example, the following code creates an HBox pane and then adds two
controls to it:

Label lblAddress = new Label("Address:");
TextField txtAddress = new TextField();
HBox hbox = new HBox();
hbox.getChildren().addAll(lblAddress, txtAddress);

The getChildren method returns an object of type ObservableList,
which in turn extends the List interface. Between them, these two interfaces
define a few dozen methods that you can use to manipulate the parent’s child
nodes. Table 7-2 lists a few of the more commonly used of these methods.

 Interestingly, the getParent method is defined in the Parent class with
protected access. That means that although the getParent method is
available to any class that inherits the Parent class, the getParent method
is not accessible to the outside world. For the getParent method to become
public, a class that inherits the Parent class must override the getParent
method with public access.

149 Chapter 7: Introducing the JavaFX Node Hierarchy

Table 7-2 Commonly Used ObservableList Methods
Method Explanation
void add(Node node) Adds a single child node to the existing

list of children.
void addAll(Node
nodes...)

Adds multiple child nodes.

void remove(Node node) Removes the specified node from the
list of children.

void clear() Removes all child nodes.

int size() Returns the number of child nodes.

That’s precisely what the Pane class does. The Pane class is the base class
of all layout panes; it inherits the Parent class and then overrides the
getParent method. Here’s a snippet of the actual code from the Pane class:

@Override public ObservableList<Node> getChildren()
{
 return super.getChildren();
}

As you can see, the getChildren method in the Pane class simply calls the
getChildren method of its superclass (Parent) and returns the result.

 One class derived from the Parent class which you may use on occasion is
the Group class. The Group class is a bit like a layout pane such as HBox or
FlowPane, except that it doesn’t provide any actual layout for the child nodes
it contains. When you create a Group, you can pass the child nodes to the
constructor, like this:

Group group = new Group(Node1, Node2, Node3);

Or, you can use the default constructor and add child nodes via the
getChildren method, like this:

Group group = new Group();
group.getChildren().addAll(Node1, Node2, Node3);

You’ll see examples of Group nodes occasionally throughout this book.

150 Part II: JavaFX Controls

The Region Class
Next in line in the Node class hierarchy is the Region class. Region is the
last common ancestor class shared by both the Control class and the Pane
class. Thus, the Region class is the last class from which controls and layout
panes share common features.

Ten Different Kinds of Nodes
In all, ten different classes directly inherit the
Node class, creating ten distinct inheritance
branches beneath Node. The only one of
these ten I discuss in the chapters that make
up this part of the book is the Parent class
because all JavaFX controls and layout panes
are derived from the Parent class. However,
to give you a general idea of what other types
of objects besides controls and layout panes
can be added to a scene graph, the following
paragraphs give a brief summary of what each
of the ten subclasses of Node provide:

 ✓ Camera: An object that’s used to graphi-
cally render a three-dimensional screen on
a flat display.

 A camera is a node because in scene
graphs that represent 3D layout, the
camera can be positioned at a specific
location within that layout, thus rendering
the flat image of the 3D layout from a spe-
cific perspective.

 ✓ Canvas: A node that you can draw on
using drawing commands, much like an
artist can draw on a canvas to create a
painting.

 A canvas is a two-dimensional object that
has a height and a width.

 ✓ ImageView: Represents an image viewer,
used to display a two-dimensional image.

 ✓ LightBase: An abstract class that serves
as the base class for lighting sources that
illuminate a scene rendered by a camera.

 Like a camera, a light source is a node so
that you can position it at a specific loca-
tion within a scene to create realistic light-
ing effects.

 ✓ MediaView: Represents a media viewer
that can play media, such as sound or
video.

 ✓ Parent: A node that can contain child
nodes. All controls and layout panes inherit
the Parent class.

 ✓ Shape: A two-dimensional shape such as
a rectangle or a circle.

 The Text class also inherits the Shape
class, providing an easy way to display text
within a scene.

 ✓ Shape3D: A three-dimensional shape
such as a box, cylinder, or sphere.

 ✓ Subscene: Marks a branch of a scene
that can be rendered with its own camera.

 ✓ SwingNode: Allows you to incorporate
Swing objects into a JavaFX scene graph.

151 Chapter 7: Introducing the JavaFX Node Hierarchy

As its name implies, the Region class defines a visible area of the scene
that has a physical size — that is, a height and a width. The size of a region
depends on a number of factors, but by default will be determined by the
size of the content it contains. You can set minimum, maximum, and pre-
ferred size constraints that the region will honor, and you can specify a fixed
amount of padding that provides a margin between the region’s content
and its outer edges. In addition, the visual style of a region can be set by a
Cascading Style Sheet.

Table 7-3 shows the most commonly used methods provided by the Region
class, which are all related to setting the size of the region.

Table 7-3 Common Methods of the Region Class
Method Explanation
void setMaxHeight(double
height)

Sets the maximum height for the region.

void setMinHeight(double
height)

Sets the minimum height for the region.

void setPrefHeight(double
height)

Sets the preferred height for the region.

void setMaxWidth(double
width)

Sets the maximum width for the region.

void setMinWidth(double
width)

Sets the minimum width for the region.

void setPrefWidth(double
width)

Sets the preferred width for the region.

double getHeight() Gets the actual height of the region.

double getWidth() Gets the actual width of the region.
void setPadding(Insets
value)

Sets the padding around the inside
edges of the Hbox.

The Region class provides three distinct parameters that let you control
the height and width of the region. For both the height and the width, you
can set a minimum value, a preferred value, and a maximum value. As their
names imply, JavaFX will not make the control smaller than the minimum size
or larger than the maximum size, and, if possible, will shoot for the preferred
size.

152 Part II: JavaFX Controls

Within these parameters, JavaFX will determine the ideal height and width
for the region based on the content it contains. For a control, such as a label
or a button, the content is the text that’s displayed by the label or the button.
For more complex controls, the content is more complex. And for layout
panes, the content consists of the aggregate of all the nodes that are added to
the pane.

If you don’t specify any height or width constraints, all three — minimum,
preferred, and maximum — default to the actual computed size of the con-
trol’s contents.

Note: In many cases, the contents of a region will resize automatically to fill
whatever space is available to it. Thus, if the user dynamically resizes the
window that contains the scene, the size of all the regions contained within
the scene may expand or contract to fill the available space.

 If you want to set an exact value for a region’s width or height, set all three
parameters (minimum, preferred, and maximum) to the same value. For
example:

lbl.setMinWidth(150);
lbl.setPrefWidth(150);
lbl.setMaxWidth(150);

You might, in this case, prefer to create a constant:

final static int LABEL_WIDTH = 150;
lbl.setMinWidth(LABEL_WIDTH);
lbl.setPrefWidth(LABEL_WIDTH);
lbl.setMaxWidth(LABEL_WIDTH);

That way, if you change your mind about the width of the label, you have to
change the value in only one place.

One other setting affects the height or width of a region: the amount of pad-
ding you specify. Padding provides margins around the edges of the region
to prevent crowded-looking scenes. Note: You’re more likely to use padding
with layout panes than with controls.

To specify padding, use the Insets class, which is defined in the javafx.
geometry package. Insets provides two constructors. The first lets you set
even margins around all four sides of a region:

pane.setPadding(new Insets(10));

Or, you can set different values for the top, right, bottom, and left edges:

pane.setPadding(new Insets(10,0,10,0);

153 Chapter 7: Introducing the JavaFX Node Hierarchy

In this example, the top and bottom margins are set to 10 pixels, but the right
and left margins are set to 0.

For more information about padding, flip to Chapter 5.

The Control Class
The ultimate purpose of this chapter is to give you an overview of the fea-
tures that are common to all JavaFX controls by virtue of the fact that all
controls inherit the Control class. Now that you’ve finally made it to a dis-
cussion of the Control class itself, brace yourself for a little disappointment:
The Control class itself isn’t all that interesting. As Table 7-4 reveals, there
are really only three methods of interest. It turns out that most of the features
that are common to all controls are actually provided by the Region,
Parent, and Node controls.

Table 7-4 Methods of the Control Class
Method Explanation
void setTooltip(Tooltip
value)

Sets a tooltip for the control.

void
setContextmenu(Contextmenu
value)

Sets a context menu for the control. For
more information, see Chapter 10.

void setSkin(Skin value) Sets a skin for the control. For more
information, see Chapter 12.

The Control adds three main features to the Region class: the ability to
add tooltips, context menus, and CSS skins. You can read about context
menus in Chapter 10, and you see how CSS skins work in Chapter 12. So for
now, I just look at tooltips.

A tooltip is a pop-up balloon that provides an explanation of a control’s func-
tion. Creating a tooltip couldn’t be easier: You call the Tooltip constructor,
passing the text of the tooltip as an argument, and then assign the tooltip to a
control by calling the control’s setTooltip method. Here’s an example:

btnSave.setTooltip(new Tooltip("Saves the file"));

154 Part II: JavaFX Controls

Then, when the user hovers the mouse over the button, the tooltip appears.

Congratulations! You now know about the most important methods that are
available to all JavaFX controls by virtue of the fact that they all inherit the
Control class, which in turn inherits Region, which inherits Parent, which
inherits Node.

Now, in the remaining chapters of this Part, you discover how to use some
of the most commonly used and useful JavaFX controls, including radio but-
tons, check boxes, choice boxes, lists, tree views, tables, and menus.

Chapter 8

Choosing from a List
In This Chapter
▶ Using the ChoiceBox control

▶ Working with the ObservableList interface

▶ Listening for changes to the user’s selection

▶ Using the ComboBox and ListView controls

▶ Using the TreeView control

A
n entire category of JavaFX controls are designed to let the user choose
one or more items from a list. This chapter presents three such con-

trols: choice boxes, combo boxes, and lists. Along the way, you discover how
to use the ObservableList interface, which is used to manage the list of
items displayed by a choice box, combo box, or a list view control.

Actually, if you’ve read along so far, you’ve already been briefly introduced
to the ObservableList interface, as it’s also used to manage the list of con-
trols that are displayed in a layout pane. In Chapter 5, you read about how to
use the addAll method of this interface. In this chapter, you read about the
additional capabilities of this interface.

You also discover how to add an event listener that can respond when the
user changes the current selection.

Using Choice Boxes
A choice box is a control that lets the user choose an item from a drop-down
list. Initially, the choice box shows just the item that’s currently selected.
When the user clicks the choice box, the list of choices reveals. The user can
change the selection by clicking any of the items in the list. Figure 8-1 shows
a scene with a simple choice box.

156 Part II: JavaFX Controls

Figure 8-1:
A scene

with a
choice box.

You use the ChoiceBox class to create choice boxes. Table 8-1 lists the most
frequently used constructors and methods of this class.

Table 8-1 Common ChoiceBox Constructors and Methods
Constructor Description
ChoiceBox<T>() Creates an empty choice list of the

specified type.
ChoiceBox<T>(Observable
List<T> items)

Creates a choice list and fills it with the
values in the specified list.

Method Description
ObservableList<T>
getItems()

Gets the list of items.

void setItems
(ObservableList<T> items)

Sets the list of items.

T getValue() Returns the currently selected item.

void setValue(T value) Sets the currently selected item.

void show() Shows the list of items.

void hide() Hides the list of items.

boolean isShowing() Indicates whether the list of items is
currently visible.

157 Chapter 8: Choosing from a List

Creating a choice box
Creating a choice box is easy. The ChoiceBox class is generic, so specify a
type for the list that will be associated with the choice box. For example:

ChoiceBox<String> choice = new ChoiceBox<String>();

Here, a choice box that displays strings is created.

The next step is to add items to the choice box. You can do that by calling
the getItems method to access the list of items and then calling the add
method to add an item:

choice.getItems().add("Bashful");
choice.getItems().add("Doc");
choice.getItems().add("Dopey");
choice.getItems().add("Grumpy");
choice.getItems().add("Happy");
choice.getItems().add("Sleepy");
choice.getItems().add("Sneezy");

Alternatively, you could call the addAll method and add all the strings at
once, like this:

choice.getItems().addAll("Bashful", "Doc", "Dopey",
 "Grumpy", "Happy", "Sleepy",
 "Sneezy");

 The getItems method returns an object of type ObservableList, which
offers a number of methods that let you work with the list. For more informa-
tion, see the section “Working with Observable Lists” later in this chapter.

The ChoiceBox class also includes a constructor that lets you add an
ObservableList object when you create the choice box. This lets you
create the list before you create the choice box. You see an example of this
constructor in action in the section “Working with Observable Lists” in this
chapter.

 You can add any kind of object you want to a choice box. The choice box calls
the toString method of each item to determine the text to display in the
choice list. Suppose you have a class named Astronaut that represents an
astronaut on a space mission:

158 Part II: JavaFX Controls

class Astronaut
{
 private String firstName;
 private String lastName;

 public Astronaut(String FirstName, String LastName)
 {
 firstName = FirstName;
 lastName = LastName;
 }

 public String toString()
 {
 return firstName + " " + lastName;
 }
}

Then, you could create a choice box listing the crew of Apollo 13 like this:

ChoiceBox<Astronaut> apollo13;
Apollo13 = new ChoiceBox<Astronaut>();
apollo13.getItems().add(new Astronaut("Jim", "Lovell"));
apollo13.getItems().add(new Astronaut(
 "John", "Swigert"));
apollo13.getItems().add(new Astronaut("Fred", "Haise"));

If you wish, you can display the contents of a choice box without waiting for
the user to click the box. To do that, call the show method, like this:

apollo13.show();

To hide the list, call the hide method:

apollo13.hide();

Setting a default value
By default, a choice box has no initial selection when it’s first displayed. To
set an initial value, call the setValue method, passing it the list object that
you want to make the initial selection.

159 Chapter 8: Choosing from a List

If the choice box contains strings, you can set the initial value by passing the
desired string value to the setValue method:

choice.setValue("Dopey");

If the specified string doesn’t exist in the list, the initial value will remain
unspecified.

If the choice box contains objects, such as the Astronaut objects, illus-
trated in the preceding section, you must pass a reference to the object you
want to be the default choice. For example:

Astronaut lovell = new Astronaut("Jim", "Lovell");
Astronaut swigert = new Astronaut("John", "Swigert");
Astronaut haise = new Astronaut("Fred", "Haise");
ChoiceBox apollo13 = new ChoiceBox<Astronaut>();
apollo13.getItems().addAll(lovell, swigert, haise);
apollo13.setValue(lovell);

Here, Jim Lovell is set as the default astronaut.

Getting the selected item
You can call the getValue method to get the item selected by the user. The
type of the value returned depends on the type specified when you created
the choice box. For example, if you specified type String, the getValue
method returns strings. If you specified type Astronauts for the choice box,
the getValue method returns astronauts.

The getValue method is often used in the action event handler for a button.
For example:

public void btnOK_Click()
{
 String message = "You chose ";
 message += apollo13.getValue();
 MessageBox.show(message, "Your Favorite Astronaut");
}

 The MessageBox class used in this example can be found in Chapter 4.

160 Part II: JavaFX Controls

Working with Observable Lists
As you saw in the previous section, the ChoiceBox class does not include
methods that let you directly add or remove items from the list displayed by
the choice box. Instead, it includes a method named getItems that returns
an object of type ObservableList. The object returned by this method is
an observable list; it represents the list displayed by the choice box.

To work with the items displayed by a choice box, you must first access
the observable list and then use methods of the ObservableList class to
access the individual items in the list.

Observable lists are used not only by the ChoiceBox class, but also by other
control classes that display list items, such as ComboBox and List, which
you can read about later in this chapter. Both of those classes also have a
getItems method that returns an ObservableList.

Observable lists are also used by layout panes, such as HBox and VBox,
which you can read about in Chapter 5. The getChildren method that’s
common to all layout classes returns an ObservableList.

So far in this book, I’ve discussed just two methods of the ObservableList
interface: add and addAll, which lets you add items to the observable list.
Here’s an example of the add method from earlier in this chapter:

cbox.getItems().add("Bashful");

And here’s an example from Chapter 5, which uses the addAll method to
add buttons to a layout pane:

pane.getChildren().addAll(btnOK, btnCancel);

The ObservableList interface has many other methods besides add and
addAll. Table 8-2 shows the methods you’re most likely to use.

Table 8-2 Commonly Used ObservableList Methods
Method Description
void add(E element) Adds the specified element to the

end of the list.
void add(int index, E
element)

Adds the specified object to the list
at the specified index position.

void addAll(E...elements) Adds all the specified elements to
the end of the list.

161 Chapter 8: Choosing from a List

Method Description

void addAll(Collection<E> c) Adds all the elements of the speci-
fied collection to the end of the list.

E set(int index, E elem) Sets the specified element to the
specified object. The element that
was previously at that position is
returned as the method’s return
value.

void clear() Deletes all elements from the array
list.

void remove(int fromIndex,
int toIndex)

Removes all objects whose index
values are between the values
specified.

void removeAll(E...elements) Removes all objects whose index
values are between the values
specified.

boolean contains(Object
elem)

Returns a boolean that indicates
whether the specified object is in
the list.

E get(int index) Returns the object at the specified
position in the list.

int indexOf(Object elem) Returns the index position of the
first occurrence of the specified
object in the list. If the object isn’t in
the list, it returns –1.

boolean isEmpty() Returns a boolean value that indi-
cates whether the list is empty.

E remove(int index) Removes the object at the specified
index and returns the element that
was removed.

boolean remove(Object elem) Removes an object from the list.
Note: More than one element
refers to the object; this method
removes only one of them. It returns
a boolean that indicates whether
the object was in the list.

int size() Returns the number of elements in
the list.

void addListener(ListChange
Listener listener)

Adds a ListChangeListener
that’s called whenever the list
changes.

162 Part II: JavaFX Controls

If you’re familiar with Java collection classes, such as ArrayList, you
may have noticed that many of the methods listed in Table 8-2 are familiar.
That’s because the ObservableList class extends the List class, which
is implemented by classes, such as ArrayList and Vector. As a result,
any method that can be used with an ArrayList can also be used with an
ObservableList.

For example, you can clear the contents of a choice box in the same way
you’d clear the contents of an array list:

cbox.getItems().clear();

If you need to know how many items are in a choice box, call the size
method:

int count = cbox.getItems().size();

To remove a specific item from the list, use the remove method:

cbox.getItems().remove("Grumpy");

 This method succeeds whether or not the string "Grumpy" appears in the list.

You can easily insert items from an existing Java collection, such as an array
list, into a choice box by specifying the collection in the addAll method. For
example, suppose you already have an array list named list that contains
the items you want to display in the choice box. You can add the items like
this:

cbox.getItems().addAll(list);

 You might be wondering why an observable list is required for the items
displayed by list-based JavaFX controls. Why not just use the existing collec-
tion classes? The reason is that for list-based controls to work efficiently, the
controls themselves need to monitor any changes you might make to the list
of items so that the control can automatically update the displayed items.
The last method listed in Table 8-2 (addListener) provides this capability
by allowing you to add a listener that’s called whenever the contents of the
list changes. You will rarely call this method directly. But the controls that use
observable lists do call this method to create event listeners that automatically
update the control whenever the contents of the list changes.

163 Chapter 8: Choosing from a List

Note: You do not use the addListener method to respond when the user
selects an item in a choice box or other type of list control. Instead, you use
an interesting construct called a selection model to respond to changes in the
selected item, as described in the next section.

Listening for Selection Changes
It’s not uncommon to want your program to respond immediately when the
user changes the selection of a choice box or other list control, without wait-
ing for the user to click a button to submit the data. For example, you might
have a label whose value you want to update immediately whenever the user
changes the selection. You might even want to show or hide different con-
trols based on the selection.

Unfortunately, the choice box and other list controls don’t generate an action
event when the user changes the selection. As a result, the ChoiceBox class
doesn’t have a setOnAction method. Instead, you must use a complicated
sequence of method calls to set up a different type of event listener, called a
change listener.

Here’s the sequence:

 1. Get the selection model by calling the getSelectionModel method
on the choice box.

 The getSelectionModel method returns the control’s selection model,
which is an object that manages how the user can select items from the
list. The selection model is an object that implements one of several
classes that extend the abstract SelectionModel class. For a choice
box, the selection model is always of type SingleSelectionMode,
which implements a selection model that allows the user to select just
one item from the list at a time.

 2. Get the selectedItem property by calling the selectedItem
Property method on the selection model.

 The SelectionModel class has a method named selectedItem
Property that accesses a property named selectedItem, which
represents the item currently selected. (A property is a special type of
JavaFX object that I discuss more about in Chapter 19. For now, just
assume that a property is an object whose value can be monitored by a
listener that’s called whenever the value of the property changes.)

164 Part II: JavaFX Controls

 3. Add a change listener by calling the addListener method on the
selectedItem property.

 The listener will be called whenever the value of the selectedItem
property changes. The change listener implements a functional inter-
face called, naturally, ChangeListener. Because ChangeListener
is a functional interface (that is, it has just one method), you can use a
Lambda expression to implement the change listener.

You normally do all three of these steps in a single statement, as in this
example:

choice.getSelectionModel().selectedItemProperty()
 .addListener((v, oldValue, newValue) ->
 lbl.setText(newValue););

In the preceding example, the change listener sets the value displayed by a
label control to the new value selected by the user.

Being a functional interface, ChangeListerner defines a single function
named changed, which is called whenever the value of the property changes.
The changed method receives three arguments:

 ✓ observable: The property whose value has changed

 ✓ oldValue: The previous value of the property

 ✓ newValue: The new value of the property

These three parameters are specified in the parentheses at the beginning of
the Lambda expression. In the body of the Lambda expression, the newValue
parameter is assigned to the text of a label. Thus, the value selected by the
user will be displayed by the label, and the label will be updated automati-
cally whenever the user changes the choice box selection.

Using Combo Boxes
A combo box is a more advanced sibling to the choice box control. The main
improvements you get with a combo box are

 ✓ A combo box includes the ability to limit the number of items dis-
played when the list is shown.

 If the number of items in the list exceeds the limit, a scroll bar is added
automatically to allow the user to scroll through the entire list.

165 Chapter 8: Choosing from a List

 ✓ A combo box includes a text field that lets the user enter a value
directly rather than select the value from a list.

 The text field is optional and is not shown by default, but you can add it
with a single method call.

 Figure 8-2 shows a combo box with the text field shown.

 ✓ A combo box fires an action event whenever the user changes the
selection.

 Thus, setting up an event handler to respond to the user’s selection
change is easier with a combo box than it is with a choice box.

Figure 8-2:
A combo

box.

You use the ComboBox class to create combo boxes. Table 8-3 lists the most
frequently used constructors and methods of this class.

Table 8-3 Common ComboBox Constructors and Methods
Constructor Description

ComboBox<T>() Creates an empty combo box of the
specified type.

ComboBox<T>
(ObservableList<T> items)

Creates a combo box and fills it with
the values in the specified list.

Method Description
void setEditable(boolean
value)

If true, a text field is displayed to
allow the user to directly edit the
selection.

void
setVisibleRowCount(int
value)

Sets the number of items to display.

(continued)

166 Part II: JavaFX Controls

void setPromptText(String
text)

Sets the prompt text initially displayed
in the text field.

ObservableList<T>
getItems()

Gets the list of items.

void setItems
(ObservableList<T> items)

Sets the list of items.

T getValue() Returns the currently selected item.

void setValue(T value) Sets the currently selected item.

void show() Shows the list of items.

void hide() Hides the list of items.
void setOnAction(Event
Handler<ActionEvent>
handler)

Sets an event handler that’s called
whenever the selection changes.

boolean isShowing() Indicates whether the list of items is
currently visible.

Creating combo boxes
Creating a combo box is much like creating a choice box. Because the
ComboBox is generic, specify a type for the items it will contain, as in this
example:

ComboBox<String> cbox = new ComboBox<String>();

Then you can use the getItems method to access the ObservableList
object that contains the content of the list displayed by the combo box. For
example, you can add items to the list like this:

cbox.getItems().addAll("Bashful", "Doc", "Dopey",
 "Grumpy", "Happy", "Sleepy",
 "Sneezy");

Table 8-3 (continued)
Method Description

167 Chapter 8: Choosing from a List

For more information about working with the ObservableList interface,
flip to the section “Working with Observable Lists” earlier in this chapter.

 By default, the user isn’t allowed to edit the data in the text field portion of the
combo box. If you want to allow the user to edit the text field, use the
setEditable method, like this:

cbo.setEditable(true);

Then the user can type a value that’s not in the combo box.

If you want, you can limit the number of items displayed by the list by calling
the setVisibleRows method:

cbo.setVisibleRows(10);

Here, the list displays a maximum of ten items. If the list contains more than
ten items, a scroll is added automatically so the user can scroll through the
entire list.

You can also specify a prompt text to display in the text field component of a
combo box by calling the setPromptText method:

cbo.setPromptText("Make a choice");

Here, the text Make a choice displays in the text field.

Getting the selected item
To get the item selected by the user, use the getValue method, just as you
do for a choice box. You typically do that in an action event handler that
responds to a button click. For example:

public void btnOK_Click()
{
 String message = "You chose ";
 message += cbo.getValue();
 MessageBox.show(message, "Your Choice ");
}

168 Part II: JavaFX Controls

The MessageBox class used in this example can be found in Chapter 4.

 Bear in mind that the value returned by the getValue method may not be
one of the values in the combo box’s list. That’s because the user can enter
anything he wishes to in the text field of an editable combo box. If you want
to know whether the user selected an item from the list or entered a different
item via the text field, use the contains method of the ObservableList
class, like this:

if (!cbo.getItems().contains(cbo.getValue()))
{
 MessageBox.show("You chose outside the box",
 "Good Thinking!");
}

Here, the message box displays if the user enters an item that’s not in the list.

Handling combo box events
When the user selects an item from a combo box, an action event is gener-
ated. In most applications, you simply ignore this event because you usu-
ally don’t need to do anything immediately when the user selects an item.
Instead, the selected item is processed when the user clicks a button.

If you want to provide immediate feedback when the user selects an item,
you can set up an event handler by calling the combo box’s setOnAction
method. In most cases, the easiest way to do that is to create a method
that contains the code you want to execute when the user selects an item
and then pass this method to the setOnAction method via a Lambda
expression.

For example, the following method displays a message box that says He’s my
favorite too! if the user picks Dopey:

Public void cbo_Changed()
{
 if (if cbo.getValue().equals("Dopey"))
 {
 MessageBox.show("He's my favorite too!",
 "Good Choice");
 }
}

169 Chapter 8: Choosing from a List

Here’s the code to call this method whenever the user changes the combo
box selection:

cbo.setOnAction (e -> cbo_Changed());

Using List Views
A list view is a powerful JavaFX control that displays a list of objects within a
box. Depending on how the list is configured, the user can select one item in
the list or multiple items. In addition, you have amazing control over how the
items in the list display. Figure 8-3 shows a sample scene with a list view.

Figure 8-3:
A list view

control.

List views and combo boxes have several important differences:

 ✓ A list view doesn’t have a text field that lets the user edit the selected
item. Instead, the user must select items directly from the list view.

 ✓ The list view doesn’t drop down. Instead, the list items display in a box
whose size you can specify.

 ✓ The items in a list view can be arranged vertically (the default) or
horizontally. Figure 8-4 shows a horizontal list box.

 ✓ List views allow users to select more than one item. By default, a list
view lets users select just one item, but you can easily configure it to
allow for multiple selections.

 To select multiple items in a list, hold down the Ctrl key and click the
items you want to select. To select a range of items, click the first item,
hold down the Shift key, and click the last item.

170 Part II: JavaFX Controls

Figure 8-4:
A horizontal

list view
control.

You use the ListView class to create a list view control. Table 8-4 lists the
most frequently used constructors and methods of this class.

Table 8-4 Common ListView Constructors and Methods
Constructor Description
ListView<T>() Creates an empty list view of the

specified type.
ListView<T>(ObservableList<T>
items)

Creates a list view and fills it with
the values in the specified list.

Method Description

ObservableList<T> getItems() Gets the list of items.
void setItems
(ObservableList<T> items)

Sets the list of items.

void setOrientation
(Orientation o)

Sets the orientation of the
list. The orientation can be
Orientation.HORIZONTAL
or Orientation.VERTICAL.

MultipleSelectionModel<T>
getSelectionModel()

Returns the selection model
for the list view control. You
can use the selection model
to get an observable list of
selected items by calling its
getSelectedItems method.
You can also retrieve the most
recently selected item by calling
getSelectedItem.

171 Chapter 8: Choosing from a List

Creating a list view
Creating a list view control is similar to creating a combo box. Here’s an
example that creates the list view that’s shown in Figure 8-3:

ListView list = new ListView();
list.getItems().addAll("Sausage", "Pepperoni",
 "Linguica", "Salame", "Olives", "Mushrooms",
 "Onions", "Peppers", "Pineapple", "Spinach",
 "Canadian Bacon", "Tomatoes", "Kiwi",
 "Anchovies", "Gummy Bears");

Notice that the list view shown in Figure 8-3 shows only the first eight items
in the list. As with a combo box, a scroll bar is automatically added to a list
view if the total number of items in the items collection cannot be displayed.

By default, the list view control allows only a single selection to be made. To
allow multiple selections, add this line:

list.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

To arrange the list view horizontally rather than vertically, add this line:

list.setOrientation(Orientation.HORIZONTAL);

Getting the selected items
Getting the selected items from a list view control is a bit tricky. First, you
must get the selection model object by calling the getSelectionModel.
Then, you call the selection model’s getSelectedItems method. This
returns a read-only observable list that contains just the items that have
been selected.

Here’s an example that builds a string that lists all the items selected by the
user for the pizza toppings list view that is shown in Figure 8-3:

String tops = "";
ObservableList<String> toppings;
toppings = list.getSelectionModel().getSelectedItems();
for(String topping : toppings)
{
 tops += topping + "\n";
}

172 Part II: JavaFX Controls

In the preceding example, the tops string will contain all the toppings
selected by the user, separated by new line characters.

Using Tree Views
A tree view is a fancy JavaFX control that displays hierarchical data in outline
form, which we computer nerds refer to as a tree. Tree structures are very
common in the world of computers. The folder structure of your disk drive is
a tree, as is a JavaFX scene graph.

Figure 8-5 shows a JavaFX scene that has a tree view control in it. In this
example, I use a tree control to represent a few of my favorite TV series,
along with series that were spun off from them.

Figure 8-5:
A tree view

control.

173 Chapter 8: Choosing from a List

Before I get into the mechanics of how to create a tree control, you need to
know a few terms that describe the elements in the tree itself:

 ✓ Node: Each element in the tree is a node. Each node in a tree is created
from TreeItem class. The TreeItem class is a generic class, so you can
associate a type with it. Thus, you can create a tree using objects of any
type you wish, including types you create yourself.

 ✓ Root node: A root node is the starting node for a tree. Every tree must
have one — and only one — root node. When you create a tree compo-
nent, you pass the root node to the TreeView constructor.

 ✓ Child node: The nodes that appear immediately below a given node are
that node’s child nodes. A node can have more than one child.

 ✓ Parent node: The node immediately above a given node is that node’s
parent node. Every node except the root node must have one — and only
one — parent.

 ✓ Sibling nodes: Sibling nodes are children of the same parent.

 ✓ Leaf node: A leaf node is one that doesn’t have any children.

 ✓ Path: A path contains the node and all its ancestors — that is, its parent,
its parent’s parent, and so on — all the way back to the root.

 ✓ Expanded node: An expanded node is one whose children are visible.

 ✓ Collapsed node: A collapsed node is one whose children are hidden.

Building a tree
Before you can actually create a tree view, you must first build the tree it dis-
plays. To do that, use the TreeItem class, the details of which I discuss in
Table 8-5.

Table 8-5 The TreeItem Class
Constructor Description

TreeItem<T> () Creates an empty tree node.

TreeItem<T>(T value) Creates a tree node with the specified
value.

(continued)

174 Part II: JavaFX Controls

Method Description

T getValue() Returns the tree item’s value.

void setValue(T value) Sets the tree item’s value.
ObservableList
getChildren()

Returns an ObservableList that
represents the children of this tree
item.

TreeItem getParent() Gets this node’s parent.
void setExpanded(boolean
expanded)

Specify true to expand the node.

boolean isExpanded() Returns a boolean that indicates
whether the tree item is expanded.

boolean isLeaf() Returns a boolean that indicates
whether the tree item is a leaf node
(that is, has no children). A leaf node
can’t be expanded.

TreeItem nextSibling() Returns the next sibling of this tree
item. If there is no next sibling, returns
null.

TreeItem prevSibling() Returns the previous sibling of this tree
item. If there is no previous sibling,
returns null.

The TreeItem class provides three basic characteristics for each node:

 ✓ The value, which contains the data represented by the node.

 In my example, I use strings for the user objects, but you can use objects
of any type you want for the user object. The tree control calls the
user object’s toString method to determine what text to display for
each node. The easiest way to set the user object is to pass it via the
TreeItem constructor.

 ✓ The parent of this node, unless the node happens to be the root.

 ✓ The children of this node, represented as an ObservableList.

Table 8-5 (continued)

175 Chapter 8: Choosing from a List

 The list will be empty if the node happens to be a leaf node. You
can create or retrieve child nodes using the familiar methods of the
ObservableList interface. For more information, refer to the section
“Working with Observable Lists” earlier in this chapter.

In this section, I build a tree that lists spinoff shows from three popular televi-
sion shows of the past:

 ✓ The Andy Griffith Show, which had two spinoffs: Gomer Pyle, U.S.M.C.,
and Mayberry R.F.D.

 ✓ All in the Family, which directly spawned four spinoffs: The Jeffersons,
Maude, Gloria, and Archie Bunker’s Place.

 In addition, two of these spinoffs had spinoffs of their own involving
the maids: The Jeffersons’ maid became the topic of a short-lived show
called Checking In, and Maude’s maid became the main character in
Good Times.

 ✓ Happy Days, which spun off Mork and Mindy, Laverne and Shirley, and
Joanie Loves Chachi.

You can take many approaches to building trees, most of which involve some
recursive programming. I’m going to avoid recursive programming in this sec-
tion to keep things simple, but my avoidance means that you have to hard-
code some of the details of the tree into the program. Most real programs
that work with trees need some type of recursive programming to build the
tree.

The first step in creating a tree is declaring a TreeItem variable for each
node that isn’t a leaf node. For my TV series example, I start with the follow-
ing code:

TreeItem andy, archie, happy,
 george, maude;

These variables can be local variables within the start method because
once you get the tree set up, you won’t need these variables anymore. You
see why you don’t need variables for the leaf nodes in a moment.

Next, I create the root node and set its expanded status to true so that it will
be expanded when the tree displays initially:

TreeItem root = new TreeItem("Spin Offs ");
root.setExpanded(true);

176 Part II: JavaFX Controls

To simplify the task of creating all the other nodes, I use the following helper
method, makeShow:

public TreeItem<String> makeShow(String title,
 TreeItem<String> parent)
{
 TreeItem<String> show = new TreeItem<String>(title);
 show.setExpanded(true);
 parent.getChildren().add(show);
 return show;
}

This method accepts a string and another node as parameters, and returns a
node whose user object is set to the String parameter. The returned node
is also added to the parent node as a child, and the node is expanded. Thus
you can call this method to both create a new node and place the node in the
tree.

The next step is creating some nodes. Continuing my example, I start with the
nodes for The Andy Griffith Show and its spinoffs:

andy = makeShow("The Andy Griffith Show", root);
makeShow("Gomer Pyle, U.S.M.C.", andy);
makeShow("Mayberry R.F.D.", andy);

Here, makeShow is called to create a node for The Andy Griffith Show, with the
root node specified as its parent. The node returned by this method is saved
in the andy variable. Then makeShow is called twice to create the spinoff
shows, this time specifying andy as the parent node.

Because neither Gomer Pyle, U.S.M.C., nor Mayberry R.F.D. had a spinoff show,
I don’t have to pass these nodes as the parent parameter to the makeShow
method. That’s why I don’t bother to create a variable to reference these
nodes.

Next in my example, I create nodes for All in the Family and its spinoffs:

archie = makeShow("All in the Family", root);
george = makeShow("The Jeffersons", archie);
makeShow("Checking In", george);
maude = makeShow("Maude", archie);
makeShow("Good Times", maude);
makeShow("Gloria", archie);
makeShow("Archie Bunker's Place", archie);

177 Chapter 8: Choosing from a List

In this case, The Jeffersons and Maude have child nodes of their own. As a
result, variables are required for these two shows so that they can be passed
as the parent parameter to makeShow when I create the nodes for Checking In
and Good Times.

Finally, here’s the code that creates the nodes for Happy Days and its spinoffs:

happy = makeShow("Happy Days", root);
makeShow("Mork and Mindy", happy);
makeShow("Laverne and Shirley", happy);
makeShow("Joanie Loves Chachi", happy);

The complete tree is successfully created in memory, so I can get on with the
task of creating a TreeView control to show off the tree.

Creating a TreeView control
You use the TreeView class to create a tree component that displays the nodes
of a tree. Table 8-6 shows the key constructors and methods of this class.

Table 8-6 The TreeView Class
Constructor Description

TreeView<T>() Creates an empty tree (not very useful, if
you ask me).

TreeView<T>(TreeItem
root)

Creates a tree that displays the tree that
starts at the specified node.

Method Description

TreeItem getRoot() Gets the root node.
void setRoot(TreeItem
root)

Sets the root node.

MultipleSelectionModel<T>
getSelectionModel()

Returns the selection model for the
list view control. You can use the
selection model to get an observable
list of selected items by calling its
getSelectedItems method. You can
also retrieve the most recently selected
item by calling getSelectedItem.

void setRootVisible
(boolean visible)

Determines whether the root node
should be visible.

178 Part II: JavaFX Controls

The first step in creating a TreeView control is declaring a TreeView vari-
able as a class instance variable so that you can access it in any method
within your program, as follows:

TreeView tree;

Then, in the application’s start method, you call the TreeView constructor
to create the tree view control, passing the root node of the tree you want it
to display as a parameter:

tree = new TreeView(root);

By default, the user can select just one node from the tree. To allow the user
to select multiple nodes, use this strange incantation:

tree.getSelectionModel().setSelectionMode(
 SelectionModel.MULTIPLE);

Here the getSelectionModel method is called to get the selection model
that manages the selection of nodes within the tree. This method returns an
object of type MultipleSelectionModel, which includes a method named
setSelectionMode that lets you set the selection mode. To allow multiple
items to be selected, you must pass this method the SelectionModel.
MULTIPLE.

That’s it! You now have a TreeView control that you can add to a layout
pane and display in your scene.

 Although the tree displayed by a tree view control must begin with a
root node, in many cases the root node is superfluous. For example, in
the example you’ve been looking at, what’s the point of showing the root
node? The TreeView control lets you suppress the display of the root
node if you don’t want it to be shown. To hide the root node, just call this
method:

tree.setShowRoot(false);

Figure 8-6 shows how the tree appears with the root node hidden.

179 Chapter 8: Choosing from a List

Figure 8-6:
A tree view

control
with the

root node
hidden.

Getting the selected node
There are several ways to determine which node or nodes are currently
selected in a tree view. One way is to access the tree’s selection model by
calling the getSelectionModel. Then, you can call the selection model’s
getSelectedItems method to return a read-only observable list that con-
tains the items that have been selected.

For example:

String msg = "";
ObservableList<TreeItem<String>> shows =
 tree.getSelectionModel().getSelectedItems();
for(TreeItem show : shows)
{
 msg += show.getValue() + "\n";
}

180 Part II: JavaFX Controls

In the preceding example, the msg string will contain all the shows that the
user has selected from the tree, separated by new line characters.

An alternative is to add an event handler that’s called whenever the selection
changes. You can do that like this:

tree.getSelectionModel().selectedItemProperty()
 .addListener((v, oldValue, newValue) ->
 tree_SelectionChanged(newValue));

Here, the getSelectionModel method is called to retrieve the selection
model. Then, the selectedItemProperty is called to retrieve the selected
item property. Finally, an event listener is created for this property by using
a Lambda expression that calls a method named tree_SelectionChanged.
The value of the new selection is passed as a parameter.

Here’s what the tree_SelectionChanged method looks like:

public void tree_SelectionChanged(TreeItem<String> item)
{
 if (item != null)
 {
 lblShowName.setText(item.getValue());
 }
}

Here, a label named lblShowName is updated to display the value of the
newly selected item. Note: An if statement is used to ensure that the item is
not null. That’s necessary because if the user deselects an item, the tree_
SelectionChanged method will be called with a null value as its item
parameter.

Looking at a complete program
that uses a tree view
Whew! That was a lot of information to digest. In this section, I put it all
together.

Listing 8-1 shows the complete program that creates the scene shown in
Figure 8-6. This program lets the user select a show from the tree and dis-
plays the title of the selected show in a label below the tree.

181 Chapter 8: Choosing from a List

Listing 8-1: The Spinoff Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.geometry.*;

public class SpinOffs extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 TreeView<String> tree; ➝15
 Label lblShowName;

 @Override public void start(Stage primaryStage)
 {
 TreeItem<String> root, andy, archie, ➝20
 happy, george, maude;

 root = new TreeItem<String>("Spin Offs"); ➝23
 root.setExpanded(true);

 andy = makeShow(➝26
 "The Andy Griffith Show", root);
 makeShow("Gomer Pyle, U.S.M.C.", andy);
 makeShow("Mayberry R.F.D", andy);

 archie = makeShow("All in the Family", root); ➝31
 george = makeShow("The Jeffersons", archie);
 makeShow("Checking In", george);
 maude = makeShow("Maude", archie);
 makeShow("Good Times", maude);
 makeShow("Gloria", archie);
 makeShow("Archie Bunker's Place", archie);

 happy = makeShow("Happy Days", root); ➝39
 makeShow("Mork and Mindy", happy);
 makeShow("Laverne and Shirley", happy);
 makeShow("Joanie Loves Chachi", happy);

 tree = new TreeView<String>(root); ➝44
 tree.setShowRoot(false);
 tree.getSelectionModel().selectedItemProperty() ➝46
 .addListener((v, oldValue, newValue) ->
 tree_SelectionChanged(newValue));

(continued)

182 Part II: JavaFX Controls

 lblShowName = new Label();

 VBox pane = new VBox(10);
 pane.setPadding(new Insets(20,20,20,20));
 pane.getChildren().addAll(tree, lblShowName); ➝54

 Scene scene = new Scene(pane);

 primaryStage.setScene(scene);
 primaryStage.setTitle("My Favorite Spin Offs");
 primaryStage.show();

 }

 public TreeItem<String> makeShow(String title,
TreeItem<String> parent) ➝64

 {
 TreeItem<String> show = new TreeItem<String>(title);
 show.setExpanded(true);
 parent.getChildren().add(show);
 return show;
 }

 public void tree_SelectionChanged(TreeItem<String> item) ➝73
 {
 if (item != null)
 {
 lblShowName.setText(item.getValue());
 }
 }

}

All the code in this program has already been shown in this chapter, so I just
point out the highlights here:

 ➝15: The tree and list models are defined as class instance variables.

 ➝20: TreeItem variables are defined for the root node and each show
that has spinoff shows.

 ➝23: The root node is created with the text Spin-Offs.

 ➝26: These lines create the nodes for The Andy Griffith Show and its
spinoffs.

 ➝31: These lines create the nodes for All in the Family and its spinoffs.

Listing 8-1 (continued)

183 Chapter 8: Choosing from a List

 ➝39: These lines create the nodes for Happy Days and its spinoffs.

 ➝44: This line creates the TreeView control, specifying root as the
root node for the tree. The next line hides the root node.

 ➝46: This line creates the event listener for the selected item prop-
erty. The Lambda expression causes the method named tree_
SelectionChanged to be called whenever the selection status of
the TreeView control changes.

 ➝54: The TreeView control and the label are added to a VBox layout
pane, which is then added to the scene just before the stage is
shown.

 ➝64: The makeShow method creates a node from a string and adds the
node to the node passed as the parent parameter.

 ➝73: The tree_SelectionChanged method is called whenever the
selected node changes. It simply displays the title of the selected
show in the lblShowName label, provided the passed TreeItem
is not null.

184 Part II: JavaFX Controls

Chapter 9

Working with Tables
In This Chapter
▶ Creating rows and columns with the TableView control

▶ Using the TableColumn class to format the individual columns of a table

▶ Building a simple items list for a TableView

▶ Editing the contents of a TableView control

A JavaFX table is one of JavaFX’s most flexible and powerful controls; it
lets you display data in a spreadsheet-like format, with rows of data

aligned in neat columns. Both horizontal and vertical scrolling is provided
automatically, and you can configure the table control to allow the user to
edit the contents of the table’s cells.

In this chapter, you discover several classes that work together to create
a table. The first is the TableView class, which renders the table within
a scene. A table consists of one or more columns that are created using
the TableColumn class. Thus, to create a table, you must first create one
or more table columns using the TableColumn class, and then use the
TableView class to create a table, and finally add the columns to the table.

Because a table control is inextricably bound to an underlying items list, this
chapter begins by showing you how to create the items list required to sup-
port a table. The sample data used for this chapter is a DVD movie collection
that lists each movie’s title, the year it was made, and the price paid for the
movie.

Next, you figure out how to display this data in a simple table that shows one
row for each movie in the collection. After you know how to do that, I explore
how to make the table editable so that the user can correct errors in the data
or add new movies to the collection.

Along the way, I discuss how to work with a variety of classes and interfaces
that are required to support the workings of a table. It’s going to be a fun
ride, so hang on!

186 Part II: JavaFX Controls

Creating the Data for a Table
The underlying data for a table control is an ObservableList, just as for
a list view, combo box, or choice box. However, the nature of a table control
lends itself to more complicated data structures than can be displayed by a
list view or other simple list-based controls. List views, combo boxes, and
choice boxes can display just one data value for each item in the underlying
list. In contrast, a table can display multiple values from the underlying list,
each in its own column.

The most common way to create the items list for a table is to create a
custom class that defines the objects that will display in the table. Then, the
table can extract the data for each column by calling various methods of the
custom data class.

For example, Table 9-1 shows the constructors and methods of a Movie class
that will serve as the data model for all the examples shown in this chapter.
This class keeps track of three values associated with each movie: title, year,
and price. Methods are provided to set or get these values.

Table 9-1 The Movie class
Constructor Description
Movie() Creates an empty Movie object.
Movie(String title, int
year, double price)

Creates a Movie object with the speci-
fied title, year, and price.

Method Description

String getTitle() Gets the title.
void setTitle(String
title)

Sets the title.

int getYear() Gets the year.

void setYear(int year) Sets the year.

double getPrice() Gets the price.
void setPrice(double
price)

Sets the price.

Notice that the names of these methods all either include the word get or
set. That’s required for the class to work as the items list for a table con-
trol. In JavaFX parlance, the values these methods access are properties. The

187 Chapter 9: Working with Tables

name of the property must follow the word get or set; thus, the name of
the property accessed by the getTitle and setTitle methods is title.
(Notice that the name of the property begins with a lowercase letter, but is
capitalized in the get or set method.)

JavaFX properties are actually much more than a naming convention for
creating methods to get and set values. Properties have other advanced
features as well, such as the ability to automatically bind them together so
that when the value of a property in one object changes, the corresponding
property value in another object automatically changes as well. And you can
create listeners for properties so that code is executed automatically when-
ever the value of a property changes.

To create a property, you must use one of several predefined classes that
implements the Property interface (or create your own class that imple-
ments Property). Because working with the Property interface is a com-
plicated topic of its own, I devote an entire chapter to it. Thus, you discover
how to create proper properties in Chapter 15. For my purposes here, I
use fake properties (I like to call them sham properties), which are simply
class fields that can be accessed with get and set methods that follow the
same naming conventions actual properties use. As long as the Movie class
conforms to these naming standards, it will work as an items list for a table
control.

Listing 9-1 shows the source code for the Movie class.

Listing 9-1: The Movie Class

public class Movie
{
 private String title; ➝3
 private int year;
 private double price;

 public Movie() ➝7
 {
 this.title = "";
 this.year = 0;
 this.price = 0.0;
 }

 public Movie(String title, int year, double price) ➝14
 {
 this.title = title;
 this.year = year;
 this.price = price;
 }

(continued)

188 Part II: JavaFX Controls

 public String getTitle() ➝21
 {
 return this.title;
 }

 public void setTitle(String title) ➝26
 {
 this.title = title;
 }

 public int getYear() ➝31
 {
 return this.year;
 }

 public void setYear(int year) ➝36
 {
 this.year = year;
 }

 public double getPrice() ➝41
 {
 return this.price;
 }

 public void setPrice(double price) ➝46
 {
 this.price = price;
 }

}

The code for this class is pretty straightforward, so I just point out the
 highlights here:

 ➝ 3: These three private class fields are used internally to hold the
title, year, and price for each movie.

 ➝ 7: The default constructor creates a Movie object with no data.

 ➝ 14: This constructor lets the user specify data for the movie’s title,
year, and price.

 ➝ 21: The getTitle method retrieves the value of the title property.

 ➝ 26: The setTitle method sets the value of the title property.

 ➝ 31: The getYear method retrieves the value of the year property.

 ➝ 36: The setYear method sets the value of the year property.

Listing 9-1 (continued)

189 Chapter 9: Working with Tables

 ➝ 41: The getPrice method retrieves the value of the price
property.

 ➝ 46: The setPrice method sets the value of the price property.

With this class, you can easily create a Movie object:

Movie m = new Movie("The King's Speech", 2010, 19.95);

Or, if you prefer, you could do it this way:

Movie m = new Movie();
m.setTitle("The King's Speech");
m.setYear(2010);
m.setPrice(19.95);

After you create a Movie object, you must add it to an ObservableList
that can be used as the items list for a TableView. The easiest way to do
that is to first create the TableView and then use its getItems methods to
access the observable list:

TableView<Movie> table = new TableView<Movie>();
table.getItems().add(m);

Notice that TableView is a generic class, so specify the data type when you
create it.

In a real-life program, the data displayed by a table will almost certainly
come from a file or a database. Thus, you need to write Java code to read
the data from the file or database, create an object for each record, and add
that record to the list. You probably want to isolate this code into a separate
method with a name such as loadData. Then, you can pass the observable
list to this method as a parameter.

 Reading data from a file or database is beyond the scope of this book, but if
you want to figure out how to do it, I recommend you pick up a copy of my
book, Java All-In-One For Dummies, 4th Edition (John Wiley & Sons). That book
contains several sample programs that read and write this very data to and
from various types of files and databases.

For now, rely on the following method to load the data for the table:

public void loadData(ObservableList<Movie> data)
{
 data.add(new Movie("It's a Wonderful Life",
 1946, 14.95));
 data.add(new Movie("Young Frankenstein",
 1974, 16.95));

190 Part II: JavaFX Controls

 data.add(new Movie("Star Wars Episode 4",
 1976, 17.95));
 data.add(new Movie("The Princess Bride",
 1987, 16.95));
 data.add(new Movie("Glory",
 1989, 14.95));
 data.add(new Movie("The Game",
 1997, 14.95));
 data.add(new Movie("Shakespeare in Love",
 1998, 19.95));
 data.add(new Movie("The Invention of Lying",
 2009, 18.95));
 data.add(new Movie("The King's Speech",
 2010, 19.95));
}

Then, you can call this method whenever you need to load data into the
table.

 If you prefer, you can create an ObservableList object without first creating
a TableView. JavaFX provides a class named FXCollections that contains
several static methods that can create various types of observable lists. One
of the most common is an observable array list, which is simply an observable
list that’s backed by an ArrayList. Here’s an example of how you could use
it in a method that creates an observable array list, populates it with movie
data, and returns the observable array list back to the caller:

public ObservableList<Movie> loadData()
{
 ObservableList<Movie> data =
 FXCollections.observableArrayList();

 data.add(new Movie("It's a Wonderful Life",
 1946, 14.95));
 data.add(new Movie("Young Frankenstein",
 1974, 16.95));
 data.add(new Movie("Star Wars Episode 4",
 1976, 17.95));
 data.add(new Movie("The Princess Bride",
 1987, 16.95));
 data.add(new Movie("Glory",
 1989, 14.95));
 data.add(new Movie("The Game",
 1997, 14.95));
 data.add(new Movie("Shakespeare in Love",
 1998, 19.95));
 data.add(new Movie("The Invention of Lying",
 2009, 18.95));

191 Chapter 9: Working with Tables

 data.add(new Movie("The King's Speech",
 2010, 19.95));

 return data;
}

Then, you could call the table’s setItems method to load the data, like this:

TableView<Movies> table = new TableView<Movies>();
table.setItems(loadData());

Creating a Read-Only Table
Now that you know how to create the underlying data for a table, time to get
to the fun part. In this section, you read about how to create a simple read-
only table that displays the movie data with one row per movie and separate
columns for the title, year, and price of each movie. Figure 9-1 shows the
table that you’re after.

Figure 9-1:
A simple

read-only
table.

192 Part II: JavaFX Controls

You use two main classes to create this table: TableView, which represents
the entire table, and TableColumn, which represents an individual column.
The next two sections show you how to work first with the TableColumn class
to create the three table columns, as shown in Figure 9-1, and then with the
TableView class to assemble the columns into a table. After that, you see the
source code for the program that created the table shown in Figure 9-1.

Using the TableColumn class
The TableColumn class represents a single column in a table. This class
allows you to bind the column to a property in the table’s items list so that
cell values are retrieved automatically from the correct property. Table 9-2
lists the most important constructors and methods of this class.

Table 9-2 The TableColumn class
Constructor Description
TableColumn<S, T>() Creates an empty table column.

The type S should correspond
to the type that’s associated
with the TableView and its
ObservableList. The type T
indicates the type of data displayed in
the column.

TableColumn<S, T>(String
heading)

Creates an empty table column with
the specified heading text.

Method Description
void setMinWidth(double
width)

Sets the minimum width for the
column. The table column may expand
the width if necessary to display the
column’s data.

void setMaxWidth(double
width)

Sets the maximum width for the
column.

void setPrefWidth(double
width)

Sets the preferred width for the
column.

void setText(String title) Sets the heading text.
void setSortable(boolean
sortable)

If true, the user can sort data on this
column. (The default is true.)

void setCellValueFactory
(PropertyValueFactory f)

Specifies a factory class that provides
values for the cells in this column.
Usually specified as an instance of the
PropertyValueFactory class.

193 Chapter 9: Working with Tables

To create a table column, first call the constructor. Typically, you specify the
text to appear in the column heading when you call the constructor. You need
to specify two types for the table column. The first is the type that’s associ-
ated with the table itself, which is also the type associated with the table’s
items collection. In the example shown throughout this chapter, this type is
Movie because the table will display data from an observable list of Movie
objects.

The second type is the data type of the property that displays in this column.
For the Title property, the type is String. Thus, the constructor for the
Title column is:

TableColumn<Movie, String> colTitle =
 new TableColumn<Movie, String>("Title");

You also want to set the width of the column, like this:

colTitle.setMinWidth(300);

Here, the column will be at least 300 pixels wide. That should be wide enough
to display most movie titles.

Next, you need to associate a property from the table’s item collection with
the column. To do that, call the setCellFactory method and supply a
cell factory. A cell factory is a special type of object that supplies cell values
to the table column. The easiest way to provide a cell factory is to use the
PropertyValueFactory class, which lets you create a cell factory that
returns a named property from the table’s item collection.

Here’s the code to accomplish that for the Title column:

colTitle.setCellValueFactory(
 new PropertyValueFactory<Movie, String>("Title"));

This statement calls the constructor of the PropertyValueFactory class,
specifying Movie as the type of object that the property will be retrieved
from and String as the property’s value type, and passing the property’s
name (Title) as the sole argument for the constructor. The net effect of this
statement is that the property value factory will call the getTitle method
of the Movie class to populate the cells of this column.

 For the sake of clarity, I simplified the signature of the setCellValueFactory
method in Table 9-2. The actual signature is this:

void setCellValueFactory(
 Callback<TableColumn.CellDataFeatures<S,T>,
 ObservableValue<T>> value)

194 Part II: JavaFX Controls

Whew! That’s a mess. What it means is that the cell value factory must
implement the Callback interface with the correct data types. The
PropertyValueFactory class is designed specifically to work with
the setCellValueFactory method, so it does indeed implement the
Callback interface.

The code necessary to create the other two columns is only slightly different
because rather than string values, they deal with integer and double values.
Here’s the code to create the Year column:

TableColumn<Movie, Integer> colYear =
 new TableColumn("Year");
colYear.setMinWidth(100);
colYear.setCellValueFactory(
 new PropertyValueFactory<Movie, Integer>("Year"));

And here’s the code for the Price column:

TableColumn<Movie, Double> colPrice =
 new TableColumn("Price");
colPrice.setMinWidth(100);
colPrice.setCellValueFactory(
 new PropertyValueFactory<Movie, Double>("Price"));

Notice in both cases that the T type specifies the wrapper Integer and
Double classes rather than the native int and double types.

Using the TableView class
After you create the table columns, the next step is to create a table and add
the columns to the table. To do that, use the TableView class, which I dis-
cuss in Table 9-3.

Creating a table view control requires several steps, which do not necessarily
have to be done in this order:

 ✓ Call the TableView constructor to create the table view control.

 ✓ Add the table columns to the table view.

 The easiest way to do that is to call the getColumns method, which
returns the list of columns as an observable list. Then, use the addAll
method to add the columns.

 ✓ Add data to the items list.

 I discuss several ways to do that in the earlier section “Creating the Data
for a Table.”

195 Chapter 9: Working with Tables

Table 9-3 The TableView class
Constructor Description
TableView<S>() Creates a new table view. The type

S specifies the type of the objects
contained in the items list.

TableValue<S>(ObservableList
list)

Creates a new table view using the
specified list as its items list.

Method Description

ObservableList getColumns() Gets the list of columns that are
displayed by the table.

ObservableList getItems() Gets the list of items that serves as
the data source for the table.

void setItems(ObservableList
list)

Sets the list of items used as the
data source to the table.

TableViewSelectionModel
getSelectionModel()

Gets the selection model, which
allows you to work with rows
selected by the user.

Here’s one way to accomplish these steps for the example you’ve been look-
ing at throughout this chapter:

TableView<Movie> table = new TableView<Movie>();
table.getColumns().addAll(colTitle, colYear, colPrice);
table.setItems(loadData());

 The loadData method used here is the one that was shown right at the end
of the section “Creating the Data for a Table.” It returns an ObservableList
that contains the Movie objects to be displayed.

You could alternatively create the table and load its data in one statement by
passing the loadData method to the TableView constructor, like this:

TableView<Movie> table =
 new TableView<Movie>(loadData());

After you create a table and add columns and data items, you can display the
table in a scene by adding it to a layout pane, adding the pane to the scene,
and then setting the stage with the scene and showing the stage. The follow-
ing section presents the code for a complete program that does precisely that.

196 Part II: JavaFX Controls

A Program That Creates
a Read-Only Table

Listing 9-2 shows the complete source code for a program that creates a read-
only TableView control. The scene displayed by this program was shown
earlier in Figure 9-1. (Note: To run, this program requires that the Movie
class, which was shown in Listing 9-1, exist in the same folder.)

Listing 9-2: The MovieInventory Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.control.*;
import javafx.scene.layout.*;
import javafx.scene.text.*;
import javafx.scene.control.cell.*;
import javafx.collections.*;
import javafx.geometry.*;

public class MovieInventory extends Application
{

 public static void main(String[] args)
 {
 launch(args);
 }

 @Override public void start(Stage primaryStage) {

 Label lblHeading = new Label("Movie Inventory"); ➝20
 lblHeading.setFont(new Font("Arial", 20));

 TableView<Movie> table = new TableView<Movie>(); ➝23
 table.setItems(loadData()); ➝24

 TableColumn<Movie, String> colTitle = new TableColumn("Title"); ➝26
 colTitle.setMinWidth(300);
 colTitle.setCellValueFactory(
 new PropertyValueFactory<Movie, String>("Title"));

 TableColumn<Movie, Integer> colYear = new TableColumn("Year"); ➝31
 colYear.setMinWidth(100);
 colYear.setCellValueFactory(
 new PropertyValueFactory<Movie, Integer>("Year"));

197 Chapter 9: Working with Tables

 TableColumn<Movie, Double> colPrice = new TableColumn("Price"); ➝36
 colPrice.setMinWidth(100);
 colPrice.setCellValueFactory(
 new PropertyValueFactory<Movie, Double>("Price"));

 table.getColumns().addAll(colTitle, colYear, colPrice); ➝40

 VBox paneMain = new VBox(); ➝42
 paneMain.setSpacing(10);
 paneMain.setPadding(new Insets(10, 10, 10, 10));
 paneMain.getChildren().addAll(lblHeading, table);

 Scene scene = new Scene(paneMain); ➝47
 primaryStage.setScene(scene);
 primaryStage.setTitle("Movie Inventory");
 primaryStage.show();
 }

 public ObservableList<Movie> loadData() ➝53
 {
 ObservableList<Movie> data =
 FXCollections.observableArrayList();

 data.add(new Movie("It's a Wonderful Life",
 1946, 14.95));
 data.add(new Movie("Young Frankenstein",
 1974, 16.95));
 data.add(new Movie("Star Wars Episode 4",
 1976, 17.95));
 data.add(new Movie("The Princess Bride",
 1987, 16.95));
 data.add(new Movie("Glory",
 1989, 14.95));
 data.add(new Movie("The Game",
 1997, 14.95));
 data.add(new Movie("Shakespeare in Love",
 1998, 19.95));
 data.add(new Movie("The Invention of Lying",
 2009, 18.95));
 data.add(new Movie("The King's Speech",
 2010, 19.95));

 return data; }

}

198 Part II: JavaFX Controls

I’ve already shown and explained most of the code in this program earlier in
this chapter, so I just point out a few of the highlights here:

 ➝ 20: These two lines create the label that appears above the table view
control.

 ➝ 23: This line calls the TableView constructor to create a new
TableView object, specifying Movie as the underlying data type.

 ➝ 24: The items list is created by calling the loadData method, which
appears later in the program at line 53.

 ➝ 26: These lines create the first column, which displays the Title
property from the Movie class. The width of the column is set to a
minimum of 300 pixels.

 ➝ 31: These lines create the second column, which displays the Year
property from the Movie class. The minimum width is set to 100
pixels.

 ➝ 36: These lines create the third column, which displays the Price
property from the Movie class. The minimum width for this
column is also set to 100 pixels.

 ➝ 40: The three columns are added to the table view control.

 ➝ 42: A VBox layout pane is created and the heading label and table
view controls are added to it.

 ➝ 47: The scene and stage are constructed and shown.

 ➝ 53: The loadData method creates the item list, loading it with data
for nine movies. The value returned from this method is used as
the item list for the table view control.

Creating an Editable Table
Now that you know how to create a read-only table, the next step is to add
the ability to add and remove rows from the table or edit the cells within an
existing row. The following sections show you how to do that.

Adding table rows
To allow the user to add a row, you need to provide text boxes within which
the user can enter data and an Add button the user can click to create a new
row using the data entered by the user. In the OnAction event for the button,
you simply create a new object using the data the user entered into the text
field and then add the object to the table’s items collection.

199 Chapter 9: Working with Tables

Assuming you have created text fields named txtTitle, txtYear, and
txtPrice, here’s a method you can call from the event handler for the Add
button to add a new Movie item to the items collection:

public void btnAdd_Clicked()
{
 Movie m = new Movie();
 m.setTitle(txtTitle.getText());
 m.setYear(Integer.parseInt(txtYear.getText()));
 m.setPrice(Double.parseDouble(txtPrice.getText()));
 table.getItems().add(m);
 txtTitle.clear();
 txtYear.clear();
 txtPrice.clear();
}

This method starts by creating a new Movie object and setting the Title,
Year, and Price properties to the values entered by the user. Then, the
method adds the new Movie object to the items collection. Finally, the
method clears the three text boxes.

 Notice that the static parse methods of the Integer and Double wrapper
classes are used to convert the string values entered into the text fields into
valid integer and double values. Unfortunately, these methods do not do any
reasonable amount of data validation; if the user enters a value that can’t be
converted to an integer or a double, the parse method will throw an excep-
tion, which this method doesn’t handle. I leave it to you to figure out how to
add data validation and error messages to this code.

Deleting table rows
Deleting an item from a table view requires simply that you add a Delete
button to the scene. The user can then delete one or more rows by selecting
the rows and then pressing the Delete button. Here’s a method you could call
from the OnAction handler for a Delete button:

public void btnDelete_Clicked()()
{
 ObservableList<Movie> sel, items;
 items = table.getItems();
 sel = table.getSelectionModel().getSelectedItems();
 for (Movie m : sel)
 {
 items.remove(m);
 }
}

200 Part II: JavaFX Controls

This method accesses both the items collection of the table and the
selectedItems collection of the table’s selection model. Then, a for-each
loop is used to delete every item in the selectedItems collection from the
items collection.

 This method does not verify that the user really wants to remove the selected
rows. In a more realistic program, you’d want to first display an alert box
asking the user whether she really wants to delete the rows. Then, you’d
delete the rows only if the user clicks Yes.

Editing table cells
To allow users to edit individual table cells, you need to do three things:

 ✓ Mark the table as editable by calling the setEditable method, pass-
ing a value of true.

 ✓ Create a cell factory for each column that you want to allow the user
to edit.

 You do that by calling the setCellFactory method of the
TableColumn class.

 ✓ Add an event listener that’s called whenever the user finishes editing
a table cell.

 This listener is responsible for updating the items collection with the
data entered by the user.

To allow the user to edit the contents of a column, you must set a cell factory
for the column. A cell factory is an object that renders the content of a cell. By
default, the cell factory renders the content as a text object. To enable edit-
ing, provide a cell factory that renders the content as a text field.

The easiest way to create a text field in a table column is to use the
TextFieldTableCell. This class includes a static method named
forTableColumn that returns a cell factory suitable for editing data with a
text box. Here’s how you use it:

colTitle.setCellFactory(
 TextFieldTableCell.forTableColumn());

201 Chapter 9: Working with Tables

It’s as simple as that. After the cell factory is set up, the cell will turn into
a text field whenever the user clicks it. The user can then edit the data in the
text field. When the user presses Enter or Tab or clicks outside the field,
the text field is replaced once again with a simple text object.

The only problem remaining is that although the cell factory lets the user
edit the contents of a cell via the text field, the cell factory does not automati-
cally update the table’s items collection to reflect any changes the user might
make when editing the cell. To do that, you must set up an action listener
that responds when the user finishes editing the cell. Then, in that listener,
you can update the items collection.

Here’s how you can use a Lambda expression to set up a listener for the
onEditComit event:

colTitle.setOnEditCommit(
 e -> colTitle_OnEditCommit(e));

In this example, the method colTitle_OnEditCommit will be called when-
ever the user finishes editing the contents of a cell in the Title column.

Writing the event handler for the OnEditCommit event is a little tricky. The
OnEditCommit event generates an event object of type CellEditEvent,
which contains important information you need to access in the event han-
dler. Table 9-4 lists the methods of this class.

Table 9-4 The CellEditEvent class
Method Description
T getNewValue() Gets the new value entered by the user.

T getOldValue() Gets the previous value of the cell.

S getRowValue() Gets the data object for the row edited
by the user.

TableColumn<S, T> get
TableColumn()

Gets the table column on which this
event occurred.

TableView<S> Gets the table view on which this event
occurred.

TableValue<S>
(ObservableList list)

Creates a new table view using the
specified list as its items list.

202 Part II: JavaFX Controls

The CellEditEvent class contains information you can use to update
the items collection with the new data entered by the user. Specifically, the
getRowValue method returns the items collection object for the row that’s
being edited, and the getNewValue method contains the updated value
entered by the user. After you get the row object, you can update the appro-
priate property with the new value.

Unfortunately, the CellEditEvent class has more than one method, which
disqualifies it as a functional class that can be used in a Lambda expression.
So in the preceding example, the e parameter that’s passed into the Lambda
function is passed as a generic Event rather than as the more specific
CellEditEvent. The Lambda function, in turn, passes this argument to
the colTitle_OnEditCommit method, which must receive it as an Event.
This method then casts it to a CellEditEvent so that it can access the
getRowValue and getNewValue methods.

public void colTitle_OnEditCommit(Event e)
{
 TableColumn.CellEditEvent<Movie, String> ce;
 ce = (TableColumn.CellEditEvent<Movie, String>) e;
 Movie m = ce.getRowValue()
 m.setTitle(ce.getNewValue());
}

With this event handler in place, the user can update the title of any movie by
double-clicking the title, typing a new value, and pressing Enter.

A Program That Creates
an Editable Table

Listing 9-3 shows a refined version of the movie inventory program that was
written in Listing 9-2. This program adds the ability to edit existing movies
as well as the ability to add and delete movies. The scene displayed by this
program is shown in Figure 9-2. (Note: To run, this program requires that the
Movie class, which was discussed in Listing 9-1, exist in the same folder.)

203 Chapter 9: Working with Tables

Figure 9-2:
The Movie-

Inventory-
Editor

program in
action.

Listing 9-3: The MovieInventoryEditor Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.control.*;
import javafx.scene.layout.*;
import javafx.scene.text.*;
import javafx.event.*;
import javafx.scene.control.cell.*;
import javafx.beans.property.*;
import javafx.collections.*;
import javafx.geometry.*;
import javafx.util.converter.*;

public class MovieInventoryEditor extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

(continued)

204 Part II: JavaFX Controls

 private TableView<Movie> table;
 private TextField txtTitle, txtYear, txtPrice;

 @Override public void start(Stage primaryStage) {

 Label lblHeading = new Label("Movie Inventory");
 lblHeading.setFont(new Font("Arial", 20));

 table = new TableView<Movie>();
 table.setEditable(true);
 table.setItems(loadData());

 TableColumn colTitle = new TableColumn("Title");
 colTitle.setMinWidth(300);
 colTitle.setCellValueFactory(
 new PropertyValueFactory<Movie, String>("Title"));
 colTitle.setCellFactory(➝37
 TextFieldTableCell.forTableColumn());
 colTitle.setOnEditCommit(e -> colTitle_OnEditCommit(e)); ➝39

 TableColumn colYear = new TableColumn("Year");
 colYear.setMinWidth(100);
 colYear.setCellValueFactory(
 new PropertyValueFactory<Movie, Integer>("Year"));
 colYear.setCellFactory(➝45
 TextFieldTableCell.forTableColumn(
 new IntegerStringConverter()));
 colYear.setOnEditCommit(e -> colYear_OnEditCommit(e)); ➝48

 TableColumn colPrice = new TableColumn("Price");
 colPrice.setMinWidth(100);
 colPrice.setCellValueFactory(
 new PropertyValueFactory<Movie, Double>("Price"));
 colPrice.setCellFactory(➝54
 TextFieldTableCell.forTableColumn(
 new DoubleStringConverter()));
 colPrice.setOnEditCommit(e -> colPrice_OnEditCommit(e)); ➝57

 table.getColumns().addAll(colTitle, colYear, colPrice);

 txtTitle = new TextField(); ➝61
 txtTitle.setPromptText("Title");
 txtTitle.setMinWidth(100);

 txtYear = new TextField(); ➝65
 txtYear.setMaxWidth(100);
 txtYear.setPromptText("Year");

Listing 9-3 (continued)

205 Chapter 9: Working with Tables

 txtPrice = new TextField(); ➝69
 txtPrice.setMaxWidth(100);
 txtPrice.setPromptText("Price");

 Button btnAdd = new Button("Add"); ➝73
 btnAdd.setMinWidth(60);
 btnAdd.setOnAction(e -> btnAdd_Clicked());

 Button btnDelete = new Button("Delete"); ➝77
 btnDelete.setMinWidth(60);
 btnDelete.setOnAction(e -> btnDelete_Clicked());

 HBox paneAdd = new HBox(); ➝81
 paneAdd.setSpacing(8);
 paneAdd.getChildren().addAll(txtTitle, txtYear, txtPrice,
 btnAdd, btnDelete);

 VBox paneMain = new VBox();
 paneMain.setSpacing(10);
 paneMain.setPadding(new Insets(10, 10, 10, 10));
 paneMain.getChildren().addAll(lblHeading, table, paneAdd);

 Scene scene = new Scene(paneMain);

 primaryStage.setScene(scene);
 primaryStage.setTitle("Movie Inventory");
 primaryStage.show();
 }

 public ObservableList<Movie> loadData()
 {
 ObservableList<Movie> data =
 FXCollections.observableArrayList();

 data.add(new Movie("It's a Wonderful Life",
 1946, 14.95));
 data.add(new Movie("Young Frankenstein",
 1974, 16.95));
 data.add(new Movie("Star Wars Episode 4",
 1976, 17.95));
 data.add(new Movie("The Princess Bride",
 1987, 16.95));
 data.add(new Movie("Glory",
 1989, 14.95));
 data.add(new Movie("The Game",
 1997, 14.95));
 data.add(new Movie("Shakespeare in Love",
 1998, 19.95));

(continued)

206 Part II: JavaFX Controls

 data.add(new Movie("The Invention of Lying",
 2009, 18.95));
 data.add(new Movie("The King's Speech",
 2010, 19.95));

 return data;
 }

 public void colTitle_OnEditCommit(Event e) ➝125
 {
 TableColumn.CellEditEvent<Movie, String> ce;
 ce = (TableColumn.CellEditEvent<Movie, String>) e;
 Movie m = ce.getRowValue();
 m.setTitle(ce.getNewValue());
 }

 public void colYear_OnEditCommit(Event e) ➝133
 {
 TableColumn.CellEditEvent<Movie, Integer> ce;
 ce = (TableColumn.CellEditEvent<Movie, Integer>) e;
 Movie m = ce.getRowValue();
 m.setYear(ce.getNewValue());
 }

 public void colPrice_OnEditCommit(Event e) ➝141
 {
 TableColumn.CellEditEvent<Movie, Double> ce;
 ce = (TableColumn.CellEditEvent<Movie, Double>) e;
 Movie m = ce.getRowValue();
 m.setPrice(ce.getNewValue());
 }

 public void btnAdd_Clicked() ➝149
 {
 Movie m = new Movie();
 m.setTitle(txtTitle.getText());
 m.setYear(Integer.parseInt(txtYear.getText()));
 m.setPrice(Double.parseDouble(txtPrice.getText()));
 table.getItems().add(m);
 txtTitle.clear();
 txtYear.clear();
 txtPrice.clear();
 }

 public void btnDelete_Clicked() ➝161

Listing 9-3 (continued)

207 Chapter 9: Working with Tables

 {
 ObservableList<Movie> sel, items;
 items = table.getItems();
 sel = table.getSelectionModel().getSelectedItems();

 for (Movie m : sel)
 items.remove(m);
 }
}

Because this program builds on the program that was written in Listing 9-2,
I just point out the important differences here:

 ➝ 37: This line creates the cell factory for the Title column.

 ➝ 39: This line creates the OnEditCommit event listener for the Title
column. The event handler calls the colTitle_OnEditCommit
method, passing the Event object e as an argument.

 ➝ 45: This line creates the cell factory for the Year column.

 ➝ 48: This line creates the OnEditCommit event listener for the Year
column. The event handler calls the colYear_OnEditCommit
method, passing the Event object e as an argument.

 ➝ 54: This line creates the cell factory for the Price column.

 ➝ 57: This line creates the OnEditCommit event listener for the Price
column. The event handler calls the colPrice_OnEditCommit
method, passing the Event object e as an argument.

 ➝ 61: These lines create the txtTitle text field in which the user can
enter the title for a new movie.

 ➝ 65: These lines create the txtYear text field in which the user can
enter the year for a new movie.

 ➝ 69: These lines create the txtPrice text field in which the user can
enter the price for a new movie.

 ➝ 73: These lines create the Add button. The event handler calls the
btnAdd_Clicked method.

 ➝ 77: These lines create the Delete button. The event handler calls the
btnDelete_Clicked method.

 ➝ 81: These lines create an HBox layout pane and add the three text
fields and the two buttons to it.

208 Part II: JavaFX Controls

 ➝ 125: The colTitle_OnEditCommit method is called when the user
commits an edit for a Title cell. It updates the Movie item from
the items list with the new value entered by the user.

 ➝ 133: The colYear_OnEditCommit method is called when the user
commits an edit for a Year cell. It updates the Movie item from the
items list with the new value entered by the user.

 ➝ 141: The colPrice_OnEditCommit method is called when the user
commits an edit for a Price cell. It updates the Movie item from
the items list with the new value entered by the user.

 ➝ 149: The btnAdd_Clicked method is called when the user clicks the
Add button. This method creates a new Movie object using data
from the text fields and then adds the new object to the items list.
It then clears the text fields.

 ➝ 161: The btnDelete_Clicked method is called when the user clicks
the Delete button. It gets the list of selected items from the selec-
tion model and then uses that list to remove all the selected items
from the items list.

Chapter 10

Making Menus
In This Chapter
▶ Creating basic and dynamic menus

▶ Working with separators and action listeners

▶ Constructing menus with check boxes and radio buttons

▶ Creating submenus and custom menu items

I
n this chapter, you find out how to adorn your programs with menus. You
work with menus in applications, so you’re probably already familiar with

what menus are and how they work. I don’t review those basics in this chap-
ter. Instead, I jump right into the details of how to create a menu and add it to
a scene.

Introducing Classes for Creating Menus
The following paragraphs describe the classes you use most often when you
create menus:

 ✓ MenuBar: This class is the top-level container for menus that appear in
the menu bar at the top of a scene.

 ✓ Menu: Each menu in the menu bar is represented by a Menu object. The
menu bar, as shown in Figure 10-1, has two Menu objects: one for the
Game menu and the other for the Options menu. A Menu object contains
a collection of MenuItem objects that display when the user clicks the
menu.

 ✓ MenuItem: Menu items are represented by the MenuItem class or one of
its subclasses. The Game menu shown in Figure 10-1 has four MenuItem
objects: New Game, Pause Game, Quit Game, and Exit. It also includes
one SeparatorMenuItem object; SeparatorMenuItem is a subclass of
the MenuItem class.

210 Part II: JavaFX Controls

 Interestingly, the Menu class is actually a subclass of MenuItem. That
means that the items collection of a menu can contain other submenus.
When the user clicks the submenu, the submenu’s collection of menu
items displays.

 ✓ CheckMenuItem: This special type of menu item has a check box associ-
ated with it. Although they’re not shown in Figure 10-1, the Options menu
has two CheckMenuItem objects in it. This class extends MenuItem.

 ✓ RadioMenuItem: This special type of menu item has a radio button
associated with it. The RadioMenuItem class extends MenuItem.

 ✓ CustomMenuItem: A custom menu item can have any JavaFX Node
object associated with it. With a custom menu item, you can add con-
trols, such as text fields or list boxes, to a menu.

 ✓ SeparatorMenuItem: A separator menu item simply displays a separa-
tor line in a menu. You use this class to create visual groupings with a
menu.

Figure 10-1:
A scene

with a menu
bar.

Creating a Basic Menu Bar
The basics of creating menus are pretty straightforward. First, you create a
menu bar by calling the MenuBar constructor:

MenuBar menuBar = new MenuBar();

211 Chapter 10: Making Menus

Then you create one or more menus and add it or them to the menu bar.
When the menu bar is finished, you add it to a layout pane just as you would
add any other node:

pane.getChildren().add(menuBar);

For your reference, Table 10-1 lists the most useful constructors and methods
of the MenuBar class.

Table 10-1 The MenuBar Class
Constructor Description
MenuBar() Creates a menu bar.

Method Description
ObservableList
getMenus()

Returns the list of menus contained in this
menu bar. You can use any of the methods of
the ObservableList interface to add or
remove menus from the menu bar.

Creating Menus
To create each menu, you use the Menu and MenuItem classes, whose con-
structors and methods I discuss in the next two tables in this chapter. Start
by calling the Menu constructor and giving a name to the menu:

Menu menuGame = new Menu("_Game");

Here, the underline in the text string marks the mnemonic shortcut key that
the user can use to get at the menu without touching the mouse. In this case,
the letter G is the mnemonic.

The mnemonic character allows the user to open the menu by pressing the
mnemonic character while holding down the Alt key. When the user presses
the Alt key, all the visible mnemonic characters will be underlined so the user
can determine which characters are the mnemonics.

Table 10-2 lists the most important constructors and methods of the Menu
class for your reference.

212 Part II: JavaFX Controls

Table 10-2 The Menu Class
Constructor Description
Menu(String name) Creates a menu with the specified name.

Method Description
ObservableList
getItems()

Returns an ObservableList collection that
represents the menu items in this menu. You can
then use any method of the ObservableList
interface to add or remove menu items.

String getText() Gets the menu’s text.
void setText(String
text)

Sets the menu’s text.

Creating Menu Items
After you create a menu, the next step is creating menu items and adding
them to the menu. To create a menu item, simply call the MenuItem con-
structor, passing the text to be displayed as a parameter:

MenuItem menuItemNewGame = new MenuItem("_New Game");

Once again, the underscore identifies the mnemonic shortcut for the menu
item. Thus, the user can select this menu item by pressing Alt+N.

To add an event handler to a menu, use the setOnAction method. For
example:

menuItemNewGame.setOnAction(e -> StartNewGame());

Here, the method StartNewGame will be called when the user chooses the
New Game menu item.

Here’s a short sequence that creates the four menu items shown in Figure 10-1,
assigning an action event handler to each item:

MenuItem menuItemNewGame =
 new MenuItem("_New Game");
menuItemNewGame.setOnAction(e -> StartNewGame());

MenuItem menuItemPauseGame =
 new MenuItem("_Pause Game");
menuItemNewGame.setOnAction(e -> PauseGame());

213 Chapter 10: Making Menus

MenuItem menuItemQuitGame =
 new MenuItem("_Quit Game");
menuItemNewGame.setOnAction(e -> QuitGame());

MenuItem menuItemExit =
 new MenuItem("E_xit");
menuItemExit.setOnAction(e -> ExitProgram());

After you create your menu items, you can add them to the menu like this:

menuGame.getChildren().add(menuItemNewGame);
menuGame.getChildren().add(menuItemPauseGame);
menuGame.getChildren().add(menuItemQuitGame);
menuGame.getChildren().add(menuItemExit);

Alternatively, you could use the addAll method to add the menu items all at
once:

menuGame.getChildren().addAll(menuItemNewGame,
 menuItemPauseGame, menuItemQuitGame, menuItemExit);

Table 10-3 lists some constructors and methods of the MenuItem class in
case you want to look them up quickly later.

Table 10-3 The MenuItem Class
Constructor Description
MenuItem(String name) Creates a menu item with the specified

name.

Method Description

String getText() Gets the menu item’s text.

void setText(String text) Sets the menu item’s text.

boolean isDisable() Returns true if the menu item is
disabled.

void setDisable() Disables the menu item.
void setDisable(boolean
value)

If value is true, disables the menu
item. Otherwise, enables the menu
item.

setOnAction(EventHandler
<ActionEvent> value)

Sets an action event handler that is
called when the user selects this menu
item.

214 Part II: JavaFX Controls

Using Separators
A menu separator is a menu item whose only purpose is to create visual sepa-
ration within a menu so that items appear grouped logically. The menu that
was shown in Figure 10-1 includes a separator that divides the three menu
items that start, pause, or end games from the item that exits the program.

To create a separator, you use the SeparatorMenuItem class. Usually, you
create the separator in the same statement you use to add the separator to
the menu, like this:

menuGame.getItems().add(new SeparatorMenuItem());

Here’s an example that adds a separator between the Quit Game menu item
and the Exit menu item:

menuGame.getChildren().add(menuItemNewGame);
menuGame.getChildren().add(menuItemPauseGame);
menuGame.getChildren().add(menuItemQuitGame);
menuGame.getChildren().add(new SeparatorMenuItem());
menuGame.getChildren().add(menuItemExit);

Using Action Listeners
Menu items generate action events when selected by the user. As with any
other action event, you handle the action events for menus by creating
an action event handler that is called when the action event is generated.
The easiest way to do that is by creating a method to call when the action
event occurs, and then using a Lambda expression with the menu item’s
setOnAction method to call the method you created.

Here’s a simple method that you might associate with an Exit menu item. This
method simply exits the program by calling the close method of the primary
stage:

private void menuItemExit_OnClick()
{
 stage.close();
}

Note: For this method to work, stage must be a class field that’s been
assigned to the primary stage in the program’s start method.

215 Chapter 10: Making Menus

To use this listener, pass it via a Lambda expression to the Exit menu item’s
setOnAction method, as follows:

menuItemExit.setOnAction(e -> exitMenuAction());

If you prefer, you can eliminate the separate method altogether and call
stage.close() directly in the setOnAction method, like this:

exitItem.addActionListener(e -> stage.close());

However, I prefer to create separate methods to handle each menu item. This
practice makes it easier to add code (for example, to ensure that the user has
saved her work before exiting).

A common way to handle action events for a menu is to use a single method
to handle events for all the menu items in the menu. To do that, you must
pass the ActionEvent object to the event handler method via the Lambda
expression when you call the setOnAction method, as in this example:

menuItemExit.setOnAction(e -> menuAction(e));

Then the menuAction method can use nested if statements to determine
which menu item was chosen by the user, as in this example:

public void menuAction(ActionEvent e)
{
 if (e.getSource() == newItem)
 newGame();
 else if (e.getSource() == pauseItem)
 pauseGame();
 else if (e.getSource() == quitItem)
 quitGame();
 // and so on
}

 Here’s a sample action listener that you may want to use while you’re figuring
out how to work with menus. This action listener simply displays the text of
each menu item on the console whenever the user chooses a menu command.
That way, you can be certain you’re setting up your menus and action listen-
ers properly:

public void menuAction(ActionEvent e)
 {
 MenuItem item = (MenuItem)e.getSource();
 System.out.println(item.getText());
 }
}

216 Part II: JavaFX Controls

Creating Menus That Change
In many applications, menu items change as you work with the program.
Some items may be disabled in certain situations, and the text of a menu item
may change depending on the context in which the command could be used.

For example, you may want the Pause Game menu item in the Game menu to
change to Resume Game when the user pauses the game. Then, if the user
resumes the game, this menu item reverts to Pause Game. You could do that
in several ways. The easiest is to just look at the text in the menu item. If the
text is _Pause Game, change it to _Resume Game; if the text is _Resume
Game, change it to _Pause Game. Here’s a snippet of code that does the job:

if (menuItemPauseGame.getText().equals("_Pause Game"))
{
 menuItemPauseGame.setText("_Resume Game");
}
else
{
 menuItemPauseGame.setText("_Pause Game");
}

In a real program, of course, this code also pauses and resumes the game.

Enabling or disabling menu items depending on what’s happening in the
program is also common. Suppose that you don’t want to allow users to quit
the game while the game is paused. In that case, you disable the Quit Game
menu item when the user chooses Pause Game and enable it again if the user
chooses Resume Game, like this:

if (menuItemPauseGame.getText().equals("_Pause Game"))
{
 menuItemPauseGame.setText("_Resume Game");
 menuItemQuitGame.setDisable(true);
}
else
{
 menuItemPauseGame.setText("_Pause Game");
 menuItemQuitGame.setDisable(false);
}

217 Chapter 10: Making Menus

Using Check and Radio Menu Items
A check menu item is a menu item that resembles a check box that the user
can click to check or uncheck. Check menu’s ideal for menu items that allow
users to select program options.

A radio menu item is similar to a check menu item except that it can be
grouped with other radio menu items, much like a radio button. As with radio
buttons, only one item in a group of radio menu items can be selected at a
time. So when the user clicks a radio menu item, any other radio items in the
same group are automatically unchecked.

Figure 10-2 shows an Options menu that contains two check menu items and
three radio items. A separator is used to separate the check items from the
radio items.

Figure 10-2:
A menu with
check menu

items and
radio menu

items.

To create a check menu item, use the CheckMenuItem class, whose construc-
tors and methods are listed in Table 10-4. This class inherits the MenuItem
class, so most of its methods are the same.

218 Part II: JavaFX Controls

Table 10-4 The CheckMenuItem Class
Constructor Description
CheckMenuItem(String
name)

Creates a check menu item with the
specified name.

Method Description

boolean isSelected() Returns true if the item is checked.
void setSelected(boolean
value)

Specify true to check the item or
false to uncheck the item.

String getText() Gets the menu item’s text.

void setText(String text) Sets the menu item’s text.

boolean isDisable() Returns true if the menu item is
disabled.

void setDisable() Disables the menu item.
void setDisable(boolean
value)

If value is true, disables the menu
item. Otherwise, enables the menu
item.

setOnAction(EventHandler
<ActionEvent> value)

Sets an action event handler that’s
called when the user selects this menu
item.

Initially, the check menu item is not checked. If you want the default setting
for the item to be checked, call the setSelected method, like this:

menuItemMusic.setSelected(true);

To test the state of the check menu item, you use the isSelected method,
as in this example:

if (menuItemMusic.isSelected() == true)
 System.out.println(
 "Your mamma can't dance.");
else
 System.out.println(
 "Your daddy can't rock and roll.");

Here two different messages display on the console, depending on the setting
of the check box for the musicItem menu item.

To create a radio menu item, use the RadioMenuItem class shown in
Table 10-5.

219 Chapter 10: Making Menus

Table 10-5 The RadioMenuItem Class
Constructor Description
RadioMenuItem(String
name)

Creates a radio menu item with the
specified name.

Method Description
void
setToggleGroup(ToggleGroup
group)

Assigns this radio menu item to a
toggle group.

ToggleGroup
getToggleGroup()

Retrieves the toggle group that this
radio menu item is a member of.

boolean isSelected() Returns true if the item is checked.
void setSelected(boolean
value)

Specify true to check the item or
false to uncheck the item.

String getText() Gets the menu item’s text.

void setText(String text) Sets the menu item’s text.

boolean isDisable() Returns true if the menu item is
disabled.

void setDisable() Disables the menu item.
void setDisable(boolean
value)

If value is true, disables the menu
item. Otherwise, enables the menu
item.

setOnAction(EventHandler
<ActionEvent> value)

Sets an action event handler that’s
called when the user selects this menu
item.

As you can see, this class is almost the same as the CheckMenuItem class.
The only significant difference is the addition of the setToggleGroup
method, which lets you add a radio menu item to a toggle group. Here’s a
snippet of code that creates three radio menu items, then creates a toggle
group and adds the three radio menu items to the group:

RadioMenuItem menuItemEasy =
 new RadioMenuItem("_Easy");
RadioMenuItem menuItemMedium =
 new RadioMenuItem("_Medium");
RadioMenuItem menuItemHard =
 new RadioMenuItem("_Hard");

ToggleGroup groupDifficulty = new ToggleGroup();

220 Part II: JavaFX Controls

menuItemEasy.setToggleGroup(groupDifficulty);
menuItemMedium.setToggleGroup(groupDifficulty);
menuItemHard.setToggleGroup(groupDifficulty);

Creating Submenus
A submenu is a menu within a menu. Submenus are possible because the
Menu class is itself a subclass of the MenuItem class, which means that any
item in a menu can itself be another menu. When the user clicks a submenu,
the submenu opens to reveal its menu items. Submenus can be created
within submenus, as many levels deep as you wish. But few menus are nested
more than two or three levels deep.

The following example creates a version of the Options menu that isolates
the three difficulty choices into a separate submenu named Difficulty:

// Create the check menu items
CheckMenuItem menuItemSound =
 new CheckMenuItem("_Sound");
CheckMenuItem menuItemMusic =
 new CheckMenuItem("_Music");

// Create the radio menu items
RadioMenuItem menuItemEasy =
 new RadioMenuItem("_Easy");
RadioMenuItem menuItemMedium =
 new RadioMenuItem("_Medium");
RadioMenuItem menuItemHard =
 new RadioMenuItem("_Hard");
ToggleGroup difficultyGroup = new ToggleGroup();
menuItemEasy.setToggleGroup(difficultyGroup);
menuItemMedium.setToggleGroup(difficultyGroup);
menuItemHard.setToggleGroup(difficultyGroup);

// Create the Difficulty submenu
Menu menuDifficulty = new Menu("_Difficulty");
menuDifficulty.getItems().add(menuItemEasy);
menuDifficulty.getItems().add(menuItemMedium);
menuDifficulty.getItems().add(menuItemHard);

// Create the Options menu
Menu menuOptions = new Menu("_Options");
menuOptions.getItems().add(menuItemSound);
menuOptions.getItems().add(menuItemMusic);
menuOptions.getItems().add(menuDifficulty);

221 Chapter 10: Making Menus

Figure 10-3 shows this menu in action.

Figure 10-3:
A menu with
a submenu.

Creating Custom Menu Items
A custom menu item is a menu item that can contain any JavaFX node. This
allows you to easily convert any JavaFX node into a menu item. For example,
you can turn a text field, choice box, or combo box into a menu item by adding
it to a custom menu item and then adding the custom menu item to a menu.
Figure 10-4 shows an example of a custom menu item that contains a text field.

Figure 10-4:
A custom

menu item
that

contains a
text field.

222 Part II: JavaFX Controls

To create a custom menu item, use the CustomMenuItem class. Table 10-6
shows the details of this class.

Table 10-6 The CustomMenuItem Class
Constructor Description
CustomMenuItem() Creates an empty custom menu item.
CustomMenuItem(Node
content)

Creates a custom menu item with the
specified node as its content.

CustomMenuItem(Node
content, boolean value)

Creates a custom menu item with the
specified node as its content and the
specified hideOnClick setting.

Method Description

Node getContent() Gets the menu item’s content.
void setContent(Node
content)

Sets the menu item’s content.

void
setHideOnClick(boolean
value)

Sets the HideOnClick property.
This property should be set to false
for most custom menu items.

boolean isHideOnClick() Indicates the HideOnClick setting.

boolean isDisable() Returns true if the menu item is
disabled.

void setDisable() Disables the menu item.
void setDisable(boolean
value)

If value is true, disables the menu
item. Otherwise, enables the menu
item.

setOnAction(EventHandler
<ActionEvent> value)

Sets an action event handler that’s
called when the user selects this menu
item.

As you can see, you can specify the node that you want to add as the custom
menu item’s content either in the constructor or via the setContent
method.

One common problem with custom menu items is that they have a tendency
to disappear when the user clicks them. That’s because the default behavior
for menu items is to disappear as soon as they’re clicked. For most custom
menu items, that’s not desirable. For example, if a custom menu item con-
tains a text field but the text field disappears whenever the user clicks it, the
user can’t enter anything into the text field.

223 Chapter 10: Making Menus

To avoid that, you can call the setHideOnClick method with a value of
false as its parameter. This suppresses the hide-on-click behavior, allowing
the user to click the custom menu item to select it. Then, the user can enter
data into the field. Note: You can also set the hide-on-click behavior via the
class constructor.

The following example shows how to create a text field custom menu item
and add it to a menu:

TextField txtName = new TextField();
txtName.setPromptText("Player Name");
CustomMenuItem menuItemName =
 new CustomMenuItem(txtName);
menuItemName.setHideOnClick(false);
menuOptions.getItems().add(menuItemName);

224 Part II: JavaFX Controls

Part III
Enhancing Your Scenic Design

 Visit www.dummies.com/extras/javafx for great Dummies content online.

http://www.dummies.com/extras/javafx

In this part . . .
 ✓ Arranging elements

 ✓ Managing themes and style sheets

 ✓ Customizing shapes

 ✓ Making shapes look more realistic

 ✓ Visit www.dummies.com/extras/javafx for great
Dummies content online.

http://www.dummies.com/extras/javafx

Chapter 11

More about Layout Panes for
Precise Scene Design

In This Chapter
▶ Using four more layout panes to create spectacular layouts

▶ Introducing rectangle shapes

▶ Adding scroll bars to a layout

▶ Creating two complete programs

I
n Chapter 5, you can read about how to work with four basic layout pane
classes that let you control the arrangement of controls in a scene: HBox,

which arranges nodes horizontally; VBox, which arranges nodes vertically;
FlowPane, which arranges nodes both horizontally and vertically; and
BorderPane, which divides the scene into five regions: Top, Right, Bottom,
Left, and Center.

In this chapter, you discover four additional layout panes that give you addi-
tional ways to arrange the elements in a scene. Specifically, you discover how
to use the following five layout pane classes:

 ✓ StackPane: The StackPane class is a bit different than the other
layout panes in that it doesn’t visually separate nodes from one another.
Instead, it displays nodes directly on top of each other. For example, if
you add a rectangle shape and a text shape to a stack pane, the text will
appear directly over the rectangle.

228 Part III: Enhancing Your Scenic Design

 ✓ AnchorPane: This layout lets you anchor nodes to the top, right, bottom,
left, or center of the pane. As the pane resizes, the nodes are repositioned
but remain tied to their anchor points. Note: A node can be anchored to
more than one position. For example, you might anchor a node to the top
and the right. Then, when you resize the pane, the node will remain near
the top-right corner of the pane.

 ✓ GridPane: Arranges nodes in a grid of rows and columns. The grid does
not have to be uniformly sized like a chess board. Instead, the width
of each column and the height of each row can vary according to its
content. In addition, content can span columns or rows. GridPane is
an ideal layout type for forms that gather information from the user via
user interface controls such as text boxes, list boxes, and so on.

 ✓ TilePane: If you want a layout that resembles a chess board, in which
each cell in a grid is the same size, TilePane is the layout pane you’re
looking for. TilePane is ideal for organizing thumbnails of image files or
other objects of the same size.

 ✓ ScrollPane: Technically, the ScrollPane class is not a layout pane at
all; it inherits the Control class, not the Pane class. However, it’s pri-
mary use is to create layouts that are too large to display all at once and
so require a scroll bar to allow the user to pan left and right or up and
down (or both) to see all its contents.

Keep in mind that layout panes are typically used in combinations to create
the complete layout for your scene. For example, you might use a GridPane
to organize user input controls and then place the GridPane in the center
section of a BorderPane to place it in the middle of the scene. Or, you
might use VBox panes to display labels beneath image thumbnails and then
add the VBox panes to a tile pane to display the labeled images in a tiled
arrangement.

Using the StackPane Layout
A stack pane layout is unusual in that it does not arrange its nodes by spread-
ing them out so that you can see them all. Instead, it stacks its nodes one on
top of the other so that they overlap. The first node you add to a stack pane
at the bottom of the stack; the last node is on the top.

229 Chapter 11: More about Layout Panes for Precise Scene Design

You will most often use a stack pane layout with shapes rather than controls.
Because I haven’t yet covered shapes, I limit the examples in this section
to simple rectangles created with the Rectangle class. You can read more
about this class in Chapter 13. For now, just realize that you can create a rect-
angle like this:

Rectangle r1 = new Rectangle(100,100);

To add a fill color, call the setFill method, like this:

r1.setFill(Color.RED);

The Color class defines a number of constants for commonly used colors. In
this section, I use just three: LIGHTGRAY, DARKGRAY, and DIMGRAY.

 The Rectangle class is in the javafx.scene.shape package, and the
Color class is in javafx.scene.paint. Thus, you need to include the fol-
lowing import statements to use these classes:

import javafx.scene.shapes.*;
import javafx.scene.paint.*;

To create a stack pane, you use the StackPane class, whose constructors
and methods are shown in Table 11-1.

Table 11-1 StackPane Constructors and Methods
Constructor Description

StackPane() Creates an empty stack pane.
StackPane(Node...
children)

Creates a stack pane with the speci-
fied child nodes. This constructor lets
you create a stack pane and add child
nodes to it at the same time.

Method Description
ObservableList<Node>
getChildren()

Returns the collection of all child
nodes that have been added to the
stack pane. The collection is returned
as an ObservableList type,
which includes the methods add and
addAll, which lets you add one or
more nodes to the list.

(continued)

230 Part III: Enhancing Your Scenic Design

static void setAlignment
(Pos alignment)

Sets the alignment for child nodes
within the stack pane. See Table 5-5
in Chapter 5 for an explanation of the
Pos enumeration.

static void setMargin(Node
child, Insets value)

Sets the margins for a given child node.
See Table 5-2 in Chapter 5.

void setPadding(Insets
value)

Sets the padding around the inside
edges of the stack pane. See Table 5-2
in Chapter 5 for an explanation of the
Insets class.

The simplest way to create a stack pane is to first create the nodes that you
will place in the pane and then call the StackPane constructor, passing the
child nodes as parameters. For example:

Rectangle r1 = new Rectangle(100,100);
r1.setFill(Color.DARKGRAY);
Rectangle r2 = new Rectangle(50,50);
r2.setFill(Color.LIGHTGRAY);
StackPane stack = new StackPane(r1, r2);

Here, I first create a pair of rectangles, one 100x100, the other 50x50. The
larger rectangle is filled dark gray, the smaller one light gray. Then, I create
a stack pane that holds the two rectangles. Figure 11-1 shows how this pane
appears when displayed. As you can see, the smaller rectangle is displayed
within the larger one.

Figure 11-1:
Two rect-

angles dis-
played in a

StackPane.

Table 11-1 (continued)
Method Description

231 Chapter 11: More about Layout Panes for Precise Scene Design

If you prefer, you can call the getChildren method to add nodes to the
stack pane, like this:

stack.getChildren().add(r1);
stack.getChildren().add(r2);

Or like this:

stack.getChildren().addAll(r1,r2);

Note: The order in which you add nodes to a stack pane has a major impact
on how the child nodes are displayed. For example, suppose you reversed
the order in which the two rectangles are added:

stack.getChildren().addAll(r2,r1);

Then, the larger rectangle will be displayed over the top of the smaller one. The
result is that the user will see only the larger rectangle. (Unless, of course, the
larger rectangle is transparent. I discuss how to create transparent shapes in
Chapter 13.)

By default, the objects in a stack pane are centered on top of one another.
You can change that by using the setAlignment method. The argument for
this method is of type Pos, the same as for other layout panes that have a
setAlignment method. If you need a refresher on the Pos enumeration, flip
to Table 5-5 in Chapter 5. Here’s an example that displays three rectangles of
various sizes aligned at the top left of the stack pane:

Rectangle r1 = new Rectangle(400,150);
r1.setFill(Color.DARKGRAY);

Rectangle r2 = new Rectangle(200, 400);
r2.setFill(Color.LIGHTGRAY);

Rectangle r3 = new Rectangle(150,150);
r3.setFill(Color.DIMGRAY);

StackPane stack = new StackPane(r1, r2, r3);
stack.setAlignment(Pos.TOP_CENTER);

232 Part III: Enhancing Your Scenic Design

Figure 11-2 shows how this pane appears when displayed in a scene.

Figure 11-2:
Three rect-
angles dis-

played with
top-center
alignment.

As with other layout panes, you can use the setPadding method to add pad-
ding around the perimeter of the pane. For example, the following line creates
a 50-pixel buffer around the edge of the pane:

stack.setPadding(new Insets(50));

The setPadding method accepts an argument of type Insets. For more
information about the Insets class, flip to Table 5-2 in Chapter 5.

You can also add margins to individual nodes within a stack pane. To do so,
call the setMargin method, passing both the node and an Insets object
that describes the margin:

stack.setMargin(r1, new Insets(25));

Using the TilePane layout
The tile pane layout is similar to the flow pane layout: It arranges nodes in neat
rows and columns, either horizontally or vertically. The crucial difference is
that in a tile pane layout, all the cells are the same size. The tile pane layout

233 Chapter 11: More about Layout Panes for Precise Scene Design

calculates the size of the largest node in its child node collection and then
uses that size as the size for each cell. This creates a nice grid-like appear-
ance, as shown in Figure 11-3.

By default, a tile pane shows five nodes in each row, using as many rows as
necessary to display all its nodes. Thus, the tile pane in Figure 11-3 displays
its 12 rectangles in two rows of five and a third row of just two.

If you adjust the size of the tile pane, the number of nodes per row adjusts
automatically. For example, Figure 11-4 shows the same tile pane resized so
that the 12 rectangles are displayed in three rows of four.

Figure 11-3:
A dozen

rectangles
displayed in
a tile pane.

Figure 11-4:
A tile pane
automati-
cally rear-
ranges its
tiles when

the pane is
resized.

234 Part III: Enhancing Your Scenic Design

To create a tile pane, you use the TilePane class, as I describe in Table 11-2.

Table 11-2 TilePane Constructors and Methods
Constructor Description

TilePane() Creates an empty tile pane.
TilePane(Node. . .
children)

Creates a tile pane with the specified
child nodes.

TilePane(double hgap,
double vgap)

Creates an empty tile pane with the
specified gaps between rows and
columns.

TilePane(Orientation
orientation)

Creates an empty tile pane with the
specified orientation. You can specify
Orientation.HORIZONTAL or
Orientation.VERTICAL.

TilePane(double
hgap, double vgap,
Node. . .children)

TilePane(Orientation
orientation, double hgap,
double vgap)

TilePane(Orientation
orientation, Node. . .
children)

TilePane(Orientation
orientation, double hgap,
double vgap, Node. . .
children)

Method Description
ObservableList<Node>
getChildren()

Returns the collection of all child
nodes that have been added to the
tile pane. The collection is returned
as an ObservableList type,
which includes the methods add and
addAll, which lets you add one or
more nodes to the list.

235 Chapter 11: More about Layout Panes for Precise Scene Design

void setHgap(double value) Sets the size of the gap that appears
between columns.

void setVgap(double value) Sets the size of the gap that appears
between rows.

void
setOrientation(Orientation
orientation)

Sets the orientation. Allowable values
are Orientation.HORIZONTAL
and Orientation.VERTICAL.

void setPrefColumns(int
value)

Sets the number of columns preferred
for this tile pane.

void setPrefRows(int
value)

Sets the number of rows preferred for
this tile pane.

void
setPrefTileWidth(double
value)

Sets the preferred width for each cell.

void
setPrefTileHeight(double
value)

Sets the preferred height for each cell.

static void setMargin(Node
node, Insets value)

Sets the margin for a particular node.
See Table 5-2 in Chapter 5 for an expla-
nation of the Insets class.

void setMinHeight(double
value)

Sets the minimum height of the tile
pane.

void setMaxHeight(double
value)

Sets the maximum height of the tile
pane.

void setPrefHeight(double
value)

Sets the preferred height of the tile
pane.

void setMinWidth(double
value)

Sets the minimum width of the tile
pane.

void setMaxWidth(double
value)

Sets the maximum width of the tile
pane.

(continued)

Method Description

236 Part III: Enhancing Your Scenic Design

void setPrefWidth(double
value)

Sets the preferred width of the tile
pane.

void setPadding(Insets
value)

Sets the padding around the inside
edges of the tile pane. See Table 5-2
in Chapter 5 for an explanation of the
Insets class.

Here’s the code that creates the tile pane shown in Figures 11-3 and 11-4:

TilePane tile1 = new TilePane();
tile1.setHgap(10);
tile1.setVgap(10);
tile1.setPadding(new Insets(10,10,10,10));
for (int i=1; i<13; i++)
{
 Rectangle r = new Rectangle(100, 100);
 r.setFill(Color.LIGHTGRAY);
 Label l = new Label("A-" + i);
 StackPane s = new StackPane(r, l);
 tile1.getChildren().add(s);
}

As you can see, a for loop is used to create 12 labeled rectangles, which
are added to the tile pane. In the for loop, I first create a 100x100-pixel rect-
angle and set its color to light gray. Then, I create a label and assign it a text
value that consists of the string “A-” followed by an integer value. Finally,
I create a stack pane and add the rectangle and the label to it. The result is
that the label appears on top of the rectangle. I then add the stack pane to
the tile pane.

Using the ScrollPane Layout
When a layout is too large to fit in a window, you want to provide horizontal
or vertical scroll bars (or both) so the user can scroll to see the entire layout.
The easiest way to do that is with a scroll pane. A scroll pane envelops a
single node with an area that automatically displays horizontal or vertical

Table 11-2 (continued)
Method Description

237 Chapter 11: More about Layout Panes for Precise Scene Design

scroll bars whenever necessary. Thus, the scroll bars are not displayed if the
entire layout fits within the scroll pane. If the layout is taller than the scroll
pane, a vertical scroll bar appears. And if the layout is wider than the scroll
pane, a horizontal scroll bar appears.

Technically, a scroll pane is not really a layout pane. The ScrollPane class
is a descendant of the Control class, not the Pane class. Even so, scroll
panes are typically used in conjunction with layout panes to accommodate
layouts that are too large to fit onscreen.

Figure 11-5 shows a tile pane similar to the ones shown in the preceding
section contained within a scroll pane. As you can see, the tile pane in this
example displays two tiles per row, and a vertical scroll bar is visible, allow-
ing the user to scroll to see all the tiles. To create margins around the scroll
pane, I added the scroll pane to a stack pane and then set margins on the
stack pane.

Figure 11-5:
A tile pane
contained

within a
scroll pane.

238 Part III: Enhancing Your Scenic Design

To create a scroll pane, use the ScrollPane class depicted in Table 11-3.

Table 11-3 ScrollPane Constructors and Methods
Constructor Description

ScrollPane() Creates an empty scroll pane.

ScrollPane(Node node) Creates a scroll pane with the speci-
fied child node.

Method Description

void getContent(Node node) Sets the node contained within this
scroll pane.

Note: The allowable values for the fol-
lowing two methods are shown at the
end of this table.
void
setHbarPolicy(ScrollPane.
ScrollBarPolicy value)

Sets the policy for the horizontal scroll
bar.

void
setVbarPolicy(ScrollPane.
ScrollBarPolicy value)

Sets the policy for the vertical scroll
bar.

void setPannable(boolean
value)

If true, the user can pan the contents
of the scroll pane using the mouse. The
default is false.

void setMinHeight(double
value)

Sets the minimum height of the tile
pane.

void setMaxHeight(double
value)

Sets the maximum height of the tile
pane.

void setPrefHeight(double
value)

Sets the preferred height of the tile
pane.

void setMinWidth(double
value)

Sets the minimum width of the tile
pane.

void setMaxWidth(double
value)

Sets the maximum width of the tile
pane.

void setPrefWidth(double
value)

Sets the preferred width of the tile
pane.

void setPadding(Insets
value)

Sets the padding around the inside
edges of the tile pane. See Table 5-2
in Chapter 5 for an explanation of the
Insets class.

239 Chapter 11: More about Layout Panes for Precise Scene Design

ScrollBarPolicy Enumeration Description
ScrollPane.
ScrollBarPolicy.ALWAYS

Always show a scroll bar.

ScrollPane.
ScrollBarPolicy.NEVER

Never show a scroll bar.

ScrollPane.
ScrollBarPolicy.AS_NEEDED

Show a scroll bar only when it’s
needed.

The easiest way to create a scroll pane is to call the ScrollPane constructor
and pass the node you want scrolled as a parameter, like this:

ScrollPane spane = new ScrollPane(tile1);

You will most likely also want to set the size constraints for the scroll pane.
The following code fixes the width at 250 and allows the layout to determine
the height, with a preferred height of 400:

spane.setMaxWidth(250);
spane.setMinWidth(250);
spane.setPrefWidth(250);
spane.setPrefHeight(400);

If you want, you can set a policy for the vertical and horizontal scroll bars.
By default, the scroll bars appear only if necessary. If you want a scroll bar
to always appear, even when it isn’t necessary, set the policy to ALWAYS as in
this example:

spane.setVBarPolicy(ScrollBarPolicy.ALWAYS);

The complete program used to create the scroll pane shown in Figure 11-5 is
shown in Listing 11-1.

Listing 11-1: The ScrolledTile Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;
import javafx.geometry.*;

(continued)

240 Part III: Enhancing Your Scenic Design

public class ScrolledTile extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 @Override public void start(Stage primaryStage)
 {

 TilePane tile1 = new TilePane(); ➝20
 tile1.setHgap(10);
 tile1.setVgap(10);
 tile1.setPrefColumns(2);
 tile1.setPadding(new Insets(10,10,10,10));
 for (int i=1; i<13; i++) ➝25
 {
 Rectangle r = new Rectangle(100, 100);
 r.setFill(Color.LIGHTGRAY);
 Label l = new Label("A-" + i);
 StackPane s = new StackPane(r, l);
 tile1.getChildren().add(s);
 }

 ScrollPane spane = new ScrollPane(tile1); ➝34
 spane.setMinWidth(250);
 spane.setPrefWidth(250);
 spane.setMaxWidth(250);
 spane.setPrefHeight(400);
 spane.setVbarPolicy(ScrollPane.ScrollBarPolicy.ALWAYS); ➝39

 StackPane stack = new StackPane(spane); ➝41
 stack.setMargin(spane, new Insets(40,40,40,40));

 Scene scene = new Scene(stack); ➝44
 primaryStage.setScene(scene);
 primaryStage.setTitle("Scrolled Tiles");
 primaryStage.show();
 }
}

Listing 11-1 (continued)

241 Chapter 11: More about Layout Panes for Precise Scene Design

The following paragraphs describe the highlights of this program:

 ➝ 20: This line and the four lines that follow it create the tile pane, set
the horizontal and vertical gaps to 10 pixels, set the preferred
width to two columns, and set the padding.

 ➝ 25: A for loop is used to create 12 labeled rectangles and add them
to the tile pane.

 ➝ 34: These lines create the scroll pane and set its size. The width is
fixed at 250 pixels. The preferred height is 400 pixels, but the
scroll pane’s height can grow or shrink as needed to fill the scene.

 ➝ 39: The vertical scroll bar will always be displayed, even if it isn’t
necessary.

 ➝ 41: A stack pane is used here for the sole purpose of providing 40
pixels of margin around the scroll pane.

 ➝ 44: The stack pane is added to the scene, and the scene is finalized
and displayed.

Using the GridPane Layout
The grid pane layout manager lets you arrange GUI elements in a grid of rows
and columns. Unlike a tile pane, the rows and columns of a grid pane do not
have to be the same size. Instead, the grid pane layout automatically adjusts
the width of each column and the height of each row based on the compo-
nents you add to the panel.

Here are some important features of the grid pane layout manager:

 ✓ You can specify which cell you want each component to go in, and you
can control each component’s position in the panel.

 ✓ You can create components that span multiple rows or columns, such as
a button two columns wide or a list box four rows high.

 ✓ You can tell GridPane to stretch a component to fill the entire space
allotted to it if the component isn’t already big enough to fill the entire
area. You can specify that this stretching be done horizontally, vertically,
or both.

 ✓ If a component doesn’t fill its allotted area, you can tell the grid pane
layout manager how you want the component to be positioned within
the area — for example, left- or right-aligned.

The following sections describe the ins and outs of working with grid pane
layouts.

242 Part III: Enhancing Your Scenic Design

Sketching out a plan
Before you create a grid pane layout, draw a sketch showing how you want
the components to appear in the panel. Then slice the panel into rows and
columns, and number the rows and columns starting with zero in the top-left
corner. Figure 11-6 shows such a sketch for an application that lets a user
order a pizza.

Figure 11-6:
Sketching

out a panel.

After you have the panel sketched out, list the components, their x and y
coordinates on the grid, their alignment, and whether each component spans
more than one row or column. Here’s an example:

Component x y Alignment Spans
Label "Name" 0 0 Right
Label "Phone" 0 1 Right
Label "Address" 0 2 Right
Name text field 1 0 Left 2
Phone text field 1 1 Left 2
Address text field 1 2 Left 2
Size radio buttons 0 3 Left
Style radio buttons 1 3 Left
Toppings check boxes 2 3 Left
OK and Close buttons 2 4 Right

After you lay out the grid, you can write the code to put each component in
its proper place.

243 Chapter 11: More about Layout Panes for Precise Scene Design

Creating a grid pane
Table 11-4 shows the most frequently used constructors and methods of the
GridPane class, which you use to create a grid pane.

Table 11-4 GridPane Constructors and Methods
Constructor Description

GridPane() Creates an empty grid pane.

Method Description
void add(Node node, int
col, int row)

Adds a node at the specified column
and row index.

void add(Node node,
int col, int row, int
colspan, int rowspan)

Adds a node at the specified column
and row index with the specified
column and row spans.

void addColumn(int col,
Node... nodes)

Adds an entire column of nodes.

void addRow(int row,
Node... nodes)

Adds an entire row of nodes.

<ObservableList>
getColumnConstraints()

Returns the column constraints. For
more information, see to Table 11-5.

<ObservableList>
getRowConstraints()

Returns the row constraints. For more
information, see Table 11-6.

void setColumnSpan(Node
node, int colspan)

Sets the column span for the specified
node.

void setRowSpan(Node
node, int colspan)

Sets the row span for the specified
node.

void setHalignment(Node
node, HPos value)

Sets the horizontal alignment for the
node. Allowable values are HPos.
LEFT, HPos.CENTER, and HPos.
RIGHT.

void setValignment(Node
node, VPos value)

Sets the vertical alignment for the
node. Allowable values are HPos.
BOTTOM, HPos.CENTER, and
HPos.TOP.

(continued)

244 Part III: Enhancing Your Scenic Design

void setHgap(double
value)

Sets the size of the gap that appears
between columns.

void setVgap(double
value)

Sets the size of the gap that appears
between rows.

static void setMargin(Node
node, Insets value)

Sets the margin for a particular node.
See Table 5-2 in Chapter 5 for an expla-
nation of the Insets class.

void setPadding(Insets
value)

Sets the padding around the inside
edges of the grid pane. See Table 5-2
in Chapter 5 for an explanation of the
Insets class.

void setMinHeight(double
value)

Sets the minimum height of the grid
pane.

void setMaxHeight(double
value)

Sets the maximum height of the grid
pane.

void setPrefHeight(double
value)

Sets the preferred height of the grid
pane.

void setMinWidth(double
value)

Sets the minimum width of the grid
pane.

void setMaxWidth(double
value)

Sets the maximum width of the grid
pane.

void setPrefWidth(double
value)

Sets the preferred width of the grid
pane.

To create a basic grid pane, you first call the GridPane constructor. Then,
you use the add method to add nodes to the grid pane’s cells. The param-
eters of the add method specify the node to be added, the node’s column
index, and the node’s row index. For example, the following code snippet
creates a label, and then creates a grid pane and adds the label to the cell at
column 0, row 0:

Label lblName = new Label("Name");
GridPane grid = new GridPane();
grid.add(lblName, 0, 0);

Table 11-4 (continued)
Method Description

245 Chapter 11: More about Layout Panes for Precise Scene Design

The typical way to fill a grid pane with nodes is to call the add method for
each node. However, if you prefer, you can add an entire column or row of
nodes with a single call to either addColumn or addRow. For example, this
example creates a label and a text field, and then creates a grid pane and
adds the label and the text field to the first row:

Label lblName = new Label("Name");
TextField txtName = new TextField();
GridPane grid = new GridPane();
grid.addRow(0, lblName, txtName);

If a node should span more than one column, you can call the setColumnSpan
method to specify the number of columns the node should span. For example:

grid.setColumnSpan(txtName, 2);

Here, the txtName node will span two columns. You use the setRowSpan in
a similar way if you need to configure a node to span multiple rows.

To control the horizontal alignment of a node, use the setHalignment
method as in this example:

grid.setHalignment(lblName, HPos.RIGHT);

Here, the lblName node is right-aligned within its column. The setValignment
method works in a similar way.

Like other layout panes, the GridPane class has a host of methods for set-
ting spacing and alignment details. You can use the setHgap and setVgap
methods to set the spacing between rows and columns so that your layouts
won’t look so cluttered. You can use the setPadding and setMargins
methods to set padding and margins, which work just as they do with other
layout panes. And you can set the minimum, maximum, and preferred width
and height for the grid pane.

Working with grid pane constraints
You can control most aspects of a grid pane’s layouts using methods of the
GridPane class, but unfortunately, you can’t control the size of individual
columns or rows. To do that, you must use the ColumnConstraints or
RowConstraints class, as described in Tables 11-5 and 11-6.

246 Part III: Enhancing Your Scenic Design

Table 11-5 The ColumnConstraints Class
Constructor Description
ColumnConstraints() Creates an empty column constraints

object.
ColumnConstraints(double
width)

Creates a column constraint with a
fixed width.

ColumnConstraints(double
min, double pref, double
max)

Creates a column constraint with the
specified minimum, preferred, and
maximum widths.

Method Description
void setMinWidth(double
value)

Sets the minimum width of the column.

void setMaxWidth(double
value)

Sets the maximum width of the column.

void setPrefWidth(double
value)

Sets the preferred width of the column.

void
setPercentWidth(double
value)

Sets the width as a percentage of the
total width of the grid pane.

void setHgrow(Priority
value)

Determines whether the width of
the column should grow if the grid
pane’s overall width increases.
Allowable values are Priority.
ALWAYS, Priority.NEVER, and
Priority.SOMETIMES.

void setFillWidth(boolean
value)

If true, the grid pane will expand the
nodes within this column to fill empty
space.

void setHalignment(HPos
value)

Sets the horizontal alignment for the
entire column. Allowable values are
HPos.LEFT, HPos.CENTER, and
HPos.RIGHT.

247 Chapter 11: More about Layout Panes for Precise Scene Design

Table 11-6 The RowConstraints Class
Constructor Description
RowConstraints() Creates an empty row constraints

object.
RowConstraints(double
height)

Creates a row constraint with a
fixed height.

RowConstraints(double
min, double pref, double
max)

Creates a row constraint with the
specified minimum, preferred, and
maximum heights.

Method Description
void setMinHeight(double
value)

Sets the minimum height of the row.

void setMaxHeight(double
value)

Sets the maximum height of the row.

void setPrefHeight(double
value)

Sets the preferred height of the row.

void setPercentHeight
(double value)

Sets the height as a percentage of the
total height of the grid pane.

void setVgrow(Priority
value)

Determines whether the height
of the row should grow if the grid
pane’s overall height increases.
Allowable values are Priority.
ALWAYS, Priority.NEVER, and
Priority.SOMETIMES.

void setFillHeight(boolean
value)

If true, the grid pane will expand
the nodes within this row to fill empty
space.

void setValignment(VPos
value)

Sets the vertical alignment for the
entire row. Allowable values are
VPos.TOP, VPos.CENTER, and
VPos.BOTTOM.

248 Part III: Enhancing Your Scenic Design

To use column constraints to set a fixed width for each column in a grid pane,
first create a constraint for each column. Then, add the constraints to the
grid pane’s constraints collection. Here’s an example:

ColumnConstriants col1 = new ColumnConstraints(200);
ColumnConstriants col2 = new ColumnConstraints(200);
ColumnConstriants col3 = new ColumnConstraints(200);
GridPane grid = new GridPane();
grid.getColumnConstraints().addAll(col1, col2, col3);

One of the most useful features of column constraints is their ability to
distribute the width of a grid pane’s columns as a percentage of the overall
width of the grid pane. For example, suppose the grid pane will consist of
three columns and you want them to all be of the same width regardless of
the width of the grid pane. The following code accomplishes this:

ColumnConstriants col1 = new ColumnConstraints();
col1.setPercentWidth(33);
ColumnConstriants col2 = new ColumnConstraints();
col2.setPercentWidth(33);
ColumnConstriants col3 = new ColumnConstraints();
col3.setPercentWidth(33);
GridPane grid = new GridPane();
grid.getColumnConstraints().addAll(col1, col2, col3);

In this example, each column will fill 33 percent of the grid.

 Several of the attributes that can be set with column or row constraints
mirror attributes you can set for individual nodes via the GridPane class.
For example, you can set the horizontal alignment of an individual node by
calling the setHalignment method on the grid pane. Or, you can set the
horizontal alignment of an entire column by creating a column constraint,
setting its horizontal alignment, and then applying the column constraint to
a column in the grid pane.

Examining a grid pane example
Listing 11-2 shows the code for a program that displays the scene I drew for
Figure 11-6, and Figure 11-7 shows how this scene appears when the program
is run. Figure 11-7 shows that the final appearance of this scene is pretty
close to the way I sketched it.

249 Chapter 11: More about Layout Panes for Precise Scene Design

Figure 11-7:
The Pizza

Order appli-
cation in

action.

Listing 11-2: The Pizza Order Application

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.geometry.*;

public class PizzaOrder extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 Stage stage;
 TextField txtName;
 TextField txtPhone;
 TextField txtAddress;
 RadioButton rdoSmall;
 RadioButton rdoMedium;
 RadioButton rdoLarge;
 RadioButton rdoThin;
 RadioButton rdoThick;
 CheckBox chkPepperoni;
 CheckBox chkMushrooms;
 CheckBox chkAnchovies;

(continued)

250 Part III: Enhancing Your Scenic Design

 @Override public void start(Stage primaryStage)
 {
 stage = primaryStage;

 // Create the name label and text field ➝32
 Label lblName = new Label("Name:");
 txtName = new TextField();
 txtName.setMinWidth(100);
 txtName.setPrefWidth(200);
 txtName.setMaxWidth(300);
 txtName.setPromptText("Enter the name here");

 // Create the phone number label and text field ➝40
 Label lblPhone = new Label("Phone Number:");
 txtPhone = new TextField();
 txtPhone.setMinWidth(60);
 txtPhone.setPrefWidth(120);
 txtPhone.setMaxWidth(180);
 txtPhone.setPromptText("Enter the phone number here");

 // Create the address label and text field ➝48
 Label lblAddress = new Label("Address:");
 txtAddress = new TextField();
 txtAddress.setMinWidth(100);
 txtAddress.setPrefWidth(200);
 txtAddress.setMaxWidth(300);
 txtAddress.setPromptText("Enter the address here");

 // Create the size pane ➝56
 Label lblSize = new Label("Size");
 rdoSmall = new RadioButton("Small");
 rdoMedium = new RadioButton("Medium");
 rdoLarge = new RadioButton("Large");
 rdoMedium.setSelected(true);
 ToggleGroup groupSize = new ToggleGroup();
 rdoSmall.setToggleGroup(groupSize);
 rdoMedium.setToggleGroup(groupSize);
 rdoLarge.setToggleGroup(groupSize);

 VBox paneSize = new VBox(lblSize, rdoSmall, rdoMedium, rdoLarge);
 paneSize.setSpacing(10);

Listing 11-2 (continued)

251 Chapter 11: More about Layout Panes for Precise Scene Design

 // Create the crust pane ➝70
 Label lblCrust = new Label("Crust");
 rdoThin = new RadioButton("Thin");
 rdoThick = new RadioButton("Thick");
 rdoThin.setSelected(true);
 ToggleGroup groupCrust = new ToggleGroup();
 rdoThin.setToggleGroup(groupCrust);
 rdoThick.setToggleGroup(groupCrust);

 VBox paneCrust = new VBox(lblCrust, rdoThin, rdoThick);
 paneCrust.setSpacing(10);

 // Create the toppings pane ➝82
 Label lblToppings = new Label("Toppings");
 chkPepperoni = new CheckBox("Pepperoni");
 chkMushrooms = new CheckBox("Mushrooms");
 chkAnchovies = new CheckBox("Anchovies");

 VBox paneToppings = new VBox(lblToppings, chkPepperoni,
 chkMushrooms, chkAnchovies);
 paneToppings.setSpacing(10);

 // Create the buttons ➝92
 Button btnOK = new Button("OK");
 btnOK.setPrefWidth(80);
 btnOK.setOnAction(e -> btnOK_Click());

 Button btnCancel = new Button("Cancel");
 btnCancel.setPrefWidth(80);
 btnCancel.setOnAction(e -> btnCancel_Click());

 HBox paneButtons = new HBox(10, btnOK, btnCancel);

 // Create the GridPane layout ➝103
 GridPane grid = new GridPane();
 grid.setPadding(new Insets(10));
 grid.setHgap(10);
 grid.setVgap(10);
 grid.setMinWidth(500);
 grid.setPrefWidth(500);
 grid.setMaxWidth(800);

 // Add the nodes to the pane ➝112
 grid.addRow(0, lblName, txtName);
 grid.addRow(1, lblPhone, txtPhone);
 grid.addRow(2, lblAddress, txtAddress);
 grid.addRow(3, paneSize, paneCrust, paneToppings);
 grid.add(paneButtons,2,4);

(continued)

252 Part III: Enhancing Your Scenic Design

 // Set alignments and spanning ➝119
 grid.setHalignment(lblName, HPos.RIGHT);
 grid.setHalignment(lblPhone, HPos.RIGHT);
 grid.setHalignment(lblAddress, HPos.RIGHT);
 grid.setColumnSpan(txtName,2);
 grid.setColumnSpan(txtPhone,2);
 grid.setColumnSpan(txtAddress,2);

 // Set column widths ➝127
 ColumnConstraints col1 = new ColumnConstraints();
 col1.setPercentWidth(33);
 ColumnConstraints col2 = new ColumnConstraints();
 col2.setPercentWidth(33);
 ColumnConstraints col3 = new ColumnConstraints();
 col3.setPercentWidth(33);
 grid.getColumnConstraints().addAll(col1, col2, col3);

 // Create the scene and the stage ➝136
 Scene scene = new Scene(grid);
 primaryStage.setScene(scene);
 primaryStage.setTitle("Pizza Order");
 primaryStage.setMinWidth(500);
 primaryStage.setMaxWidth(900);
 primaryStage.show();

 }

 public void btnOK_Click() ➝146
 {

 // Create a message string with the customer information
 String msg = "Customer:\n\n";
 msg += "\t" + txtName.getText() + "\n";
 msg += "\t" + txtPhone.getText() + "\n\n";
 msg += "\t" + txtAddress.getText() + "\n";
 msg += "You have ordered a ";

 // Add the pizza size
 if (rdoSmall.isSelected())
 msg += "small ";
 if (rdoMedium.isSelected())
 msg += "medium ";
 if (rdoLarge.isSelected())
 msg += "large ";

Listing 11-2 (continued)

253 Chapter 11: More about Layout Panes for Precise Scene Design

 // Add the crust style
 if (rdoThin.isSelected())
 msg += "thin crust pizza with ";
 if (rdoThick.isSelected())
 msg += "thick crust pizza with ";

 // Add the toppings
 String toppings = "";
 toppings = buildToppings(chkPepperoni, toppings);
 toppings = buildToppings(chkMushrooms, toppings);
 toppings = buildToppings(chkAnchovies, toppings);
 if (toppings.equals(""))
 msg += "no toppings.";
 else
 msg += "the following toppings:\n"
 + toppings;

 // Display the message
 MessageBox.show(msg, "Order Details");
 }

 public String buildToppings(CheckBox chk, String msg) ➝185
 {
 // Helper method for displaying the list of toppings
 if (chk.isSelected())
 {
 if (!msg.equals(""))
 {
 msg += ", ";
 }
 msg += chk.getText();
 }
 return msg;
 }

 public void btnCancel_Click() ➝199
 {
 stage.close();
 }

}

254 Part III: Enhancing Your Scenic Design

The following paragraphs point out the highlights of this program:

 ➝ 32: A label and text field are created for the customer’s name.

 ➝ 40: A label and text field are created for the customer’s phone
number.

 ➝ 48: A label and text field are created for the customer’s address.

 ➝ 56: A label and three radio buttons are created for the pizza’s
size. The label and radio buttons are added to a VBox named
paneSize.

 ➝ 70: A label and two radio buttons are created for the pizza’s crust
style. The label and radio buttons are added to a VBox named
paneStyle.

 ➝ 82: A label and three check boxes are created for the pizza’s top-
pings. The label and check boxes are added to a VBox named
paneToppings.

 ➝ 92: The OK and Cancel buttons are created and added to an HBox
named paneButton.

 ➝ 103: The grid pane layout is created. The padding and horizontal
and vertical gaps are set to 10, and the width is set to range
from 500 to 800.

 ➝ 112: The nodes are added to the pane. The name, phone number, and
address labels and text fields are added to rows 0, 1, and 2. Then,
the size, crust, and toppings VBox panes are added to row 3.
Finally, the HBox that contains the buttons is added to column 2 of
row 4. (Remember: Row and column indexes are numbered from 0,
not from 1.)

 ➝ 119: The column alignment and spanning options are set.

 ➝ 127: Column constraints are created to distribute the column widths
evenly.

 ➝ 136: The scene is created, and the stage is displayed.

 ➝ 146: The btnOK_Click method is called when the user clicks OK. This
method creates a summary of the customer’s order and displays it
using the MessageBox class.

 ➝ 185: buildToppings is simply a helper method that assists in the
construction of the message string.

 ➝ 199: The stage is closed when the user clicks the Close button.

Chapter 12

Skinning Your Application
with CSS

In This Chapter
▶ Applying styles in several ways

▶ Creating your own style sheet

▶ Controlling fonts through font styles

▶ Creating fills and borders with CSS

O
ne of the most powerful features of JavaFX is its ability to use CSS
(which stands for Cascading Style Sheets) to control the visual appear-

ance of your user interface. With CSS, you can change the look and feel of
your application without actually changing any of the Java code that powers
your application. CSS essentially disconnects the visual aspects of your pro-
gram from the application logic.

The terms theme and skin are used somewhat interchangeably to refer to the
look and feel of an application. A theme or skin governs many aspects of visual
appearance, including the font used for text, background fills, border styles and
colors, how items react when the mouse is hovered over them, and many more.

In this chapter, I first discuss how to switch an entire application between two
of the default themes provided with JavaFX. Then, you discover how to craft
your own style sheets and apply them to your scenes.

256 Part III: Enhancing Your Scenic Design

Using Default Style Sheets
JavaFX comes with two built-in themes: Modena and Caspian. Modena is a
new theme that was introduced with JavaFX 8; Caspian is an older theme that
was used with previous versions of JavaFX.

Figure 12-1 shows a version of the Pizza Order application that I present in
Chapter 11; it includes a pair of radio buttons to allow the user to switch
between the Modena and Caspian themes. The window on the left side of the
figure shows the Modena theme; the Caspian theme is shown on the right.

Figure 12-1:
A JavaFX

application
shown in

the Modena
and Caspian

themes.

To switch the theme of an application, use the setUserAgentStylesheet
method of the Application class. The Application class defines two
static fields that you can use to reference the built-in styles: STYLESHEET_
MODENA and STYLESHEET_CASPIAN. Thus, to set Caspian as the style sheet,
use this statement:

Application.setUserAgentStylesheet(
 STYLESHEET_CASPIAN);

257 Chapter 12: Skinning Your Application with CSS

Because the program used to create the screens shown in Figure 12-1 is
long and identical to the Pizza Order application presented in Listing 11-2 in
Chapter 11, I don’t duplicate it in its entirety. The only significant addition to
the Pizza Order application is the code that defines the two radio buttons at
the bottom-left corner of the scene:

ToggleGroup groupTheme = new ToggleGroup();

RadioButton rdoModena =
 new RadioButton("Modena Theme");
rdoModena.setToggleGroup(groupTheme);
rdoModena.setSelected(true);
rdoModena.setOnAction(e ->
 {
 setUserAgentStylesheet(STYLESHEET_MODENA);
 });

RadioButton rdoCaspian =
 new RadioButton("Caspian Theme");
rdoCaspian.setToggleGroup(groupTheme);
rdoCaspian.setOnAction(e ->
 {
 setUserAgentStylesheet(STYLESHEET_CASPIAN);
 });

HBox paneTheme = new HBox(10, rdoModena, rdoCaspian);

As you can see, this code creates two radio buttons whose action event han-
dlers set the theme to either Modena or Caspian. These radio buttons are
added to a ToggleGroup and to an HBox. Later in the program, the HBox is
added to a GridPane layout to display in the bottom-left corner of the screen.

Adding a Style Sheet to a Scene
If you want to, you can create a style sheet to replace the Modena or Caspian
themes with your own theme, creating an entirely different look and feel for
your application. Then, you can apply your style sheet as the application’s
default style sheet using Application.setUserAgentStylesheet, as I
describe in the preceding section.

However, creating a completely new theme to apply application-wide can be
a difficult task, as your style sheet must provide style information for every
possible formattable node element. Instead, you may want to start by creat-
ing a smaller style sheet that just provides formatting information for the
specific needs of your application. Then, you can apply the style sheet to a
specific scene or to an individual node within a scene.

258 Part III: Enhancing Your Scenic Design

When you apply a style sheet to a scene, any styles contained in that style
sheet override any corresponding styles in the application’s default style
sheet. Similarly, if you apply a style sheet to a specific node, the styles in
that style sheet override any corresponding styles in the style sheet applied
to the scene.

 You can create as many style sheets as you want, applying different style
sheets to different parent nodes within the scene. However, you’ll find it easier
to manage your styles and create consistency if you stick to just one style
sheet applied at the scene level.

A style sheet applied to a scene or parent node is actually a separate file with
the extension .css. The style sheet contains formatting rules that provide
the specifics for the formatting you want applied to your application.

You can read about the details of creating a style sheet in the section “Creating
a Style Sheet” later in this chapter. For now, I introduce a very simple style
sheet named Simple.css that specifies the font to use for text and a back-
ground color. The Simple.css style sheet consists of the following lines:

.root
{
 -fx-background-color: lightgray;
 -fx-font-family: "serif";
 -fx-font-size: 12pt;
}

The first line specifies that the formatting between the curly braces that
follow applies through the entire scene graph. Then, within the curly braces,
three formatting rules are used to specify that the background color should
be lightgray, the font should be serif, and the font size should be 12
points.

The easiest way to add a style sheet to a scene is to get the scene’s style
sheet collection (a scene can have more than one style sheet), use the add
method to add the style sheet, like this:

scene.getStylesheets().add("Simple.css");

 To keep the code examples in this book simple, the rest of the examples in this
chapter use the simple technique shown in the preceding example. However,
simply specifying the stylesheet name as the parameter to the add method
code will work only if the style sheet file resides in the same folder as the
application’s class file. If the style sheet resides elsewhere, use the following
code instead:

259 Chapter 12: Skinning Your Application with CSS

scene.getStylesheets().add(
 getClass().getResource("Simple.css")
 .toExternalForm());

Instead of simply providing the name of the style sheet as a string, this
technique calls the getClass method of the Object class, which returns a
reference to the application’s class. Then, it calls the Class getResource
method, which accepts a string parameter that names an external resource
(such as a file) that’s located on the application’s class path. This returns the
URL of the Simple.css file. Finally, the toExternalForm method massages
the URL into a form acceptable to the getStylesheets.add method.

The window in the top-left part of Figure 12-2 shows a JavaFX application
with the Simple.css added to the scene. For comparison, the figure also
shows the application without the Simple.css file. As you can see, the
style sheet has changed the background color to a darker shade of gray and
changed the font to a serif-style font (on Windows computers, Times New
Roman is used).

Figure 12-2:
A JavaFX

application
with and

without the
Simple.
css file

style sheet.

260 Part III: Enhancing Your Scenic Design

Using Inline Styling
In addition to using separate .css style sheet files, JavaFX lets you apply style
rules directly to any node in a scene graph by calling the node’s setStyle
method, passing the formatting rule as a string argument. For example, the
 following example sets the font size for a button to 15 points:

Button btnOK = new Button("OK");
btnOK.setStyle("-fx-font-size: 15pt");

 As a general rule, I recommend against using inline styles except for unusual sit-
uations. That’s because inline styles make it more difficult to change the format-
ting of your application’s user interface. Imagine if you were to apply all style
elements using inline styles. If you then decided to make even a simple change,
you’d have to search through the entire application code to find the inline
styles that need to be changed. Then, you’d have to recompile the program.

In contrast, external style sheets make it easy to change the appearance of
your GUI. All you have to do is edit the .css file, and the formatting auto-
matically reflects your changes.

Creating a Style Sheet
Now that you know how to attach styles to an application, scene, or individ-
ual node, it’s time to turn your attention to the task of actually creating styles.
As I mention earlier, a style sheet is a simple text file with the extension .css.
You can create your style sheets with any standard text editor, including full-
featured development studios, such as Eclipse or NetBeans, as well as simple
text editors, such as TextPad or Notepad. Save the .css file in the same
folder as the application’s .java folder.

A style sheet consists of one or more style rules that determine the formatting
that’s applied to various types of elements in a scene. Each style rule con-
sists of a selector, which determines which elements the style rule applies to,
followed by a declaration block, which is a list of style declarations contained
within a pair of braces. Each declaration consists of a property name fol-
lowed by a colon and a value. Each declaration is terminated by a semi-colon.

For example:

.root
{
 -fx-background-color: lightgray;
 -fx-font-family: "serif";
 -fx-font-size: 12pt;
}

261 Chapter 12: Skinning Your Application with CSS

Here, the first line (.root) indicates that the style applies to all nodes in
the scene. The declaration block includes three declarations, which supply
values for the three properties named –fx-background-color, -fx-font-
family, and -fx-font-size.

The following sections provide additional details about selectors and
declara tions.

Using type selectors
The most commonly used variety of selectors is a type selector; it corre-
sponds to a JavaFX node type, such as Button or TextField. Type selec-
tors begin with a period followed by the style class name, which is associated
with all JavaFX node types. (Note: The terms style class and style type are
used interchangeably.)

For most controls, the name of the style class is similar to the name of the
corresponding JavaFX class. To convert a JavaFX class name to a CSS style
class name, use all lowercase letters and use a hyphen between words if the
JavaFX class name consists of two or more words. The following list includes
the CSS style class name for most of the JavaFX classes that have been pre-
sented so far in this book.

JavaFX Class CSS Style Class
Button button
CheckBox check-box
ChoiceBox choice-box
ComboBox combo-box
Label label
ListCell list-cell
ListView list-view
Menu menu
MenuBar menu-bar
MenuButton menu-button
MenuItem menu-item
RadioButton radio-button
Separator separator
TableView table-view
TextField text-field
ToggleButton toggle-button
Tooltip tooltip
TreeCell tree-cell
TreeView tree-view

262 Part III: Enhancing Your Scenic Design

Creating your own style class names
Every node has a getStyleClass method that returns an observable list
of style class names. As a result, a given node can have more than one style
class name. This can come in handy for scenes that have complicated for-
matting requirements because it allows you to group controls together for
formatting purposes. For example, you can create additional class names to
use for buttons if you want one set of buttons to be formatted differently than
another set of buttons.

For example, suppose you want to set the font size for some buttons to 16
points. You could do that by creating a style type called button-large in
the style sheet, like this:

.button-large
{
 -fx-font-size: 16pt;
}

Then, you could add the button-large style class to the list of style classes
for the buttons you want formatted with larger type. For example:

Button btn1 = new Button("Wow!");
btn1.getStyleClass().add("button-large");

When a node has more than one style class name, all the class names will be
used when matching selectors in the style sheet. In other words, the buttons
that have the additional class named button-large will match style rules
for both button and button-large.

Note: For many JavaFX node classes, the default style class collection is
empty. For example, layout panes, such as HBox and BorderPane, do not
have a default style class, nor do shape classes such as Rectangle or
Circle. If you want to apply a CSS style to one of these nodes using style
types, you must call getStyleClass().add to create a style class name for
the node.

Using id selectors
If you want to create a style that applies to one and only one node in your
scene graph, you can give that node a unique id by calling the node’s setId
method, like this:

Button btnOK = new Button("OK");
btnOK.setId("btn-wow");

263 Chapter 12: Skinning Your Application with CSS

Then, you can create a style rule that applies only to the node whose id is
btnOK. In the selector, you must prefix the id with a hash mark, like this:

#btn-wow
{
 -fx-font-weight: bold;
}

 The hash mark (#) is not used in the setId method to create the id, but it is
required in the style sheet.

 Node ids must be unique across the entire scene graph. In other words, you
cannot create two nodes with the same id. Unfortunately, JavaFX does not
enforce this, so it’s up to you to make sure that your node ids are unique.

Using multiple selectors
A style selector can list more than one style type or id. To do that, you list all
the types or ids as part of the selector, separating them with commas. For
example, here is a style that’s applied to all buttons, radio buttons, and check
boxes:

.button, .radio-button, .check-box
{
 -fx-font-family: "serif";
}

Here’s an example that includes several ids:

#btn1, #btn2, #btn3, #btn4
{
 -fx-fill: GREEN;
}

Specifying Style Properties
Within the declaration block of a style rule, each declaration specifies a
style property and a value. For example, to set the font size to 12 points,
use -fx-font-size as the property name and 12pt as the value. In all,
hundreds of style properties exist. Not all properties apply to all node types,
however. Thus, each JavaFX node class has its own set of style properties.

All JavaFX style properties begin with the prefix -fx-. The following sections
describe some of the more commonly used style properties.

264 Part III: Enhancing Your Scenic Design

Specifying font properties
For nodes that display text, you can use the properties shown in Table 12-1 to
control the text style.

Table 12-1 Font Style Properties
Property Value
-fx-font-family The actual name of the font, or one of the follow-

ing generic font types: serif, sans-serif,
cursive, fantasy, or monospace.

-fx-font-size A number followed by the unit of measure, which is
usually pt (points) or px (pixels).

-fx-font-style normal, italic, or oblique.

-fx-font-weight normal, bold, bolder, lighter, 100, 200,
300, 400, 500, 600, 700, 800, or 900.

-fx-font A shorthand property that combines all other proper-
ties mentioned here into a single value that lists the
style, weight, size, and family. Separate the values
with spaces. If you want, you can omit the style and
weight.

The following example sets the font for all button controls:

.button
{
 -fx-font-family: sans-serif;
 -fx-font-size: 10pt;
 -fx-font-style: normal;
 -fx-font-weight: normal
}

This version does the same thing using the shorthand font property:

.button
{
 -fx-font: 10pt sans-serif;
}

265 Chapter 12: Skinning Your Application with CSS

Specifying background colors
The Region class has a property named -fx-background-color that lets
you specify the background color. Because both the Layout and Control
classes inherit Region, you can use this property with any layout pane or
control.

 To apply a background color to a layout pane, you must first give the layout
pane a style class name or id so that you can refer to it in a selector.

The following paragraphs describe the possible values you can supply for
this property:

 ✓ Named color: JavaFX defines 148 distinct colors by name, including
basic colors such as black, white, red, orange, and blue as well as
exotic colors such as cornsilk and thistle.

 For example:

-fx-background-color: red

 or

-fx-background-color: papayawhip

 For a complete list of all 148 named colors, consult the CSS reference
page online at http://docs.oracle.com/javase/8/javafx/api/
javafx/scene/doc-files/cssref.html#typecolor.

 ✓ RGB color: The red-green-blue number of the color. This is usually
expressed in hex, with two hex digits for each component of the color.
The entire thing is prefixed with a hash like this:

-fx-background-color: #f5f5f5

 ✓ Gradient: Lets you specify the color as a gradient that creates a smooth
transition from one color to another.

 For information about creating gradients, flip to Chapter 13.

 ✓ Lookup color: A lookup color lets you define a set of color names in the
.root section of the style sheet and then refer to the color name any-
where else within the style sheet.

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html#typecolor
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html#typecolor

266 Part III: Enhancing Your Scenic Design

 You can create any name you wish for the color, provided the name
doesn’t conflict with a JavaFX property. For example:

.root
{
 my-color: aliceblue;
}

.button
{
 -fx-background-color: my-color;
}

 Here, aliceblue will be used as the background color for all buttons.

Specifying border properties
The Region class also has several style properties that let you create a border
around the region. These properties allow you to add borders to layout panes
or to add or change the borders in controls. Table 12-2 lists the border style
properties.

Table 12-2 Border Style Properties
Property Value
-fx-border-width A number followed by the unit of measure, usually

expressed in pixels (px)

-fx-border-style none, solid, dotted, or dashed

-fx-border-color A color

For example, the following style rule applies a dashed border to a style class
named bordered:

.bordered
{
 -fx-border-width: 4px;
 -fx-border-color: black;
 -fx-border-style: dashed;
}

Chapter 13

Drawing Shapes
In This Chapter
▶ Creating basic shapes such as lines, rectangles, circles, and ellipses

▶ Creating shapes you can see through

▶ Creating gradient fills

▶ Rotating, translating, and scaling shapes

▶ Drawing some text

▶ Combining shapes with union, intersect, and subtract operations

W
ere you one of those kids who, way back in school, passed away the
boring hours of algebra class by doodling in the margins of the book?

If so, you’re in luck. Now that you’re a grownup and you’re mastering JavaFX
programming, you don’t have to doodle in the book. Instead, you can write
programs that doodle onscreen.

This chapter is a brief introduction to the fascinating world of drawing in
JavaFX. Specifically, you figure out how to draw two-dimensional objects
such as lines, arcs, rectangles, ellipses, and so on. You can set the style used
to draw the shape’s outline, and you can fill the shape with a solid color, a
gradient fill, or text that’s created from an image. You can make your shapes
solid or transparent, and you can rotate, clip, skew, and do all sorts of other
unspeakable things to them.

Introducing the Shape Class
So far in this book, you’ve read about two types of nodes you can add to a
scene graph: controls, which inherit the Control class, and layout panes,
which inherit the Pane class. In this section, you read about how to work
with a third type of node: shapes, which (as you might guess) inherit the
Shape class. Table 13-1 lists some of the most commonly used methods of
the Shape class.

268 Part III: Enhancing Your Scenic Design

Table 13-1 The Shape Class
Method Description
void setFill(Paint value) Sets the fill color.
void setSmooth(boolean
value)

If true, anti-aliasing is used to draw
the shape more precisely.

void setStroke(Paint
value)

Sets the color of the stroke used to
draw the shape’s outline.

void setStrokeWidth(double
value)

Sets the width of the stroke used to
draw the shape’s outline.

void setStrokeType
(StrokeType value)

Sets the position of the stroke rela-
tive to the actual outline of the shape.
Allowable values are StrokeType.
CENTERED, StrokeType.INSIDE,
and StrokeType.OUTSIDE.

void
setStrokeLineJoin(Stroke
LineJoin value)

Sets the method used to draw
corners. Allowable values are
StrokeLineJoin.MITER,
StrokeType.BEVEL, and
StrokeType.ROUND.

void
setStrokeEndCap(Stroke
EndCap value)

Sets the method used to draw the
ends of the stroke line. Allowable
values are StrokeLineCap.BUTT,
StrokeLineCap.ROUND, and
StrokeLineCap.SQUARE.

static Shape
intersect(Shape shape1,
Shape shape2)

Returns a new shape that consists
only of those parts of shape1 and
shape2 that overlap.

static Shape
subtract(Shape shape1,
Shape shape2)

Returns a new shape that is formed
by subtracting the shape2 from
shape1.

static Shape union(Shape
shape1, Shape shape2)

Returns a new shape that is formed by
adding shape1 to shape2.

269 Chapter 13: Drawing Shapes

There are a total of 12 shapes that inherit the Shape class: Arc, Circle,
CubicCurve, Ellipse, Line, Path, Polygon, Polyline, QuadCurve,
Rectangle, SVGPath, and Text. Table 13-2 shows a basic constructor for
each of these classes, and Figure 13-1 shows a scene with a sample of several
of them. The code that created this figure is shown in Listing 13-1, later in the
chapter.

Table 13-2 Twelve Kinds of Shape Classes
Class Constructor Description
Arc(double centerX,
 double centerY,
 double radiusX,
 double radiusY,
 double startAngle,
 double length)

Creates an arc, which is a segment
of an ellipse defined by the first
four parameters. startAngle is
the angle in degrees of the start-
ing point of the arc, and length
is the angular extent of the arc in
degrees.
The Arc class also includes a
method named setType that
lets you set the type of the arc.
Allowable values are ArcType.
CHORD, ArcType.OPEN, and
ArcType.ROUND.

Circle(double centerX,
 double centerY,
 double radius)

Creates a circle with the specified
center point and radius.

CubicCurve(double startX,
 double startY,
 double controlX1,
 double controlY1,
 double controlX2,
 double controlY2,
 double endX,
 double endY)

Creates a curve with the specified
start and end points and the speci-
fied control points.

(continued)

270 Part III: Enhancing Your Scenic Design

Class Constructor Description
Ellipse(double centerX,
 double centerY,
 double radiusX,
 double radiusY)

Creates an ellipse. centerX and
centerY specify the center point
of the ellipse. radiusX specifies
the horizontal radius of the ellipse,
and radiusY species the vertical
radius.

Line(double startX,
 double startY,
 double endX,
 double endY)

Creates a line with the specified
start and end points.

Path(PathElement...
elements)

Creates a path with the specified
path elements.

Polygon (Double... points) Creates a polygon with the speci-
fied x, y points as its vertices.

Polyline (Double... points) Creates a polyline with the speci-
fied x, y points as its segments.

QuadCurve(double startX,
 double startY,
 double controlX1,
 double controlY1,
 double controlX2,
 double controlY2,
 double endX,
 double endY)

Creates a quadratic curve with the
specified start and end points and
the specified control points.

Rectangle(double x,
 double y,
 double width,
 double height)

Creates a rectangle. x and y
specify the top-left corner of the
rectangle.

SVGPath() Creates a Scalable Vector Graphics
(SVG) path.

Text(double x,
 double y,
 String text)

Creates a text shape with the speci-
fied text at the specified x and y
coordinates.

Table 13-2 (continued)

271 Chapter 13: Drawing Shapes

Figure 13-1:
A bunch of

shapes.

Creating lines
The most basic type of shape is a line, created with the Line class. To create
a line, you specify the x and y coordinates of the start and end of the line, as
in this example:

Line line1 = new Line(0, 0, 100, 200);

This code creates a line that goes from (0,0) to (100, 200).

The grid lines in Figure 13-1 were drawn by line shapes inside a for loop,
like this:

for (int i = 0; i <600; i+=10)
{
 Line line1 = new Line(i, 0, i, 600);
 line1.setStroke(Color.LIGHTGRAY);
 Line line2 = new Line(0, i, 600, i);
 line2.setStroke(Color.LIGHTGRAY);
 group1.getChildren().addAll(line1, line2);
}

272 Part III: Enhancing Your Scenic Design

The for loop iterates a variable i from 0 to 600 in increments of 10. On each
iteration of the loop, two lines are created: a vertical line that uses the vari-
able i as its x-axis and a horizontal line that uses the variable i as its y-axis.
The stroke color for each line is set to light gray, and the lines are then added
to a Group object named group1.

Creating rectangles
A rectangle requires an (x, y) starting point, a width, and a height. Here’s
the code that creates the first rectangle shown in Figure 13-1 earlier in this
chapter:

Rectangle r1 = new Rectangle(50,25,100,140);
r1.setStroke(Color.BLACK);
r1.setFill(null);
r1.setStrokeWidth(3);

Here the rectangle starts at (50, 25). Its width is 100, and its height is
140. Notice that the fill color is set to null so that the rectangle will be
transparent.

You can create a rectangle with rounded corners by calling the setArcWidth
and setArcheight methods. Here’s the rounded rectangle in the middle of
the first row of shapes shown in Figure 13-1:

Rectangle r2 = new Rectangle(250,25,100,140);
r2.setStroke(Color.BLACK);
r2.setFill(null);
r2.setStrokeWidth(3);
r2.setArcWidth(25);
r2.setArcHeight(25);

Here, the corners are rounded with an arc whose height and width are both 25.

You can create some interesting shapes by using unequal values for the arc’s
width and height. For the third shape in the first row of Figure 13-1, arc width
is set to 75 and the height to 125:

Rectangle r3 = new Rectangle(450,25,100,140);
r3.setStroke(Color.BLACK);
r3.setFill(null);
r3.setStrokeWidth(3);
r3.setArcWidth(75);
r3.setArcHeight(125);

273 Chapter 13: Drawing Shapes

Creating circles and ellipses
To create a circle, you use the Circle class, specifying the x- and y-coordinates
of the center of the circle and the radius. Here’s the code that creates the circle
in Figure 13-1:

Circle c1 = new Circle(100, 300, 75);
c1.setStroke(Color.BLACK);
c1.setFill(null);
c1.setStrokeWidth(3);

An ellipse is similar to a circle, but has two radii: one in the x-axis, the other
in the y-axis. You specify both radii in the constructor. Here’s the code that
creates the first ellipse in Figure 13-1:

Ellipse e1 = new Ellipse(300, 300, 75, 40);
e1.setStroke(Color.BLACK);
e1.setFill(null);
e1.setStrokeWidth(3);

The second ellipse is similar, but the x- and y-radii are reversed:

Ellipse e2 = new Ellipse(300, 300, 40, 75);

Creating arcs
Another useful type of shape is an arc, which is a segment of an ellipse. To
create an arc, you supply the parameters for the ellipse and then you supply
the angle at which the arc begins: 0 is due east (3:00 on a clock face). Finally,
you supply the length, which represents how much of the ellipse the arc
spans and is also expressed in degrees.

 The important thing to know is that the arc travels counterclockwise from the
starting point. If you specify /90 as the starting point and 90 as the extent, the
arc travels from 12:00 high to 9:00, as shown in the first shape in the third row
in Figure 13-1.

JavaFX can create three types of arcs, which you can specify via the setType
method:

 ✓ ArcType.OPEN: Indicates that you want to draw just the arc itself

 ✓ ArcType.CHORD: Means that you want to draw the arc and then connect
the ends with a straight line to create a closed shape

274 Part III: Enhancing Your Scenic Design

 ✓ ArcType.ROUND: Means that you want to use straight lines to connect
the ends to the center of the ellipse, thereby creating a shape that looks
like a piece of pie

Here’s an example that creates the first arc shown in Figure 13-1:

Arc a1 = new Arc(150, 550, 100, 100, 90, 90);
a1.setType(ArcType.OPEN);
a1.setStroke(Color.BLACK);
a1.setFill(null);
a1.setStrokeWidth(3);

The second arc is created with these statements:

Arc a2 = new Arc(300, 550, 100, 100, 45, 90);
a2.setType(ArcType.CHORD);
a2.setStroke(Color.BLACK);
a2.setFill(null);
a2.setStrokeWidth(3);

Finally, the third arc (the pie slice) is created by these statements:

Arc a3 = new Arc(500, 550, 100, 100, 45, 90);
a3.setType(ArcType.ROUND);
a3.setStroke(Color.BLACK);
a3.setFill(null);
a3.setStrokeWidth(3);

Looking at the ShapeMaker program
Now that you’ve seen how to create a variety of shapes, you’re ready to take
a glance at Listing 13-1, which draws the shapes shown in Figure 13-1 earlier
in this chapter.

Listing 13-1: The ShapeMaker Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;

public class ShapeMaker extends Application
{
 public static void main(String[] args)

275 Chapter 13: Drawing Shapes

 {

 launch(args);
 }

 @Override public void start(Stage primaryStage)
 {

 Group group1 = new Group();

 // The background grid
 for (int i = 0; i <600; i+=10)
 {
 Line line1 = new Line(i, 0, i, 600);
 line1.setStroke(Color.LIGHTGRAY);
 Line line2 = new Line(0, i, 600, i);
 line2.setStroke(Color.LIGHTGRAY);
 group1.getChildren().addAll(line1, line2);
 }

 // A rectangle
 Rectangle r1 = new Rectangle(50,25,100,140);
 r1.setStroke(Color.BLACK);
 r1.setFill(null);
 r1.setStrokeWidth(3);
 group1.getChildren().add(r1);

 // A rounded rectangle
 Rectangle r2 = new Rectangle(250,25,100,140);
 r2.setStroke(Color.BLACK);
 r2.setFill(null);
 r2.setStrokeWidth(3);
 r2.setArcWidth(25);
 r2.setArcHeight(25);
 group1.getChildren().add(r2);

 // Another rounded rectangle
 Rectangle r3 = new Rectangle(450,25,100,140);
 r3.setStroke(Color.BLACK);
 r3.setFill(null);
 r3.setStrokeWidth(3);
 r3.setArcWidth(75);
 r3.setArcHeight(125);
 group1.getChildren().add(r3);

 // A circle
 Circle c1 = new Circle(100, 300, 75);
 c1.setStroke(Color.BLACK);
 c1.setFill(null);
 c1.setStrokeWidth(3);
 group1.getChildren().add(c1);

(continued)

276 Part III: Enhancing Your Scenic Design

 // A ellipse
 Ellipse e1 = new Ellipse(300, 300, 75, 40);
 e1.setStroke(Color.BLACK);
 e1.setFill(null);
 e1.setStrokeWidth(3);
 group1.getChildren().add(e1);

 // Another ellipse
 Ellipse e2 = new Ellipse(500, 300, 40, 75);
 e2.setStroke(Color.BLACK);
 e2.setFill(null);
 e2.setStrokeWidth(3);
 group1.getChildren().add(e2);

 // An open arc
 Arc a1 = new Arc(150, 550, 100, 100, 90, 90);
 a1.setType(ArcType.OPEN);
 a1.setStroke(Color.BLACK);
 a1.setFill(null);
 a1.setStrokeWidth(3);
 group1.getChildren().add(a1);

 // A chord arc
 Arc a2 = new Arc(300, 550, 100, 100, 45, 90);
 a2.setType(ArcType.CHORD);
 a2.setStroke(Color.BLACK);
 a2.setFill(null);
 a2.setStrokeWidth(3);
 group1.getChildren().add(a2);

 // A round arc
 Arc a3 = new Arc(500, 550, 100, 100, 45, 90);
 a3.setType(ArcType.ROUND);
 a3.setStroke(Color.BLACK);
 a3.setFill(null);
 a3.setStrokeWidth(3);
 group1.getChildren().add(a3);

 // Create the scene and the stage
 Scene scene = new Scene(group1);
 primaryStage.setScene(scene);
 primaryStage.setTitle("Shape Maker");
 primaryStage.show();
 }
}

Listing 13-1 (continued)

277 Chapter 13: Drawing Shapes

Fancy Fills
If you’ve followed along so far, you’ve already seen that you can fill a shape
with a solid color by calling the shape’s setFill method and specifying a
Color, as in this example:

Rectangle r1 = new Rectangle(0,0,100,100);
r1.setFill(Color.RED);

Here the rectangle is filled with the color red.

You’ve also already seen that you can create a fully transparent object by
setting the fill color to null. The ShapeMaker program shown in Listing 13-1
used null fills so that the gridlines would show through the shapes.

There’s more to filling than solid colors, however. In the following sections,
you find out how to create fills that are partially transparent and fills that
gradually fade from one color to another.

Drawing transparently
JavaFX lets you create partially transparent colors by setting an opacity value
for the color. An opacity value of 1.0 indicates that the color is completely
opaque, whereas a value of 0.0 means the color is completely transparent.
To create a partially transparent color, you set the opacity value somewhere
between 0.0 and 1.0.

There are several ways to do that, but the easiest is to use one of the several
static methods of the Color class that create a color from its constituent parts.
For your purposes here, I use the rgb method, which accepts four parameters:
three integers representing the red, green, and blue components of the color
(values can be 0 to 255), and a double that represents the opacity.

For example, to create a 50% transparent black, you’d use the rgb method,
like this:

Color.rgb(0, 0, 0, 0.5);

To create a 20% transparent red, use this:

Color.rgb(255, 0, 0, 0.2);

Figure 13-2 shows a scene with three rectangles, two of which have transpar-
ency applied. The following snippet shows the code used to create these
three rectangles:

278 Part III: Enhancing Your Scenic Design

Rectangle r1 = new Rectangle(0,75,350,40);
r1.setStroke(Color.BLACK);
r1.setFill(Color.rgb(200, 200, 200, 1.0));
r1.setStrokeWidth(3);

Rectangle r2 = new Rectangle(50,5,100,200);
r2.setStroke(Color.BLACK);
r2.setFill(Color.rgb(200, 200, 200, 0.5));
r2.setStrokeWidth(3);

Rectangle r3 = new Rectangle(200,5,100,200);
r3.setStroke(Color.BLACK);
r3.setFill(Color.rgb(200, 200, 200, 0.5));
r3.setStrokeWidth(3);

As you can see, all three of these rectangles specify a shade of gray by using the
values 200, 200, and 200 for the red, green, and blue color components. The first
rectangle specifies 1.0 for the opacity; the other two specify 0.5 for the opacity.
As a result, you can see the first rectangle behind the other two rectangles.

Figure 13-2:
Using

transparent
colors.

Using a gradient fill
Instead of using a solid color, you can specify a gradient fill, which blends two
colors evenly across the shape. JavaFX provides two classes for working with
gradients: LinearGradient and RadialGradient.

A linear gradient is created from two color points. Imagine a line drawn
between these two points. The gradient fill varies the color smoothly from
the color that’s set at the first point to the color set at the second point.
Then it extends the colors on this line at 90-degree angles to the line to fill
an entire area.

279 Chapter 13: Drawing Shapes

A radial gradient is created from a center point of one color and a second
color on the radius of a circle. The fill varies the color smoothly from the
center color to the outside color.

Table 13-3 shows the constructors for the LinearGradient and Radial
Gradient classes, along with the constructor for the Stop class, which is
used to specify the colors used for the gradient.

Table 13-3 Constructors for Gradient Classes
Class Constructor Description
LinearGradient(double startX,
 double startY,
 double endX,
 double endY,
 boolean proportional,
 CycleMethod cycleMethod,
 Stop... stops)

Creates a linear
gradient. The
stops appear
along the line
defined by the
start and end
points.
Cyclemethod
can be
CycleMethod.
NO_CYCLE,
CycleMethod.
REPEAT, or
CycleMethod.
REFLECT.

RadialGradient(double focusAngle,
 double focusDistance,
 double centerX,
 double centerY,
 double radius,
 boolean proportional,
 CycleMethod cycleMethod,
 Stop... stops)

Creates a radial
gradient. The
stops are circu-
lar, starting from
the center point
of the gradient
and extending
to the radius.
FocusAngle is
usually set to zero.

(continued)

280 Part III: Enhancing Your Scenic Design

Class Constructor Description

Stop(double offset, Color color) Defines a color
stop on the gradi-
ent. The offset is a
double that ranges
from 0.0 to 1.0. For
a linear gradient,
0.0 represents the
start point of the
gradient and 1.0
represents the end
point. For a radial
gradient, 0.0 rep-
resents the center
and 1.0 represents
the radius.

Several of the parameters used with these constructors merit a bit of
explanation:

 ✓ Proportional: This parameter determines the units of measure used
for the start and end points for a linear gradient or the center point
and radius for a circle. If this parameter is false, the coordinates are
expressed in pixels. If true, the coordinates range from 0.0 to 1.0 and
are proportional to the size of the shape being filled. In most cases, it’s
easier to work with proportional coordinates, so this parameter should
usually be set to true.

 ✓ CyclicalMethod: The default is for a gradient to start with one color,
transition to another color, and then end. However, you can create gradi-
ents that cycle through their colors repeatedly by using a cycle method
other than NO_CYCLE. If you specify REPEAT, the gradient repeats itself
for each cycle. If you specify REFLECT, the gradient reverses the order
of stops for each cycle.

 ✓ Stop offset: The stops represent the colors used for the gradient transi-
tion. The offset parameter for a stop determines where along the gradi-
ent the stop appears. A value of 0.0 means that the stop appears at the
start of a linear gradient or the center of a radial gradient. A value of 1.0
means that the stop appears at the end of the linear gradient or at the
radius of a radial gradient.

 All gradients must have at least two stops, one at the start or center
and the other at the end or radius. However, you can create more com-
plex gradients by adding additional stops. In that case, the stop offset

Table 13-3 (continued)

281 Chapter 13: Drawing Shapes

represents a proportional position along the length of the gradient. For
example, a stop offset of 0.5 places the stop at the center of the gradient
line or radius.

 Also, the start and end stops don’t have to be at offset 0.0 or 1.0. For
example, if you don’t want a bit of solid color on either end of the gradi-
ent before the color transition starts, you could specify 0.2 and 0.8 as
the start and end stop offsets.

This example creates a gradient fill that varies the color from magenta to
yellow:

GradientPaint gp =
 new GradientPaint(0, 0, Color.MAGENTA,
 0, 100, Color.YELLOW);

Table 13-4 shows five examples of gradient fills created with the Linear
Gradient class and two radial gradients created with the RadialGradient
class. Each of the rectangles is 100 × 100 pixels. The table also shows the code
used to create each fill.

Table 13-4 Seven Gradient Fills

LinearGradient gradient1 =
 new LinearGradient(
 0, 0,
 0, 1,
 true,
 CycleMethod.NO_CYCLE,
 new Stop(0.0, Color.WHITE),
 new Stop(1.0, Color.BLACK));

LinearGradient gradient2 =
 new LinearGradient(
 0, 0,
 1, 0,
 true,
 CycleMethod.NO_CYCLE,
 new Stop(0.0, Color.WHITE),
 new Stop(1.0, Color.BLACK));

(continued)

282 Part III: Enhancing Your Scenic Design

LinearGradient gradient3 =
 new LinearGradient(
 0, 1,
 1, 0,
 true,
 CycleMethod.NO_CYCLE,
 new Stop(0.4, Color.WHITE),
 new Stop(0.6, Color.BLACK));

LinearGradient gradient4 =
 new LinearGradient(
 0, 0,
 0, 0.2,
 true,
 CycleMethod.REPEAT,
 new Stop(0.0, Color.WHITE),
 new Stop(1.0, Color.BLACK));

LinearGradient gradient5 =
 new LinearGradient(
 0, 0,
 0, 0.2,
 true,
 CycleMethod.REFLECT,
 new Stop(0.0, Color.WHITE),
 new Stop(1.0, Color.BLACK));

RadialGradient gradient6 =
 new RadialGradient(
 0, 0,
 0.5, 0.5,
 0.5,
 true,
 CycleMethod.NO_CYCLE,
 new Stop(0.0, Color.WHITE),
 new Stop(1.0, Color.BLACK));

Table 13-4 (continued)

283 Chapter 13: Drawing Shapes

RadialGradient gradient7 =
 new RadialGradient(
 0, 0,
 0.5, 0.5,
 0.1,
 false,
 CycleMethod.REFLECT,
 new Stop(0.2, Color.WHITE),
 new Stop(0.8, Color.BLACK));

Translating, Scaling, and Rotating
This section describes several methods of the Node class that are especially
useful when working with shapes:

 ✓ The setTranslateX and setTranslateY methods moves the (0, 0)
point from the top-left corner to any arbitrary point.

 ✓ The setScaleX and setScaleY methods let you change the scale of a
shape so that it appears smaller or larger.

 ✓ The rotate method rotates the component’s coordinate system so that
shapes are drawn at an angle.

Note: These methods can be used for any node in the scene graph, and any
transformations you apply to one node are inherited by any children of that
node. If you apply a transformation to the root node of a scene, the transfor-
mation effectively applies to the entire scene.

For example, Figure 13-3 shows the ShapeMaker program that was presented
in Listing 13-1 after its root node has been rotated and translated. The only
difference between the program that produces this output and the program
in Listing 13-1 is the addition of the following three lines:

group1.setRotate(30);
group1.setTranslateX(110);
group1.setTranslateY(110);

The first line rotates the root node 30 degrees. Then, the next two lines trans-
late the root node 110 pixels in both the x- and the y-axis.

284 Part III: Enhancing Your Scenic Design

Scaling changes the relative size of the x- or the y-axis, which allows you to
zoom in or out on a single shape or, if you scale the root node, the entire
scene. You’ll usually want to scale both the x- and y-axis together, unless
you want to intentionally exaggerate just one axis. Here’s an example that
doubles the size of the entire scene (assuming group1 is the root node):

group1.setScaleX(200);
group1.setScaleY(200);

Drawing Text
You can use the Text class to draw the text contained in a string. A Text
object is similar to a Label object, but with one major difference: A Text
object is a Shape, whereas a Label is a Control. Because a text object is a

Figure 13-3:
The Shape

Maker
program

rotated and
translated.

285 Chapter 13: Drawing Shapes

shape, you can format it using any of the methods that apply to shapes. For
example, you can apply an outline color to a shape and fill it with a gradient
fill or set the fill color to null.

The Text constructor accepts three parameters: the string to be drawn and the
x- and y-coordinates of the bottom-left corner of the first character to be drawn
(technically speaking, the start of the baseline for the text). Here’s an example:

Text text1 = new Text("Hello, World!" 100, 50);

Here the string "Hello, World!" is drawn at point (100, 50).

You can change the font by calling the setFont method, which accepts a
Font object. The constructor for the Font class accepts a string value that
represents the font name and a size. Here’s how to set the font to 60-point
Times New Roman:

text1.setFont(new Font("Times New Roman", 60));

The following example shows how a Text shape can be formatted with an
outline stroke and a gradient fill:

LinearGradient gradient1 =
 new LinearGradient(
 0, 0,
 0, 1,
 true,
 CycleMethod.NO_CYCLE,
 new Stop(0.2, Color.WHITE),
 new Stop(0.8, Color.BLACK));

Text text1 = new Text(100, 300, "Hello, World!");
text1.setFont(new Font("Times New Roman", 200));
text1.setStroke(Color.BLACK);
text1.setStrokeWidth(2);
text1.setFill(gradient1);

Figure 13-4 shows how this text object appears when displayed in a scene.

Figure 13-4:
A text shape

with an
outline and

gradient fill.

286 Part III: Enhancing Your Scenic Design

Combining Shapes
The final topic for this chapter is using three methods of the Shape class
that let you create complicated shapes by combining shapes in various ways.
These methods are

 ✓ intersect: Accepts two shapes and returns a new shape that consists
only of the parts of the two shapes that overlap

 ✓ union: Combines two shapes by adding the shapes to one another

 ✓ subtract: Creates a new shape by subtracting one shape from another

These methods are static methods that are defined by the Shape class. Each
accepts two shape objects and returns a new shape object that’s created
from the two shapes passed as parameters. For example, the following snip-
pet creates a new shape by combining two existing shapes, named shape1
and shape2 using the union method:

Shape shape3 = Shape.union(shape1, shape2);

The best way to understand the difference among intersect, union, and
subtract is to see all three in action. Figure 13-5 shows such an example.
At the top left, you can see two circles that overlap. The top right shows a
union of two similar circles. The bottom left shows an intersect from two
similar circles, and the bottom right shows a subtract of two similar circles.
The code for this program is shown in Listing 13-2.

Figure 13-5:
A program
that com-

bines circles
with union,

intersect,
and subtract.

287 Chapter 13: Drawing Shapes

Listing 13-2: The Shape Combiner program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;

public class ShapeCombiner extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 @Override public void start(Stage primaryStage)
 {

 Group group1 = new Group(); ➝17

 Circle circle1 = new Circle(110, 110, 100); ➝19
 Circle circle2 = new Circle(210, 110, 100);
 Circle circle3 = new Circle(440, 110, 100);
 Circle circle4 = new Circle(540, 110, 100);
 Circle circle5 = new Circle(110, 340, 100);
 Circle circle6 = new Circle(210, 340, 100);
 Circle circle7 = new Circle(440, 340, 100);
 Circle circle8 = new Circle(540, 340, 100);

 Shape union = Shape.union(circle3, circle4); ➝28
 Shape intersect = Shape.intersect(circle5, circle6); ➝29
 Shape subtract = Shape.subtract(circle7, circle8); ➝30

 circle1.setFill(null); ➝32
 circle1.setStroke(Color.BLACK);

 circle2.setFill(null);
 circle2.setStroke(Color.BLACK);

 union.setStroke(Color.BLACK); ➝38
 union.setFill(Color.LIGHTGRAY);

 intersect.setStroke(Color.BLACK);
 intersect.setFill(Color.LIGHTGRAY);

 subtract.setStroke(Color.BLACK);
 subtract.setFill(Color.LIGHTGRAY);

(continued)

288 Part III: Enhancing Your Scenic Design

 group1.getChildren().addAll(circle1, circle2, union, ➝47
 intersect, subtract);
 Scene scene = new Scene(group1);
 primaryStage.setScene(scene);
 primaryStage.setTitle("Shape Combiner");
 primaryStage.show();
 }
}

The following paragraphs describe the high points of the Shape Combiner
program:

 ➝ 17: A Group is created to hold the circles and composite shapes dis-
played by this program.

 ➝ 19: These lines create eight circle objects, positioned on the scene in
four groups of two.

 ➝ 28: The Shape.union method is called to create a Shape object
named union by combining circles 3 and 4.

 ➝ 29: The Shape.intersect method is called to create a Shape object
named intersect that is the overlapping portions of circles 5
and 6.

 ➝ 30: The Shape.subtract method is called to create a Shape object
named subtract that is the result of subtracting circle 8 from
circle 7.

 ➝ 32: These lines set the stroke and fill for circles 1 and 2.

 ➝ 38: These lines set the stroke and fill for the union, intersect, and
subtract shapes.

 ➝ 47: This line adds circles 1 and 2 as well as the union, intersect,
and subtract shapes to the group container, which serves as the
root container for the scene.

Listing 13-2 (continued)

Chapter 14

Adding Special Effects
In This Chapter
▶ Applying shadows to your shapes

▶ Working with reflections

▶ Making items blurry

▶ Working with the Bloom and Glow classes

▶ Adding perspective to flat drawings

▶ Combining special effects

W
elcome to the Special Effects chapter! Here, you read about how to
embellish the appearance of the nodes in your scene graph by adding

special effects such as blurs, shadows, color displacements, glows, and so on.
You can even add perspective to give your application a three-dimensional
look without having to do actual 3D programming.

You probably won’t win an Oscar for any of the special effects described in
this chapter, but at the least you’ll have fun!

Introducing Special Effects
Special effects in JavaFX derive from the Effect class, an abstract class that
has a wide variety of subclasses you can use to create a special effect. There
are a total of 17 subclasses of the Effect class, but I don’t have room to
cover all 17 of them here. Instead, this chapter focuses on those effects that
let you make your shapes look more realistic by adding blurriness, shadows,
reflections, and glow.

All the effects presented in this chapter work in a similar way. First, you
create an instance of the effect’s class by calling its default constructor. Then,
you optionally set the properties of the effect by calling one or more set
methods. (In many cases, the default property values are appropriate, so you
can often skip this step.) Finally, you apply the effect to a node by calling the
node’s setEffect method.

290 Part III: Enhancing Your Scenic Design

For example, here’s a bit of code that creates a rectangle, fills it, and then
adds a drop shadow:

Rectangle r1 = new Rectangle(50, 50, 100, 100);
r1.setFill(Color.LIGHTGRAY);
r1.setStroke(Color.BLACK);
r1.setStrokeWidth(2);

DropShadow shadow1 = new DropShadow();
r1.setEffect(shadow1);

Figure 14-1 shows the outcome of this effect. As you can see, the rectangle is
surrounded by a subtle shadow.

Figure 14-1:
A rectangle

with a
shadow.

 The setEffect method is defined by the Node class, which means that you
can apply an effect to any node in your scene graph. The effect is applied not
only to the node whose setEffect method you call, but also to any children
of that node. In fact, if you call setEffect on a scene’s root node, the effect
will be applied to the entire scene.

Adding Shadows
You may have noticed that the shadow in the example shown in Figure 14-1
doesn’t look very realistic. That’s because it’s directly behind the rectangle,
as if the light source causing the shadow were dead ahead. Usually, we expect
shadows to be at a slight angle from the object casting the shadow, most
often below the object and offset to one side.

291 Chapter 14: Adding Special Effects

Fortunately, the DropShadow class has several properties that let you con-
trol the size and positioning of the shadow. Those methods are listed in
Table 14-1, which lists the details not only of the DropShadow class but also
of its sister class, InnerShadow. The InnerShadow class creates a shadow
inside of a shape instead of outside the shape. I get to the InnerShadow
class in a moment. For now, I focus on DropShadow.

Table 14-1 The DropShadow and InnerShadow Classes
Constructor Explanation
DropShadow() Creates a new DropShadow effect

with default settings.

InnerShadow() Creates a new InnerShadow effect
with default settings.

Common Methods Explanation
void setColor(Color
value)

Sets the color to use for the shadow.
The default is BLACK.

void setWidth(double
value)

Sets the width of the shadow. The
default is 21.

void setHeight(double
value)

Sets the height of the shadow. The
default is 21.

void setOffsetX(double
value)

The horizontal offset for the shadow.
The default is 0.

void setOffsetY(double
value)

The vertical offset for the shadow. The
default is 0.

void setRadius(double
value)

The radius of the shadow’s blur effect.
The default is 10.

DropShadow Only Explanation
void setSpread (double
value)

The proportion (from 0.0 to 1.0) of the
shadow that should be a solid color
rather than blurred. The default is 0.

InnerShadow only Explanation
void setChoke (double
value)

The proportion (from 0.0 to 1.0) of the
shadow that should be a solid color
rather than blurred. The default is 0.

The methods of the DropShadow class allow you to specify the exact geometry
of the shadow you want applied. The setWidth and setHeight methods let
you specify the size of the shadow, and the setOffsetX and setOffsetY

292 Part III: Enhancing Your Scenic Design

methods let you change the location of the shadow relative to the center of
the shape. Typically, you’ll add a positive x- and y-offset so that the shadow
appears below and to the right of the shape, like this:

DropShadow shadow1 = new DropShadow();
shadow1.setOffsetX(10);
shadow1.setOffsetY(10);

In this example, the shadow is placed 10 pixels to the right and 10 pixels
below the shape.

The setRadius method lets you specify the size of the blur effect applied to
the edges of the shadow. The larger this number, the fuzzier the shadow will
appear. You can also control the spread, which indicates what portion of the
shadow’s blur should be solid color before the blur effect kicks in. (I find that
the effect of the spread setting is difficult to discern, so I usually don’t set it.)

Figure 14-2 shows a JavaFX application that demonstrates nine variations of
the basic drop shadow.

Figure 14-2:
Drop

shadows.

293 Chapter 14: Adding Special Effects

To create these shadowed rectangles, I created a utility method named
createShadowedBox. Here’s the code for this method:

Rectangle createShadowedBox(double size,
 double shadowWidth, double shadowHeight,
 double offsetX, double offsetY,
 double radius)
{
 Rectangle r = new Rectangle(size, size);
 r.setFill(Color.LIGHTGRAY);
 r.setStroke(Color.BLACK);
 r.setStrokeWidth(2);

 DropShadow e = new DropShadow();
 e.setWidth(shadowWidth);
 e.setHeight(shadowHeight);
 e.setOffsetX(offsetX);
 e.setOffsetY(offsetY);
 e.setRadius(radius);
 r.setEffect(e);
 return r;
}

As you can see, this method accepts six parameters: the size of the rectangle
to create (the rectangle is actually a square, so the size is used for both
the width and the height), the width and height of the shadow, the x- and
 y-offsets for the shadow, and the shadow’s blur radius. The method starts
by creating a rectangle. Then, it creates a drop shadow, applies the width,
height, x-offset, y-offset, and radius, and then applies the effect to the rect-
angle and returns the rectangle.

To create the actual shadowed rectangles, I called the createShadowBox
method nine times, using different parameter values:

Rectangle r1 = createShadowedBox(100, 10, 10, 5, 5, 10);
Rectangle r2 = createShadowedBox(100, 20, 20, 10, 10, 10);
Rectangle r3 = createShadowedBox(100, 30, 30, 15, 15, 10);

Rectangle r4 = createShadowedBox(100, 20, 20, 0, 0, 10);
Rectangle r5 = createShadowedBox(100, 20, 20, 0, 10, 10);
Rectangle r6 = createShadowedBox(100, 20, 20, 10, 0, 10);

Rectangle r7 = createShadowedBox(100, 20, 20, 10, 10, 0);
Rectangle r8 = createShadowedBox(100, 20, 20, 10, 10, 20);
Rectangle r9 = createShadowedBox(100, 20, 20, 10, 10, 50);

294 Part III: Enhancing Your Scenic Design

For the first set of three, I varied the size and offset of the shadow, in each,
using the same values for width and height and for the x-offset and the
 y-offset. Thus, the first row of rectangles in Figure 14-2 show various place-
ments of the shadow below and to the right of the rectangles.

For the next set of three, I set the x-offset or y-offset to zero to demonstrate
variations of the offset. And for the final set of three, I varied the radius.
Notice that when the radius is set to 0, the shadow’s edges are crisp. With
larger radius values, the shadow gets more blurry.

Figure 14-3 shows how inner shadows work. For this figure, I changed just
one line of code in the createShadowBox method: Instead of creating a
DropShadow, I created an InnerShadow:

InnerShadow e = new InnerShadow();

As you can see, the InnerShadow class places the shadow on the inside of
the rectangle rather than on the outside.

Figure 14-3:
Inner

shadows.

295 Chapter 14: Adding Special Effects

Creating Reflections
A reflection projects an inverted copy of the shape in front of and below the
shape, creating the impression that the shape is sitting on a reflective surface.
You can create a reflection by using the Reflection class, whose members
are shown in Table 14-2.

Table 14-2 The Reflection Class
Constructor Explanation
Reflection() Creates a new Reflection effect

with default settings.

Methods Explanation
void setBottomOpacity
(double value)

The opacity (0.0 to 1.0) at the bottom
edge of the reflection. The default is 0.

void setFraction(double
value)

The portion of the shape that will be
reflected. The default is 0.75.

void setTopOffset(double
value)

The distance between the bottom of
the shape and the start of the reflec-
tion. The default is 0.

void setTopOpacity(double
value)

The opacity (0.0 to 1.0) at the top of the
reflection. The default is 0.5.

Figure 14-4 shows a Text shape with a reflection applied. I used the following
code to create this shape:

Text t = new Text("Reflection");
t.setFont(new Font("Times New Roman", 96));
t.setFill(Color.LIGHTGRAY);
t.setStroke(Color.BLACK);
t.setEffect(new Reflection());

296 Part III: Enhancing Your Scenic Design

Figure 14-4:
A text with a

reflection.

Making Things Blurry
JavaFX provides three effects classes that can make an object blurry. Each of
these classes uses a different method for applying the blur:

 ✓ BoxBlur: Applies a simple and efficient blurring technique in which
each pixel in the blurred region is calculated by averaging its neighbor-
ing pixels in the input image.

 ✓ GaussianBlur: Uses a Gaussian blurring algorithm, which is more
accurate but less efficient than a box blur.

 ✓ MotionBlur: Blurs the shape directionally, creating the effect of motion.

Table 14-3 shows the members of the three blur effect classes.

Table 14-3 The BoxBlur, GaussianBlur, and MotionBlur Classes
Constructors Explanation

BoxBlur() Creates a new BoxBlur effect with
default settings.

GaussianBlur() Creates a new GaussianBlur effect
with default settings.

MotionBlur() Creates a new MotionBlur effect with
default settings.

297 Chapter 14: Adding Special Effects

BoxBlur Methods Explanation
void setHeight(double
value)

Sets the vertical size of the blur effect.

void setWidth(double
value)

Sets the horizontal size of the blur effect.

void setIterations(int
value)

Sets the number of times the effect should
be repeated. The default is 1.

GaussianBlur Methods Explanation
void setRadius(double
value)

The radius of the blur effect. The default
is 10.0.

MotionBlur Methods Explanation
void setAngle(double
value)

The angle of the motion effect, in degrees.
The default is 0.0.

void setRadius(double
value)

The radius of the blur effect. The default
is 10.

Figure 14-5 shows the effect of each of these blur types on a text shape. I used
the following code to create these three blurs:

Text t1 = new Text("BoxBlur");
t1.setFont(new Font("Times New Roman", 60));
t1.setFill(Color.LIGHTGRAY);
t1.setStroke(Color.BLACK);
t1.setEffect(new BoxBlur());

Text t2 = new Text("GaussianBlur");
t2.setFont(new Font("Times New Roman", 60));
t2.setFill(Color.LIGHTGRAY);
t2.setStroke(Color.BLACK);
t2.setEffect(new GaussianBlur());

Text t3 = new Text("MotionBlur");
t3.setFont(new Font("Times New Roman", 60));
t3.setFill(Color.LIGHTGRAY);
t3.setStroke(Color.BLACK);
t3.setEffect(new MotionBlur());

As you can see, I used default values for each of the blurs. If you wish, you can
use the methods listed in Table 14-3 to tweak the appearance of the blur effects.

298 Part III: Enhancing Your Scenic Design

Figure 14-5:
Three text

objects with
blur effects.

Blooming and Glowing
Tonight, on a very special episode of Blossom (or should that be, a very special
episode of The Big Bang Theory?), you find out how to make your ordinary JavaFX
shapes bloom and glow, all with the help of two simple classes, unsurprisingly
named Bloom and Glow. Table 14-4 shows the members of these two classes.

Table 14-4 The Bloom and Glow Classes
Constructor Explanation
Bloom() Creates a new Bloom effect with default

parameters.

Glow() Creates a new Glow effect with default
parameters.

Bloom Method Explanation
void setThreshhold
(double value)

Sets the luminosity threshold. The bloom effect
will be applied to portions of the shape that are
brighter than the threshold. The value can be 0.0
to 1.0. The default value is 0.3.

Glow Method Explanation
void setLevel(double
value)

Sets the intensity of the effect’s glow level. The
value can be 0.0 to 1.0. The default value is 0.3.

299 Chapter 14: Adding Special Effects

Figure 14-6 shows the effect of the Bloom and Glow effects. All three of the
text shapes shown in the figure are combined with a rectangle in a group.
I used the following code to create the first group (shown at the top of the
figure):

Rectangle r1 = new Rectangle(50, 50, 400, 100);
r1.setFill(Color.BLACK);
r1.setStroke(Color.BLACK);

Text t1 = new Text("Plain Text");
t1.setX(130);
t1.setY(125);
t1.setFont(new Font("Times New Roman", 60));
t1.setFill(Color.LIGHTGRAY);

Group g1 = new Group();
g1.getChildren().addAll(r1, t1);

I used the similar code to create the second group (shown in the middle of
the figure), but added a Bloom effect:

Rectangle r2 = new Rectangle(50, 50, 400, 100);
r2.setFill(Color.BLACK);
r2.setStroke(Color.BLACK);

Text t2 = new Text("Blooming Text");
t2.setX(70);
t2.setY(125);
t2.setFont(new Font("Times New Roman", 60));
t2.setFill(Color.LIGHTGRAY);

Group g2 = new Group();
g2.getChildren().addAll(r2, t2);

Bloom e1 = new Bloom();
e1.setThreshold(0.3);
g2.setEffect(e1);

For the third group, I added a Glow effect instead:

Rectangle r3 = new Rectangle(50, 50, 400, 100);
r3.setFill(Color.BLACK);
r3.setStroke(Color.BLACK);

Text t3 = new Text("Glowing Text");
t3.setX(80);
t3.setY(125);
t3.setFont(new Font("Times New Roman", 60));
t3.setFill(Color.LIGHTGRAY);

300 Part III: Enhancing Your Scenic Design

Group g3 = new Group();
g3.getChildren().addAll(r3, t3);
Glow e2 = new Glow();

e2.setLevel(1.0);
g3.setEffect(e2);

The difference between the bloom and glow effect is subtle. To be honest, it’s
barely noticeable. If you look very closely, you’ll see that the glowing text is
just a tad brighter than the blooming text. (The distinction between glow and
bloom is more noticeable when colors other than black and white are used.)

Figure 14-6:
Bloomin’

and glowin’
text!

Gaining Perspective
The PerspectiveTransform class lets you distort a shape so that it
appears to have a three-dimensional effect. Note: This is not the same thing
as creating actual three-dimensional shapes in your scene graph; it simply
distorts the geometry of a node to create a perspective effect.

301 Chapter 14: Adding Special Effects

The PerspectiveTransform class works by mapping the corners of the
original shape’s bounding rectangle to an arbitrary quadrilateral. (The bound-
ing rectangle is a rectangle that fully contains a shape, and a quadrilateral is
any four-cornered shape.) All you have to supply is the x- and y-coordinates
of each corner of the quadrilateral, using the methods listed in Table 14-5.

Table 14-5 The PerspectiveTransform Class
Constructor Explanation
PerspectiveTransform() Creates a new Perspective

Transform effect with default parameters.

Methods Explanation
void setUlx(double
value)

Sets the upper-left corner x-coordinate.

void setUly(double
value)

Sets the upper-left corner y-coordinate.

void setUrx(double
value)

Sets the upper-right corner x-coordinate.

void setUry(double
value)

Sets the upper-right corner y-coordinate.

void setLlx(double
value)

Sets the lower-left corner x-coordinate.

void setLly(double
value)

Sets the lower-left corner y-coordinate.

void setLrx(double
value)

Sets the lower-right corner x-coordinate.

void setLry(double
value)

Sets the lower-right corner y-coordinate.

To illustrate how the perspective transform works, I apply it to a chessboard
created with the following bit of code:

Group board = new Group();
boolean isLight = true;
int size = 50;

for (int rank = 0; rank < 8; rank++)
{
 for (int file = 0; file < 8; file++)

302 Part III: Enhancing Your Scenic Design

 {
 Rectangle r = new Rectangle(size, size);
 r.setX(file * size);
 r.setY(rank * size);
 if (isLight)
 r.setFill(Color.LIGHTGRAY);
 else
 r.setFill(Color.DARKGRAY);
 isLight = !isLight;
 board.getChildren().add(r);
 }
 isLight = !isLight;
}

This code uses a set of nested for loops to draw the ranks (rows) and files
(columns) of the chessboard using 50x50 rectangles of alternating color. The
isLight Boolean variable is used to keep track of the color of each square;
this value is inverted after each rectangle is drawn. The isLight value is
inverted after each file is drawn so that the subsequent file starts with the
opposite color. Figure 14-7 shows how the chessboard appears when dis-
played in a scene.

Figure 14-7:
A chess-

board
with no

perspective.

The entire chessboard occupies a 400x400 square. To add perspective,
I create a PerspectiveTransform effect that maps the 400x400 square
chessboard to a quadrilateral with the following corner coordinates:

303 Chapter 14: Adding Special Effects

Corner Original x, y New x, y
Upper Left 0, 0 100, 100
Upper Right 400, 0 450, 100
Lower Left 0, 400 0, 300
Lower Right 400, 400 400, 300

The code to accomplish this transformation looks like this:

PerspectiveTransform e = new PerspectiveTransform();

e.setUlx(100); // Upper left
e.setUly(100);

e.setUrx(450); // Upper right
e.setUry(100);

e.setLlx(0); // Lower left
e.setLly(300);

e.setLrx(400); // Lower right
e.setLry(300);

board.setEffect(e);

Figure 14-8 shows how the chessboard looks when this perspective transform
is applied.

Figure 14-8:
The chess-
board has

gained
perspective.

304 Part III: Enhancing Your Scenic Design

Combining Effects
By now, I hope you’ll agree that JavaFX special effects can have a major
impact on the appearance of your scenes. But wait, there’s more! JavaFX lets
you improve the appearance of your scenes even more by allowing you to
combine special effects, essentially laying one effect atop another.

To combine effects, you use the setInput method, which is available for all
the effects classes I cover in this chapter. Simply put, you create an instance
of an effect class, create an instance of a second effects class, and chain the
first to the second by calling the first effect’s setInput method and specify-
ing the second effect as the input.

For example, suppose you want to combine a reflection with a shadow and
then apply the combined effect to a rectangle. You can do so like this:

Rectangle rect = new Rectangle(100,100);
DropShadow shadow = new DropShadow();
Reflection reflect = new Reflection();
reflect.setInput(shadow);
rect.setEffect(reflect);

In this example, the shadow effect will first be rendered on the rectangle.
Then, the reflection effect will be rendered on the rectangle, creating a reflec-
tion of both the rectangle and its shadow.

Figure 14-9 shows how the chessboard that was created in the preceding sec-
tion appears with a drop shadow chained to the perspective transform. The
code that creates the perspective and shadow effects is as follows:

PerspectiveTransform e = new PerspectiveTransform();

e.setUlx(100); // Upper left
e.setUly(100);

e.setUrx(450); // Upper right
e.setUry(100);

e.setLlx(0); // Lower left
e.setLly(300);

e.setLrx(400); // Lower right
e.setLry(300);

DropShadow shadow = new DropShadow();
shadow.setWidth(20);
shadow.setHeight(20);

305 Chapter 14: Adding Special Effects

shadow.setOffsetX(20);
shadow.setOffsetY(20);
shadow.setRadius(30);
e.setInput(shadow);board.setEffect(e);

board.setEffect(e);

As you can see, the perspective transform is applied to the chessboard and
its shadow, creating a realistic effect of the chessboard floating above a
surface.

Figure 14-9:
The chess-

board with a
shadow.

306 Part III: Enhancing Your Scenic Design

Part IV
Making Your Programs

Come Alive

 Visit www.dummies.com/extras/javafx for great Dummies content online.

http://www.dummies.com/extras/javafx

In this part . . .
 ✓ Working with properties

 ✓ Adding visuals and sound

 ✓ Incorporating animation effects

 ✓ Gesturing with touch devices

 ✓ Visit www.dummies.com/extras/javafx for great
Dummies content online.

http://www.dummies.com/extras/javafx

Chapter 15

Using Properties to Create
Dynamic Scenes

In This Chapter
▶ Introducing and creating properties

▶ Working with read-only and read/write properties

▶ Adding event listeners to your properties

▶ Binding properties together

I
n this chapter, you discover how to use a powerful feature of JavaFX —
properties. Simply put, a JavaFX property is an observable value that’s

exposed by a class. Properties are observable in the sense that you can
attach listeners to them. These listeners can be invoked whenever the value
of the property changes or becomes unknown.

One of the best features of properties is that you can bind to them, or connect
properties together so that when one property changes, the other property
is adjusted automatically. In other words, binding allows two properties to be
synchronized. When one property changes, the other property changes as well.

In this chapter, I discuss the basics of working with properties. First, you read
about how to create your own properties. Then, you figure out how to attach
listeners to properties so your code can respond when the property value
changes or becomes invalid. And finally, I tell you how to bind.

Introducing JavaFX Properties
In object-oriented programming parlance, a property is a value that repre-
sents the state of an instantiated object which can be retrieved and in some
cases set by users of the object. In some object-oriented programming

310 Part IV: Making Your Programs Come Alive

languages, such as C#, the concept of properties is built in to the language.
Alas, such is not the case with Java. Java has no built-in features for imple-
menting properties . . . at least, not until now.

Prior to Java 8, Java developers usually followed the pattern of using prop-
erty getters and setters to retrieve and set property values. A property getter
is a public method that retrieves the value of a property, and a setter is a
public method that sets the value of a property.

For example, suppose you’re creating a class that represents a customer, and
each customer is identified by a unique customer number. You might store the
customer number internally as a private field named customerNumber. Then,
you’d provide a public method named getCustomerNumber to return the
customer’s number and another public method named setCustomerNumber
to set the customer number. The resulting code would look like this:

class Customer
{
 private int customerNumber;

 public int getCustomerNumber()
 {
 return customerNumber;
 }

 public void setCustomerNumber(int value)
 {
 customerNumber = value;
 }
}

This pattern of using getter and setter methods has a name: the accessor
pattern. (No, this has nothing to do with property taxes. Property taxes are
determined by an assessor, not an accessor.)

JavaFX 8 introduces a new scheme for implementing properties, which duti-
fully follows the accessor pattern. As a result, JavaFX classes that implement
properties must provide a getter and a setter that returns and sets the value
of the properties (unless the property is read-only, in which case only a get
method is required).

However, instead of using a simple field to represent the value of the prop-
erty, JavaFX uses special property classes to represent properties. These
classes encapsulate the value of a property in an object that provides the
new whiz-bang features that enable you to listen for changes in the property
value or bind properties together.

311 Chapter 15: Using Properties to Create Dynamic Scenes

When JavaFX properties are used, the getter and setter methods return the
value that’s encapsulated by the property object. In addition to the getter and
setter methods, JavaFX properties introduce a third method which returns
the actual property itself. This allows users of the property to directly access
the property object, which in turn lets them access those new whiz-bang
features.

Naming conventions are an essential aspect of using JavaFX properties cor-
rectly. Every property has a name, which by convention begins with a low-
ercase letter. For example, a property that represents a person’s first name
might be called firstName. The getter and setter methods are created by
capitalizing the property name and prefixing it with the word get or set. The
method that returns the property object is the name of the property (uncapi-
talized) followed by the word Property.

Thus, a class that implements a read/write property named firstName must
expose three methods:

getFirstName

setFirstName

firstNameProperty

If the property is read-only, the setFirstName method would be omitted.

Java API Properties
All the JavaFX API classes that are presented in this book make extensive use
of properties. In fact, just about every API get or set method is actually a
property getter or setter, and has a corresponding method that returns the
property itself.

For example, consider the TextField class, which has methods named
getText and setText that get and set the text contained in the text field.
These methods are actually getters and setters for a property named text,
and the TextField class has a method named textProperty that provides
direct access to the text property.

312 Part IV: Making Your Programs Come Alive

Likewise with the HBox class: It has properties named alignment,
hgrow, padding, and spacing which correspond to the getAlignment,
setAlignment, getHgrow, setHgrow, getPadding, setPadding,
getSpacing, and setSpacing methods.

So far in this book, you’ve had no need to access the properties directly, so
you’ve relied on the getter and setter methods to manipulate the property
values. Later in this chapter, when you discover how to bind property values,
you see that accessing these properties can be very useful.

In the next few sections, I discuss how to create your own JavaFX properties.
Even if you never create JavaFX properties for your own classes, knowing
how to do so will help you understand the benefits of working with the prop-
erties that are defined as part of the standard JavaFX API classes.

JavaFX Property Classes
At the heart of JavaFX properties is a collection of classes that create prop-
erty objects. There are a lot of them, as JavaFX provides four important
classes for each of its basic data types, and property classes are provided
for ten different data types. Do the math: That means there are 40 property
classes. The following paragraphs describe the four classes for String
properties:

 ✓ ReadOnlyStringProperty: An abstract class that represents a read-
only property whose value can be read but not modified.

 ✓ StringProperty: Another abstract class that represents a read-write
property. This class extends ReadOnlyStringProperty.

 ✓ SimpleStringProperty: This is the class that you instantiate to create
a read/write string property.

 ✓ ReadOnlyStringWrapper: This is the class you instantiate to create
a read-only string property. The use of this class is a bit confusing, so I
won’t explain it quite yet. You see how it works in the section “Creating a
Read-Only Property” later in this chapter.

For your reference, Table 15-1 lists all 40 of the classes used to create proper-
ties of the various types.

313 Chapter 15: Using Properties to Create Dynamic Scenes

Table 15-1 JavaFX Property Classes
Boolean Classes Long Classes
ReadOnlyBooleanProperty ReadOnlyLongProperty

BooleanProperty LongProperty

SimpleBooleanProperty SimpleLongProperty

ReadOnlyBooleanWrapper ReadOnlyLongWrapper

Double Classes Map

ReadOnlyDoubleProperty ReadOnlyMapProperty<K,V>

DoubleProperty MapProperty<K,V>

SimpleDoubleProperty SimpleMapProperty<K,V>

ReadOnlyDoubleWrapper ReadOnlyMapWrapper<K,V>

Float Classes Object Classes

ReadOnlyFloatProperty ReadOnlyObjectProperty<T>

FloatProperty ObjectProperty<T>

SimpleFloatProperty SimpleObjectProperty<T>

ReadOnlyFloatWrapper ReadOnlyObjectWrapper<T>

Integer Classes Set Classes

ReadOnlyIntegerProperty ReadOnlySetProperty<E>

IntegerProperty SetProperty<E>

SimpleIntegerProperty SimpleSetProperty<E>

ReadOnlyIntegerWrapper ReadOnlySetWrapper<E>

List Classes String Classes

ReadOnlyListProperty<E> ReadOnlyStringProperty

ListProperty<E> StringProperty

SimpleListProperty<E> SimpleStringProperty

ReadOnlyListWrapper<E> ReadOnlyStringWrapper

Note that four of the types shown in Table 15-1 — List, Map, Object, and
Set — are generic. For the List and Set classes, you must specify the ele-
ment type for the underlying list and set collections; for the Map type, you
need to specify types for the keys and values. The Object property classes
let you create properties of any type you wish, but you must specify the type
so that JavaFX can enforce type safety.

314 Part IV: Making Your Programs Come Alive

Creating a Read/Write Property
To create a basic property whose value can be read and written, you need to
use two of the classes for the property type: the property class of the correct
type and the corresponding simple property. For example, to create a prop-
erty of type Double, you need to use both the DoubleProperty class and
the SimpleDoubleProperty class.

Here are the steps to create a read/write property:

 1. Create a local field for the property using the property class for the
correct type.

 The field should be defined with private visibility, and it should be
final. For example:

private String Property firstName;

 2. Create an instance of the property using the simple property class of
the correct type.

 The constructor for the simple property type accepts three parameters,
representing the object that contains the property (usually specified as
this, a string that represents the name of the property, and the prop-
erty’s default value). For example:

firstName = new SimpleStringProperty(this,
 "firstName", "");

 Here, this is specified as the containing object, firstName is the name
of the property, and the default value is an empty string.

 It is often convenient to declare the private property field and instanti-
ate the property in the same statement, like this:

StringProperty firstName =
 new SimpleStringProperty(this,
 "firstName", "");

 3. Create a getter for the property.

 The getter method name should be public or protected, it should be
final, it should follow the property naming convention (get followed
by the name of the property with an initial cap), and it should return
a value of the underlying property type. It should then call the private
property’s get method to retrieve the value of the property, like this:

public final String getFirstName
{
 return firstName.get();
}

315 Chapter 15: Using Properties to Create Dynamic Scenes

 4. Create a setter for the property.

 The setter method name should by public or protected, it should be
final, it should follow the property naming convention (set followed
by the name of the property with an initial cap), and it should accept a
parameter value of the underlying property type. It should then call the
private property’s set method to set the property to the passed value.
For example:

public final void setFirstName(String value)
{
 firstName.set(value);
}

 5. Create the property accessor.

 This method should return the property object itself:

public final StringProperty firstNameProperty()
{
 return firstName;
}

 Notice that the type is StringProperty, not SimpleStringProperty.

 6. Repeat the entire procedure for every property in your class.

Here’s a complete example that implements a read/write property named
firstName in a class named Customer:

public class Customer
{
 StringProperty firstName =
 new SimpleStringProperty(this,
 "firstName", "");

 public final String getFirstName
 {
 return firstName.get();
 }

 public final void setFirstName(String value)
 {
 firstName.set(value);
 }

 public final StringProperty firstNameProperty()
 {
 return firstName;
 }
}

316 Part IV: Making Your Programs Come Alive

Creating a Read-Only Property
Although a read-only property has less functionality than a read/write prop-
erty, it’s actually more complicated to implement. Why? Because internally —
within the class that contains the read-only property — you need to be able
to read or write the value of the property. But externally — that is, outside of
the class that defines the read-only property — you must ensure that users
can read but not write the property value.

You might think that omitting the setter method would be enough to create
a read-only property. But the problem is that in addition to getter and setter
methods, JavaFX properties also expose a property accessor method that
provides direct access to the property object itself.

 The following is an example of how not to create a read-only property:

StringProperty firstName =
 new SimpleStringProperty(this,
 "firstName", "");

public final String getFirstName()
{
 return firstName.get();
}

public final StringProperty firstNameProperty()
{
 return firstName;
}

This code is the same as the code used to create a read/write property in
the preceding section, except that I omitted the setFirstName method.
Unfortunately, this property definition does not prevent users of the class
that defines the property from modifying the property. To do so, all the user
would need to do is access the property and then call the property’s set
method directly.

For example, suppose this property is part of a class named Customer, an
instance of which is referenced by the variable cust. The following code
would set the value of the read-only property:

cust.getFirstName().set("Bogus Value");

317 Chapter 15: Using Properties to Create Dynamic Scenes

To safely create a read-only property, you must actually create two copies
of the property: a read-only version and a read/write version. The read-only
version will be exposed to the outside world. The read/write version will be
used internally, within the class that defines the property. Then, you must
synchronize these two properties so that whenever the value of the internal
read/write property changes, the value of the external read-only property is
updated automatically.

To accomplish this, JavaFX provides two additional classes for each property
data type: a read-only property class and a read-only wrapper class. The
read-only property class is the one you share with the outside world via the
property accessor method. The read-only wrapper class is the one you use to
create the private field used to reference the property within the program.

Here’s a complete example that implements a read-only integer property
named customerNumber in a class named Customer:

public class Customer
{
 ReadOnlyIntegerWrapper customerNumber =
 new ReadOnlyIntegerWrapper(this,
 "customerNumber", 0);

 public final Integer getCustomerNumber()
 {
 return customerNumber.get();
 }

 public final ReadOnlyIntegerProperty()
 customerNumberProperty()
 {
 return customerNumber.getReadOnlyProperty();
 }

 // more class details go here

}

The key to understanding how this works is realizing that the read-only wrap-
per class is an extension of the simple property class which adds just one
new method: getReadOnlyProperty, which returns a read-only copy of the
simple property. This read-only copy is automatically synchronized with the
simple property, so that whenever a change is made to the underlying simple
property, the value of the read-only property will be changed as well.

318 Part IV: Making Your Programs Come Alive

Creating Properties More Efficiently
The advanced capabilities of JavaFX properties, which you’ll come to appreci-
ate in the final sections of this chapter, do not come without a cost. Specifically,
instantiating a property object takes more memory and processing time than
creating a simple field-based property. And in many classes, the advanced
capabilities of a JavaFX property object are only occasionally needed. This,
instantiating property objects for every property in a class whether the object
is needed or not, is wasteful.

In this section, I show you a technique for creating properties in which the
property objects themselves are not instantiated until the property accessor
itself is called. That way, the property object is not created unless it is actu-
ally needed. Here are the details of this technique:

 1. Declare a private field to hold the data represented by the property.

 For example, for a string property, you create a String variable. For the
variable name, use the name of the property prefixed by an underscore,
like this:

private final String _firstName = "";

 2. Create, but do not instantiate, a private variable to represent the
property object.

 In other words, declare the variable but do not call the class constructor:

private final SimpleStringProperty firstName;

 3. Create the getter.

 In the getter, use an if statement to determine whether the property
object exists. If it does, return the value from the property. If it doesn’t,
return the value of the private field. For example:

public final String getFirstName()
{
 if (firstName == null)
 return _firstName;
 else
 return firstName.get();
}

 4. Create the setter.

 Use the same technique in the setter:

319 Chapter 15: Using Properties to Create Dynamic Scenes

public final void setFirstName(String value)
{
 if (firstName == null)
 _firstName = value;
 else
 firstName.set(value);
}

 5. Create the property accessor.

 In this method, first check whether the property object exists and create
the object if it does not exist. Use the value of the private field as the ini-
tial value of the property. Then, return the object:

public final StringProperty firstNameProperty()
{if (firstName == null)
 firstName = new SimpleStringProperty(
 this, "firstName", _firstName);
 return firstName;
}

Here’s what it looks like put together in a class named Customer:

Public class Customer
{
 private final String _firstName = "";
 private final SimpleStringProperty firstName;

 public final String getFirstName()
 {
 if (firstName == null)
 return _firstName;
 else
 return firstName.get();
 }

 public final void setFirstName(String value)
 {
 if (firstName == null)
 _firstName = value;
 else
 firstName.set(value);
 }

 public final StringProperty firstNameProperty()

 { if (firstName == null)
 firstName = new SimpleStringProperty(
 this, "firstName", _firstName);
 return firstName;
 }
}

320 Part IV: Making Your Programs Come Alive

Using Property Events
JavaFX properties provide an addListener method that lets you add event
handlers that are called whenever the value of a property changes. You can
create two types of property event handlers:

 ✓ A change listener, which is called whenever the value of the property
has been recalculated. The change listener is passed three arguments:
the property whose value has changed, the previous value of the prop-
erty, and the new value.

 ✓ An invalidation listener, which is called whenever the value of the
property becomes unknown. This event is raised when the value of the
property needs to be recalculated, but has not yet been recalculated.
An invalidation event listener is passed just one argument: the property
object itself.

Change and invalidation listeners are defined by functional interfaces named
ChangeListener and InvalidationListener. Because these interfaces
are functional interfaces, you can use Lambda expressions to implement
them. Here’s how you use a Lambda expression to register a change listener
on the text property of a text field named text1:

text1.textProperty().addListener(
 (observable, oldvalue, newvalue) ->
 // code goes here
);

Here’s an example that registers an invalidation listener:

text1.textProperty().addListener(
 (observable) ->
 // code goes here
);

The only way the addListener knows whether you are registering a change
listener or an invalidation listener is by looking at the arguments you specify
for the Lambda expression. If you provide three arguments, addListener
registers a change listener. If you provide just one argument, an invalidation
listener is installed.

321 Chapter 15: Using Properties to Create Dynamic Scenes

Listing 15-1 shows a simple JavaFX application that uses change listeners
to vary the size of a rectangle automatically with the size of the stack pane
that contains it. A change listener is registered with the stack pane’s width
property so that whenever the width of the stack pane changes, the width
of the rectangle is automatically set to half the new width of the stack pane.
Likewise, a change listener is registered on the height property to change the
rectangle’s height.

Figure 15-1 shows this application in action. This figure shows the initial
window displayed by the application as well as how the window appears
after the user has made the window taller and wider. As you can see, the rect-
angle has increased in size proportionately.

Listing 15-1: The Auto Rectangle Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;

public class AutoRectangle extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 @Override public void start(Stage primaryStage)
 {

 Rectangle r = new Rectangle(100,100); ➝18
 r.setFill(Color.LIGHTGRAY);
 r.setStroke(Color.BLACK);
 r.setStrokeWidth(2);

 StackPane p = new StackPane(); ➝23
 p.setMinWidth(200);
 p.setPrefWidth(200);
 p.setMaxWidth(200);
 p.setMinHeight(200);

(continued)

322 Part IV: Making Your Programs Come Alive

 p.setPrefHeight(200);
 p.setMaxHeight(200);

 p.getChildren().add(r);

 p.widthProperty().addListener(➝33
 (observable, oldvalue, newvalue) ->
 r.setWidth((Double)newvalue/2)
);

 p.heightProperty().addListener(➝38
 (observable, oldvalue, newvalue) ->
 r.setHeight((Double)newvalue/2)
);

 Scene scene = new Scene(p);
 primaryStage.setScene(scene);
 primaryStage.setTitle("Auto Rectangle");
 primaryStage.show();
 }

}

The following paragraphs describe the highlights:

 ➝ 18: These lines create a 100x100 rectangle and set the rectangle’s fill
color, stroke color, and stroke width.

 ➝ 23: These lines create a stack pane and set its width and height
properties.

 ➝ 33: These lines use a Lambda expression to register a change handler
with the stack pane’s width parameter. When the stack pane’s
width changes, the width of the rectangle is set to one half of the
stack pane’s width.

 ➝ 38: These lines use a Lambda expression to register a change handler
with the stack pane’s height parameter. When the stack pane’s
height changes, the height of the rectangle is set to one half of the
stack pane’s height.

Listing 15-1 (continued)

323 Chapter 15: Using Properties to Create Dynamic Scenes

Figure 15-1:
The Auto

Rectangle
program in

action.

Binding Properties
JavaFX property binding allows you to synchronize the value of two proper-
ties so that whenever one of the properties changes, the value of the other
property is updated automatically. Two types of binding are supported:

 ✓ Unidirectional binding: With unidirectional binding, the binding works
in just one direction. For example, if you bind property A to property B,
the value of property A changes when property B changes, but not the
other way around.

 ✓ Bidirectional binding: With bidirectional binding, the two property
values are synchronized so that if either property changes, the other
property is automatically changed as well.

324 Part IV: Making Your Programs Come Alive

Setting up either type of binding is surprisingly easy. Every property has a
bind and a bindBiDirectional method. To set up a binding, simply call
this method, specifying the property you want to bind to as the argument.

Here’s an example that creates a unidirectional binding on the text property
of a label to the text property of a text field, so that the contents of the label
always displays the contents of the text field:

lable1.textProperty().bind(text1.textProperty());

With this binding in place, the text displayed by label1 is automatically
updated, character by character, when the user types data into the text field.

The following example shows how to create a bidirectional binding between
two text fields, named text1 and text2:

text1.textProperty()
 .bindBidirectional(text2.textProperty());

With this binding in place, any text you type into either text field will be repli-
cated automatically in the other.

To show how binding can be used in a complete program, Listing 15-2 shows
a program with two text fields with a pair of labels bound to each. The first
text field accepts the name of a character in a play, and the second text field
accepts the name of an actor. The labels display the actor who will play the
role, as shown in Figure 15-2.

Listing 15-2: The Role Player Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.geometry.*;
import javafx.scene.control.*;

public class RolePlayer extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

325 Chapter 15: Using Properties to Create Dynamic Scenes

 TextField txtCharacter;
 TextField txtActor;

 @Override public void start(Stage primaryStage)
 {

 // Create the Character label
 Label lblCharacter = new Label("Character's Name:");
 lblCharacter.setMinWidth(100);
 lblCharacter.setAlignment(Pos.BOTTOM_RIGHT);

 // Create the Character text field
 txtCharacter = new TextField();
 txtCharacter.setMinWidth(200);
 txtCharacter.setMaxWidth(200);
 txtCharacter.setPromptText("Enter the name of the character here.");

 // Create the Actor label
 Label lblActor = new Label("Actor's Name:");
 lblActor.setMinWidth(100);
 lblActor.setAlignment(Pos.BOTTOM_RIGHT);

 // Create the Actor text field
 txtActor = new TextField();
 txtActor.setMinWidth(200);
 txtActor.setMaxWidth(200);
 txtActor.setPromptText("Enter the name of the actor here.");

 // Create the Role labels
 Label lblRole1 = new Label("The role of ");
 Label lblRole2 = new Label();
 Label lblRole3 = new Label(" will be played by ");
 Label lblRole4 = new Label();

 // Create the Character pane
 HBox paneCharacter = new HBox(20, lblCharacter, txtCharacter);
 paneCharacter.setPadding(new Insets(10));

 // Create the Actor pane
 HBox paneActor = new HBox(20, lblActor, txtActor);
 paneActor.setPadding(new Insets(10));

 // Create the Role pane
 HBox paneRole = new HBox(lblRole1, lblRole2, lblRole3, lblRole4);
 paneRole.setPadding(new Insets(10));

(continued)

326 Part IV: Making Your Programs Come Alive

 // Add the Character and Actor panes to a VBox
 VBox pane = new VBox(10, paneCharacter, paneActor, paneRole);

 // Create the bindings
 lblRole2.textProperty().bind(txtCharacter.textProperty());
 lblRole4.textProperty().bind(txtActor.textProperty());

 // Set the stage
 Scene scene = new Scene(pane);
 primaryStage.setScene(scene);
 primaryStage.setTitle("Role Player");
 primaryStage.show(); }

}

Figure 15-2:
The Role

Player appli-
cation in

action.

Listing 15-2 (continued)

Chapter 16

Using Images and Media
In This Chapter
▶ Displaying images in JavaFX components

▶ Adding sounds to your programs

▶ Displaying videos

S
o far in this book, all the JavaFX applications have been pretty boring.
They’ve had plenty of labels, text fields, combo boxes, and the like, but

no pictures, sounds, or movies!

This chapter remedies that situation. You find out how to incorporate graphic
images (that is, pictures — not necessarily images of a graphic nature) into
your JavaFX applications. Just to make things interesting, I show you how to
throw in sound effects and music, as well as video, too.

Using Images
An image is a file that contains a picture. Java supports pictures in several
formats, including .jpg, .png, .gif, and .bmp. To incorporate images into
your applications, you need to use two classes: Image and ImageView. The
Image class represents an image in memory, whereas the ImageView class is
a Node that you can add to a scene graph to display an Image on the screen.

Both of these classes are in the package javafx.scene.image, so you need
to add the following statement to your programs:

import javafx.scene.image.*;

328 Part IV: Making Your Programs Come Alive

Using the Image class
To load an image from an external source, such as a disk file or a web loca-
tion, you use the Image class. This class has six constructors, detailed in
Table 16-1.

Table 16-1 The Image Class
Constructor Description
Image(InputStream in) Creates an image by reading from the

specified input stream.
Image(InputStream in,
double width, double
height, boolean
preserveRatio, boolean
smooth)

Creates an image by reading from the
specified input stream and resizes it
according to the width and height you
specify. preserveRatio indicates
whether the aspect ratio of the origi-
nal image should be preserved, and
smooth indicates whether image
smoothing should be applied.

Image(String url) Creates an image by reading from the
specified URL.

Image(String url, boolean
backgroundLoading)

Creates an image by read-
ing from the specified URL. If
backgroundLoading is true,
the image is loaded in the background
(that is, on a separate thread).

Image(String url, double
width, double height,
boolean preserveRatio,
boolean smooth)

Creates an image by reading from
the specified URL. This constructor
specifies the width and height of the
resulting image and indicates whether
the aspect ratio of the original image
should be preserved and whether
image smoothing should be applied.

Image(String url, double
width, double height,
boolean preserveRatio,
boolean smooth, boolean
backgroundLoading)

Creates an image by reading from
the specified web path and resizes
it according to the width and height
you specify. preserveRatio indi-
cates whether the aspect ratio of the
original image should be preserved,
and smooth indicates whether
image smoothing should be applied.
If backgroundLoading is true,
the image is loaded in the background
(that is, on a separate thread).

329 Chapter 16: Using Images and Media

The easiest way to load an image is to do so directly from a file on your local
computer by specifying a file path in the Image constructor. The file path
string should be prefaced by the protocol string file:. For example, the fol-
lowing constructor creates an Image object from a file named pic001.jpg
in the folder C:\Pictures:

Image img = new Image("file:C:\\Pictures\\pic001.jpg");

You can also specify a web location using the http: protocol, as in this
example:

Image img = new Image("http://www.domain.com/pic001.jpg");

Notice in the web example that you don’t have to double the slashes because
HTTP addresses use forward slashes, not backward slashes.

In many cases, you want to load an image from a File object. To do that, use
the File object’s toURI method to get the correct path from the file. Note:
toURI returns an object of type URI; you must then call getString to con-
vert the URI to a string:

File f = new File("C:\\Pictures\\pic001.jpg");
Image img = new Image(f.toURI().toString());

Here, a file is created from the path C:\Pictures\pic001.jpg. Then, an
image is created from the file.

When you create an Image object, you can specify that the image should
be resized by providing the width and height parameters. You’ll also need
to provide two boolean arguments. The first specifies whether you want
JavaFX to preserve the image’s aspect ratio (that is, the ratio of width to
height). If you specify true, the image may contain blank areas above and
below or left and right as needed to preserve the image’s aspect ratio. If you
specify false, the image may be distorted.

The second boolean argument specifies whether you want JavaFX to apply a
smoothing algorithm to improve the clarity of the image. The smoothing pro-
cess makes the image look better, but takes time.

Finally, you can specify an optional third boolean argument that indicates
that you want the image to load in the background. This causes the image
loading process to be spun off to a separate thread so that your main applica-
tion thread can continue without waiting for the image to load.

330 Part IV: Making Your Programs Come Alive

Using the ImageView class
While the Image class holds an image in memory, the ImageView class dis-
plays an image on the screen. ImageView is a subclass of Node, which allows
you to add an image view to the scene graph. The basic constructor accepts
an Image object, like this:

Image img = new Image("file:C:\\Pictures\\pic001.jpg");
ImageView iview1 = new ImageView(img);

Then, you can add the image view to a layout pane and display it in your
scene, just like any other node.

By default, the image view will display the image at full size. More often
than not, you want to constrain the size by calling the setFitWidth and
setFitHeight methods, and you want to call the setPreserveRatio
method to ensure that the aspect ratio of the original image is preserved
when it is resized. For example:

iview1.setFitWidth(200);
iview1.setFitWidth(200);
iview1.setPreserveRatio(true);

Here, the size of the displayed image is 200x200. Figure 16-1 shows how this
image appears when displayed in a scene.

Figure 16-1:
Displaying
an image.

331 Chapter 16: Using Images and Media

 Displaying a single image in two or more image views is perfectly acceptable.
For example:

Image img = new Image("file:C:\\Pictures\\pic001.jpg");
ImageView iview1 = new ImageView(img);
ImageView iview2 = new ImageView(imt);

 Because an image view is a node, you can apply special effects to it, as I
describe in Chapter 14. For example, here’s a snippet of code that loads an
image, places it into two image views, and then applies a motion blur to the
second image view:

Image img = new Image("file:C:\\Pictures\\pic001.jpg");

ImageView iview1 = new ImageView(img);
iview1.setFitWidth(300);
iview1.setFitHeight(300);
iview1.setPreserveRatio(true);

ImageView iview2 = new ImageView(img);
iview2.setFitWidth(300);
iview2.setFitHeight(300);
iview2.setPreserveRatio(true);

MotionBlur blur = new MotionBlur();
blur.setRadius(25);
blur.setAngle(180);
iview2.setEffect(blur);

Figure 16-2 shows how this image appears in the two image views, the second
of which has a motion blur effect.

Figure 16-2:
Applying an
effect to an

image.

332 Part IV: Making Your Programs Come Alive

Viewing an Image example
To show how the elements presented in the preceding two sections work
together, Listing 16-1 shows a complete program that uses the Image and
ImageView class to display all the images contained in a folder named
C:\Pictures on the local file system.

This program uses the Java File class to access the files in the folder. If you
want more information about this class, please see my book, Java All-in-One
For Dummies, 4th Edition (Wiley Publishing, Inc., of course).

Figure 16-3 shows the screen displayed by this program. As you can see, the
name of the folder being accessed is displayed in the window title bar, and
the name of each image is displayed by a Text field beneath each image. The
images are placed in a TilePane so that they are automatically laid out in
rows and columns and scroll bars are displayed as necessary.

Figure 16-3:
The Photo

Viewer
application

in action.

Listing 16-1: The Photo Viewer Application

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.scene.image.*;
import javafx.scene.shape.*;
import javafx.scene.text.*;
import javafx.geometry.*;
import java.io.*;
import java.util.*;

333 Chapter 16: Using Images and Media

public class PhotoViewer extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 private final String PATH = "C:\\Pictures"; →19

 @Override public void start(Stage primaryStage)
 {
 TilePane tile = new TilePane(); →23
 tile.setHgap(20);
 tile.setVgap(20);
 tile.setPadding(new Insets(20));
 tile.setPrefColumns(4);

 File dir = new File(PATH); →29
 File[] files = dir.listFiles(); →30
 for (File f : files) →31
 {
 Image img = new Image(f.toURI().toString(), →33
 200, 200, true, true);

 ImageView iview = new ImageView(img); →36
 iview.setFitWidth(200);
 iview.setFitHeight(200);
 iview.setPreserveRatio(true);

 Text txt = new Text(f.getName()); →41
 txt.setFont(new Font("Times New Roman", 16));

 Region spacer = new Region(); →44

 VBox box = new VBox(10, iview, spacer, txt); →46
 box.setVgrow(spacer, Priority.ALWAYS);
 box.setAlignment(Pos.CENTER);

 tile.getChildren().add(box); →50
 }

 ScrollPane scroll = new ScrollPane(tile); →53
 scroll.setMinWidth(920);
 scroll.setMinHeight(450);

 Scene scene = new Scene(scroll); →57
 primaryStage.setScene(scene);
 primaryStage.setTitle("Photo Viewer - " + PATH);
 primaryStage.show();
 }
}

334 Part IV: Making Your Programs Come Alive

The following paragraphs hit the highlights of this program:

 → 19: The PATH variable is declared here so that the class can access it.

 → 23: A TilePane is created, and its properties initialized. The tile pane
will have a horizontal and vertical gap of 20 pixels and padding of
20 pixels on all four sides. Each row will show four images.

 → 29: Next, a File object is created to access the folder specified in the
PATH variable. For simplicity, no error handling is provided for
the file processing. In an actual program, of course, this section of
code should be enclosed in a try block.

 → 30: A list of the files in the directory is retrieved by the listFiles
method. The list is returned as an array of File objects.

 → 31: A for loop iterates over the list of files in the folder.

 → 33: For each file, an Image object is created. The toURI method
is called to get the path to the file, and the image is resized to
200x200 pixels. Because this loop may process a lot of images,
resizing the images is necessary to conserve memory.

 → 36: An ImageView is then created for the image. Its width and height
are set to 200.

 → 41: A Text object is created to show the filename for the image. The
font is set to 16-point Times New Roman.

 → 44: A Region is created to use as a spacer so that the Text objects
will be aligned properly even if the images in the row are of differ-
ent heights.

 → 46: A VBox is created to hold the image view, spacer, and text nodes.
Note that the vgrow property of the spacer is set to always
expand. This forces the text objects to align across the row.

 → 50: The VBox is added to the TilePane.

 → 53: The TilePane is added to a scroll pane.

 → 57: The ScrollPane is added to the scene, and the scene is dis-
played on the stage.

Playing Audio Files
JavaFX provides built-in support for playing audio files in common formats
such as.mp3, .wav, and .aiff. Video files can be .mp4 or .flv. You only
need to concern yourself with two classes: Media and MediaPlayer, designed
to be analogous to the Image and ImageViewer classes you can read about
earlier in this chapter.

335 Chapter 16: Using Images and Media

Both the Media and MediaPlayer classes are in the package javafx.
scene.media, so you need to add the following import statement to your
program:

import javafx.scene.media.*;

To create a Media object, call the Media class constructor and specify the
URI (Uniform Resource Identifier) to the media file. If you’re accessing a file
from the local file system, the best way to get a valid URI is to first create
a File object using a standard file path for the file. Then, call toURI().
toString() on the File object to get the correct URI. Here’s an example
that assumes the local file path is in the variable named PATH:

File f = new File(PATH);
Media media = new Media(f.toURI().toString());

After you obtain a Media object, you can easily play it by using the
MediaPlayer class:

MediaPlayer mplayer = new MediaPlayer(media);
mplayer.setAutoPlay(true);

Here, the MediaPlayer constructor accepts the Media object as its only
parameter. The setAutoPlay method directs the media player to play the
audio clip as soon as it finishes loading.

 The MediaPlayer class is not a subclass of Node. That means that you can’t
add a media player to the scene graph. If you want to display standard media
controls such as play, stop, and pause buttons, you must manually create
those buttons and use them to manipulate the media player object. The
MediaPlayer has methods named play, pause, and stop to accomplish
this.

Listing 16-2 shows a complete example that loads and plays a media clip
when the user clicks a button. The example assumes that the media clip is
named 574928main_houston_problem.mp3. This is a recording of astro-
naut Jim Lovell saying his famous line, “Houston, we’ve had a problem,”
from the Apollo 13 mission. I chose this audio clip because you can freely
download it from NASA’s website. Just browse to www.nasa.gov/connect/
sounds, scroll down to the Apollo and Mercury section, right-click Apollo 13:
Houston, We’ve Had a Problem, and choose Save Target As. I saved it to the
folder C:\Media. If you save it to a different location or use a different .mp3
file, you have to adjust the PATH variable accordingly.

http://www.nasa.gov/connect/sounds
http://www.nasa.gov/connect/sounds

336 Part IV: Making Your Programs Come Alive

Listing 16-2: Playing an Audio File

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.scene.media.*;
import javafx.geometry.*;
import java.io.*;

public class AudioApp extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 private final String PATH = →17
 "C:\\Media\\574928main_houston_problem.mp3";

 @Override public void start(Stage primaryStage)
 {
 Button btn = new Button("Play Audio"); →22
 btn.setOnAction(e -> playMedia());

 HBox box = new HBox(20, btn); →25
 box.setPadding(new Insets(20));

 Scene scene = new Scene(box); →28
 primaryStage.setScene(scene);
 primaryStage.setTitle("Media Player");
 primaryStage.show();
 }

 private void playMedia() →34
 {
 File f = new File(PATH);
 Media media = new Media(f.toURI().toString());
 MediaPlayer mplayer = new MediaPlayer(media);
 mplayer.setAutoPlay(true);
 }
}

337 Chapter 16: Using Images and Media

The following paragraphs describe the high points of this program:

 → 17: A final variable named PATH specifies the path to the audio file to
be loaded.

 → 22: A button is used to initiate the playing of the media file. The but-
ton’s action event handler calls the playMedia method.

 → 25: The button is added to an HBox.

 → 28: The HBox is added to the scene, and the scene is displayed.

 → 34: The playMedia method loads the audio file into a Media object
and then creates a MediaPlayer to play the sound.

 If your application needs to frequently play short sounds, use the AudioClip
class instead of the Media and MediaPlayer classes for those sounds. The
AudioClip class is designed to quickly load small sound files and then let
you play them at will by calling the play method. Here’s an example that
loads a file whose path is specified by the PATH variable:

AudioClip clip1 = new AudioClip(PATH);

After the clip loads, you can play it at will by calling the play method:

clip1.play();

Playing Video Files
Playing video files is similar to playing audio files, with one crucial difference:
To play a video file, you must first add a MediaView control to the scene
graph. Unlike MediaPlayer, MediaView is a subclass of Node, so you can
manipulate it in the same manner you can manipulate any other node. In
other words, you can control its size and position, and you can even translate
or rotate it or apply special effects.

The MediaView class accepts a MediaPlayer in its constructor. To play a
video file, you first create a Media object that loads the video file. Then, you
create a MediaPlayer object that plays the video. And finally, you use a
MediaView object to visualize the video file.

338 Part IV: Making Your Programs Come Alive

Listing 16-3 shows a simple example that loads and plays a video file that I
downloaded from NASA’s website. I obtained this video file, named Solar_
System_Birth_ipod_sm.mp4, from NASA’s website at www.jwst.nasa.
gov/videos_science.html; just scroll to the bottom of the page and right-
click the mp4 link next to the last video on the page.

Figure 16-4 shows this media clip being played in the media viewer shown by
the program in Listing 16-3.

Figure 16-4:
Playing a
video file.

Listing 16-3: The VideoApp Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.scene.media.*;
import java.io.*;

http://www.jwst.nasa.gov/videos_science.html
http://www.jwst.nasa.gov/videos_science.html

339 Chapter 16: Using Images and Media

public class VideoApp extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 private final String PATH =
 "C:\\Media\\Solar_System_Birth_ipod_sm.mp4";

 @Override public void start(Stage primaryStage)
 {
 File f = new File(PATH);
 Media media = new Media(f.toURI().toString());

 MediaPlayer mplayer = new MediaPlayer(media);
 mplayer.setAutoPlay(true);

 MediaView mview = new MediaView(mplayer);
 mview.setFitWidth(700);
 mview.setFitHeight(500);

 StackPane pane = new StackPane(mview);

 Scene scene = new Scene(pane);
 primaryStage.setScene(scene);
 primaryStage.setTitle("Media Player");
 primaryStage.show();
 }

}

340 Part IV: Making Your Programs Come Alive

Chapter 17

Animating Your Scenes
In This Chapter
▶ Looking at the various ways to create JavaFX animations

▶ Using JavaFX transitions

▶ Using the KeyFrame and Timeline classes

▶ Creating bouncing balls

Y
ou can go a long way toward improving the look and feel of your applica-
tions by applying special effects as described in Chapter 14, incorpo-

rating property bindings to make your controls more responsive, and using
sound and media to provide audio and visual interest. In this chapter, I dis-
cuss how to take your applications one step further by incorporating simple
animation effects. The effects you read about in this chapter make your appli-
cations come alive by enabling objects on the screen to move.

Please don’t get your hopes set on winning an Oscar for Best Animation next
year. No one will be fooled into thinking that you collaborated with Pixar on
your application. Still, you can add some interesting whiz-bang to your appli-
cations using these techniques.

Introducing JavaFX Animation
The basic idea of JavaFX animations is to manipulate the value of one or
more node properties at regular intervals. For example, suppose you have a
circle that represents a ball and you want to move it from the left side of the
screen to the right. Assuming the width of the screen is 600 pixels, you’d ani-
mate the circle by varying its posX property from 0 to 600.

Two factors will affect how fast the ball moves across the screen: the amount
of time that elapses between each change to the posX property, and the
increment you add to the posX property at each time interval. For example, if

342 Part IV: Making Your Programs Come Alive

you add 3 to the posX property at each time interval, it will take 200 intervals
to get to 600 (3 x 200 = 600). If the intervals occur every 10 milliseconds (100
times per second), it will take 2,000 milliseconds — 2 full seconds — for the
ball to traverse the screen from left to right.

Without JavaFX animations, you could implement the moving ball by using
the Java Timer object to move the ball at regular intervals. The Timer class
can be difficult to set up and use correctly. The JavaFX animation classes
make animating your nodes a much simpler proposition.

JavaFX provides two basic ways to create animations, which I refer to in this
chapter using extremely technical terms — the hard way and the easy way:

 ✓ The hard way requires that you set up timer events manually, and then
write event listeners that are called when the timer events occur. In the
event listeners, you manipulate the properties of the nodes you want
to animate. For example, to move a ball across the screen, you’d set
up a timer interval that ticks every 10 milliseconds. At each tick, you’d
increase the x position of the ball by 3. You’d then set the timer to run
a total of 200 times to move the ball. Setting up this animation requires
that you use two classes: Timeline and KeyFrame, and that you write
an ActionEvent listener to move the ball.

 ✓ The easy way takes advantage of shortcut classes provided by JavaFX
to easily implement common types of animations. For example, you
can use the TranslateTransition class to easily move a circle from
one side of the screen to the other over a specified period of time. You
just set up a TranslateTransition specifying that you want to vary
the ball’s x position from 0 to 600 over the course of 2 seconds. The
TranslateTransition class will take care of the details.

In the remainder of this chapter, you discover both the easy way and the
hard way. I start with the easy way.

Using Transition Classes
JavaFX comes with eight predefined animation effects — dubbed transition
classes — that you can use to easily create an animation on most any node in
your scene graph. (Most of the transitions will work with any node, but some
will work only on shapes.) The eight transition types are

343 Chapter 17: Animating Your Scenes

 ✓ FadeTransition: Varies the opacity value of any node. You can use
this transition to fade an object in or out. Or, you can use it to make an
object “wink” by quickly fading it out and then back in. You can also use
it to create a flashing light that repeatedly fades in and then out.

 ✓ FillTransition: Varies the color of a shape’s fill from a starting color
to an ending color. For example, you can make a circle change from red
to green.

 ✓ PathTranslation: Causes a shape to move along a predefined path.
You can use any shape for the path.

 ✓ PauseTransition: This handy transition simply pauses for a moment;
it’s often used between two transitions to cause a break in the action.

 ✓ RotateTransition: Causes a node to rotate.

 ✓ ScaleTransition: Causes an object to increase or decrease in size.

 ✓ StrokeTransition: Varies the color used for a shape’s outline stroke.

 ✓ TranslateTransition: Moves a node by translating it from one loca-
tion to another.

These eight transition classes are all subclasses of the Transition class,
which is in turn a subclass of the Animation class. Table 17-1 lists the meth-
ods that are defined by the Transition and Animation classes, and are
therefore available to all transition classes.

Table 17-1 Methods of the Transition and Animation Classes
Method Explanation
void play() Plays the animation from its current

position.

void playFromStart() Plays the animation from the start.

void pause() Temporarily suspends the animation.
You can start it again by calling play.

void stop() Stops the animation.
void setCycleCount(int
value)

Sets the number of times the ani-
mation should repeat. To repeat
the animation an indefinite number
of times, specify Animation.
INDEFINITE.

(continued)

344 Part IV: Making Your Programs Come Alive

Method Explanation
setAutoReverse(boolean
value)

If true, the animation reverses
direction each time the cycle is
repeated.

setInterpolator(Interpolator
value)

Determines the method used to cal-
culate the intermediate values of the
property controlled by the transition.
The possible values are
Interpolator.DISCRETE
Interpolator.LINEAR
Interpolator.EASE_IN
Interpolator.EASE_OUT
Interpolator.EASE_BOTH
The default setting is EASE_BOTH.

Most of the methods in Table 17-1 are straightforward, but the setInter-
polator method merits a bit of explanation. The interpolator is the method
used to calculate the intermediate values of the property being controlled by
the transition. For example, in a FadeTransition, the interpolator deter-
mines how the value of the node’s opacity is varied during the time that the
animation is running; for a TranslateTransition, the interpolator deter-
mines how the x- and y-coordinates change during the animation.

The default interpolator setting is Interpolator.EASE_BOTH, which
means that the change begins slowly, then speeds up though the middle of
the animation, then slows down again just before the animation ends. For
a TranslateTransition, this causes the movement of the node to start
slowly, speed up, and then slow down toward the end.

The EASE_IN interpolator speeds up at the beginning but ends abruptly,
while the EASE_OUT interpolator starts abruptly but slows down at the end.
The LINEAR interpolator varies the property controlled by the transition at
a constant rate throughout the animation. And the DISCRETE interpolator
doesn’t change the property value at all until the end of the animation has
been reached; then, it immediately changes to the ending value.

Table 17-2 lists the most commonly used constructors and methods for each
of the transition types.

Table 17-1 (continued)

345 Chapter 17: Animating Your Scenes

Table 17-2 Transition Classes
FadeTransition Explanation
FadeTransition(Duration
duration, Node node)

Creates a fade transition of the
given duration for the specified
node.

void setFromValue(Double
value)

Sets the starting opacity for the fade
transition.

void setToValue(Double
value)

Sets the ending opacity for the fade
transition.

void setByValue(Double
value)

If the ending opacity is not speci-
fied, this value is added to the start-
ing value to determine the ending
value.

FillTransition Explanation
FillTransition(Duration
duration, Shape shape)

Creates a fill transition of the given
duration for the specified shape.

void setFromValue(Color
value)

Sets the starting color for the fade
transition.

void setToValue(Color value) Sets the ending color for the fade
transition.

PathTransition Explanation
PathTransition(Duration
duration, Shape path, Shape
shape)

Creates a path transition of the
given duration. The path translation
causes the specified shape to travel
along the specified path.

void setFromValue(Color
value)

Sets the starting color for the fade
transition.

void setToValue(Color value) Sets the ending color for the fade
transition.

PauseTransition Explanation
PauseTransition(Duration
duration)

Causes a delay of the specified
duration.

RotateTransition Explanation
RotateTransition(Duration
duration, Node node)

Creates a rotate transition of the
given duration on the specified
node.

void setFromAngle(Double
value)

Sets the starting angle for the
rotation.

(continued)

346 Part IV: Making Your Programs Come Alive

void setToAngle(Double
value)

Sets the ending angle for the
rotation.

void setByAngle(Double
value)

If the ending angle is not specified,
this value is added to the start-
ing angle to determine the ending
angle.

ScaleTransition Explanation
ScaleTransition(Duration
duration, Node node)

Creates a scale transition of the
given duration on the specified
node.

void setFromX(Double value) Sets the starting scale for the
x-axis.

void setFromY(Double value) Sets the starting scale for the
y-axis.

void setFromZ(Double value) Sets the starting scale for the z-axis.

void setToX(Double value) Sets the ending scale for the x-axis.

void setToY(Double value) Sets the ending scale for the y-axis.

void setToZ(Double value) Sets the ending scale for the z-axis.

void setByX(Double value) Sets the increment scale for the
x-axis.

void setByY(Double value) Sets the increment scale for the
y-axis.

void setByZ(Double value) Sets the increment scale for the
z-axis.

StrokeTransition Explanation
StrokeTransition(Duration
duration, Shape shape)

Creates a stroke transition of the
given duration for the specified
shape.

void setFromValue(Color
value)

Sets the starting color for the stroke
transition.

void setToValue(Color value) Sets the ending color for the stroke
transition.

Table 17-2 (continued)
RotateTransition Explanation

347 Chapter 17: Animating Your Scenes

TranslateTransition Explanation
TranslateTransition(Duration
duration, Node node)

Creates a translate transition of
the given duration on the specified
node.

void setFromX(Double value) Sets the starting point for the x-axis.

void setFromY(Double value) Sets the starting point for the y-axis.

void setFromZ(Double value) Sets the starting point for the z-axis.

void setToX(Double value) Sets the ending point for the x-axis.

void setToY(Double value) Sets the ending point for the y-axis.

void setToZ(Double value) Sets the ending point for the z-axis.

void setByX(Double value) Sets the increment point for the
x-axis.

void setByY(Double value) Sets the increment point for the
y-axis.

void setByZ(Double value) Sets the increment point for the
z-axis.

Setting properties by, from, or to?
The setFrom, setTo, and setBy methods
that appear in several of the transition classes
listed in Table 17-2 deserve a little explanation.

By default, both the start and end values of
a transition are the node’s current values
for the property being animated. Thus, the
default starting and ending locations for a
TranslateTransition are the node’s
current x and y positions.

Here are several ways to specify a different
starting value, ending value, or both:

 ✓ Let the node’s current values stand as the
starting values and specify a new ending
value by using the setTo methods.

 ✓ Let the node’s current values stand as the
starting values and specify a displacement
to the ending value by using a setBy

method. The value you specify in the
setBy method will be added to the start-
ing value to determine the ending value.

 ✓ Use the setFrom location to change the
starting location from the node’s current
value. Then, omit both the setTo and
setBy values to let the node’s current
value be the ending value.

 ✓ Use the setFrom location to change the
starting location from the node’s current
value and use setTo to set the ending
value.

 ✓ Use the setFrom location to change the
starting location from the node’s current
value and use setBy to set a displacement
value that will be added to the starting loca-
tion to determine the ending location.

348 Part IV: Making Your Programs Come Alive

Looking at a Transition Example
The nine transitions listed in Table 17-2 all work essentially the same. To use
any of them, you simply create the transition by calling its constructor and
specifying the duration of the transition and the node you want animated.
Then, if necessary, you call additional methods to set the transition param-
eters. Finally, you call the play method to start the animation.

The following example shows a transition that moves a circle named c from
the top-left corner of the scene to location 300, 300:

TranslateTransition t = new TranslateTransition(
 Duration.millis(2000), c);
t.setFromX(0);
t.setFromY(0);
t.setToX(300);
t.setToY(300);
t.play();

Here, the duration of the animation is set to 2 seconds (2,000 milliseconds).

Listing 17-1 shows how this transition can be incorporated into a complete
program. As you can see, the program is short. It simply displays a red ball
at the left edge of the scene and then moves the ball to the right edge of the
scene. The transition’s cycle count is set to indefinite, and the autoreverse
setting is set to true. As a result, the animation repeats itself indefinitely,
giving the appearance that the ball is bouncing back and forth between the
right and left edges of the screen.

Listing 17-1: The BouncingBall Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;
import javafx.animation.*;
import javafx.util.*;

public class BouncingBall extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

349 Chapter 17: Animating Your Scenes

 @Override public void start(Stage primaryStage)
 {

 RadialGradient g = new RadialGradient(➝20
 0, 0,
 0.35, 0.35,
 0.5,
 true,
 CycleMethod.NO_CYCLE,
 new Stop(0.0, Color.WHITE),
 new Stop(1.0, Color.RED));

 Circle ball = new Circle(0,0,20); ➝29
 ball.setFill(g);

 Group root = new Group(); ➝32
 root.getChildren().add(ball);
 Scene scene = new Scene(root, 600, 600);
 primaryStage.setScene(scene);
 primaryStage.setTitle("Bouncing Ball");
 primaryStage.show();

 TranslateTransition t = new TranslateTransition(➝39
 Duration.millis(2000), ball);
 t.setFromX(ball.getRadius()); ➝41
 t.setToX(scene.getWidth() - ball.getRadius()); ➝42
 t.setFromY(scene.getHeight() / 2); ➝43
 t.setToY(scene.getHeight() / 2);
 t.setCycleCount(Transition.INDEFINITE); ➝45
 t.setAutoReverse(true); ➝46
 t.setInterpolator(Interpolator.LINEAR); ➝47
 t.play(); ➝48
 }

}

The following paragraphs highlight the key points in this program:

 ➝ 20: A radial gradient is created to give the ball a three-dimensional
appearance.

 ➝ 29: The circle is created. Its radius is 20 pixels, and its fill is the gradi-
ent created in line 20.

 ➝ 32: A group object is created to serve as the root node for the scene.
Then, the ball is added to the group and the group is used to
create and display a scene.

350 Part IV: Making Your Programs Come Alive

 ➝ 39: A TranslateTransition is created to translate the ball. The
duration is set to 2 seconds.

 ➝ 41: The fromX property is set to the radius of the ball. That positions
the ball with its left edge on the left edge of the scene.

 ➝ 42: The toX property is set to the width of the screen less the radius
of the ball. This positions the ball at the right edge of the screen at
the end of the animation cycle.

 ➝ 43: The fromY and toY properties are set to half the height of the
scene. That way, the ball will travel along a horizontal path cen-
tered vertically in the scene.

 ➝ 45: The cycle count is set to INDEFINITE so the ball will bounce
forever.

 ➝ 46: AutoReverse is set to true so that each cycle will reverse the
direction of the ball’s travel.

 ➝ 47: The interpolator is set to linear so that the ball does not slow
down at as it approaches the edges of the scene.

 ➝ 48: Play!

Figure 17-1 shows the Bouncing Ball program in action.

Figure 17-1:
The

Bouncing
Ball pro-
gram in
action.

351 Chapter 17: Animating Your Scenes

Combining Transitions
JavaFX provides two transition classes that are designed to let you combine
transitions so that two or more transitions run one after the other or at the
same time. The SequentialTransition class lets you run several transi-
tions one after the other, whereas the ParallelTransition class lets you
run several transitions at once.

Both classes have simple constructors that accept a list of transitions as
arguments and a play method that lets you start the animations. For exam-
ple, if you have three transitions named t1, t2, and t3 already created, you
can run them in sequence like this:

SequentialTransition s =
 new SequentialTransition(t1, t2, t3)
s.play();

When the play method is called, transition t1 will run until completion and
then transition t2 will run. When t2 finishes, transition t3 will be run.

To run all three transitions simultaneously, use the ParallelTransition
class instead:

ParallelTransition p =
 new ParallelTransition(t1, t2, t3)
p.play();

If you prefer, you can add animations after the constructor has been called by
using the getChildren method. For example:

ParallelTransition p = new ParallelTransition()
p.getChildren().add(t1);
p.getChildren().add(t2);
p.getChildren().add(t3);
p.play();

Or:

ParallelTransition p = new ParallelTransition()
p.getChildren().addAll(t1, t2, t3);
p.play();

Note: An animation added to a SequentialTransition or Parallel
Transition can itself be a SequentialTransition or a Parallel
Transition. For example, suppose you have three transitions that animate
one node (t1, t2, and t3) and a fourth transition that animates a second
node (t4) and you want to run t1, t2, and t3 in sequence while t4 runs at
the same time as the sequence. Here’s how you can achieve that:

352 Part IV: Making Your Programs Come Alive

SequentialTransition s =
 new SequentialTransition(t1, t2, t3)
ParallelTransition p = new ParallelTransition(s, t4);
p.play();

To illustrate how transitions can be combined into a complete program,
Listing 17-2 shows a variation of the BouncingBall program that was pre-
sented in Listing 17-1.

Listing 17-2: The TwoBouncingBalls Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.layout.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;
import javafx.animation.*;
import javafx.util.*;

public class TwoBouncingBalls extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 @Override public void start(Stage primaryStage)
 {

 RadialGradient g = new RadialGradient(
 0, 0,
 0.35, 0.35,
 0.5,
 true,
 CycleMethod.NO_CYCLE,
 new Stop(0.0, Color.WHITE),
 new Stop(1.0, Color.RED));

 Circle ball1 = new Circle(0,0,20);
 ball1.setFill(g);

 Circle ball2 = new Circle(0,0,20);
 ball2.setFill(g);

353 Chapter 17: Animating Your Scenes

 Group root = new Group();
 root.getChildren().addAll(ball1, ball2);

 Scene scene = new Scene(root, 600, 600);
 primaryStage.setScene(scene);
 primaryStage.setTitle("Two Bouncing Balls");
 primaryStage.show();

 // Bounce ball 1
 TranslateTransition t1 = new TranslateTransition(
 Duration.millis(2000), ball1);
 t1.setFromX(ball1.getRadius());
 t1.setToX(scene.getWidth() - ball1.getRadius());
 t1.setFromY(scene.getHeight() / 3);
 t1.setToY(scene.getHeight() / 3);
 t1.setCycleCount(Transition.INDEFINITE);
 t1.setAutoReverse(true);
 t1.setInterpolator(Interpolator.LINEAR);

 // Bounce ball 2
 TranslateTransition t2 = new TranslateTransition(
 Duration.millis(2000), ball2);
 t2.setFromX(scene.getWidth() - ball2.getRadius());
 t2.setToX(ball2.getRadius());
 t2.setFromY(scene.getHeight() / 3 * 2);
 t2.setToY(scene.getHeight() / 3 * 2);
 t2.setCycleCount(Transition.INDEFINITE);
 t2.setAutoReverse(true);
 t2.setInterpolator(Interpolator.LINEAR);

 // Bounce both balls at the same time
 ParallelTransition pt = new ParallelTransition(t1, t2);
 pt.play();
 }

}

This version of the program animates two balls traveling in opposite direc-
tions. A transition is created on the first ball to bounce it from left to right
one third of the way down the scene. A transition is created for the second
ball to animate it in the opposite direction two thirds of the way down the
scene. Then, a ParallelTransition is used to animate both balls at the
same time. Figure 17-2 shows the program in action.

354 Part IV: Making Your Programs Come Alive

Figure 17-2:
Bouncing
two balls.

Animating the Hard Way
Now that you’ve seen the easy way to create animations (using transition
classes), it’s time to have a look at the more difficult way. Of course, as you
might envision, the more difficult way is also the more flexible way.

For example, the bouncing balls shown in Listings 17-1 and 17-2 are interest-
ing but not very practical, as they bounce back in forth in a strictly horizontal
direction. If you wanted to use these balls to create a game, you’d want them
to bounce around at angles, bouncing off all four edges of the scene. And
you’d want them to bounce off each other as well. To achieve that, you need
to work with two advanced animation classes: KeyFrame and TimeLine:

 ✓ KeyFrame: A KeyFrame is a timing interval that raises an ActionEvent
when the time interval has expired.

 When you create a KeyFrame, you specify the duration of the time inter-
val and provide an ActionEvent listener. Then, in the action listener,
you provide the code that implements your animation. In the case of this
bouncing ball program, the action event will examine each ball that’s in
motion and calculate the next position for each ball, taking into account
the effect of balls bouncing off the edges of the scene or bouncing off
each other.

355 Chapter 17: Animating Your Scenes

 ✓ Timeline: A Timeline is a sequence of KeyFrames.

 When you call the TimeLine’s play method, each KeyFrame is executed
in sequence. A Timeline also has a cycleCount property, which
indicates how many times the timeline should be repeated, and play,
pause, and stop methods that control the execution of the timeline.
You can set the cycle count to INDEFINATE to continue the animation
indefinitely.

To create a KeyFrame, call the KeyFrame constructor with two arguments:
the duration of the keyframe (usually in milliseconds) and the ActionEvent
listener that will be called when the timer expires. Here’s an example that
uses a Lambda expression to define a simple listener:

 KeyFrame k = new KeyFrame(Duration.millis(10),
 e ->
 {
 // Action event listener code goes here
 });

To add this KeyFrame to a Timeline and run the animation, use this code:

Timeline t = new Timeline(k);
t.setCycleCount(Timeline.INDEFINITE);
t.play();

Listing 17-3 shows a program that uses the KeyFrame and Timeline classes
to send a ball bouncing off all four of the edges of a scene.

Listing 17-3: The Hard BouncingBall Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.event.*;
import javafx.scene.layout.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;
import javafx.animation.*;
import javafx.util.*;

public class HardBouncingBall extends Application {

 public static void main(String[] args)
 {
 launch(args);
 }

(continued)

356 Part IV: Making Your Programs Come Alive

 private Circle ball; ➝18
 private double x_speed = 2;
 private double y_speed = 3;
 final private int WIDTH = 600;
 final private int HEIGHT = 500;
 final private int BALL_SIZE = 20;

 @Override public void start(final Stage primaryStage)
 {
 Group root = new Group();

 RadialGradient g = new RadialGradient(➝29
 0, 0,
 0.35, 0.35,
 0.5,
 true,
 CycleMethod.NO_CYCLE,
 new Stop(0.0, Color.WHITE),
 new Stop(1.0, Color.RED));

 ball = new Circle(BALL_SIZE, g); ➝38
 ball.setCenterX(BALL_SIZE);
 ball.setCenterY(BALL_SIZE);

 root.getChildren().addAll(ball); ➝42
 Scene scene = new Scene(root, WIDTH, HEIGHT);
 primaryStage.setTitle("Bouncing Ball");
 primaryStage.setScene(scene);
 primaryStage.show();

 KeyFrame k = new KeyFrame(Duration.millis(10), ➝48
 e ->
 {
 ball.setCenterX(ball.getCenterX() + x_speed); ➝51
 ball.setCenterY(ball.getCenterY() + y_speed);

 if (ball.getCenterX() <= BALL_SIZE || ➝54
 ball.getCenterX() >= WIDTH - BALL_SIZE)
 x_speed = -x_speed;

 if (ball.getCenterY() <= BALL_SIZE || ➝58
 ball.getCenterY() >= HEIGHT - BALL_SIZE)
 y_speed = -y_speed;
 });

 Timeline t = new Timeline(k); ➝63
 t.setCycleCount(Timeline.INDEFINITE);
 t.play();
 }

}

Listing 17-3 (continued)

357 Chapter 17: Animating Your Scenes

The following paragraphs draw attention to the key points in this program:

 ➝ 18: These class variables are used within the ActionEvent handler.

 ➝ 29: The gradient that will be used to fill the ball is created here.

 ➝ 38: The ball is created. The initial x- and y-coordinates place the ball
at the top-left corner of the scene.

 ➝ 42: The scene is set and the stage is displayed.

 ➝ 48: A KeyFrame is created with a timing duration of 10 milliseconds.
A Lambda expression is used to create the event listener.

 ➝ 51: Within the event listener, the ball is moved by adding the current
x_speed and y_speed values to the center x and y positions of
the ball.

 ➝ 54: Next, the ball’s x position is checked against the left and right
edges of the scene. If the ball is at the edge, the x_speed value is
inverted so that the ball will travel in the opposite x direction.

 ➝ 58: Similarly, the ball’s y position is checked against the top and
bottom edges of the scene. If the ball is at the edge, the y_speed
value is inverted.

 ➝ 63: A Timeline is created using the KeyFrame. The cycle count is
set to INDEFINITE, and the play method is called to start the
ball moving.

Figure 17-3 shows the bouncing ball in action.

Figure 17-3:
A ball that

bounces
off all four

edges of the
scene.

358 Part IV: Making Your Programs Come Alive

Improving the Ball Bouncer
The program shown in Listing 17-3 is finally beginning to resemble something
that might be useful in a game program. With a little more programming
effort, you can convert this program into something resembling the classic
Pong game.

But to be more useful, the ball bouncing program needs to support more than
one ball at a time within the scene. And after you add a second ball, the pro-
gram should provide for the balls bouncing not only off the walls, but also off
each other. Figure 17-4 shows a program that does just that. Here, a total of
ten balls are flying around within the crowded scene. The balls bounce off the
walls and each other.

Figure 17-4:
Lots of

bouncing
balls!

To implement this program, I created a separate class named Ball that
extends the Circle class. The Ball class provides the following features:

 ✓ You specify the radius of the ball via the constructor. The ball is
filled automatically with a red gradient to give it a three-dimensional
appearance.

 ✓ You also specify the width and height of the bouncing area in the con-
structor. The ball is given an initial random position within this area,
and automatically travels at a random speed within this specified area,
bouncing off the edges when they’re encountered.

359 Chapter 17: Animating Your Scenes

 ✓ In addition, you pass an ArrayList of other balls to the constructor. As
the ball moves, it automatically bounces off any other balls in this list
that the ball happens to collide with. When balls collide, they trade their
x and y speeds.

 ✓ The Ball class provides a move method that should be called from the
animation KeyFrame action listener.

Listing 17-4 shows the complete code for the program, which includes the
Ball class.

Listing 17-4: The ManyBalls Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.event.*;
import javafx.scene.layout.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;
import javafx.animation.*;
import javafx.util.*;
import java.util.*;

public class ManyBalls extends Application {

 public static void main(String[] args)
 {
 launch(args);
 }

 final private int WIDTH = 600;
 final private int HEIGHT = 500;
 final private int BALL_SIZE = 20;

 private ArrayList<Ball> balls = new ArrayList<Ball>(); ➝23

 @Override public void start(final Stage primaryStage)
 {
 Group root = new Group();

 for (int i = 0; i < 10; i++) ➝29
 balls.add(new Ball(BALL_SIZE, WIDTH, HEIGHT, balls));

 root.getChildren().addAll(balls); ➝34

 Scene scene = new Scene(root, WIDTH, HEIGHT); ➝36
 primaryStage.setTitle("Lots of Bouncing Balls");
 primaryStage.setScene(scene);
 primaryStage.show();

(continued)

360 Part IV: Making Your Programs Come Alive

 KeyFrame k = new KeyFrame(Duration.millis(10), ➝41
 e ->
 {
 for (Ball ball : balls)
 ball.move();
 });

 Timeline t = new Timeline(k); ➝48
 t.setCycleCount(Timeline.INDEFINITE);
 t.play();
 }

 public class Ball extends Circle ➝53
 {
 public double x_speed; ➝55
 public double y_speed;
 public double radius;
 private double fieldWidth;
 private double fieldHeight;

 public Ball(double radius, ➝61
 double fieldWidth,
 double fieldHeight,
 ArrayList<Ball> balls)
 {
 super(); ➝66

 this.radius = radius; ➝68
 this.fieldWidth = fieldWidth;
 this.fieldHeight = fieldHeight;

 super.setRadius(radius); ➝72

 super.setCenterX(➝74
 Math.random() * (fieldWidth - this.radius) + 1);
 super.setCenterY(
 Math.random() * (fieldHeight - this.radius) + 1);
 this.x_speed = Math.random() * 5 + 1;
 this.y_speed = Math.random() * 5 + 1;

 RadialGradient g = new RadialGradient(➝81
 0, 0,
 0.35, 0.35,
 0.5,
 true,
 CycleMethod.NO_CYCLE,
 new Stop(0.0, Color.WHITE),
 new Stop(1.0, Color.RED));
 super.setFill(g);
 }

Listing 17-4 (continued)

361 Chapter 17: Animating Your Scenes

 public void move() ➝92
 {
 super.setCenterX(super.getCenterX() + this.x_speed);
 super.setCenterY(super.getCenterY() + this.y_speed);

 // Detect collision with left edge ➝97
 if (super.getCenterX() <= this.radius)
 {
 super.setCenterX(this.radius);
 this.x_speed = -this.x_speed;
 }

 // Detect collision with right edge ➝104
 if (super.getCenterX() >= this.fieldWidth - this.radius)
 {
 super.setCenterX(this.fieldWidth - this.radius);
 this.x_speed = -this.x_speed;
 }

 // Detect collision with top edge ➝111
 if (super.getCenterY() <= this.radius)
 {
 super.setCenterY(this.radius);
 this.y_speed = -this.y_speed;
 }

 // Detect collision with bottom edge ➝118
 if (super.getCenterY() >= this.fieldHeight - this.radius)
 {
 super.setCenterY(this.fieldHeight - this.radius);
 this.y_speed = -this.y_speed;
 }

 // Detect collision with other balls ➝125
 for (Ball b : balls)
 {
 if (b != this &&
 b.intersects(super.getLayoutBounds()))
 {
 double tempx = this.x_speed; ➝131
 double tempy = this.y_speed;
 this.x_speed = b.x_speed;
 this.y_speed = b.y_speed;
 b.x_speed = tempx;
 b.y_speed = tempy;
 break; ➝137
 }
 }
 }
 }
}

362 Part IV: Making Your Programs Come Alive

The following paragraphs explain the key points of this program:

 ➝ 23: An ArrayList named balls is used to hold the balls that will be
animated by this program.

 ➝ 29: A for loop creates ten Ball objects and adds them to the array
list. The constructor for the Ball objects passes the ball size, the
width and height of the scene, and the balls array list.

 ➝ 34: The balls array list is added to the scene root.

 ➝ 36: The root is added to the scene, and the scene is displayed.

 ➝ 41: A KeyFrame is created with an interval of 10 milliseconds. The
action listener is very simple: It simply calls the move method for
every Ball in the balls collection.

 ➝ 48: A Timeline is created using the KeyFrame created in line 41.
Then, the timeline is played to set the balls in motion.

 ➝ 53: The Ball class extends the Circle class.

 ➝ 55: Class fields are used to hold the internal values for the x and y
speeds, the circle radius, and the playing field’s width and height.

 ➝ 61: The constructor accepts four parameters: the radius, the playing
field width and height, and an array list containing other Ball
objects that should be checked for collisions.

 ➝ 66: The Ball constructor starts by calling the super constructor to
create the Circle object from which this ball will be extended.

 ➝ 68: The radius, width, and height class variables are initialized from
the values passed into the constructor.

 ➝ 72: The radius of the circle is set to match the radius passed to the
constructor.

 ➝ 74: The center x and y positions as well as the x and y speed fields
are set to random values.

 ➝ 81: The gradient fill is created.

 ➝ 92: The move method begins by adding the x and y speed fields to the
circle’s center x and y positions.

 ➝ 97: An if statement is used to detect a collision with the left edge. If
the left edge collision occurs, the position of the ball is adjusted
to bring it back within the playing field and the x speed is inverted
so that the ball will change directions. The reason for reposition-
ing the ball is that, depending on the previous position and the
speed of the ball, the ball may have actually crossed outside the
playing field.

363 Chapter 17: Animating Your Scenes

 ➝ 104: Another if statement checks for a collision with the right edge.

 ➝ 111: And the top edge.

 ➝ 118: And the bottom edge.

 ➝ 125: Now it gets interesting. These lines check for collisions with other
balls in the balls array. A for loop iterates over all the balls in
the array list. The if statement first eliminates the current ball
by checking if b != this. After all, a ball can’t really collide with
itself.

 Next, the if statement checks to see whether the current ball
has collided with any other ball. It does this by calling the
intersects method, which is defined by the Shape class. This
method accepts a Bounds object that represents the bounding
rectangle within which a shape fits. You can get the bounding rect-
angle by calling the shape’s getLayoutBounds method. Thus,
this test works by checking whether a ball in the balls collection
intersects with the bounding rectangle of the current ball. Note:
This collision test isn’t perfect; it sometimes treats near misses as
collisions. But it’s close enough.

 ➝ 131: If a collision is detected, the x and y speed values of the two balls
are swapped. Not only do the balls bounce away from each other,
but also the slower ball picks up speed and the faster ball slows
down.

 ➝ 137: A break statement is executed if a collision is detected to prevent
detecting collisions with more than one ball. Without this break
statement, collisions that involve more than two balls usually
result in pretty strange behavior. Try removing the break state-
ment to see what happens. (Even with this break statement, the
balls sometimes behave in unexpected ways. I think it’s kind of fun
to watch, but then again, I’m pretty easily entertained.)

364 Part IV: Making Your Programs Come Alive

Chapter 18

Targeting Touch Devices
In This Chapter
▶ Discovering gestures on touch devices

▶ Adding listeners that respond to gesture events

▶ Creating a program that lets the user manipulate a shape with gestures

T
ouch devices are everywhere nowadays. Tablets and smartphones are
the most common types of touch devices, but even some desktop users

have installed touch-capable monitors. At one time, touch devices ran pri-
marily non-Microsoft operating systems, such as Apple’s iOS or Google’s
Android. But now, with Windows 8, many touch devices even run Windows.

Fortunately, JavaFX can run on all those platforms. In this chapter, you dis-
cover how to develop JavaFX applications that take advantage of the unique
user interactions that are possible with touch devices, including basic touch
and swiping and scrolling as well as multi-touch gestures such as zooming
and rotating.

Introducing Gestures and Touch Events
Before I get into the details of working with gestures and touch events, I want
to point out that the support for basic touch devices for JavaFX controls is
already built-in and requires no programming to enable. For example, Button
controls respond to taps on a touch device just as they respond to mouse
clicks. So no special programming is needed to enable the basic operation of
JavaFX controls on a touch device.

The good news is that the programming required to handle more advanced
touch gestures, such as zooming or rotating, is pretty straightforward. JavaFX
handles the difficult tasks of figuring out what gestures the user is making
when he touches the screen. For example, when JavaFX sees that the user
has touched the screen with two fingers and then rotated the fingers in

366 Part IV: Making Your Programs Come Alive

opposite directions, the user is attempting to rotate an object on the screen.
JavaFX figures out which object is the target of the rotation, figures out how
much the user has rotated the object, and then sends a ROTATE event to the
target. All you have to do is provide an event listener for the ROTATE event.

 Actually, when the user does a rotate gesture, JavaFX will likely send dozens of
separate ROTATE events to the target of the rotation. Each of those events rep-
resents an incremental step along the way to the complete rotation. Your pro-
gram will respond to those events by rotating the target object by the amount
indicated by the ROTATE event; the result will be that the object smoothly fol-
lows the user’s fingers as the user continues the rotation gesture.

JavaFX provides event handling for four distinct types of touch gestures:

 ✓ Rotate: A rotate gesture is recognized when the user places two fingers
on the screen and rotates them in opposite directions. Three distinct
events are generated when a rotate gesture is recognized:

 • ROTATE_STARTED: This event occurs once, as soon as the rotation
gesture is recognized.

 • ROTATE: This event can occur multiple times throughout the rota-
tion gesture. It is usually the event you’ll want to handle.

 • ROTATE_FINISHED: This event occurs once, after the end of the
rotation gesture is recognized.

 All rotation events are represented by a RotateEvent object, which
defines two key methods:

 • getAngle: Returns the angle of rotation for this particular event.

 • getTotalAngle: Returns the cumulative angle for the entire rota-
tion gesture.

 ✓ Zoom: A zoom gesture is recognized when the user places two fingers on
the screen and then spreads them apart or brings them together. As with
rotate gestures, zoom gestures create three types of events:

 • ZOOM_STARTED: This event occurs when the zoom gesture begins.

 • ZOOM: This event occurs multiple times throughout the zoom gesture.

 • ZOOM_FINISHED: This event occurs when the zoom gesture ends.

 Zoom events are defined by the ZoomEvent class, which has two impor-
tant methods:

 • getZoomFactor: Returns the amount of the zoom for this particu-
lar event.

 • getTotalZoomFactor: Returns the accumulated zoom factor for
the entire zoom gesture.

367 Chapter 18: Targeting Touch Devices

 The zoom factor is a multiplier you can use to determine the new size
of the zoomed object. For example, if the user doubles the size of the
target object, the zoom factor will be 2.0.

 ✓ Scroll: A scroll gesture is recognized when the user places one finger on
the screen and drags it to another location. Once again, three types of
events are generated for scroll gestures:

 • SCROLL_STARTED: Occurs at the start of the scroll gesture.

 • SCROLL: Occurs multiple times throughout the scroll gesture.

 • SCROLL_FINISHED: Occurs when the scroll gesture ends.

 Scroll events are represented by the ScrollEvent class, which pro-
vides several methods to retrieve the scroll amount:

 • getDeltaX: Returns the horizontal change for this scroll event.

 • getDeltaY: Returns the vertical change for this scroll event.

 • getTotalDeltaX: Returns the total horizontal change for this
scroll gesture.

 • getTotalDeltaY: Returns the total vertical change for this scroll
gesture.

 ✓ Swipe: A swipe gesture is recognized when the user places one finger
on the screen and quickly swipes it either horizontally or vertically.
Unlike the other gestures, swipe gestures do not generate events to
 indicate the start and end of the gesture. Instead, one of the following
events is generated to indicate the direction of the swipe:

 • SWIPE_LEFT

 • SWIPE_RIGHT

 • SWIPE_UP

 • SWIPE_DOWN

 Swipe events are represented by the SwipeEvent class.

 Swipe events and scroll events are difficult to distinguish because a swipe
is simply a fast scroll in either a horizontal or vertical direction. Thus,
when the user performs a swipe gesture, scroll events are generated in
addition to the swipe event.

368 Part IV: Making Your Programs Come Alive

Listening for Gestures
You can install a listener for any gesture on any node object by calling one of
the methods listed in Table 18-1. As with all JavaFX events, these events use
functional interfaces, so you can easily implement the event listeners with
Lambda expressions.

Table 18-1 Node Methods for Installing Gesture Event Listeners
Method Explanation
void setOnRotate(Rotate
Event listener)

Creates a listener for the ROTATE
event.

void setOnRotateStarted
(RotateEvent listener)

Creates a listener for the ROTATE_
STARTED event.

void setOnRotateFinished
(RotateEvent listener)

Creates a listener for the ROTATE_
FINISHED event.

void setOnZoom(ZoomEvent
listener)

Creates a listener for the ZOOM event.

void setOnZoomStarted
(ZoomEvent listener)

Creates a listener for the ZOOM_
STARTED event.

void setOnZoomFinished
(ZoomEvent listener)

Creates a listener for the ZOOM_
FINISHED event.

void setOnScroll
(ScrollEvent listener)

Creates a listener for the SCROLL
event.

void setOnScrollStarted
(ScrollEvent listener)

Creates a listener for the SCROLL_
STARTED event.

void setOnScrollFinished
(ScrollEvent listener)

Creates a listener for the SCROLL_
FINISHED event.

void setOnSwipeLeft
(SwipeEvent listener)

Creates a listener for the SWIPE_
LEFT event.

void setOnSwipeRight
(SwipeEvent listener)

Creates a listener for the SWIPE_
RIGHT event.

void setOnSwipeUp
(SwipeEvent listener)

Creates a listener for the SWIPE_UP
event.

void setOnSwipeDown
(SwipeEvent listener)

Creates a listener for the SWIPE_
DOWN event.

369 Chapter 18: Targeting Touch Devices

Here’s an example that creates a rectangle, and then installs a listener for
the rotate event and adjusts the rectangles rotation when the rotate event is
fired:

Rectangle r = new Rectangle(150, 150, 200, 200);
r.setFill(Color.DARKGRAY);
r.setOnRotate(e ->
 {
 r.setRotate(r.getRotate() + e.getAngle());
 e.consume();
 });

Here, the rotation of the rectangle is modified by first retrieving the current
rotation and then adding the angle retrieved from the rotate event.

 This event handler calls the consume method to discard the event. This is
important when dealing with gesture events. If you don’t consume the event,
the event will be passed up the chain and may be processed again by other
objects.

 One other detail you should know about is that gesture events have a charac-
teristic know as inertia, which causes events to continue to be raised after the
user completes the gesture. For example, when the user completes a scroll
gesture, the SCROLL_FINISHED event occurs, but several SCROLL events are
generated after the SCROLL_FINISHED event. This creates a more realistic
experience for the user, but can complicate your programming.

You can call the gesture event’s isInertia method to determine whether
an event was created as a result of inertia. Then, if you want to suppress the
effect of inertia, you can ignore the event if isInertia returns true. For
example:

Rectangle r = new Rectangle(150, 150, 200, 200);
r.setFill(Color.DARKGRAY);
r.setOnRotate(e ->
 {
 if (!isInertia())
 {
 r.setRotate(r.getRotate() + e.getAngle());
 e.consume();
 }
 });

Here, the rectangle is rotated only if the event is not generated as a result of
inertia.

370 Part IV: Making Your Programs Come Alive

Looking at an Example Program
In this section, you look at a sample program — the Gesturator. The Gesturator
program displays a simple rectangle on the screen and allows the user to
manipulate the rectangle using gestures. Figure 18-1 shows the scene displayed
by the Gesturator program.

Figure 18-1:
The

Gesturator
program in

action.

Here are the key features of the Gesturator program:

 ✓ Initially, the rectangle is centered in the screen.

 ✓ The user can rotate the rectangle using a rotate gesture.

 ✓ The user can change the size of the rectangle by using a zoom gesture.

 ✓ The user can move the rectangle by dragging it with a single finger. The
movement is constrained so that the entire rectangle stays within the
bounds of the scene.

371 Chapter 18: Targeting Touch Devices

 ✓ The user can shove the rectangle to one edge of the screen by swiping
the rectangle in the correct direction. The program responds to the swipe
gesture by moving the rectangle all the way to edge of the screen.

Listing 18-1 provides the complete source code for the Gesturator program.

Listing 18-1: The Gesturator Program

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.control.*;
import javafx.scene.paint.*;
import javafx.scene.shape.*;
import javafx.scene.input.*;
import javafx.event.*;

public class Gesturator extends Application
{

 public static void main(String[] args)
 {
 launch(args);
 }

 private final double RECT_X = 200; ➝18
 private final double RECT_Y = 200;
 private final double SCENE_X = 600;
 private final double SCENE_Y = 600;

 @Override public void start(Stage primaryStage)
 {
 Group root = new Group();

 Rectangle r = ➝27
 new Rectangle((SCENE_X - RECT_X)/2,
 (SCENE_Y - RECT_Y)/2,
 RECT_X,
 RECT_Y);
 r.setFill(Color.DARKGRAY);
 r.setStroke(Color.BLACK);
 r.setStrokeWidth(2);

 r.setOnZoom(e -> ➝36
 {
 r.setScaleX(r.getScaleX() * e.getZoomFactor());
 r.setScaleY(r.getScaleY() * e.getZoomFactor());
 e.consume();
 });

(continued)

372 Part IV: Making Your Programs Come Alive

 r.setOnRotate(e -> ➝43
 {
 r.setRotate(r.getRotate() + e.getAngle());
 e.consume();
 });

 r.setOnScroll(e -> ➝49
 {
 if (!e.isInertia()) ➝51
 {
 double newX = r.getX() + e.getDeltaX(); ➝53
 if ((newX >= 0) &&
 (newX <= SCENE_X - r.getWidth()))
 {
 r.setX(newX);
 }
 double newY = r.getY() + e.getDeltaY(); ➝59
 if ((newY >= 0) &&
 (newY <= SCENE_Y - r.getHeight()))
 {
 r.setY(newY);
 }
 }
 e.consume();
 });

 r.setOnSwipeLeft(e -> ➝69
 {
 r.setX(0);
 e.consume();
 });

 r.setOnSwipeRight(e -> ➝75
 {
 r.setX(SCENE_X - r.getWidth());
 e.consume();
 });

 r.setOnSwipeUp(e -> ➝81
 {
 r.setY(0);
 e.consume();
 });

 r.setOnSwipeDown(e -> ➝87
 {
 r.setY(SCENE_Y - r.getHeight());
 e.consume();
 });

Listing 18-1 (continued)

373 Chapter 18: Targeting Touch Devices

 root.getChildren().add(r); ➝93
 Scene scene = new Scene(root, SCENE_X, SCENE_Y);
 primaryStage.setTitle("The Gesturator");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

The following paragraphs explain the key points of the Gesturator program:

 ➝ 18: Private fields are used to set the size of the rectangle and the
size of the scene. These constants are referred to several times
throughout the program.

 ➝ 27: The rectangle is created using the size specified by RECT_X and
RECT_Y. The initial center position is calculated using the size of
the scene and the size of the rectangle.

 ➝ 36: The zoom event listener adjusts the size of the rectangle by
multiplying its current size by the zoom factors provided by the
ZoomEvent object.

 ➝ 43: The rotate event listener rotates the rectangle by adding the rota-
tion angle provided by the RotateEvent object to the current
rotation value of the rectangle.

 ➝ 49: The scroll event handler is a little more complicated than the
other event handlers because it imposes several constraints on
the position of the rectangle.

 ➝ 51: The scroll event is ignored if it is the result of inertia. That way,
the rectangle stops its movement immediately when the user
stops the scroll gesture.

 ➝ 53: To determine the new x position, the scroll event listener first cal-
culates the proposed new x position by adding the amount of hor-
izontal movement (getDeltaX) to the current x position. Then, it
sets the rectangles x position to the proposed position only if the
proposed position is greater than zero and less than the width of
the screen minus the current width of the rectangle. The if state-
ment prevents the user from moving the rectangle past the left or
right edge of the scene.

 ➝ 59: Similar logic is used to change the y position. First, the proposed
y position is calculated; then, the proposed y position is applied
only if it does not move the rectangle past the top or bottom
edges of the scene.

374 Part IV: Making Your Programs Come Alive

 ➝ 69: The swipe left listener moves the rectangle to the left edge of the
screen.

 ➝ 75: The swipe right listener moves the rectangle to the right edge of
the screen.

 ➝ 81: The swipe up listener moves the rectangle to the top edge of the
screen.

 ➝ 87: The swipe down listener moves the rectangle to the bottom edge
of the screen.

 ➝ 93: The rectangle is added to the root node. Then, the scene is cre-
ated and displayed on the stage.

Part V
The Part of Tens

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com/

In this part . . .
 ✓ Applying more powerful controls

 ✓ Building a 3D world

 ✓ Visit www.dummies.com for great Dummies content
online.

http://www.dummies.com/

Chapter 19

Ten More JavaFX Controls
In This Chapter
▶ Using the TitledPane class to create a pane with a border and title

▶ Combining two or more titled panes in an Accordion

▶ Choosing wisely with the DatePicker and ColorPicker controls

▶ Creating buttons that look like hyperlinks

▶ Indicating your progress with the ProgressIndicator and ProgressBar controls

▶ Selecting from a range of values with a Slider control

▶ Using a ScrollBar for other than its intended purpose

▶ Entering secret stuff with a PasswordField control

I
n all, JavaFX has about 75 different controls you can choose from to build
your user interfaces. So far in this book, you’ve read about how to work

with about 30 of them. In this chapter, you find out about ten more.

So, without further ado, direct from my home office in sunny California, here
are ten more JavaFX controls to put in your toolbox.

TitledPane
A titled pane is a pane that contains a single content node and draws a title
bar and a border around the content to distinguish the content from other
content in the scene. In addition, title panes are collapsible, which means
that the user can collapse the titled pane so that just the title bar is visible.
However, you can make the titled pane non-collapsible if you wish.

In spite of its name, TitledPane is a control, not a layout pane. In other
words, it is a subclass of Control, not of Pane.

378 Part V: The Part of Tens

The TitledPane class has a simple constructor that accepts a string that
will be displayed in the title bar and a node that will be displayed as the con-
tent. The node can, of course, be a layout pane that contains child nodes.
Thus, a titled pane can contain multiple nodes. Here’s an example that cre-
ates three radio buttons, adds them to a toggle group and a VBox, and then
creates a titled pane class to display the group of buttons:

RadioButton rbSmall = new RadioButton("Small");
RadioButton rbMedium = new RadioButton("Medium");
RadioButton rbLarge = new RadioButton("Large");

ToggleGroup sizeGroup = new ToggleGroup();
sizeGroup.getToggles().addAll(rbSmall, rbMedium, rbLarge);
rbMedium.setSelected(true);

VBox box = new VBox(10);
box.setPadding(new Insets(10));
box.getChildren().addAll(rbSmall, rbMedium, rbLarge);

TitledPane tpane = new TitledPane("Size", box);

If you want to make the titled pane non-collapsible, add the following line:

tpane.setCollapsible(false);

Then, the user can’t collapse the pane. In this case, the main purpose of the
titled pane becomes visual: The border creates a visual grouping of the radio
buttons, and the title bar lets the user know why these radio buttons are
grouped (they let the user choose a size option). Figure 19-1 shows two titled
panes: one collapsible, the other non-collapsible.

Figure 19-1:
Titled panes.

379 Chapter 19: Ten More JavaFX Controls

Accordion
An accordion is a stack of titled panes. Only one of the titled panes in the
accordion can be opened at any given moment. So if one of the titled panes
in the accordion is open and you open a different one, the one that was open
automatically closes. Figure 19-2 shows an accordion pane that contains
three title panes; the same accordion pane is shown three times in the figure,
each time with a different one of the titled panes opened.

Figure 19-2:
An

accordion.

To create an accordion control, you first create the separate titled panes
that will make up the accordion. Then, you create the accordion using the
default constructor and add the titled panes using the getPanes().addAll
method. The following code sample shows how I created the accordion
shown in Figure 19-2:

// Create the size toggle pane
RadioButton rbSmall = new RadioButton("Small");
RadioButton rbMedium = new RadioButton("Medium");
RadioButton rbLarge = new RadioButton("Large");

ToggleGroup sizeGroup = new ToggleGroup();
sizeGroup.getToggles().addAll(rbSmall, rbMedium, rbLarge);
rbMedium.setSelected(true);

VBox sizeBox = new VBox(10);
sizeBox.setPadding(new Insets(10));
sizeBox.getChildren().addAll(rbSmall, rbMedium, rbLarge);

380 Part V: The Part of Tens

TitledPane sizeTpane = new TitledPane("Size", sizeBox);

// Create the style toggle pane
RadioButton rbThin = new RadioButton("Thin crust");
RadioButton rbThick = new RadioButton("Thick crust");

ToggleGroup styleGroup = new ToggleGroup();
styleGroup.getToggles().addAll(rbThin, rbThick);
rbThin.setSelected(true);

VBox styleBox = new VBox(10);
styleBox.setPadding(new Insets(10));
styleBox.getChildren().addAll(rbThin, rbThick);

TitledPane styleTpane = new TitledPane("Style", styleBox);

// Create the toppings toggle pane
CheckBox cbPepperoni = new CheckBox("Pepperoni");
CheckBox cbSausage = new CheckBox("Sausage");
CheckBox cbOlives = new CheckBox("Olives");
CheckBox cbMushrooms = new CheckBox("Mushrooms");
CheckBox cbAnchovies = new CheckBox("Anchovies");

VBox toppingsBox = new VBox(10);
toppingsBox.setPadding(new Insets(10));
toppingsBox.getChildren().addAll(cbPepperoni, cbSausage,
 cbOlives, cbMushrooms, cbAnchovies);

TitledPane toppingsTpane = new TitledPane("Toppings", toppingsBox);

// Create the accordion control
Accordion acc = new Accordion();
acc.getPanes().addAll(sizeTpane, styleTpane, toppingsTpane);

ColorPicker
A color picker is a special type of combo box that lets the user choose a color.
When the color picker is initially displayed, it looks like a button. When the
user clicks it, a palette of colors appears from which the user may choose, as
shown in Figure 19-3.

381 Chapter 19: Ten More JavaFX Controls

Figure 19-3:
A color
picker.

If the user doesn’t like the choices that are displayed in the color picker pal-
ette, the user can click the Custom Colors link at the bottom of the picker.
This brings up a dialog box that lets the user craft a custom color, as shown
in Figure 19-4.

Figure 19-4:
Creating

a custom
color.

To create a color picker, just use the default constructor:

ColorPicker cp = new ColorPicker();

You can read the color selected by the user via the getValue method:

Color c = cp.getValue();

382 Part V: The Part of Tens

The following example shows how you can add a listener for a color picker’s
OnAction event to set the fill color of a rectangle named rect to the selected
color:

cp.setOnAction(e ->
 r1.setFill(cp.getValue()));

DatePicker
Like a color picker, a date picker is a special type of combo box that lets the
user choose a date from a calendar-like display. Initially, the date picker looks
like a text field. But when the user clicks it, a calendar display appears, as
shown in Figure 19-5. The user can then choose a date, which the program can
retrieve via the getValue method, which returns the date as a LocalDate.

Figure 19-5:
A date
picker.

The following example creates a date picker control and an OnAction event
handler that sets the text value of a Label control named lbl to the date
selected by the user:

DatePicker dp = new DatePicker();
dp.setOnAction(e ->
 {
 LocalDate date = dp.getValue();
 lbl.setText(date.toString());
 });

383 Chapter 19: Ten More JavaFX Controls

Hyperlink
A hyperlink control is a button that resembles an HTML hyperlink. It is ren-
dered as simple text that changes format when the mouse rolls over it and
when it has been clicked. When clicked, the hyperlink control acts just like
a button; you can handle the click by creating a listener for the OnAction
event.

Here’s a bit of code that creates a hyperlink and responds when the hyperlink
is clicked:

Hyperlink h1 = new Hyperlink("Show details");
h1.setOnAction(e ->
 {
 // Code goes here
 });

ProgressIndicator and ProgressBar
Both the ProgressIndicator and ProgressBar controls are designed to let
your users know that some process which takes a long time (such as updating
a database or downloading a file) hasn’t stalled, but is indeed chugging along
toward completion. The difference between the two is the way progress is
visualized: The ProgressIndicator is a circular control in which more of the
circle fills in as progress is made, whereas the ProgressBar is a horizontal
bar that fills in from left to right as progress is made.

To create a progress indicator or progress bar, just call the default
constructor:

ProgressIndicator pi = new ProgressIndicator();
ProgressBar pb = new ProgressBar();

To set the amount of progress indicated by the progress indicator, you call
the setProgress method, passing it a double value between 0.0 and 1.0. For
example, to set the progress to 45 percent:

pb.setProgress(0.45);

384 Part V: The Part of Tens

Until you call the setProgress method, the progress indicator is considered
to be indeterminate, which means that the user can’t tell how much progress
has been made. An indeterminate ProgressIndicator is indicated by a cir-
cular pattern of spinning dots; an indeterminate ProgressBar is a bar that
sweeps back and forth. After you call the setProgress method, the indica-
tor will change to show the amount of progress that has been made.

Figure 19-6 shows both indeterminate and determinate examples of a prog-
ress indicator and a progress bar.

Figure 19-6:
Progress

indicators
and prog-
ress bars.

Slider
A slider is a control that’s used to indicate a continuous range of values
between a given minimum and maximum. A slider is rendered as a vertical
or horizontal bar with a knob that the user can slide to indicate the desired
value. A slider can also have tick marks and labels to indicate the intervals
along the bar. Figure 19-7 shows a scene that resembles an audio equalizer
with eight slider controls, each showing tick marks allowing values from 0 to
100. The labels beneath the sliders are not a part of the slider control; they
are separate labels whose values are set by the OnAction event generated
whenever the user moves one of the sliders.

385 Chapter 19: Ten More JavaFX Controls

Figure 19-7:
Slider

controls.

To create the slider controls shown in Figure 19-7, I created a helper method
named makeSlider, which returns a VBox object that contains the slider
control along with the text that displays its value. The method accepts an
int value that indicates the starting value for the slider. The slider itself uses
the default minimum and maximum values of 0 and 100, although you can
easily change those values by calling the setMin and setMax methods.

Here’s the code for the makeSlider method:

private VBox makeSlider(int value)
{
 Text text = new Text();
 text.setFont(new Font("sans-serif", 10));

 Slider s = new Slider();
 s.setOrientation(Orientation.VERTICAL);
 s.setPrefHeight(150);
 s.setShowTickMarks(true);
 s.setMajorTickUnit(10);
 s.setMinorTickCount(0);
 s.setShowTickLabels(false);

 s.valueProperty().addListener(
 (observable, oldvalue, newvalue) ->
 {
 int i = newvalue.intValue();
 text.setText(Integer.toString(i));
 });

386 Part V: The Part of Tens

 s.setValue(value);

 VBox box = new VBox(10, s, text);
 box.setPadding(new Insets(10));
 box.setAlignment(Pos.CENTER);
 box.setMinWidth(30);
 box.setPrefWidth(30);
 box.setMaxWidth(30);

 return box;
}

ScrollBar
The ScrollBar control is not usually used by itself; instead, it is used by
other controls such as ScrollPane or ListView to display the scroll bar
that lets the user scroll the contents of a panel or other region.

However, there are occasions when you might want to use a scroll bar for
some purpose other than scrolling a region. In fact, you can actually use
a scroll bar in much the same way as you use a slider, as the two are very
similar. One difference is that unlike a slider, a scroll bar does not allow tick
marks. But on the other hand, a scroll bar has increment and decrement but-
tons on either end of the bar, which allows the user to set the scroll bar’s
value up or down in fixed increments.

Figure 19-8 shows a version of the audio mixer that was shown in Figure 19-7,
only implemented with scroll bars. As in the slider version, each scroll bar is
paired with a Text object that displays the scroll bar’s value whenever the
user manipulates the control.

I used the following helper method to create each combined scroll bar and
Text object:

private Node makeScrollBar(int value)
{
 Text text = new Text();
 text.setFont(new Font("sans-serif", 10));

 ScrollBar sb = new ScrollBar();
 sb.setOrientation(Orientation.VERTICAL);
 sb.setPrefHeight(150);
 sb.valueProperty().addListener(
 (observable, oldvalue, newvalue) ->

387 Chapter 19: Ten More JavaFX Controls

 {
 int i = newvalue.intValue();
 text.setText(Integer.toString(100-i));
 }
);
 sb.setValue(value);

 VBox box = new VBox(10, sb, text);
 box.setPadding(new Insets(10));
 box.setAlignment(Pos.CENTER);
 box.setMinWidth(30);
 box.setPrefWidth(30);
 box.setMaxWidth(30);

 return box;
}

Figure 19-8:
Using scroll

bars to
create a

mixer board.

PasswordField
A password field is a special type of text field that hides the characters
entered by the user; it’s useful whenever the information being entered is
sensitive. Figure 19-9 shows a password field in action.

The PasswordField class is a direct subclass of TextField, and it adds no
additional methods or constructors. Thus, you can use it exactly the way you
use a text field. Here’s how you can create a password field:

PasswordField pw = new PasswordField();

388 Part V: The Part of Tens

To retrieve the value entered by the user, use the getText method:

String pwtext = pw.getText();

 In addition to hiding the input entered by the user, a password field has one
additional difference from a text field: Its contents cannot be copied or pasted.

Figure 19-9:
Using a

password
field.

Chapter 20

Ten Steps to Building a 3D World
In This Chapter
▶ Creating a virtual 3D world

▶ Populating your world with shapes

▶ Translating and rotating 3D objects

▶ Animating 3D objects

▶ Adding a light source for more realism

J
avaFX has built-in support for realistic 3D modeling. In fact, the JavaFX
scene graph is three-dimensional in nature. Most JavaFX programs work

in just two dimensions, specifying just x- and y-coordinates. But all you have
to do to step into the third dimension is specify z-coordinates to place the
nodes of your scene graph in three-dimensional space.

JavaFX includes a rich set of classes that are dedicated to creating and visual-
izing 3D objects in 3D worlds. You can create three-dimensional shapes, such
as cubes and cylinders. You can move the virtual camera around within the
3D space to look at your 3D objects from different angles and different per-
spectives. And you can even add lighting sources to carefully control the final
appearance of your virtual worlds. In short, JavaFX is capable of producing
astonishing 3D scenes.

In this chapter, I discuss in ten short steps how to create a relatively simple
3D program that displays the three-dimensional world shown in Figure 20-1.
As you can see, this 3D space includes four shapes: a sphere, a cube, a cylin-
der, and a pyramid. This program also demonstrates several other key aspects
of 3D programming: a perspective camera, a Phong material, a light source,
and 3D animation.

 Put on your Thinking Cap, as this chapter will get pretty technical at times,
and many of the concepts presented in this chapter can be confusing, espe-
cially if this is your first experience with 3D programming.

390 Part V: The Part of Tens

Figure 20-1:
A sample 3D

program.

Step One: Add a Perspective Camera
The first step in creating a three-dimensional JavaFX application is adding a
camera to the scene graph. You do that by creating a PerspectiveCamera
object, fiddling with its settings, and then calling the scene’s setCamera
method. Here’s an example:

Group root = new Group();
Scene scene = new Scene(root, 800, 800);

PerspectiveCamera camera = new PerspectiveCamera(true);
camera.setTranslateZ(-1000);
camera.setNearClip(0.1);
camera.setFarClip(2000.0);
camera.setFieldOfView(35);
scene.setCamera(camera);

391 Chapter 20: Ten Steps to Building a 3D World

This example begins by creating a scene in the same manner as you’d create
a scene for a 2D JavaFX application. Then, the example creates an instance of
the PerspectiveCamera class and adjusts three properties of this class.

A perspective camera is an essential element in any 3D scene. A perspec-
tive camera represents the virtual camera that is used to render the three-
dimensional world onto a flat surface. The camera is actually a part of the
scene graph and has a position indicated by a set of x-, y-, z-coordinates, just
like any other object in the 3D scene. The default position for the camera
(and any other object you add to the scene) is the origin point (0,0,0). So, the
first thing you want to do after you add a camera is move it to a location from
which it can get a good view of the objects you’ll be adding to the scene. In
this example, I call the setTranslateZ method to back the camera away
from the scene 1,000 units.

Next, I set the near and far clipping distances. These values mark the range
within which the camera will render objects. The near clipping distance is
typically set to a very small value (in this case, 0.1) and the far clipping dis-
tance to a value large enough to contain the objects you want to appear in
the scene.

Getting used to JavaFX 3D coordinates
In two-dimensional scenes, coordinates are
measured in the x-axis (horizontal) and the
y-axis (vertical). Two-dimensional points are
referenced by a pair of x- and y-coordinates.
For example, the point (100, 200) represents the
point 100 units to the right of zero on the right
axis and 200 units below zero on the y-axis.

When you work in three dimensions, a third
axis — called the z-axis — is added. The z-axis
is perpendicular to both the x- and y-axis.
Imagine a line extending from your eyes into
the computer monitor and through the monitor
to the wall behind it. That’s the z-axis.

Three-dimensional points are represented by
three coordinates: x, y, and z. Thus, (100, 200,
300) represents a point 100 units to the right

of zero on the x-axis, 200 units below 0 on the
y-axis, and 300 units toward you from zero on
the z-axis.

A crucial difference between 2D and 3D coordi-
nates is that in a 2D scene, the origin (point 0,0)
is located at the top-left corner of the screen.
In a 3D scene, the origin (point 0,0,0) is located
right at the middle of the space visualized by
the 3D scene.

Also, keep in mind that in the JavaFX 3D world,
z-coordinates decrease as they move toward
you and increase as they move away from you.
X- and y-coordinates behave exactly as they do
in 2D: X-coordinates increase as they move to
the right, and y-coordinates increase as they
move down.

392 Part V: The Part of Tens

After setting the clipping distances, I adjusted the field of view of the camera.
The field of view is given as an angle and is analogous to using a wide-angle
or a telephoto lens in a real camera. The default value is 30, but for this appli-
cation, I found that 35 gives a better look at the scene.

Finally, I designated the camera as the scene’s active camera by calling the
scene’s setCamera method.

At this stage, you have created a three-dimensional world. However, that
world is a pretty lonely place, as it has no inhabitants. In the next step, you
add a basic 3D shape to the world.

Step Two: Add a Cylinder
In this step, you add a basic 3D object to your world. JavaFX provides three
basic shapes you can add: cylinders, boxes, and spheres. Start by adding a
cylinder:

Cylinder cylinder = new Cylinder(100,50);
root.getChildren().add(cylinder);

The Cylinder class constructor accepts two arguments: the radius of the
cylinder and its height. This example creates a cylinder roughly the shape of
a hockey puck, four times as wide as it is tall; then, it adds the cylinder to the
scene’s root node.

 At this point, the cylinder exists in the world, but is not visible. Based on what
you know of 2D shapes, you may be tempted to make it visible by adding a
fill color (setFill) or a stroke color (setStroke). But that’s not how 3D
objects work. In the next step, you discover how to apply a material to the sur-
face of the cylinder so that it will be visible in the scene.

Step Three: Create a Material
Rendering the faces of a 3D object is much more complicated than rendering
flat, two-dimensional objects. For a 2D object, you just apply a Paint object
via the setFill method. The paint can be a simple color, a gradient color, or
an image.

393 Chapter 20: Ten Steps to Building a 3D World

For 3D objects, you don’t apply paint. Instead, you apply a special object
called a Phong material, represented by the PhongMaterial class. A Phong
material (named after Bui Tuong Phong, a pioneering computer graphics
expert in the 1970’s) provides the means by which the faces of a 3D object
are realistically rendered.

The following code creates a simple Phong material based on two shades of
blue and then applies the material to the cylinder:

PhongMaterial blueStuff = new PhongMaterial();
blueStuff.setDiffuseColor(Color.LIGHTBLUE);
blueStuff.setSpecularColor(Color.BLUE);
cylinder.setMaterial(blueStuff);

After the Phong material has been applied to the cylinder, the cylinder will be
visible within the scene, as shown in Figure 20-2.

Figure 20-2:
The cylin-

der with
a Phong
material.

Step Four: Translate the Cylinder
You undoubtedly noticed that the cylinder in Figure 20-2 doesn’t look very
three dimensional. That’s because you’re looking at it edge-on: The camera is
pointing straight at the intersection of the x- and y-axes, and the cylinder is
centered on that very spot.

To gain some perspective on the cylinder, you can move it to a different loca-
tion in 3D space by translating the x-, y-, and z-coordinates. For example:

cylinder.setTranslateX(-200);
cylinder.setTranslateY(200);
cylinder.setTranslateZ(200);

394 Part V: The Part of Tens

Here, the cylinder is moved 200 units to the left, 200 units down, and 200
units away from the camera. The resulting view looks more like a cylinder, as
you can see in Figure 20-3.

Figure 20-3:
The trans-

lated
cylinder.

 In Figure 20-3, it looks as if the cylinder has been rotated forward so that you
can see a bit of the top surface. This isn’t the case, however. What has actu-
ally happened is that you’re no longer looking at the cylinder edge-on. Instead,
because the cylinder is below the camera, you’re looking down on it. Thus,
you can see a bit of the top face. You’re also looking at it from the side, which
explains why it appears just a tad tilted.

Step Five: Add a Box
In this step, I add a second object to the 3D world: In this case, a box, repre-
sented by the Box class. Here’s the code:

Box box = new Box(100, 100, 100);
box.setMaterial(blueStuff);
box.setTranslateX(150);
box.setTranslateY(-100);
box.setTranslateZ(-100);
root.getChildren().add(box);

The Box constructor accepts three arguments representing the width, height,
and depth of the box. In this example, all three are set to 100. Thus, the box
will be drawn as a cube with each side measuring 100 units.

The box is given the same material as the cylinder; then, it is translated on
all three axes so that you can have a perspective view of the box. Figure 20-4
shows how the box appears when rendered. As you can see, the left and
bottom faces of the box are visible because you translated the position of the
box up and to the right so that the camera can gain some perspective.

395 Chapter 20: Ten Steps to Building a 3D World

Figure 20-4:
The box.

Step Six: Rotate the Box
In this step, I rotate the box to create an even more interesting perspective
view. There are two ways to rotate a 3D object. The simplest is to call the
object’s setRotate method and supply a rotation angle:

box.setRotate(25);

By default, this will rotate the object on its z-axis. If this is difficult to visu-
alize, imagine skewering the object with a long stick that is parallel to the
z-axis. Then, spin the object on the skewer.

If you want to rotate the object along a different axis, first call the
setRotationAxis. For example, to spin the object on its x-axis, use this
sequence:

box.setRotationAxis(Rotate.X_AXIS);
box.setRotate(25);

Imagine running the skewer through the box with the skewer parallel to the
x-axis and then spinning the box 25 degrees.

The only problem with using the setRotate method to rotate a 3D object
is that it works only on one axis at a time. For example, suppose you want to
rotate the box 25 degrees on both the z- and the x-axis. The following code
will not accomplish this:

box.setRotationAxis(Rotate.X_AXIS);
box.setRotate(25);
box.setRotationAxis(Rotate.Z_AXIS);
box.setRotate(25);

396 Part V: The Part of Tens

When the setRotate method is called the second time to rotate the box on
the z-axis, the x-axis rotation is reset.

To rotate on more than one axis, you must use the Rotate class instead. You
create a separate Rotate instance for each axis you want to rotate the object
on and then add all the Rotate instances to the object’s Transforms collec-
tion via the getTransforms().addAll method, like this:

Rotate rxBox = new Rotate(0, 0, 0, 0, Rotate.X_AXIS);
Rotate ryBox = new Rotate(0, 0, 0, 0, Rotate.Y_AXIS);
Rotate rzBox = new Rotate(0, 0, 0, 0, Rotate.Z_AXIS);
rxBox.setAngle(30);
ryBox.setAngle(50);
rzBox.setAngle(30);
box.getTransforms().addAll(rxBox, ryBox, rzBox);

The Rotate constructor accepts four parameters. The first three are the x-,
y-, and z-coordinates of the point within the object through which the rota-
tion axis will pass. Typically, you specify zeros for these parameters to rotate
the object around its center point. The fourth parameter specifies the rota-
tion axis.

Figure 20-5 shows how the box appears after it’s been rotated.

Figure 20-5:
The box
after it’s

been
rotated.

397 Chapter 20: Ten Steps to Building a 3D World

Step Seven: Add a Sphere
In this step, I add a sphere, represented by the Sphere class. The Sphere
constructor accepts just a single parameter, which specifies the radius of the
sphere. For example, these lines create a sphere whose radius is 100, and
then translates it to move it off the center point of your virtual world:

Sphere sphere = new Sphere(100);
sphere.setTranslateX(-180);
sphere.setTranslateY(-100);
sphere.setTranslateZ(100);
root.getChildren().add(sphere);

Rather than apply the same blue Phong material to the sphere, I decided to
do something more interesting: I apply a Phong material constructed from an
image of a cylindrical projection of the earth using this code:

Image earthImage = new Image("file:earth.jpg");
PhongMaterial earthPhong = new PhongMaterial();
earthPhong.setDiffuseMap(earthImage);
sphere.setMaterial(earthPhong);

Figure 20-6 shows the resulting sphere.

Figure 20-6:
A sphere

with a
cylindrical
projection

of the earth
applied as
the Phong

material.

 You can wrap any image around a sphere (or any other 3D object, for that
matter) using this technique. I obtained the image I used for this program from
Wikipedia. Just search for Behrmann Projection and then download the file. (I
used Windows Paint to crop the edges of the image a bit because the image
available on Wikipedia has a small border around the edges.)

398 Part V: The Part of Tens

Step Eight: Add a Mesh Object
The three objects you’ve added to your virtual world so far have been
created using the three built-in 3D shape classes that come with JavaFX:
Cylinder, Box, and Sphere. For more complex objects, you must use the
TriangleMesh class to create the object based on a connected series of
triangles.

In this step, I create one of the simplest of all mesh objects: the four-sided
pyramid pictured in Figure 20-7. Visually, a four-sided pyramid has a total of
five faces: the four triangular side faces and the square base. But in a JavaFX
triangle mesh, squares are not allowed, only triangles. So the pyramid actu-
ally consists of six faces: the four triangular side faces and two adjacent tri-
angles that make up the face.

 This section presents probably the most conceptually difficult information in
this entire book. If you haven’t studied meshes in a Computer Graphics class,
be prepared to read through the following paragraphs several times before it
starts to make sense. If it still doesn’t make sense, grab a latte, pull out a sheet
of graph paper, and start doodling. Drawing the pyramid with your own hand
will help your understanding. I recommend you use a pencil.

Figure 20-7:
A square
pyramid.

To get the pyramid started, call the TriangleMesh constructor like this:

TriangleMesh pyramidMesh = new TriangleMesh();

To complete the pyramid, you need to populate three collections that define
the geometry of the mesh. These collections hold the points, the faces, and
the texture coordinates that define the shape.

399 Chapter 20: Ten Steps to Building a 3D World

I start with the texture coordinate collection, because you can pretty much
ignore it for this simple pyramid. Texture coordinates are useful when you’re
using a material that contains an image that should be stretched in a specific
way over the framework of the mesh. They allow you to associate a specific
x-, y-coordinate in the image with each corner of each face.

Unfortunately, you can’t simply leave out the texture coordinates even if you
don’t need them, so you must load at least one coordinate. Do that with this
line of code:

pyramidMesh.getTexCoords().addAll(0,0);

Now I move on to the other two collections. The next is a collection of the
vertices (that is, corners) that defines the shape. Your square pyramid has
five vertices, which you can envision as the top, the front corner (the point
nearest you), the left corner, the back corner, and the right corner. These ver-
tices are numbered 0, 1, 2, 3, and 4.

Given the height h and the length s of each side of the pyramid, you can
calculate the x-, y-, and z-coordinates for each vertex using the following
formulas:

Vertex Corner X Y Z
0 Top 0 0 0
1 Front 0 h –s / 2
2 Left –s / 2 h 0
3 Back s / 2 h 0
4 Right 0 h s / 2

With all that as background, here’s the code to create the Points collection:

float h = 150; // Height
float s = 300; // Side
pyramidMesh.getPoints().addAll(
 0, 0, 0, // Point 0 - Top
 0, h, -s/2, // Point 1 - Front
 -s/2, h, 0, // Point 2 - Left
 s/2, h, 0, // Point 3 - Back
 0, h, s/2 // Point 4 - Right
);

The final collection defines the faces. The faces are defined by specifying
the index of each vertex that makes up each face. For example, the front left
face is a triangle whose three vertices are the top, the front, and the left. The
indexes for these three vertices are 0, 2, and 1.

400 Part V: The Part of Tens

There are a total of six triangles in the pyramid, and their faces are defined by
the following points:

Face Point 1 Point 2 Point 3
Front left 0 2 1
Front right 0 1 3
Back right 0 3 4
Back left 0 4 2
Bottom rear 4 1 2
Bottom front 4 3 2

Although it may not be evident from this table, the order in which the faces
appear is critical to the success of the mesh. In general, the faces are listed
in a counter-clockwise and downward order. Thus, the four side faces wrap
around the pyramid in counter-clockwise order. They’re followed by the two
bottom faces.

Each face in the Faces collection is represented by three pairs of numbers,
each of which represents the index of one of the vertices of the triangle
and the index of the corresponding texture coordinate. Because you have
only one item in the Texture Coordinate collection, the second number in
each pair will always be zero. Thus, the sequence 0, 0, 2, 0, 1, 0 defines the
front left face: The vertex indexes are 0, 2, and 1, and the texture coordinate
indexes are all 0.

Here’s the code to load the Faces collection:

pyramidMesh.getFaces().addAll(
 0,0, 2,0, 1,0, // Front left face
 0,0, 1,0, 3,0, // Front right face
 0,0, 3,0, 4,0, // Back right face
 0,0, 4,0, 2,0, // Back left face
 4,0, 1,0, 2,0, // Bottom rear face
 4,0, 3,0, 1,0 // Bottom front face
);

After the three collections of the mesh are ready, the rest of the code fleshes
out the pyramid by adding a Phong material, translates the pyramid to get it
off the center of the scene, and adds the pyramid to the root:

MeshView pyramid = new MeshView(pyramidMesh);
pyramid.setDrawMode(DrawMode.FILL);
pyramid.setMaterial(blueStuff);
pyramid.setTranslateX(200);
pyramid.setTranslateY(100);
pyramid.setTranslateZ(200);
root.getChildren().add(pyramid);

401 Chapter 20: Ten Steps to Building a 3D World

Step Nine: Animate the Objects
Whew! Your 3D virtual world now has four objects: a sphere that looks
like the earth, a cubic box, a cylinder that looks like a hockey puck, and a
pyramid.

In this step, I add an animation to all four objects to get them spinning. Each
object gets a simple RotationTransition animation. First, the box:

RotateTransition rt1 = new RotateTransition();
rt1.setNode(box);
rt1.setDuration(Duration.millis(3000));
rt1.setAxis(Rotate.Z_AXIS);
rt1.setByAngle(360);
rt1.setCycleCount(Animation.INDEFINITE);
rt1.setInterpolator(Interpolator.LINEAR);
rt1.play();

After the play method is called, the box starts spinning, making one com-
plete turn around its z-axis every three seconds.

The other three animations are similar; the only differences are the node to
be rotated, the axis of rotation, and the speed. For the cylinder, the rotation
is on the x-axis. The sphere rotates around the y-axis, creating the impression
that the world is revolving. For the sphere, the speed is set to one revolution
every 10 seconds. And finally, the pyramid rotates on the y-axis.

Step Ten: Add a Light Source
The last step into this foray into the world of 3D programming is to add a
light source. The light source will change the whole look of the scene, as
shown in Figure 20-8.

To add the light source, I use the following code:

PointLight light = new PointLight(Color.WHITE);
light.setTranslateX(-1000);
light.setTranslateY(100);
light.setTranslateZ(-1000);
root.getChildren().add(light);

402 Part V: The Part of Tens

Figure 20-8:
Your 3D

world with a
light source.

The PointLight class defines a light source that originates from a specific
point in the scene and projects light of the given color (in this case, good ol’
white). To create the lighting effect I want, I relocate the light by translating
its coordinates 1,000 to the left, 100 down, and 1,000 units toward the user.
The result casts nice shadows on the backsides of the spinning objects.

Putting It All Together: The Complete
3D World Program

Now that you’ve seen all the pieces, Listing 20-1 shows the entire program.
Comments within the program make it clear which sections of the program
correspond to the steps outlined in this chapter.

403 Chapter 20: Ten Steps to Building a 3D World

With this as a starting point, you’re well on your way to creating virtual 3D
worlds of your own. Have fun!

Listing 20-1: The 3D World Program

import javafx.application.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;
import javafx.animation.*;
import javafx.util.*;
import javafx.scene.transform.*;
import javafx.scene.image.*;

public class ThreeDWorld extends Application
{
 public static void main(String[] args)
 {
 launch(args);
 }

 @Override public void start(Stage primaryStage)
 {
 Group root = new Group();
 Scene scene = new Scene(root, 800, 800);

 // STEP ONE: ADD A CAMERA

 PerspectiveCamera camera = new PerspectiveCamera(true);
 camera.setTranslateZ(-1000);
 camera.setNearClip(0.1);
 camera.setFarClip(2000.0);
 camera.setFieldOfView(35);
 scene.setCamera(camera);

 // STEP TWO: ADD A CYLINDER

 Cylinder cylinder = new Cylinder(100,50);
 root.getChildren().add(cylinder);

 // STEP THREE: CREATE A MATERIAL

 PhongMaterial blueStuff = new PhongMaterial();
 blueStuff.setDiffuseColor(Color.LIGHTBLUE);
 blueStuff.setSpecularColor(Color.BLUE);
 cylinder.setMaterial(blueStuff);

(continued)

404 Part V: The Part of Tens

 // STEP FOUR: TRANSLATE THE CYLINDER

 cylinder.setTranslateX(-200);
 cylinder.setTranslateY(200);
 cylinder.setTranslateZ(200);

 // STEP FIVE: ADD A BOX

 Box box = new Box(100, 100, 100);
 box.setMaterial(blueStuff);
 box.setTranslateX(150);
 box.setTranslateY(-100);
 box.setTranslateZ(-100);
 root.getChildren().add(box);

 // STEP SIX: ROTATE THE BOX

 Rotate rxBox = new Rotate(0, 0, 0, 0, Rotate.X_AXIS);
 Rotate ryBox = new Rotate(0, 0, 0, 0, Rotate.Y_AXIS);
 Rotate rzBox = new Rotate(0, 0, 0, 0, Rotate.Z_AXIS);
 rxBox.setAngle(30);
 ryBox.setAngle(50);
 rzBox.setAngle(30);
 box.getTransforms().addAll(rxBox, ryBox, rzBox);

 // STEP SEVEN: ADD A SPHERE

 Sphere sphere = new Sphere(100);
 sphere.setTranslateX(-180);
 sphere.setTranslateY(-100);
 sphere.setTranslateZ(100);
 root.getChildren().add(sphere);

 Image earthImage = new Image("file:earth.jpg");
 PhongMaterial earthPhong = new PhongMaterial();
 earthPhong.setDiffuseMap(earthImage);
 sphere.setMaterial(earthPhong);

 //STEP EIGHT: ADD A MESH OBJECT

 TriangleMesh pyramidMesh = new TriangleMesh();

 pyramidMesh.getTexCoords().addAll(0,0);

 float h = 150; // Height

Listing 20-1 (continued)

405 Chapter 20: Ten Steps to Building a 3D World

 float s = 300; // Side
 pyramidMesh.getPoints().addAll(
 0, 0, 0, // Point 0 - Top
 0, h, -s/2, // Point 1 - Front
 -s/2, h, 0, // Point 2 - Left
 s/2, h, 0, // Point 3 - Back
 0, h, s/2 // Point 4 - Right
);

 pyramidMesh.getFaces().addAll(
 0,0, 2,0, 1,0, // Front left face
 0,0, 1,0, 3,0, // Front right face
 0,0, 3,0, 4,0, // Back right face
 0,0, 4,0, 2,0, // Back left face
 4,0, 1,0, 2,0, // Bottom rear face
 4,0, 3,0, 1,0 // Bottom front face
);

 MeshView pyramid = new MeshView(pyramidMesh);
 pyramid.setDrawMode(DrawMode.FILL);
 pyramid.setMaterial(blueStuff);
 pyramid.setTranslateX(200);
 pyramid.setTranslateY(100);
 pyramid.setTranslateZ(200);
 root.getChildren().add(pyramid);

 // STEP NINE: ANIMATE THE OBJECTS

 RotateTransition rt1 = new RotateTransition();
 rt1.setNode(box);
 rt1.setDuration(Duration.millis(3000));
 rt1.setAxis(Rotate.Z_AXIS);
 rt1.setByAngle(360);
 rt1.setCycleCount(Animation.INDEFINITE);
 rt1.setInterpolator(Interpolator.LINEAR);
 rt1.play();

 RotateTransition rt2 = new RotateTransition();
 rt2.setNode(cylinder);
 rt2.setDuration(Duration.millis(3000));
 rt2.setAxis(Rotate.X_AXIS);
 rt2.setByAngle(360);
 rt2.setCycleCount(Animation.INDEFINITE);
 rt2.setInterpolator(Interpolator.LINEAR);
 rt2.play();

 RotateTransition rt3 = new RotateTransition();
 rt3.setNode(pyramid);
 rt3.setDuration(Duration.millis(3000));

(continued)

406 Part V: The Part of Tens

 rt3.setAxis(Rotate.Y_AXIS);
 rt3.setByAngle(360);
 rt3.setCycleCount(Animation.INDEFINITE);
 rt3.setInterpolator(Interpolator.LINEAR);
 rt3.play();

 RotateTransition rt4 = new RotateTransition();
 rt4.setNode(sphere);
 rt4.setDuration(Duration.millis(9000));
 rt4.setAxis(Rotate.Y_AXIS);
 rt4.setByAngle(360);
 rt4.setCycleCount(Animation.INDEFINITE);
 rt4.setInterpolator(Interpolator.LINEAR);
 rt4.play();

 // STEP TEN: ADD A LIGHT SOURCE

 PointLight light = new PointLight(Color.WHITE);
 light.setTranslateX(-1000);
 light.setTranslateY(100);
 light.setTranslateZ(-1000);
 root.getChildren().add(light);

 // Finalize and show the stage

 primaryStage.setScene(scene);
 primaryStage.setTitle("3D World");
 primaryStage.show();
 }
}

Listing 20-1 (continued)

Index

• Symbols and Numerics •
(hash mark), 263
-> (arrow operator), 40, 48, 62
3D coordinates, 391
3D World program

animating objects, 401
boxes, adding, 394
cylinders, adding, 392
light sources, adding, 401–402
materials, creating, 392–393
mesh objects, 398–400
overview, 389
perspective cameras, 390–392
rotating boxes, 395–396
source code, 403–406
spheres, adding, 397
translating cylinders, 393–394

• A •
Abstract Window Toolkit (AWT), 1
accessor pattern, 310
accordions, 379–380
action events, handling, 39–40, 87
action listeners

for menus, 214–215
for table cells, 201

ActionEvent class, 50, 56
addListener method, 320
AddSubtract class, 55, 57
AddSubtract1 class, 55
AddSubtract1 program, 53–56
AddSubtract2 program, 57–59
AddSubtract3 program, 59–61
AddSubtract4 program, 63–65
AddSubtract5 program, 65–66
alert boxes, 77, 78

aligning nodes in layout panes
Border panes, 114
FlowPane pane, 110
general discussion, 106–107
grid pane layouts, 245
HBox panes, 97
VBox panes, 104

AnchorPane class, 228
Animation class, 343–344
animation effects

advanced animation classes, 354–357
BouncingBall program, 348–350
combining transitions, 351–353
general discussion, 341–342
ManyBalls program, 358–363
overview, 12, 341
for 3D World program, 401
transition classes, 342–347

annotations, 38
anonymous inner classes, event handling

with, 59–61
Application class, 15, 34–35, 46, 144
APPLICATION_MODAL modality, 85
Arc class, 269, 273–274
arcs, 273–274
arrow operator (->), 40, 48, 62
aspect ratio of images, 330
audio files, playing, 334–337
AudioClip class, 337
Auto Rectangle program, 321–322, 323
avafx.scene.layout package, 34
AWT (Abstract Window Toolkit), 1

• B •
background colors, 265–266
Ball class, 358–359
bidirectional binding, 323, 324
bin folder, 18

408 JavaFX For Dummies

binding properties, 49, 309, 323–326
Bloom class, 298–299
blooming effect, 298–300
blur effects, 292, 296–297
boolean class field, 84
Border layout panes

adding nodes to, 114–115
Click Counter program, 47
Click Me program, 41–42
combining with other panes, 96
constructors and methods of,113–114
defined, 94
general discussion, 113, 115

border style properties, 266
BorderPane class, 41, 42, 47
BouncingBall program, 348–350,

355–357
Box class, 394
BoxBlur class, 296, 297, 298
boxes, adding to 3D program, 394–396
branch nodes, 146
btn variable, 38, 46
btnAdd_Click method, 66
btnClose_Click method, 92
btnClose_Clicked method, 87
btnNo_Clicked method, 85
btnSubtract_Click method, 66
btnYes_Clicked method, 85
Button class, 38–39, 40
buttonClick method, 15, 40, 46, 47
buttonClicked method, 38
buttons

Click Counter program, 43–44, 46
Click Me program, 38–39
Close, creating, 86, 87
control, creating, 36
Delete, 199–200
Lambda expressions as event handlers

for, 62
media controls, 335
SceneSwitcher program, 76
width in layout panes, setting, 107–108

• C •
Camera class, 150
Canvas class, 150

Cascading Style Sheets (CSS)
applying to scenes, 257–259
creating style sheets, 260–263
customizing interface controls with, 11–12
default style sheets, 256–257
inline styling, 260
overview, 255
style properties, 263–266

Caspian theme, 256–257
cell factories, 193–194, 200–201
CellEditEvent class, 201–202
cells, editing in tables, 200–202
change listeners, 163–164, 320, 321
characters, limiting in text fields, 119–120
charts, 12
check boxes, 126–129
check menu items, 217–220
CheckBox class, 127
CheckMenuItem class, 210, 217–218
child nodes, 173
choice boxes

creating, 157–158
default value, setting, 158–159
getting selected items, 159
overview, 155–156

ChoiceBox class, 156
Circle class, 269, 273
circles, 273
class variables, 46
classes. See also specific classes by name
AddSubtract1, 55
advanced animation, 354–357
Application, 15, 34–35
Button, 38–39, 40
ClickHandler, 58, 59
ClickMe, 35, 46
converting JavaFX class names to CSS

style class names, 261
for creating menus, 209–210
event, 50–51
layout panes, 227–228
MessageBox, 78–80
property, 312–313
Scene, 34, 72–73
Stage, 34, 68–71
that inherit Node class, 150
use of properties by, 311–312

409 Index

Click Counter program, 43–-47
Click Me program

action events, handling, 39–40
buttons, creating, 38–39
extending Application class,

34–35
general discussion, 31–33
IDE, developing with, 24–29
importing JavaFX packages, 34
launching application, 36
layout panes, creating, 41–42
Notepad, developing with, 19–21
overriding start method, 36–38
programming for, 13–16
scenes, creating, 42
stages, setting, 42–43
TextPad, developing with, 22–24

ClickCounter class, 48
ClickCounter Exit program, 90–92
ClickHandler class, 58, 59
ClickMe class, 35, 46
Close button, creating, 87
close method, 87
CloseRequest event, handling,

88–89, 92
collapsed nodes, 173
Color class, 229
color pickers, 380–382
colors

background, specifying, 265–266
fills for shapes, 277
gradients, 278–283
stack pane layout, 229
in TextPad, 23
transparent, 277–278

column constraints, 246, 248
ColumnConstraints class, 246
columns

grid pane layouts, 245
in tables, creating, 192–194

combining
layout panes, 96
shapes, 286–288
special effects, 304–305
transitions, 351–353

combo boxes
constructors and methods of, 165–166
creating, 166–167
event handling, 168–169
getting selected items, 167–168
versus list views, 169
overview, 164

confirmation boxes, creating, 82–85, 86, 90
ConfirmationBox class, 82–85, 86
constructors
Border layout panes, 113–114
CheckBox class, 127
ChoiceBox class, 156
ColumnConstraints class, 246
combo boxes, 165
CustomMenuItem class, 222
for FlowPane panes, 109
GridPane class, 243
for HBox panes, 96–97
Image class, 328
list views, 170
for radio buttons, 130
RowConstraints class, 247
Scene class, 72
ScrollPane class, 238
StackPane class, 229
TableView class, 195
TilePane class, 234
VBox panes, 104–105

Control class, 39, 143, 153–154
controls. See also specific controls by name

accordions, 379–380
check boxes, 126–129
color pickers, 380–382
date pickers, 382
defined, 143
hyperlink controls, 383
overview, 117
password fields, 387–388
progress bars, 383–384
progress indicators, 383–384
radio buttons, 129–131
scroll bars, 386–387
sliders, 384–386
title panes, 377–378

410 JavaFX For Dummies

converting strings to numbers, 125
createShadowedBox method,

293–294
CSS (Cascading Style Sheets)

applying to scenes, 257–259
creating style sheets, 260–263
customizing interface controls with,

11–12
default style sheets, 256–257
inline styling, 260
overview, 255
style properties, 263–266

CubicCurve class, 269
custom menu items, creating, 221–223
CustomMenuItem class, 210, 222
CyclicalMethod parameter, 280
cylinders, adding to 3D program, 392

• D •
data entry forms, 11–13
data validation, 117, 125–126
databases, reading data from, 189
date pickers, 382
declaration blocks, 260
default values for choice boxes, setting,

158–159
Delete buttons, 199–200
deleting rows from tables, 199–200
dialog boxes

confirmation boxes, creating, 82–85,
86, 90

message boxes, creating, 77–81
Stage class methods for, 71

DISCRETE interpolator, 344
downloading

Eclipse, 25
JDK 8, 16
TextPad, 22

drawing text, 284–285
drop shadows, 291–292
DropShadow class, 291

• E •
EASE_IN interpolator, 344
EASE_OUT interpolator, 344

Eclipse
Click Me program, developing in, 24–29
downloading, 25
overview, 24

editable tables
creating, 198–202
MovieInventoryEditor program, 202–208

editing cells in tables, 200–202
Effect class, 289
Ellipse class, 270, 273
ellipses, 273
Environment Variables dialog box, 17–18
event handlers

creating, 52
defined, 51
general discussion, 39–40
overview, 49, 50
SceneSwitcher program, 77

event handling
action listeners for menus, 214–215
action listeners for table cells, 201
with anonymous inner classes, 59–61
CloseRequest events, 88–89
for combo boxes, 168–169
event classes, 50–51
EventHandler interface, 53–56
events, 50
events, defined, 51
with inner classes, 57–59
with Lambda expressions, 61–66
overview, 49
with properties, 320–322
steps in, 52–53

event listeners
change listeners, 163–164
check boxes, adding to, 129
for touch gestures, 368–369

event sources, 51, 52, 53
event targets, 51
EventHandler interface, 51, 53–56, 61, 62
Exit buttons, 86
exiting programs

Close button, creating, 87
CloseRequest event, handling, 88–89
correctly, 85–86
programming, 90–92

expanded nodes, 173
extending Application class, 34–35

411 Index

• F •
FadeTransition class, 343, 345
File class, 332
files

loading images from, 328–329
reading data from, 189

fills
gradients, 278–283
overview, 277
stack pane layout, 229
transparent colors, 277–278

FillTransition class, 343, 345
FlowPane layout panes

combining with other panes, 96
constructors and methods of,

109–111
defined, 94
overview, 108–109
wrap length, setting, 111–112

fonts
drawing text, 285
style properties, 264

for loops
for lines, 271–272
tile pane layout, 236

formatting properties, controlling
with CSS, 12

functional interfaces, 61–62
FXCollections class, 190

• G •
GaussianBlur class, 296, 297, 298
Gesturator program, 370–374
gestures for touch devices, 365–367
getChildren method, 98, 148
getItems method, 157
getParent method, 147, 148
getSelectionModel method, 163
getSource method, 56
getter methods, 310–311
getText method, 40, 125
getValue method, 159, 167–168
Glow class, 298–299
glowing effect, 298–300

gradients
drawing text, 285
general discussion, 278–283
shape fills, 265

graphical user interfaces
controls for data entry forms, 11–13
options for, 10

grid pane layouts
constraints, 245–248
creating, 243–245
grid pane layout manager, 241
Pizza Order application, 248–254
sketching panels, 242

GridPane class, 228, 243–244
Group class, 149
growing nodes, 97, 101–103, 105

• H •
handle method, 56, 59, 61, 62
hash mark (#), 263
HBox layout panes

adding nodes to, 95
AddSubtract1 program, 56
aligning nodes in, 106–107
combining with other panes, 96
confirmation boxes, creating, 85
constructors and methods of, 96–97
creating, 98
defined, 94
margins, adding space with, 100–101
SceneSwitcher program, 77
spacer nodes, creating, 101–103
spacing, 98–100

height of scenes, 42
Helios Software Solutions, 22
hide-on-click behavior of menu items,

222–223
hierarchy, node. See node hierarchy
horizontal flow layouts, 108, 110
hyperlink controls, 383

• I •
iClickCount variable, 46, 47
icons, used in book, 4–5
iCounter variable, 55

412 JavaFX For Dummies

id selectors, 262–263
IDE (integrated development

environment), 24–29
if statements
buttonClick method, 40
Click Counter program, 47

Image class, 328–329
images
Image class, 328–329
ImageView class, 330–331
overview, 327
Photo Viewer application, 332–334

ImageView class, 150, 330–331
import statements

for Border panes, 114
Click Me program, 15
for FlowPane panes, 111
for HBox panes, 98
for Insets objects, 100
overview, 34
for text fields, 119
for VBox panes, 105

importing JavaFX packages, 34
indenting code, 23
inertia, 369
init method, 35
initModality method, 71, 79
initStyle methods, 71
inline styling, 260
inner classes, event handling with,

57–59
inner shadows, 294
InnerShadow class, 291, 294
input controls. See also buttons; Pizza

Order application; text fields
check boxes, 126–129
overview, 117
radio buttons, 129–131
validating numeric data, 125–126

InputEvent class, 50
Insets class, 152
Insets objects, creating, 99–100
installing JDK 8, 17
integrated development environment

(IDE), 24–29
Internet, loading images from, 328–329
interpolators, 344
intersect method, 286
invalidation listeners, 320

• J •
Java 8 Development Kit (JDK 8)

downloading, 16
installing, 17
overview, 10
setting path for, 17–18

java command, 21
Java Runtime Environment (JRE), 10
javac command, 21
JavaFX

downloading and installing, 16–17
general discussion, 10

javafx.application package, 34, 144
javafx.collections package, 145
javafx.geometry package, 145
javafx.scene package, 34, 144
javafx.scene.control package,

144–145
javafx.scene.control.Control

class, 39
javafx.scene.image package, 327
javafx.scene.layout package, 145
javafx.scene.layout.Pane class, 96
javafx.scene.node class, 96
javafx.scene.Node.Node

class, 39
javafx.stage package, 34, 144
java.scene.control package, 34
JDK 8 (Java 8 Development Kit)

downloading, 16
installing, 17
overview, 10
setting path for, 17–18

JOptionPane class, 78
JRE (Java Runtime Environment), 10

• K •
KeyEvent class, 50
KeyFrame class, 354, 355

• L •
labels, 43, 46
Lambda expressions

arrow operator (->), 40, 48, 62
for cell editing in tables, 202

413 Index

in change listeners, 164
event handling with, 61–66
general discussion, 40
overview, 52
setOnCloseRequest method, using

with, 89
launch method, 15, 36, 46
launching application, 36
layout manager, 34
layout panes. See also grid pane layouts

aligning nodes in, 106–107
background colors, specifying, 265–266
BorderPane class, 111–112
classes, 227–228
Click Me program, creating in, 41–42
combining, 96
creating, 36, 95
FlowPane panes, 108–112
general discussion, 41
HBox panes, 56, 77, 85, 96–98
margins, adding space with, 100–101
overview, 15, 93, 227
in Pizza Order application, 133
scroll panes, 236–241
spacer nodes, creating, 101–103
spacing, 98–100
stack panes, 228–232
tile panes, 232–236
types of, 94
VBox panes, 77, 80, 85, 104–106
width of nodes, setting, 107–108

leaf nodes, 146, 173
lifecycles of applications, 35
light sources, adding to 3D program,

401–402
LightBase class, 150
Line class, 270, 271
linear gradients, 278, 281–282
LINEAR interpolator, 344
LinearGradient class, 279
lines, 271–272
Linux, installing JDK on, 17
list views

versus combo boxes, 169
constructors and methods of, 170
creating, 171
getting selected items, 171–172
overview, 169

listeners
action, 201, 214–215
change, 163–164, 320, 321
event, 129, 368–369
invalidation, 320

lists. See also tree views
change listeners, 163–164
choice boxes, 155–159
combo boxes, 164–169
list views, 169–172
observable, 160–163
overview, 155

loading
data for tables, 189–190
images from external sources, 328–329

lookup colors, 265
lookup method, 147

• M •
Macs, installing JDK on, 17
main method, 15, 36, 46, 48
makeShow method, 176
ManyBalls program, 358–363
margins, adding space with
Border panes, 114
FlowPane panes, 110
general discussion, 100–101
HBox panes, 97
stack pane layout, 232
VBox panes, 104

materials, creating for 3D program, 392–393
maximized windows, displaying

stages in, 71
media

audio files, playing, 334–337
video files, playing, 337–339

Media class, 334, 335
MediaPlayer class, 334, 335
MediaView class, 150, 337
menu bars, creating, 210–211
Menu class, 209, 211–212
menu items

changing, creating, 216
creating, 212–213
custom, 221–223

menu separators, 214
MenuBar class, 209, 211

414 JavaFX For Dummies

MenuItem class, 209–210, 211, 213
menus

action listeners, 214–215
changing menu items, creating, 216
check menu items, 217–220
classes for creating, 209–210
creating, 211–212
custom menu items, creating, 221–223
items on, creating, 212–213
menu bars, creating, 210–211
overview, 209
radio menu items, 217–220
separators, 214
submenus, creating, 220–221

mesh objects, 398–400
message boxes, 77, 78
MessageBox class, 78–80
methods. See also specific methods by

name
Animation class, 343–344
Border layout panes, 113–114
buttonClick, 15, 46
buttonClicked, 38
CheckBox class, 127
CheckMenuItem class, 218
ChoiceBox class, 156
ColumnConstraints class, 246
combo boxes, 165–166
Control class, 153
for converting strings to numbers, 125
CustomMenuItem class, 222
DropShadow class, 291
for FlowPane panes, 109–111
getSource, 56
getText, 40
GridPane class, 243–244
handle, 56, 59, 61, 62
for HBox panes, 96–97
init, 35
InnerShadow class, 291
for installing gesture event listeners, 368
launch, 15, 36, 46
list views, 170
main, 15, 36, 46
Node class, 147
for observable lists, 149, 160–161
PerspectiveTransform class, 301

for radio buttons, 130
RadioMenuItem class, 219
Reflection class, 295
Region class, 151
RowConstraints class, 247
Scene class, 72
ScrollPane class, 238–239
setCenter, 41, 47
setOnAction, 39, 61, 62, 66
setScene, 43, 47
setText, 39, 40, 46
setTitle, 43, 47
setTop, 47
Shape class, 268
show, 43, 47
StackPane class, 229–230
Stage class, 69–70
start, 15, 35, 36–38, 46
stop, 35
TableView class, 195
TilePane class, 234–236
Transition class, 343–344
for transition classes, 345–347
TreeItem class, 173–174
VBox panes, 104–105

Microsoft Windows
Click Me program, developing in Notepad,

19–21
Eclipse, creating shortcut for, 25
installing JDK, 17
Path environment variable, setting, 17–18

mnemonic shortcut keys for menus, 211
modal dialog boxes, creating, 71
Modena theme, 256–257
MotionBlur class, 296, 297, 298, 331
MouseEvent class, 51
Movie class, 186–191
MovieInventory program, 196–198
MovieInventoryEditor program, 202–208

• N •
named colors, 265
naming conventions for properties, 311
NetBeans, 24
New Java Class dialog box, 27
New Java Project dialog box, 26

415 Index

Node class
classes that inherit, 150
general discussion, 146–148
node hierarchy, 143
Parent class as subclass of, 72

node hierarchy
Control class, 153–154
JavaFX packages, 144–145
Node class, 146–148
overview, 143
Parent class, 148–149
Region class, 150–153

nodes. See also node hierarchy
controls, 39
defined, 173
id selectors, 262–263
layout panes, 41–42

Notepad, developing Click Me program in,
19–21

numeric data, validating, 125–126

• O •
observable array lists, 190
observable lists

array lists, 190
choice boxes, creating, 157
for combo boxes, 166–167
for FlowPane pane, 109
general discussion, 160–163
for HBox panes, 97, 98
for list views, 171–172
methods for, 149
for tables, 186, 190
for VBox panes, 104

offline version of JDK download, 16
online version of JDK download, 16
orientation of flow panes, 108, 109, 110
@override annotation, 38, 46
overriding start method, 36–38

• P •
packages, JavaFX
avafx.scene.layout, 34
general discussion, 144–145
importing, 34

javafx.application, 34, 144
javafx.collections, 145
javafx.geometry, 145
javafx.scene, 34, 144
javafx.scene.control, 144–145
javafx.scene.image, 327
javafx.scene.layout, 145
javafx.stage, 34, 144
java.scene.control, 34

padding
for FlowPane panes, 110
for HBox panes, 97
for layout panes, 99
for regions, 152–153
stack pane layout, 232
for VBox panes, 105

Pane class, 149
ParallelTransition class, 351
Parent class, 72, 143, 148–149, 150
parent nodes, 173
parse methods, 125, 199
password fields, 387–388
Path class, 270
Path environment variable, setting,

17–18
path for JDK 8, setting, 17–18
paths, 173
PathTranslation class, 343, 345
PauseTransition class, 343, 345
perspective cameras, 390–392
perspective effect, 300–303
PerspectiveTransform class, 300–301
Phong materials, 393
Photo Viewer application, 332–334
pictures
Image class, 328–329
ImageView class, 330–331
overview, 327
Photo Viewer application, 332–334

Pizza Order application
grid pane layouts, 248–254
layout panes in, 133
overview, 131–132
source code, 134–139

PointLight class, 402
Polygon class, 270
Polyline class, 270

416 JavaFX For Dummies

Pos enumeration, 106, 231
posX property, 341–342
primary stage, 38, 68
primaryStage parameter,

38, 43, 46, 48, 68
Priority enumeration, 102
programming, 9–10. See also programs
programs. See also 3D World program;

Click Me program
AddSubtract1, 53–56
AddSubtract2, 57–59
AddSubtract3, 59–61
AddSubtract4, 63–65
AddSubtract5, 65–66
Auto Rectangle, 321–322, 323
BouncingBall, 348–350, 355–357
Click Counter, 43–-47
ClickCounter Exit, 90–92
Gesturator, 370–374
ManyBalls, 358–363
MovieInventory, 196–198
MovieInventoryEditor, 202–208
Role Player, 120–124, 324–326
SceneSwitcher, 73–77
ScrolledTile, 239–241
Shape Combiner, 287–288
ShapeMaker, 274–276, 283–284
Spinoff, 180–183
TwoBouncingBalls, 352–353
VideoApp, 338–339

progress bars, 383–384
progress indicators, 383–384
prompts, displaying in text fields, 120
properties

binding, 323–326
classes, 312–313
creating, 187
creating more efficiently, 318–319
data for tables, creating, 186–187
event handling, 320–322
general discussion, 309–311
naming conventions, 311
overview, 13, 309
read-only, creating, 316–317
read/write, creating, 314–315
selection models, 163

style sheet, 263–266
used by API classes, 311–312

property fields, 49
Property interface, 187
PropertyValueFactory class, 193
proportional parameter, 280

• Q •
QuadCurve class, 270

• R •
radial gradients, 279, 282–283
RadialGradient class, 279
radio buttons, 129–131
radio menu items, 217–220
RadioButton class, 130
RadioMenuItem class, 210, 218–219
reading data from files and databases, 189
read-only properties, creating, 316–317
read-only tables

creating, 191–195
MovieInventory program, 196–198

ReadOnlyStringProperty class, 312
ReadOnlyStringWrapper class, 312
read/write properties, creating, 314–315
Rectangle class, 229, 270, 272
rectangles, 272
recursive programming, 175
Reflection class, 295
reflections, 295, 304–305
Region class

background colors, specifying, 265
border style properties, 266
node hierarchy, 143, 150–153
spacer nodes, creating, 101–102

registering event handlers with event
sources, 53

Remember icon, 4
resizing

scenes, 73
stages, 71

RGB colors, 265
Role Player program, 120–124, 324–326

417 Index

root nodes, 42, 72, 146, 173
Rotate class, 396
rotate gestures, 366
RotateTransition class, 343, 345
rotating shapes, 283–284, 395–396
RowConstraints class, 247
rows

editing in tables, 198–200
grid pane layouts, 245

• S •
ScaleTransition class, 343, 346
scaling shapes, 283–284
Scene class, 34, 72–73
Scene class constructor, 42
scene graphs, 146
scenes

Click Counter program, 47
creating, 36, 42
overview, 15, 67
Scene class, 72–73
sizing, 73
style sheets, applying to, 257–259
switching, 73–77

SceneSwitcher program, 73–77
scroll bars, 386–387
scroll gestures, 367
scroll pane layout, 236–241
ScrolledTile program, 239–241
ScrollPane class, 228, 237, 238–239
selection models, 163, 178
selectors, 260, 261
SeparatorMenuItem class, 210, 214
separators, menu, 214
SequentialTransition class, 351
setAlignment method, 106
setBy methods, 347
setCenter method, 41, 47
setEffect method, 290
setFrom methods, 347
setHgrow method, 102, 103
setIconified method, 71
setID method, 147
setInput method, 304
setMargin method, 100–101
setMaximized method, 71

setOnAction method, 39, 53, 62, 85, 168
setOnCloseRequest method, 88
setPadding method, 99
setPrefColumnCount method,

119–120
setPrefWidth method, 119
setPromptText method, 120
setResizable method, 71
setScene method, 43, 47
setSpacing method, 98–100
setStyle method, 260
setter methods, 310–311
setText method, 39, 40, 46
setTitle method, 43, 47
setTo methods, 347
setTop method, 47
setUserAgentStylesheet method,

256–257
shadows, 290–294, 304–305
Shakespeare, William, 88
sham properties, 187
Shape class, 150, 267–271
Shape Combiner program, 287–288
Shape3D class, 150
ShapeMaker program, 274–276, 283–284
shapes

arcs, 273–274
boxes, adding to 3D program, 394–396
circles, 273
color fills, 277
combining, 286–288
cylinders, adding to 3D program, 392,

393–394
drawing text, 284–285
ellipses, 273
gradients, 278–283
lines, 271–272
overview, 267
rectangles, 272
rotating, 283–284
scaling, 283–284
Shape class, 267–271
ShapeMaker program, 274–276
spheres, adding to 3D program, 397
stack pane layout, 228–232
translating, 283–284
transparent color fills, 277–278

418 JavaFX For Dummies

show method, 43, 47, 82
showMessageDialog method, 78
sibling nodes, 173
Simple.css style sheet, 258–259
SimpleStringProperty class, 312
sketching panels for grid pane layouts, 242
skins, 255. See also themes
sliders, 384–386
Solaris, installing JDK on, 17
source files, creating, 19, 20
spacer nodes, creating, 101–103, 105
spacing in layout panes

for FlowPane panes, 111
general discussion, 98–100
for HBox panes, 97
margins, adding, 100–101, 104

special effects. See also animation effects
blooming, 298–300
blur effects, 296–297
combining, 304–305
general discussion, 289–290
glowing, 298–300
for images, 331
overview, 12, 289
perspective effect, 300–303
reflections, 295
shadows, 290–294

Sphere class, 397
spheres, adding to 3D program, 397
Spinoff program, 180–183
spread setting for shadows, 292
stack pane layout, 228–232
StackPane class, 227, 229–230
Stage class, 34, 68–71, 144
stages

Close button, creating, 87
CloseRequest event, handling, 88–89
dialog boxes, creating, 77–81
displaying in maximized windows, 71
exiting programs correctly, 85–86, 90–92
overview, 15, 67
preventing resizing of, 71
setting, 42–43
sizing, 71
Stage class, 68–71

start method, 15, 35, 36–38, 46
static main method, 48

Stop class, 280
stop method, 35
stop offset parameter, 280–281
string identifiers, setting, 147
String properties, 312
StringProperty class, 312
strings, converting to numbers, 125
StrokeTransition class, 343, 346
style class names, 261–262
style declarations, 260
style rules, 260
style selectors, 263
submenus, creating, 220–221
Subscene class, 150
subtract method, 286
SVGPath class, 270
Swing API, 1, 10, 78, 131
SwingNode class, 150
swipe gestures, 367
switching

scenes, 73–77
themes, 256–257

syntax of Lambda expressions, 40

• T •
TableColumn class, 185, 192–194
tables

data for, creating, 186–191
deleting rows, 199–200
editable, creating, 198–202
editing cells in, 200–202
MovieInventory program, 196–198
MovieInventoryEditor program,

202–208
overview, 185
read-only, creating, 191–195
rows, adding to, 198–199

TableView class, 185, 194–195
Technical Stuff icon, 5
text

blooming effect, 299–300
blur effects, 297
drawing, 284–285
font style properties, 264
glowing effect, 299–300
reflections, adding, 295

419 Index

Text class, 270, 284–285
text editors

Notepad, 19–21
TextPad, 22–24

text fields
constructors and methods of, 118
creating, 119
in menus, creating, 221–223
overview, 118
password fields, 387–388
prompts, displaying in, 120
Role Player program, 120–124
width of, setting, 119–120

TextField class, 118, 311
TextFieldTableCell class, 200
TextPad

Click Me program, developing in, 22–24
configuring for Java, 22
editing features, 23

themes
default, 256–257
overview, 255
switching, 256–257

3D coordinates, 391
3D World program

animating objects, 401
boxes, adding, 394
cylinders, adding, 392
light sources, adding, 401–402
materials, creating, 392–393
mesh objects, 398–400
overview, 389
perspective cameras, 390–392
rotating boxes, 395–396
source code, 403–406
spheres, adding, 397
translating cylinders, 393–394

tile pane layout, 232–236
TilePane class, 228, 234–236
Timeline class, 355
timer events, 342, 354
Tip icon, 4
title panes, 377–378
titles, setting, 43, 47
toggle groups, 130, 131, 219
tooltips, 153–154
touch devices

event listeners, 368–369
Gesturator program, 370–374
gestures and touch events, 365–367
overview, 13, 365

touch events, 365–367
TouchEvent class, 51
Transition class, 343–344
transition classes, 342–347
TranslateTransition class, 342, 343,

344, 347
translating shapes, 283–284, 393–394
transparent colors, 277–278
tree views

building, 173–177
creating TreeView controls, 177–178
getting selected nodes, 178–179
overview, 172
Spinoff program, 180–183
terms related to, 173

tree_SelectionChanged method, 180
TreeItem class, 173–174
TreeView class, 177–178
TriangleMesh class, 398
TwoBouncingBalls program, 352–353
type selectors, 261

• U •
unidirectional binding, 323, 324
union method, 286
user input controls. See also specific

controls by name
accordions, 379–380
check boxes, 126–129
color pickers, 380–382
date pickers, 382
defined, 143
hyperlink controls, 383
overview, 117
password fields, 387–388
progress bars, 383–384
progress indicators, 383–384
radio buttons, 129–131
scroll bars, 386–387
sliders, 384–386
title panes, 377–378

420 JavaFX For Dummies

• V •
validating numeric data, 125–126
VBox layout panes

aligning nodes in, 106–107
combining with other panes, 96
confirmation boxes, creating, 85
constructors and methods of, 104–105
defined, 94
message boxes, 80
SceneSwitcher program, 77
spacing, 105–106
width of nodes, setting, 107–108

vertical flow layouts, 108, 110, 111
video files, playing, 337–339
VideoApp program, 338–339
visual effects. See also animation effects

blooming, 298–300
blur effects, 296–297
combining, 304–305
general discussion, 289–290
glowing, 298–300
for images, 331
overview, 12, 289
perspective effect, 300–303
reflections, 295
shadows, 290–294

• W •
Warning! icon, 4
web, loading images from, 328–329
width

of nodes, setting, 107–108
of scenes, setting, 42
of text fields, setting, 119–120

WindowEvent class, 51
Windows, Microsoft

Click Me program, developing in Notepad,
19–21

Eclipse, creating shortcut for, 25
installing JDK, 17
Path environment variable, setting, 17–18

wrap length for flow layouts, setting,
111–112

• Z •
z-axis, 391
zoom gestures, 366–367

About the Author
Doug Lowe has been writing computer programming books since the guys
who invented Java were in grade school. He’s written books on COBOL,
FORTRAN, Visual Basic, IBM mainframe computers, mid-range systems, PC’s,
web programming, and probably a few he’s completely forgotten about. He’s
the author of more than 30 For Dummies books, including Java All-In-One
For Dummies, 4th Edition; Java For Dummies Quick Reference; Networking
For Dummies, 10th Edition; Networking All-In-One For Dummies, 4th Edition;
PowerPoint 2013 For Dummies; and Electronics All-In-One For Dummies. He
lives in that sunny Formerly-All-American city Fresno, California, where his
motto is, “Buster Posey Got Out, Why Can’t I?”

Dedication
To my amazing father-in-law Gordon Gearhart, who passed away while I was
trying to write this book. Thank you for making this world a better place.

Author’s Acknowledgments
I want to thank everyone at Wiley who was involved in the creation of this
book, starting with project manager Pat O’Brien, who as usual did a great job
managing all the editorial work required to put this book together and was
very patient when deadlines came and went. I also want to thank acquisitions
editor Connie Santisteban for making the whole project possible (happy
trails!), as well as Russ Mullen for his excellent and thorough technical review
and copy editor Jen Riggs for crossing all my i’s and dotting all my t’s — wait,
reverse that!

Publisher’s Acknowledgments

Project Editor: Pat O’Brien

Copy Editor: Jen Riggs

Technical Editor: Russ Mullen

Editorial Assistant: Claire Johnson

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Sheree Montgomery

Cover Image: ©iStock.com/Henvry

http://iStock.com/Henvry

http://www.facebook.com/fordummies
http://www.twitter.com/fordummies

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	How This Book Is Organized
	Part I: Getting Started with JavaFX
	Part II: JavaFX Controls
	Part III: Enhancing Your Scenic Design
	Part IV: Making Your Programs Come Alive
	Part V: The Part of Tens

	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with JavaFX
	Chapter 1: Hello, JavaFX!
	What Is JavaFX?
	Perusing the Possibilities of JavaFX
	Looking at a Simple JavaFX Program
	Downloading and Installing JavaFX
	Downloading JDK 8
	Installing JDK 8
	Setting the path

	Developing the Click Me Program with Notepad
	Developing the Click Me Program with TextPad
	Using an IDE to Create the Click Me Program

	Chapter 2: Looking Closer at JavaFX Programming
	Looking Again at the Click Me Program
	Importing JavaFX Packages
	Extending the Application Class
	Launching the Application
	Overriding the start Method
	Creating a Button
	Handling an Action Event
	Creating a Layout Pane
	Making a Scene
	Setting the Stage
	Examining the Click Counter Program

	Chapter 3: Handling Events
	Examining Events
	Handling Events
	Implementing the EventHandler Interface
	Handling Events with Inner Classes
	Handling Events with Anonymous Inner Classes
	Using Lambda Expressions to Handle Events

	Chapter 4: Setting the Stage and Scene Layout
	Examining the Stage Class
	Examining the Scene Class
	Switching Scenes
	Creating a Dialog Box
	Creating a Confirmation Box
	Exit, Stage Right
	Creating a Close button
	Handling the CloseRequest event
	Putting it all together

	Chapter 5: Using Layout Panes to Arrange Your Scenes
	Working with Layout Panes
	Introducing four JavaFX layout panes
	Creating layout panes
	Combining layout panes

	Using the HBox Layout
	Spacing Things Out
	Adding Space with Margins
	Adding Space by Growing Nodes
	Using the VBox Layout
	Aligning Nodes in a Layout Pane
	Making Nodes the Same Width
	Using the Flow Layout
	Using the Border Layout

	Chapter 6: Getting Input from the User
	Using Text Fields
	Validating Numeric Data
	Using Check Boxes
	Using Radio Buttons
	Looking at a Pizza Order Application

	Part II: JavaFX Controls
	Chapter 7: Introducing the JavaFX Node Hierarchy
	An Overview of JavaFX Packages
	The Node Class
	The Parent Class
	The Region Class
	The Control Class

	Chapter 8: Choosing from a List
	Using Choice Boxes
	Creating a choice box
	Setting a default value
	Getting the selected item

	Working with Observable Lists
	Listening for Selection Changes
	Using Combo Boxes
	Creating combo boxes
	Getting the selected item
	Handling combo box events

	Using List Views
	Creating a list view
	Getting the selected items

	Using Tree Views
	Building a tree
	Creating a TreeView control
	Getting the selected node
	Looking at a complete program that uses a tree view

	Chapter 9: Working with Tables
	Creating the Data for a Table
	Creating a Read-Only Table
	Using the TableColumn class
	Using the TableView class

	A Program That Creates a Read-Only Table
	Creating an Editable Table
	Adding table rows
	Deleting table rows
	Editing table cells

	A Program That Creates an Editable Table

	Chapter 10: Making Menus
	Introducing Classes for Creating Menus
	Creating a Basic Menu Bar
	Creating Menus
	Creating Menu Items
	Using Separators
	Using Action Listeners
	Creating Menus That Change
	Using Check and Radio Menu Items
	Creating Submenus
	Creating Custom Menu Items

	Part III: Enhancing Your Scenic Design
	Chapter 11: More about Layout Panes for Precise Scene Design
	Using the StackPane Layout
	Using the TilePane layout
	Using the ScrollPane Layout
	Using the GridPane Layout
	Sketching out a plan
	Creating a grid pane
	Working with grid pane constraints
	Examining a grid pane example

	Chapter 12: Skinning Your Application with CSS
	Using Default Style Sheets
	Adding a Style Sheet to a Scene
	Using Inline Styling
	Creating a Style Sheet
	Using type selectors
	Creating your own style class names
	Using id selectors
	Using multiple selectors

	Specifying Style Properties
	Specifying font properties
	Specifying background colors
	Specifying border properties

	Chapter 13: Drawing Shapes
	Introducing the Shape Class
	Creating lines
	Creating rectangles
	Creating circles and ellipses
	Creating arcs
	Looking at the ShapeMaker program

	Fancy Fills
	Drawing transparently
	Using a gradient fill

	Translating, Scaling, and Rotating
	Drawing Text
	Combining Shapes

	Chapter 14: Adding Special Effects
	Introducing Special Effects
	Adding Shadows
	Creating Reflections
	Making Things Blurry
	Blooming and Glowing
	Gaining Perspective
	Combining Effects

	Part IV: Making Your Programs Come Alive
	Chapter 15: Using Properties to Create Dynamic Scenes
	Introducing JavaFX Properties
	Java API Properties
	JavaFX Property Classes
	Creating a Read/Write Property
	Creating a Read-Only Property
	Creating Properties More Efficiently
	Using Property Events
	Binding Properties

	Chapter 16: Using Images and Media
	Using Images
	Using the Image class
	Using the ImageView class
	Viewing an Image example

	Playing Audio Files
	Playing Video Files

	Chapter 17: Animating Your Scenes
	Introducing JavaFX Animation
	Using Transition Classes
	Looking at a Transition Example
	Combining Transitions
	Animating the Hard Way
	Improving the Ball Bouncer

	Chapter 18: Targeting Touch Devices
	Introducing Gestures and Touch Events
	Listening for Gestures
	Looking at an Example Program

	Part V: The Part of Tens
	Chapter 19: Ten More JavaFX Controls
	TitledPane
	Accordion
	ColorPicker
	DatePicker
	Hyperlink
	ProgressIndicator and ProgressBar
	Slider
	ScrollBar
	PasswordField

	Chapter 20: Ten Steps to Building a 3D World
	Step One: Add a Perspective Camera
	Step Two: Add a Cylinder
	Step Three: Create a Material
	Step Four: Translate the Cylinder
	Step Five: Add a Box
	Step Six: Rotate the Box
	Step Seven: Add a Sphere
	Step Eight: Add a Mesh Object
	Step Nine: Animate the Objects
	Step Ten: Add a Light Source
	Putting It All Together: The Complete 3D World Program

	Index
	About the Author
	Wiley End User License Agreement

